KR101848979B1 - 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 - Google Patents
전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 Download PDFInfo
- Publication number
- KR101848979B1 KR101848979B1 KR1020150153453A KR20150153453A KR101848979B1 KR 101848979 B1 KR101848979 B1 KR 101848979B1 KR 1020150153453 A KR1020150153453 A KR 1020150153453A KR 20150153453 A KR20150153453 A KR 20150153453A KR 101848979 B1 KR101848979 B1 KR 101848979B1
- Authority
- KR
- South Korea
- Prior art keywords
- transition metal
- lithium
- metal oxide
- precursor
- active material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
- C01G33/006—Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/006—Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8689—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y02E60/122—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
하기 화학식 1로 표현되는 전이금속 산화물의 전구체가 제공된다.
[화학식 1]
NiaMnbCo1-(a+b+c+d)ZrcMd[OH(1-x)2-y]A(y/n)
(상기 M은 W 및 Nb 중 적어도 어느 하나이고, A는 OH를 제외한 하나 이상의 음이온이고, 0.3≤a≤0.9, 0.05≤b≤0.5, 0<c<0.05, 0<d<0.05, a+b+c+d≤1, 0<x<0.5, 0≤y≤0.05, n은 A의 산화수이다.)
[화학식 1]
NiaMnbCo1-(a+b+c+d)ZrcMd[OH(1-x)2-y]A(y/n)
(상기 M은 W 및 Nb 중 적어도 어느 하나이고, A는 OH를 제외한 하나 이상의 음이온이고, 0.3≤a≤0.9, 0.05≤b≤0.5, 0<c<0.05, 0<d<0.05, a+b+c+d≤1, 0<x<0.5, 0≤y≤0.05, n은 A의 산화수이다.)
Description
본 발명은 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지에 관한 것으로, 더욱 상세하게는, 낮은 저항 및 고출력을 갖는 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지에 관한 것이다.
본 출원은 2014년 10월 31일에 출원된 한국특허출원 제10-2014-0149818에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충·방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서, 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발이 진행되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
상기 양극 활물질들 중 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가라는 문제가 있다. LiMnO2, LiMn2O4 등의 리튬 망간산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있다. 그러나, 이들 리튬 망간 산화물은 용량이 작고, 사이클 특성 등이 나쁘다는 단점을 가지고 있다.
또한, LiNiO2 등의 리튬 니켈계 산화물은 상기 코발트계 산화물보다 비용이 저렴하면서도 4.25V로 충전되었을때, 높은 방전 용량을 나타내는 바, 도핑된 LiNiO2의 가역 용량은 LiCoO2의 용량(약 153 mAh/g)을 초과하는 약 200 mAh/g에 근접한다. 따라서, 약간 낮은 평균 방전 전압과 체적 밀도(volumetric density)에도 불구하고, LiNiO2 양극 활물질을 포함하는 상용화 전지는 개선된 에너지 밀도를 가지므로, 최근 고용량 전지를 개발하기 위하여 이러한 니켈계 양극 활물질에 대한 연구가 활발하게 진행되고 있다.
따라서, 많은 종래기술들은 LiNiO2계 양극 활물질의 특성과 LiNiO2의 제조공정을 개선하는데 초점을 맞추고 있고, 니켈의 일부를 Co, Mn 등의 다른 전이금속으로 치환한 형태의 리튬 전이금속 산화물이 제안되었다. 그러나, LiNiO2계 양극 활물질의 높은 생산비용, 전지에서의 가스발생에 의한 스웰링, 낮은 화학적 안정성, 높은 pH등의 문제들은 충분히 해결되지 못하고 있다.
이에, 일부 선행문헌에서 리튬 니켈-망간-코발트 산화물 표면에 LiF, Li2SO4, Li3PO4 등과 같은 물질을 도포하여 전지의 성능을 향상시키기 위한 시도가 있었지만, 이 경우, 상기 물질이 리튬 니켈-망간-코발트 산화물 표면에만 위치하게 되므로, 소망하는 수준의 효과를 발휘하는데 한계가 있을 뿐만 아니라, 상기 물질을 리튬 니켈-망간-코발트 산화물 표면에 도포하는 별도의 공정이 필요하다는 문제점이 있다.
그러나, 이러한 다양한 시도들에도 불구하고 만족스러운 성능의 리튬 복합 전이금속 산화물은 아직 개발되지 못하고 있는 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 특정 양이온과 음이온을 포함하는 전구체 및 그러한 전구체로부터 제조된 리튬 복합 전이금속 산화물을 포함하여, 낮은 저항 및 높은 출력을 발휘하는 이차전지를 제공한다.
본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 화학식 1로 표현되는 전이금속 산화물의 전구체가 제공된다.
[화학식 1]
NiaMnbCo1 - (a+b+c+d)ZrcMd[OH(1-x) 2-y]A(y/n)
(상기 M은 W 및 Nb 중 적어도 어느 하나이고, A는 OH를 제외한 하나 이상의 음이온이고, 0.3≤a≤0.9, 0.05≤b≤0.5, 0<c<0.05, 0<d<0.05, a+b+c+d≤1, 0<x<0.5, 0≤y≤0.05, n은 A의 산화수이다.
상기 M이 W 및 Nb일 때, 상기 c:d의 몰수비는 2:1 내지 3:2일 수 있다.
상기 A는 PO4, CO3, BO3, 및 F로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다.
상기 A는 PO4 및 F를 포함할 수 있다.
상기 전이금속 산화물의 전구체의 탭 밀도는 1.0 내지 2.5g/cc일 수 있다.
본 발명의 다른 일 측면에 따르면 전술한 전이금속 산화물의 전구체 및 리튬 화합물의 소성 결과물을 포함하는 리튬 복합 전이금속 산화물이 제공된다.
상기 리튬화합물은 수산화리튬, 탄산리튬 및 산화리튬 중 적어도 어느 하나일 수 있다.
상기 전기금속 산화물의 전구체 1몰에 대하여 상기 리튬화합물은 0.95몰 내지 1.2몰 이다.
상기 소성은 600 내지 1,000℃에서 실시될 수 있다.
또한, 상기와 같은 목적을 달성하기 위하여 본 발명의 또 다른 일 측면에 따르면 전술한 리튬 복합 전이금속 산화물을 포함하는 양극이 제공된다.
아울러, 본 발명을 다른 일 측면에 따르면, 전술한 양극을 포함하는 이차전지가 제공된다.
본 발명은 니켈-망간-코발트의 전이금속을 포함한 다성분계 양극활물질용 전구체에 지르코늄을 포함한 양이온으로 첨가함으로써, 구조적인 안정성을 확보하는 이점이 있다.
또한, 최적화된 몰수비를 갖는 다성분계 복합 전이금속 양이온을 포함함으로써, 저항을 줄일 수 있고, 출력이 향상되는 효과가 있다.
아울러, 수산화이온 및 특정 음이온을 추가로 사용함으로써, 높은 밀도를 갖는 양극활물질을 제조할 수 있으며, 궁극적으로는 고용량 및 우수한 수명 특성을 갖는 이차전지를 제공할 수 있는 이점이 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다.
도 1은 본 발명의 실시예 및 비교예에 따라 제조된 리튬 이차전지의 용량을 비교하여 도시한 그래프이다.
도 2는 본 발명의 실시예 및 비교예에 따라 제조된 리튬 이차전지의 저항을 비교하여 도시한 그래프이다.
도 1은 본 발명의 실시예 및 비교예에 따라 제조된 리튬 이차전지의 용량을 비교하여 도시한 그래프이다.
도 2는 본 발명의 실시예 및 비교예에 따라 제조된 리튬 이차전지의 저항을 비교하여 도시한 그래프이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서상에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서, 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 하기 화학식 1로 표현되는 전이금속 산화물의 전구체를 제공한다.
[화학식 1]
NiaMnbCo1 - (a+b+c+d)ZrcMd[OH(1-x) 2-y]A(y/n)
상기 화학식 1에서 M은 W(텅스텐), Nb(나이오븀), Al(알루미늄), Cu(구리), Fe(철), Mg(마그네슘), B(붕소), Cr(크로뮴) 및 2주기 전이금속 중 적어도 어느 하나로 치환될 수 있으며, 바람직하게는 W(텅스텐) 또는 Nb(나이오븀) 중 어느 하나이다.
A는 OH를 제외한 하나 이상의 음이온이고, 0.3≤a≤0.9, 0.05≤b≤0.5, 0<c<0.05, 0≤d<0.05, a+b+c+d≤1, 0<x<0.5, 0≤y≤0.05, n은 A의 산화수이다.
상기 전이금속 산화물의 전구체는 니켈을 고함량으로 포함하고 있어서, 고용량의 리튬 이차 전지용 양극활물질을 제조하는데 특히 바람직하게 사용될 수 있다. 즉, 상기 니켈의 함량(a)은 전체량을 기준(몰 기준)으로 망간 및 코발트에 비해 상대적으로 니켈 과잉의 조성으로서 상기 정의된 바와 같이 0.3~0.9이고, 바람직하게는 0.33 내지 0.8이다. 이러한 니켈의 함량이 0.3 미만인 경우에는 높은 용량을 기대하기 어렵고, 반대로 0.9를 초과하는 경우에는 안정성이 크게 저하되는 문제가 있다.
또한, 상기 망간의 함량(b)는 상기 정의된 바와 같이, 0.05 내지 0.5이고, 바람직하게는 0.1 내지 0.5이다.
상기 지르코늄 및 금속 치환물은 결정 내부에 치환됨으로 인한 결정성 향상 및 이온전도 특성이 좋은 국부적인 상 형성으로 출력 특성 향상에 기여 할 수 있다.
상기 지르코늄의 함량(c) 및 금속 M의 몰수(d)의 합은 0.1 이하의 범위일 수 있으며, 바람직하게는 0.03이상 0.08 이하의 범위 내에서 치환될 수 있다. 지르코늄의 함량(c) 및 금속 M의 몰수(d)의 합이 0.1 보다 초과 될 경우 합성 시 고용한계를 넘어 균일하게 치환이 되지 않고 석출상이 생길 가능성이 높다. 또한 소성 시 과량의 치환물로 인한 소성 억제 현상으로 양극활물질의 특성을 저해할 가능성이 있다. 반면 지르코늄의 함량(c) 및 금속 M의 몰수(d)의 합이 0.03 미만일 경우 치환에 의한 효과가 거의 없어질 수 있다.
상기 지르코늄의 함량(c) 및 금속 M의 몰수(d)의 비율은 2:1이 될 수 있고 보다 바람직하게는 3:2 비율이 될 수 있다. 금속 M의 몰수(d)의 비율이 과반수 이상이 될 경우 강한 소성 억제 현상으로 인해 양극활물질의 1차입자 성장저하, 결정성 저하 및 소성 후 Li 부산물 저하와 같은 효과가 발생하게 된다.
코발트의 함량(1-(a+b+c+d))는 상기 니켈, 망간, 지르코늄 및 금속 M의 함량(a+b+c+d)에 따라 달라지는바, 코발트의 함량이 지나치게 높은 경우, 코발트의 높은 함량으로 인해 원료 물질의 비용이 전체적으로 증가하고 가역 용량이 다소 감소하며, 코발트의 함량이 지나치게 낮은 경우에는 충분한 율(rate) 특성과 전지의 높은 분말 밀도를 동시에 달성하기 어려울 수 있다. 따라서 상기 니켈, 망간, 지르코늄 및 금속 M의 함량(a+b+c+d)은 바람직하게는 0.05 내지 0.4일 수 있다.
종래 리튬 이자천지의 전극 활물질은 F-, PO4 3-, CO3 2- 등과 같은 특정 음이온을 포함하는 리튬 화합물로 도핑 또는 표면처리 하거나 그것과 리튬 화합물을 혼합하는 일부 기술들이 알려져 있다. 예를 들어, 일부 선행기술은 기존의 리튬 니켈계 산화물에 특정한 구조의 인산 리튬염을 혼합하여 전극 활물질로 사용하는 이차전지를 제시하고 있고, 또 다른 선행기술은 인산 리튬염으로 피복한 리튬 망간계 산화물을 전극 활물질로 사용하여 망간 이온의 전해액에서의 용출을 방지하는 기술을 제시하고 있다.
그러나, 이들 선행기술은 전극 활물질을 제조 후, 리튬 화학물로 표면 처리 등을 하는 추가 공정이 필요하므로, 결과적으로 리튬 이차전지의 제조 단가를 상승시키는 요인이 될 수 있다. 또한, 특정 음이온이 전극 활물질의 표면에만 존재하게 되므로 일정 수준의 효과를 발휘하는데 한계가 있다.
이에 본 발명의 일 실시예에 따른 전이금속 산화물의 전구체는(OH1-x)만을 포함하거나, 바람직하게는 하나 이상의 음이온을 특정한 양으로 치환하여 사용할 수 있으며, 이러한 음이온이 치환되어 있는 전구체를 사용하여 전이금속 산화물의 전구체를 사용하여 리튬 복합 전이금속 산화물을 제조할 경우, 리튬 복합 전이금속 산화물의 표면과 내부에 상기 음이온이 균일하게 포함될 수 있으므로, 이를 기반으로 한 이차전지는 우수한 출력 특성 및 수명 특성을 발휘하며, 높은 충방전 효율을 나타낼 수 있다.
즉, 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함된 특정 음이온이 그레인(grain) 간의 이온 전도도 향상에 기여하고, 그레인 또는 결정 성장(crystal groth)를 작게 유도하여, 활성화 단계에서 산소 발생시 구조 변화를 줄여 주고 표면적을 넓힐 수 있어서, 율(rate) 특성 등 전지의 제반성능을 향상시킬 수 있다.
상기 화학식 1에서 음이온 A는 그레인(grain)간의 이온 전도도 향상에 기여할 수 있는 것이라면 제한되지 않는다.
하나의 바람직한 예에서, 상기 A는 PO4, CO3, BO3, 및 F로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있으며, 이 중 특히 PO4 및 F를 포함하는 경우, 매우 안정적인 구조를 가지면서 높은 리튬 확산 계수를 가지므로, 리튬 복합 전이금속 산화물의 안정성을 높여줄 수 있어 특히 바람직하다.
이러한 음이온 A은 함량은 지나치게 많은 경우, 이를 포함하는 리튬 복합 전이금속 산화물의 결정화를 방해하여 활물질의 성능을 향상시키는 것이 어려울 수 있고, 지나치게 적을 경우, 일정 효과를 발휘하기 어려울 수 있기 때문에, 복합 전이금속 산화물에서 A의 함량은 전체량을 기준(몰 기준)으로 0.01 내지 0.05 몰의 범위가 바람직하고, 0.02 이상 내지 0.03 몰 이하가 특히 바람직하다.
참고로, 이러한 음이온 A의 함량은 앞서 정의한 바와 같이 음이온의 산화수에 따라 상기 범위에서 결정됨은 물론이다.
이러한 전이금속 산화물의 전구체는 음이온 A를 포함하므로, 높은 탭 밀도를 가지며, 하나의 바람직한 예로는 1.0 내지 2.5 g/cc의 탭 밀도를 가질 수 있다.
또한, 이러한 전이금속 산화물의 전구체는, 바람직하게는 제조단계에서 음이온 A를 포함하는 화합물을 첨가하여 제조될 수 있는 바, 앞서 설명한 바와 같이, 리튬 복합 전이금속 산화물을 제조한 후, 음이온 A를 포함하는 화합물과 반응시키는 추가 공정 등이 필요 없으므로, 공정이 간단하고 용이하며, 경제성이 높다는 장점이 있다. 또한, 그로부터 제조된 리튬 복합 전이금속 화합물은 그렇지 않은 경우에 비해 양극 활물질로서 우수한 성능을 발휘할 수 있다.
이하에서는 본 발명에 따른 전이금속 산화물의 전구체를 제조하는 방법을 설명한다.
상기 전이금속 산화물 전구체는 전이금속 함유 염과 음이온 A가 포함된 화합물 특정량이 용해된 염기성 물질을 사용하여 공침법에 의해 제조될 수 있다.
상기 공침법은 수용액 중에서 침전 반응을 이용하여 2종 이상의 전이금속 원소를 동시에 침전시켜 제조하는 방법이다. 구체적인 예에서, 2종 이상의 전이금속을 포함하는 복합 전이금속 화합물은, 전이금속의 함량을 고려하여 전이금속 함유 염들을 소망하는 몰비로 혼합하여 수용액을 제조한 뒤, 수산화나트륨 등의 강염기와, 경우에 따라서는 암모니아 공급원 등의 첨가제 등을 부가하여, pH를 염기성으로 유지하면서 공침하여 제조될 수 있다. 이 때, 온도, pH, 반응 시간, 슬러리의 농도, 이온 농도 등을 적절히 제어함으로써, 소망하는 평균 입자지름, 입자지름 분포, 입자 밀도를 조절할 수 있다. pH 범위는 9 내지 13이고 바람직하게는 10 내지 12이며, 경우에 따라서는, 반응은 다단으로 수행될 수도 있다.
상기 전이금속 함유 염은 소성시 용이하게 분해되고 휘발되기 쉬운 음이온을갖는 것이 바람직한바, 황산염 또는 질산염일 수 있으며, 특히 바람직하게는 황산염일 수 있다. 예를 들어, 황산 니켈, 황산 코발트, 황산망간, 질산 니켈, 질산 코발트, 질산 망간 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 염기성 물질은 수산화나트륨, 수산화칼륨, 수산화리튬 등을 들 수 있고, 바람직하게는 수산화나트륨이 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 음이온 A가 포함된 화합물은 Zx'Ay'의 화학식으로 표현될 수 있으며, 상기 식에서, Z는 Na, NH4, H로 이루어진 군에서 선택되는 하나 이상이고, A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상이며, 0<x'<4 및 0<y'<4의 범위에서, Z의 산화수×x' + A의 산화수×y' = 0인 조건을 만족한다. 하나의 바람직한 예에서, 상기 Zx'Ay'는 Na3PO4, (NH4)3PO4, (NH4)2HPO4, (NH4)2H2PO4로 이루어진 군에서 선택되는 하나 이상일 수 있다.
이러한 화합물 Zx'Ay'는 물에 용해될 수 있으며, 바람직하게는, 0.01 내지 0.05 몰의 범위에서, 앞서 정의된 염기성 물질에 용해된 상태로 반응조에 투입되어 상기 전구체 제조용 전이금속 염과 반응할 수 있으며, 바람직하게는 수산화나트튬 용액에 용해된 상태로 투입될 수 있다. 경우에 따라서는, 전이금속 함유 염과 함께 투입될 수도 있다.
하나의 바람직한 예에서, 상기 공침 과정에서 전이금속과 착체를 형성할 수 있는 첨가제 및/또는 탄산 알칼리를 추가로 첨가할 수 있다. 상기 첨가제는, 예를 들어, 암모늄 이온 공급체, 에틸렌 디아민류 화합물, 구연산류 화합물 등이 사용될 수 있다. 상기 암모늄 이온 공급체는, 예를 들어, 암모니아수, 황산암모늄염 수용액, 질산암모늄염 수용액 등을 들 수 있다. 상기 탄산 알칼리는 탄산 암모늄,탄산나트륨,탄산 칼륨 및 탄산 리튬으로 이루어진 군에서 선택될 수 있다. 경우에 따라서는, 이들을 2 이상 혼합하여 사용할 수도 있다.
상기 첨가제와 탄산 알칼리의 첨가량은 전이금속 함유 염의 양, pH 등을 고려하여 적절히 결정할 수 있다.
반응 조건들에 따라, 화학식 1에 따른 복합 전이금속 화합물만을 포함하는 전이금속 산화물 전구체가 제조될 수도 있고, 또는 기타 복합 전이금속 화합물을 동시에 포함하는 전이금속 산화물 전구체가 제조될 수도 있다. 그에 대한 자세한 내용은 이후의 실시예들을 참조할 수 있다.
본 발명은 또한 상기 전이금속 산화물 전구체로부터 제조되는 리튬 복합 전이금속 산화물을 제공한다. 구체적으로, 상기 전이금속 산화물 전구체와 리튬 함유 물질을 소성 반응시켜, 리튬 이차전지용 양극 활물질인 리튬 복합 전이금속 산화물을 제조할 수 있으며, 상기 리튬 함유 물질은 수산화리튬, 탄산리튬 및 산화리튬 중 적어도 어느 하나일 수 있다.
상기 전이금속 산화물의 전구체 1몰에 대하여 상기 리튬화합물은 0.95몰 내지 1.2몰이고, 바람직하게는 1.0 내지 1.1 몰비일 수 있으며, 상기 수치범위 내에서 용량 구현율 및 수명 특성이 향상되는 효과가 있다.
또한, 소성 반응은 600 내지 1000℃의 온도에서 수행되고, 바람직하게는 700 내지 950℃의 온도에서 수행되며, 상기 소성 온도가 600℃ 미만인 경우, 전이금속 산화물 전구체가 완전히 소성되지 않는 문제가 있고, 1000℃를 초과하는 경우, 고온에 노출된 전구체 및 리튬 화합물의 물성이 변하는 문제가 있다.
이러한 음이온 A의 함량은 지나치게 많은 경우, 이를 포함하는 리튬 복합 전이금속 산화물의 결정화를 방해하여 활물질의 성능을 향상시키는 것이 어려울 수 있고, 지나치게 적을 경우, 일정 효과를 발휘하기 어려울 수 있기 때문에, 복합 전이금속 산화물에서 A의 함량은 전체량을 기준(몰 기준)으로 0.01 내지 0.05 몰%의 범위가 바람직하고, 0.02 이상 내지 0.03 몰% 이하가 특히 바람직하다.
참고로, 이러한 음이온 A의 함량은 앞서 정의한 바와 같이 음이온의 산화수에 따라 상기 범위에서 결정됨은 물론이다.
이러한 리튬 복합 전이금속 산화물은 리튬 이차전지용 전극 활물질로서 바람직하게 사용될 수 있으며, 이들은 단독으로 사용될 수도 있고, 다른 공지의 리튬 이차전지용 전극 활물질과 혼합되어 사용될 수도 있다.
또한, 상기 리튬 복합 전이금속 산화물은 2 이상의 전이금속을 포함하는 것으로서, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1 - yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물 Li1 + zNi1 / 3Co1 / 3Mn1 / 3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1 + zNibMncCo1 - (b+c+d)MdO(2-e)Ne (여기서, -0.5≤z≤0.5, 0.3≤b≤0.9, 0.1≤c≤0.9, 0≤d≤0.1, 0≤e≤0.05, b+c+d<1 임, M Al, Mg, Cr, Ti, Si 또는 Y이고, N = F, P 또는 Cl임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 리튬 복합 전이금속 산화물은 특히 바람직하게는 Co, Ni 및 Mn를 모두 포함하는 리튬 복합 전이금속 산화물일 수 있다.
리튬 복합 전이금속 산화물의 제조를 위한 전이금속 산화물 전구체와 리튬 함유 물질의 반응 조건은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
본 발명은 또한, 상기 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 양극 및 이를 포함하는 리튬 이차전지를 제공한다.
상기 양극은, 예를 들어, 양극 집전체 상에 본 발명에 따른 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 리튬 이차전지는 일반적으로 양극, 음극, 분리막 및 리튬염 함유 비수 전해질로 구성되어 있으며, 본 발명에 따른 리튬 이차전지의 기타 성분들에 대해 이하에서 설명한다.
음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO,등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체전해질이 분리막을 겸할 수도 있다.
리튬 함유 비수계 전해질은 비수 전해질과 리튬염으로 이루어져 있다. 비수전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2 , LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene Sultone), FPC(Fluoro-Propylene Carbonate) 등을 더 포함시킬 수 있다.
이하, 본 발명을 구체적으로 설명하기 위하여 실시예를 들어 상세히 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가지는 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
양극활물질의
제조
[제조예 1]
출발 물질로 NiSO4 MnSO4 CoSO4 ZrSO4를 Ni:Mn:Co:Zr의 몰비율이 60: 20:19.5:0.5가 되도록 1.5M의 metal용액을 만들었다. 추가로 NaOH와 Na3PO4 를 이용하여 OH와 PO4의 비율이 1.98 : 0.02 이 되도록 3M의 음이온 source를 만들었다. 이를 45℃의 항온 연속형 공침반응기를 이용해 양극활물질용 전구체를 합성하였다. 합성된 전구체를 LiOH source와 1:1.07 비율로 혼합하여 대기 분위기에서 850℃, 10Hr 동안 소성을 진행하여 양극활물질을 제조하였다.
[제조예 2]
ZrSO4 와 Nb2(SO4)3를 이용하여 Ni:Mn:Co:Zr:Nb의 몰비율이 60:20:19:0.6: 0.4가 되도록 한 것 외에는 제조예 1과 동일하게 양극활물질을 제조하였다.
[제조예 3]
ZrSO4 와 Na2WO4를 이용하여 Ni:Mn:Co:Zr:W의 몰비율이 60:20:19:0.6:0.4가 되도록 한 것 외에는 제조예 1과 동일하게 양극활물질을 제조하였다.
[제조예 4]
NiSO4 MnSO4 CoSO4 원료를 이용해 Ni:Mn:Co의 몰비율이 60:20:20가 되도록 한 것 외에는 제조예 1과 동일하게 양극활물질을 제조하였다.
[제조예 5]
ZrSO4 와 Na2WO4를 이용하여 Ni:Mn:Co:Zr:W의 몰비율이 60:20:19.8:0.1:0.1가 되도록 한 것 외에는 제조예 1과 동일하게 양극활물질을 제조하였다.
[제조예 6]
ZrSO4 와 Na2WO4를 이용하여 Ni:Mn:Co:Zr:W의 몰비율이 60:20:18:0.8:1.2가 되도록 한 것 외에는 제조예 1과 동일하게 양극활물질을 제조하였다.
이차전지의 제조
[실시예 1]
음극의 제조
음극활물질로 인조흑연, 바인더 고분자로 폴리비닐리덴플로라이드(PVdF), 도전재로 카본 블랙 (carbon black)을 각각 96 중량부, 3 중량부, 1 중량부로 하여, 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10 ㎛인 음극 집전체인 구리(Cu) 박막의 양면에 도포, 건조를 하고, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
양극의 제조
제조예 1의 양극활물질 92 중량부, 도전재로 카본 블랙(carbon black) 4 중량부, 및 바인더 고분자로 폴리비닐리덴 플루오라이드(PVDF) 4 중량부를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛인 양극 집전체의 알루미늄(Al) 박막에 양면에 도포, 건조하고, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
세퍼레이터의
제조
폴리비닐리덴 플루오라이드(PVdF)와 를 아세톤에 용해시켜 바인더 고분자 용액을 제조하였다. 제조한 바인더 고분자 용액에 알루미나(Al2O3)를 폴리비닐리덴 플루오라이드/알루미나(Al2O3)=7.15/92.5의 중량비가 되도록 첨가하여 3시간 이상 볼밀법(ball mill)을 이용하여 알루미나(Al2O3)를 파쇄 및 분산하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리의 알루미나(Al2O3)의 입경은 볼밀에 사용되는 비드의 사이즈(입도) 및 볼밀시간에 따라 제어할 수 있으나, 본 실시예 1에서는 약 400mm로 분쇄하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리를 두께 12㎛의 폴리에틸렌 다공성 고분자 필름(기공도 45%)의 일면에 코팅하여 건조하였다.
전지의 제조
상기와 같이 제조한 음극과 양극 사이에 제1 세퍼레이터를 사용하여, 양극/세퍼레이터/음극/세퍼레이터/양극의 순으로 적층하고, 고온에서 압력을 주어 단위 바이셀을 제조하였다. 이렇게 제조한 21개의 단위 바이셀을 상기와 같이 제조한 제2 세퍼레이터의 일면 상에 배열한 후 폴딩하여 전극조립체를 제작한 후, 조립된 전지에 1M의 리튬헥사플로로포스페이트(LiPF6)이 용해된 에틴렌카보네이트 및 에틸메틸카보네이트(EC/EMC=1:2, 부피비)의 전해액을 주입하여 리튬 이차전지를 제조하였다.
[실시예 2]
제조예 2의 양극활물질을 사용한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
[실시예 3]
제조예 3의 양극활물질을 사용한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
[비교예 1]
제조예 4의 양극활물질을 사용한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
[비교예 2]
제조예 5의 양극활물질을 사용한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
[비교예3]
제조예 6의 양극활물질을 사용한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
4.3V(coin half cell, 0.2C/0.2C) | |||
구분 | Charge(mAh/g) | Discharge(mAh/g) | effect(%) |
실시예 1 | 202.5 | 176.7 | 87.3 |
실시예 2 | 202.1 | 176.2 | 87.2 |
실시예 3 | 201.9 | 176.1 | 87.2 |
비교예 1 | 201.7 | 175.1 | 86.8 |
비교예 2 | 201.8 | 174.8 | 86.6 |
비교예 3 | 199.4 | 172.4 | 86.5 |
표 1은 상기 실시예 1 내지 3 및 비교예 1 내지 3의 충방전 효율을 비교하여 나타낸 것이다.
도 1은 상기 실시예 1 내지 3 및 비교예 1 내지 3의 용량을 비교하여 도시한 그래프이며, 도 2는 상기 실시예 1 내지 3 및 비교예 1 내지 3의 저항을 비교 도시한 그래프이다.
표 1, 도 1 및 도 2를 참조하면, 본 발명에 따라 니켈-망간-코발트의 전이금속을 포함한 다성분계 양극활물질용 전구체에 최적화된 몰수비의 지르코늄을 포함함으로써, 우수한 충방전 효율, 높은 용량 및 저항 감소에 따른 출력 향상의 이점이 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함을 물론이다.
Claims (11)
- 하기 화학식 1로 표현되는 전이금속 산화물의 전구체.
[화학식 1]
NiaMnbCo1-(a+b+c+d)ZrcMd[OH(1-x)2-y]A(y/n)
(상기 M은 W 및 Nb 중 적어도 어느 하나이고, A는 OH를 제외한 하나 이상의 음이온이고, 0.3≤a≤0.9, 0.05≤b≤0.5, 0<c<0.05, 0≤d<0.05, a+b+c+d≤1, 0<x<0.5, 0≤y≤0.05, n은 A의 산화수이다.) - 제1항에 있어서,
상기 c:d의 몰수비는 2:1 내지 3:2인 것을 특징으로 하는 전이금속 산화물의 전구체. - 제1항에 있어서,
상기 A는 PO4, CO3, BO3, 및 F로 이루어진 군에서 선택된 적어도 어느 하나인 것을 특징으로 하는 전이금속 산화물의 전구체. - 제1항에 있어서,
상기 A는 PO4 및 F를 포함하는 것을 특징으로 하는 전이금속 산화물의 전구체. - 제1항에 있어서,
상기 전이금속 산화물의 전구체의 탭 밀도는 1.0 내지 2.5g/cc인 것을 특징으로 하는 전이금속 산화물의 전구체. - 제1항 내지 제5항 중 어느 한 항의 전이금속 산화물의 전구체 및 리튬화합물의 소성 결과물을 포함하는 리튬 복합 전이금속 산화물.
- 제6항에 있어서,
상기 리튬화합물은 수산화리튬, 탄산리튬 및 산화리튬 중 적어도 어느 하나인 것을 특징으로 하는 리튬 복합 전이금속 산화물. - 제6항에 있어서,
상기 전이금속 산화물의 전구체 1몰에 대하여 상기 리튬화합물은 0.95 내지 1.2몰인 것을 특징으로 하는 리튬 복합 전이금속 산화물. - 제6항에 있어서,
상기 소성은 600 내지 1000℃에서 실시되는 것을 특징으로 하는 리튬 복합 전이금속 산화물. - 제6항의 리튬 복합 전이금속 산화물을 포함하는 양극.
- 제10항의 양극을 포함하는 이차전지.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20140149818 | 2014-10-31 | ||
KR1020140149818 | 2014-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160052427A KR20160052427A (ko) | 2016-05-12 |
KR101848979B1 true KR101848979B1 (ko) | 2018-05-24 |
Family
ID=55857884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150153453A KR101848979B1 (ko) | 2014-10-31 | 2015-11-02 | 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10811676B2 (ko) |
KR (1) | KR101848979B1 (ko) |
CN (1) | CN107074588B (ko) |
WO (1) | WO2016068682A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018160023A1 (ko) * | 2017-02-28 | 2018-09-07 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
KR102176633B1 (ko) | 2017-02-28 | 2020-11-09 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
CN108807928B (zh) | 2018-06-25 | 2021-04-20 | 宁德新能源科技有限公司 | 一种金属氧化物及锂离子电池的合成 |
CN110697801B (zh) * | 2019-10-29 | 2020-12-04 | 山东泽石新材料科技有限公司 | 一种过渡金属锂氧化合物的制备方法及装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100616475B1 (ko) | 2005-05-07 | 2006-08-29 | 한국과학기술연구원 | 리튬이차전지 양극활물질 전구체, 이를 이용한 양극활물질및 리튬이차전지 및 그 제조방법 |
PL2261176T3 (pl) | 2008-04-03 | 2022-11-14 | Lg Energy Solution, Ltd. | Nowy prekursor do wytwarzania złożonego tlenku litu-metalu przejściowego |
KR100959589B1 (ko) | 2008-04-03 | 2010-05-27 | 주식회사 엘지화학 | 리튬 복합 전이금속 산화물 제조용 신규 전구체 |
KR101217453B1 (ko) * | 2009-12-24 | 2013-01-02 | 제이에이치화학공업(주) | 리튬이차전지 양극활물질용 전구체인 니켈계 복합금속수산화물 및 그 제조방법 |
WO2011161754A1 (ja) | 2010-06-21 | 2011-12-29 | トヨタ自動車株式会社 | リチウムイオン二次電池 |
US9466832B2 (en) * | 2010-06-21 | 2016-10-11 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery including a nickel containing lithium complex oxide |
JP5927460B2 (ja) * | 2010-09-22 | 2016-06-01 | フリーポート・コバルト・オーワイ | 合金酸化水酸化物及びその製造方法 |
WO2012164752A1 (ja) | 2011-05-30 | 2012-12-06 | 住友金属鉱山株式会社 | 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池 |
US9126845B2 (en) * | 2011-05-31 | 2015-09-08 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery |
CN103094576B (zh) * | 2011-10-31 | 2015-09-30 | 北京有色金属研究总院 | 一种镍基正极材料及其制备方法和电池 |
KR101446491B1 (ko) | 2012-03-16 | 2014-10-06 | 주식회사 엘지화학 | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 |
JP5626602B2 (ja) * | 2012-06-29 | 2014-11-19 | トヨタ自動車株式会社 | 非水電解質二次電池 |
BR112014031358B8 (pt) | 2012-07-09 | 2023-01-17 | Lg Chemical Ltd | Método para preparar um composto de metal de transição compósito de um precursor de metal de transição |
KR20140115201A (ko) * | 2013-03-20 | 2014-09-30 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
-
2015
- 2015-11-02 KR KR1020150153453A patent/KR101848979B1/ko active IP Right Grant
- 2015-11-02 WO PCT/KR2015/011662 patent/WO2016068682A1/ko active Application Filing
- 2015-11-02 CN CN201580059467.6A patent/CN107074588B/zh active Active
- 2015-11-02 US US15/516,715 patent/US10811676B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107074588A (zh) | 2017-08-18 |
US10811676B2 (en) | 2020-10-20 |
WO2016068682A1 (ko) | 2016-05-06 |
CN107074588B (zh) | 2019-05-14 |
US20170294645A1 (en) | 2017-10-12 |
KR20160052427A (ko) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101982790B1 (ko) | 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극 | |
KR101446491B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 | |
JP7041802B2 (ja) | リチウム欠乏遷移金属酸化物を含むコーティング層が形成されたリチウム過剰のリチウムマンガン系酸化物を含む正極活物質およびこれを含むリチウム二次電池用正極 | |
KR101497909B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 | |
KR101452950B1 (ko) | 이차전지의 양극 활물질용 리튬 니켈계 산화물 및 그것의제조방법 | |
KR101458676B1 (ko) | 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지 | |
KR20170046921A (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
KR101490852B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물 | |
KR101778243B1 (ko) | 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 | |
KR20170045833A (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
KR101673118B1 (ko) | 리튬이차전지용 양극활물질 전구체 제조방법 및 이를 이용한 양극활물질 및 리튬이차전지 | |
KR101541347B1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR20180002055A (ko) | 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법 | |
EP3731313A1 (en) | Positive pole active material for lithium secondary battery and manufacturing method thereof, lithium secondary battery | |
KR20180009911A (ko) | 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법 | |
KR101848979B1 (ko) | 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 | |
KR101570970B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 | |
KR101608632B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법 및 이를 이용한 리튬 복합 전이금속 산화물 | |
KR101692826B1 (ko) | 표면 개질된 양극 활물질 및 이를 제조하는 방법 | |
KR101392525B1 (ko) | 양극 활물질, 이의 제조방법 및 이를 이용한 이차전지 | |
KR101449813B1 (ko) | 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지 | |
KR20190038314A (ko) | 리튬 과잉의 리튬 망간계 산화물 및 리튬 과잉의 리튬 망간계 산화물상에 리튬 텅스텐 화합물, 또는 추가적으로 텅스텐 화합물을 더 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극 | |
KR101741027B1 (ko) | 복합체 전구체, 이로부터 형성된 복합체, 그 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지 | |
KR20120089111A (ko) | 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질 | |
KR101426148B1 (ko) | 리튬금속산화물 및 이를 이용한 리튬이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |