KR101766863B1 - Recovery of indium from the waste acid including indium - Google Patents
Recovery of indium from the waste acid including indium Download PDFInfo
- Publication number
- KR101766863B1 KR101766863B1 KR1020160053525A KR20160053525A KR101766863B1 KR 101766863 B1 KR101766863 B1 KR 101766863B1 KR 1020160053525 A KR1020160053525 A KR 1020160053525A KR 20160053525 A KR20160053525 A KR 20160053525A KR 101766863 B1 KR101766863 B1 KR 101766863B1
- Authority
- KR
- South Korea
- Prior art keywords
- acid
- indium
- carbonate
- containing waste
- reaction mixture
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B58/00—Obtaining gallium or indium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/205—Treatment or purification of solutions, e.g. obtained by leaching using adducts or inclusion complexes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y02P10/234—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
본 발명은 폐산에 함유된 인듐을 회수하는 방법에 관한 것이다. The present invention relates to a method for recovering indium contained in waste acid.
인듐 틴 옥사이드(Indium Tin Oxide: ITO)는 도전성과 함께 투명성을 가지는 재료로서 액정표시장치(LCD), 플라즈마 디스플레이 패널(PDP), 유기발광장치(OLED)와 같은 평판 디스플레이, 터치패널 및 태양전지를 제조하기 위한 투명전극으로 그 수요가 지속적으로 증가하는 추세에 있다. , 이에 따라 ITO 폐산액 발생량도 증가하고 있다.Indium Tin Oxide (ITO) is a material having conductivity as well as transparency, and is used as a flat panel display such as a liquid crystal display (LCD), a plasma display panel (PDP), an organic light emitting device (OLED) The demand for transparent electrodes for manufacturing is continuously increasing. , And thus the amount of waste of ITO waste acid is also increasing.
그런데 ITO는 매우 안정된 물질이라 이를 에칭하기 위해서는 염산, 질산, 황산 등과 같은 강산의 혼합액인 혼산이 필요하게 된다. ITO을 구성하는 인듐은 고가의 금속이기 때문에 ITO 폐산액으로부터 인듐을 회수하기 위한 많은 노력이 시도되어 왔다. 인듐을 회수하는 방법으로는 알칼리제로 중화하여 금속 불순물을 여과 제거한 뒤 그 여액을 중화하고 그 침전물을 산에 용해한 뒤 Al이나 Zn 칩을 투입하여 산화환원 반응으로 인듐 금속을 채취하거나 전기분해를 이용한 전해 채취를 이용하는 방법, pH가 낮은 상태에서 황화제나 KI 등을 사용하여 금속 불순물을 제거한 뒤 전해채취를 이용하는 방법, 진공 감압 증류나 투석을 이용하여 산을 회수한 뒤 전해 채취나 Al 칩 등을 이용한 산화환원법으로 인듐을 회수하는 방법이 알려져 있다. However, since ITO is a very stable material, it requires a mixed acid solution of strong acids such as hydrochloric acid, nitric acid, and sulfuric acid to etch it. Since indium, which constitutes ITO, is an expensive metal, a lot of efforts have been made to recover indium from the waste ITO solution. The method for recovering indium is to neutralize the metal impurities by neutralizing with an alkaline agent, neutralize the filtrate, dissolve the precipitate in acid, add Al or Zn chips to collect indium metal by redox reaction or electrolyze by electrolysis A method of collecting an acid by using vacuum extraction distillation or dialysis, a method of collecting an acid by electrolytic sampling or an Al chip or the like A method of recovering indium by a reduction method is known.
그런데 이 방법들에 의하여 사용된 중화제가 가격이 높거나 처리비용이 높고 악취를 동반하고 폐수를 발생하여 이에 대한 개선이 필요하다. However, the neutralizers used by these methods are expensive, have a high treatment cost, are accompanied by odor, and need to be improved by generating wastewater.
본 발명이 이루고자 하는 과제는 생산성이 개선되면서 보다 경제적으로 인듐을 회수할 수 있는 인듐을 함유하는 폐산으로부터 인듐을 회수하는 방법을 제공한다. The present invention provides a method for recovering indium from a waste acid containing indium that can recover indium more economically with improved productivity.
상기 기술적 과제는 The above-
인듐 함유 폐산에 탄산계 알칼리화제를 부가하여 pH를 1.5 내지 2.5으로 조절한 다음, 유기산을 부가하여 반응시키는 제1단계 ;Adding a carbonate-based alkalizing agent to the indium-containing waste acid to adjust the pH to 1.5 to 2.5, and then adding and reacting the organic acid;
상기 제1단계에 따라 얻어진 반응 혼합물을 제1여과하고, 그 여액에 대해 탄산계 알칼리화제를 부가하여 pH 5~ 6으로 조절하는 제2단계; 및A second step of firstly filtering the reaction mixture obtained according to the first step and adding a carbonic acid alkalizing agent to the filtrate to adjust the pH to 5 to 6; And
상기 제2단계에 따라 얻어진 반응 혼합물을 제2여과하고 얻어진 고형물을 세척 및 건조하는 제3단계 ;를 포함하는 인듐 함유 폐산으로부터 인듐을 회수하는 방법에 의하여 이루어진다.A second step of filtering the reaction mixture obtained in the second step, and a third step of washing and drying the obtained solid material, and recovering indium from the indium-containing waste acid.
상기 제3단계에 따라 얻은 생성물의 전해 채취 또는 산화환원 반응을 실시하여 인듐을 얻는 단계를 더 포함한다.And further performing an electrolytic harvesting or oxidation-reduction reaction of the product obtained in the third step to obtain indium.
본 발명의 방법에 따르면, 인듐 함유 폐산으로부터 저렴한 가격으로 여과소요시간이 감소되면서 99.99% 이상의 순도를 갖는 인듐(In) 금속을 회수할 수 있다.According to the method of the present invention, it is possible to recover indium (In) metal having a purity of 99.99% or more while decreasing the filtration time from indium-containing waste acid at an inexpensive price.
도 1은 본 발명에 따른 인듐 함유 폐산으로부터 고순도의 인듐을 회수하기 위한 방법의 각 단계를 나타낸 흐름도이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing each step of a method for recovering high purity indium from an indium-containing waste acid according to the present invention.
이하, 본 발명의 따른 인듐 함유 폐산으로부터 고순도의 인듐을 회수하기 위한 방법에 대해 보다 자세히 설명하기로 한다. Hereinafter, a method for recovering indium of high purity from indium-containing waste acid according to the present invention will be described in more detail.
인듐 함유 폐산에 탄산계 알칼리화제를 부가하여 pH를 1.5 내지 2.5으로 조절한 다음, 유기산을 부가하여 반응시키는 제1단계 ;Adding a carbonate-based alkalizing agent to the indium-containing waste acid to adjust the pH to 1.5 to 2.5, and then adding and reacting the organic acid;
상기 제1단계에 따라 얻어진 반응 혼합물을 여과하고, 그 여액에 대해 탄산계 알칼리화제를 부가하여 pH 5~ 6으로 조절하는 제2단계; 및A second step of filtering the reaction mixture obtained according to the first step and adding a carbonic acid alkalizing agent to the filtrate to adjust the pH to 5 to 6; And
상기 제2단계에 따라 얻어진 반응 혼합물을 여과하고 얻어진 고형물을 세척 및 건조하는 제3단계 ;를 포함하는 인듐 함유 폐산으로부터 인듐을 회수하는 방법이 제공된다.And a third step of filtering the reaction mixture obtained according to the second step and washing and drying the obtained solid matter, and recovering indium from the indium-containing waste acid.
상기 인듐 함유 폐산은 평판디스플레이, 터치패널 및 태양전지의 전도체로 사용되는 ITO 막의 에칭 후 발생된 폐액을 말한다. The indium-containing waste acid refers to a waste liquid generated after etching of an ITO film used as a conductor of a flat panel display, a touch panel, and a solar cell.
인듐 함유 폐산에 대하여 탄산계 알칼리화제를 투입하여 pH를 1.5 ~ 2.5으로 조절한다. pH가 상기 범위일 때 벗어난 경우에는 최종적으로 얻어지는 인듐에 불순물이 포함되어 인듐의 순도가 떨어질 수 있어 바람직하지 못하다.The pH is adjusted to 1.5 to 2.5 by adding a carbonic acid alkalizing agent to the indium-containing waste acid. If the pH is out of the above range, impurities may be contained in the finally obtained indium and the purity of indium may be lowered, which is not preferable.
이어서 상기 혼합물에 유기산을 투입하여 일정 시간 반응을 시킨 다음 침전여과를 통하여 금속 불순물 특히 납을 제거한다. 여기에서 금속 불순물은 인듐의 획득을 위한 전해 채취단계에서 방해물질로 작용하며 특히 납을 제거하는 것이 바람직하다. Subsequently, the organic acid is added to the mixture, reacted for a predetermined time, and metal impurities, particularly lead, are removed through precipitation filtration. Here, the metal impurity acts as an obstacle in the electrolytic sampling step for obtaining indium, and it is preferable to remove lead, in particular.
상기 여액에 탄산계 알칼리화제를 투입하여 pH를 5 ~ 6으로 조절한 다음, 여과를 실시하여 고형물을 얻는다. 여기에서 pH가 상기 범위을 벗어난 경우에는 고형물 형태로 얻기가 곤란하여 인듐을 회수하는 효율이 저하된다. A carbonic acid alkalizing agent is added to the filtrate to adjust the pH to 5 to 6, followed by filtration to obtain a solid. Here, when the pH is out of the above range, it is difficult to obtain a solid form, and the efficiency of recovering indium is lowered.
상기 제3단계에 따라 얻은 생성물을 산에 녹인 후 pH를 1 ~ 2로 조절한 다음 이를 전해 채취 또는 산화환원 반응을 실시하여 인듐을 얻는 단계를 더 포함하는 인듐 함유 폐산으로부터 인듐을 회수할 수 있다.The indium may be recovered from the indium-containing waste acid further comprising the step of dissolving the product obtained in the third step in an acid, adjusting the pH to 1 to 2, and then conducting an electrolytic pickling or oxidation-reduction reaction to obtain indium .
기존의 인듐 회수 방법에 있어 중화에 가성소다, 가성카리, 암모니아수, 와 같은 고가의 알칼리화제가 사용되고 있고, 특히 암모니아수를 사용하는 경우에는 악취를 동반하면서 폐수를 발생하고 특히 고형물(예: 인듐 수산화물)의 여과성이 불량하여 생산성이 떨어진다. 여기에서 인듐 수산화물은 결정이 약한 플록의 형상이라서 여과성이 불량하다. 그리고 기존의 인듐 회수 방법으로서 진공감압증류를 사용하는 경우 에너지 비용이 많이 소요되며, 투석과 같은 경우는 설치비 및 운영비가 많이 소요되는 단점을 갖고 있다.In the conventional indium recovery method, expensive alkalizing agents such as caustic soda, caustic soda, and ammonia water are used for neutralization. Especially, when ammonia water is used, waste water is generated accompanied with odor, and particularly in the case of solid matters such as indium hydroxide The filtration property is poor and the productivity is low. Here, the indium hydroxide is poor in the filtration property because it is in the form of a weak flock. In addition, when the vacuum decompression distillation is used as the conventional indium recovery method, the energy cost is high. In the case of the dialysis, the installation and operation costs are large.
이에 비하여 본원발명에서는 고형물은 탄산인듐과 수산화인듐의 혼합물[In2(CO3)3 In(OH)3의 혼합물] 또는 탄산인듐 형태를 갖는다. 이러한 고형물은 플록의 형태로 존재하여 종래의 방법에 따라 실시하는 경우 여과성이 불량한 수산화인듐과 달리 결정립이 커서 여과성이 크게 개선된다. 그리고 탄산계 알칼리화제의 사용으로 인하여 유래되는 금속 불순물은 전해채취공정에서 효과적으로 제거가 가능하다. In contrast, in the present invention, the solid material has a mixture of indium carbonate and indium hydroxide [a mixture of In 2 (CO 3) 3 In (OH) 3 ] or indium carbonate. Such solids exist in the form of flocs, and when they are carried out according to the conventional method, the crystal grains are larger than those of indium hydroxide, which has poor filtration property, so that the filtration property is greatly improved. And metal impurities derived from the use of the carbonate-based alkalizing agent can be effectively removed in the electrolytic harvesting step.
이하 도 1을 참조하여, 본 발명에 따른 제조방법의 각 단계를 더 상세히 설명한다. Hereinafter, with reference to Fig. 1, each step of the manufacturing method according to the present invention will be described in more detail.
먼저, 인듐 함유 폐산은 PDP, LCD, OLED 등의 평판디스플레이 제조 공정이나 터치패널 제조 공정 또는 박막형 태양전지의 제조 공정 중 발생하는 인듐 함유 폐산(주로 투명전도체로 사용되는 ITO 폐에칭 용액임)이 이용될 수 있다. First, the indium-containing waste acid is used as an indium-containing waste acid (mainly ITO waste etching solution used as a transparent conductor) generated in a flat panel display manufacturing process of a PDP, an LCD, an OLED, or a touch panel manufacturing process or a manufacturing process of a thin film solar cell .
폐산액을 반응조에 투입하고 나서 탄산계 알칼리화제를 서서히 투입한다. 일반적으로 ITO 에칭 폐액은 ITO가 잘 에칭되지 않는 단단한 물질이라 염산, 질산, 황산 등의 강산으로 구성되는데, 여기서의 중화에는 초기 낮은 pH에서 소모되는 알칼리화제 양이 대부분이고, 강산이 중화된 pH 1 이상에서는 약간의 알칼리 투입에도 pH가 상승하므로 pH가 1 부근에 접근하면 주의하여 알칼리화제를 투입하여야 한다. The wastewater acid solution is introduced into the reaction tank and then the carbonate-based alkalizing agent is slowly added. In general, the ITO etching waste solution is a hard material that is not well etched by ITO, and is composed of strong acids such as hydrochloric acid, nitric acid, and sulfuric acid. In the neutralization, the amount of alkalizing agent consumed at the initial low pH is mostly, The alkaline agent should be added with caution when the pH is near 1 because the pH is elevated even when a little alkali is added.
상기 탄산계 알칼리화제는 예를 들어 탄산칼륨(K2CO3), 탄산칼슘(CaCO3), 탄산나트륨(Na2CO3), 탄산암모늄[(NH4)2CO3] 및 탄산수소나트륨(NaHCO3, 탄산마그네슘)으로 이루어진 군으로부터 선택된 하나 이상이다.The carbonic acid alkalizing agent may be, for example, potassium carbonate (K 2 CO 3 ), calcium carbonate (CaCO 3 ), sodium carbonate (Na 2 CO 3 ), ammonium carbonate [(NH 4 ) 2 CO 3 ] and sodium hydrogen carbonate 3 , magnesium carbonate).
반응조의 pH가 1.5 ~ 2.5 로 조정이 되면 유기산을 투입한다. When the pH of the reaction tank is adjusted to 1.5 ~ 2.5, organic acid is added.
상기 유기산은 예를 들어 구연산(citric acid), 옥살산(oxalic acid), 말론산(malonic acid), 사과산(malic acid), 주석산(tartaric acid), 초산(acetic acid), 푸마르산(fumaric acid), 젖산(lactic acid), 포름산(formic acid), 프로피온산(propionic acid), 부티르산(butyric acid), 이미노디아세트산(iminodiacetic acid), 글리옥실산(glyoxylic acid), 아스코르빈산(ascorbic acid), 락트산(Lactic acid), 말레산(maleic acid), 아크릴산(acrylic acid), 발레산(valeric acid), 피발산(pivalicacid), n-헥산산(hexanoic acid), t-옥탄산(octanoic acid), 2-에칠-헥산산(2-ethyl-hexanoic acid), 네오데칸산(neodecanoic acid), 라우르산(lauric acid), 스테아린산(stearic acid), 올레산(oleic acid), 나프텐산(naphthenic acid), 도데칸산(dodecanoic acid), 리놀레산(linoleic acid)로 이루어진 군으로부터 선택된 하나 이상이다.The organic acid may be, for example, citric acid, oxalic acid, malonic acid, malic acid, tartaric acid, acetic acid, fumaric acid, lactic acid, formic acid, propionic acid, butyric acid, iminodiacetic acid, glyoxylic acid, ascorbic acid, lactic acid, wherein the acid is selected from the group consisting of maleic acid, acrylic acid, valeric acid, pivalic acid, hexanoic acid, t-octanoic acid, 2- 2-ethyl-hexanoic acid, neodecanoic acid, lauric acid, stearic acid, oleic acid, naphthenic acid, dodecanoic acid, dodecanoic acid, and linoleic acid.
유기산의 일예로서 옥살산을 사용한다. 유기산의 함량은 납(Pb) 1당량 대비 2.5 내지 12.5 당량, 예를 들어 5 내지 10 당량 범위이다. 유기산을 부가한 후, 4 ~ 6 시간의 교반 및 숙성을 하고 제1여과를 한다.As an example of an organic acid, oxalic acid is used. The content of the organic acid is 2.5 to 12.5 equivalents, for example, 5 to 10 equivalents, relative to 1 equivalent of lead (Pb). After the organic acid is added, the mixture is agitated for 4 to 6 hours, aged and subjected to the first filtration.
상기 숙성은 예를 들어 45 내지 70℃에서 실시한다. 그리고 숙성 시간은 숙성시키는 온도에 따라 달라지지만 예를 들어 1.5 내지 4 시간 범위이다. The aging is carried out, for example, at 45 to 70 ° C. The aging time depends on the aging temperature, but ranges, for example, from 1.5 to 4 hours.
pH 1.5 ~ 2.5 로 1차 중화하고 옥살산과 같은 유기산을 부가하여 Pb 등의 금속 불순물을 제거한 뒤 탄산계 알칼리를 투입하여 결정립이 크고 여과성이 좋은 고형물을 얻는다. Primary neutralization is carried out at a pH of 1.5 to 2.5 and an organic acid such as oxalic acid is added to remove metal impurities such as Pb and then carbonic acid alkali is added to obtain a solid having a high crystal grain size and good filtration property.
여과를 마친 여액에 탄산계 알칼리를 천천히 투입하여 pH 5 내지 6으로 중화한다. 고형물이 석출 침전하게 되는데, 이 고형물은 플록의 형태로 존재하여 여과성이 불량한 수산화인듐과 달리 결정립은 크고 여과성이 크게 개선된다. 이 고형물을 정제수로 세척한 후 건조하여 제품으로 한다.The filtrate is neutralized to a pH of 5 to 6 by slowly adding a carbonic acid alkali to the filtrate. The solid precipitates precipitate, which is in the form of flocs, unlike indium hydroxide, which is poor in filtration, and has a large grain size and greatly improved filtration. This solid is washed with purified water and dried to give a product.
건조는 예를 들어 20 내지 60℃, 예를 들어 25 내지 50℃에서 실시한다.The drying is carried out, for example, at 20 to 60 ° C, for example, at 25 to 50 ° C.
상기 pH 5 내지 6으로 중화시킨 후 고형물의 제2여과에 걸리는 여과 소요 시간은 40 분 이하, 예를 들어 20 내지 35 분 이다. 이와 같이 여과 소요 시간이 종래의 방법에 비하여 현저하게 줄어든다.The filtration time required for the second filtration of the solid after neutralization to
본 발명의 인듐 회수 방법에 따르면, 순도가 99% 이상, 바람직하게는 99.99% 이상인 In 금속을 얻을 수 있다.According to the indium recovery method of the present invention, an In metal having a purity of 99% or more, preferably 99.99% or more can be obtained.
상기 과정에 따라 얻어진 인듐 함유 고형물에 대하여 전해채취 반응 및/또는 산화환원 반응을 실시하여 고순도 인듐을 실시할 수 있다.The indium-containing solid obtained according to the above process may be subjected to an electrolytic picking reaction and / or an oxidation-reduction reaction to conduct high purity indium.
전해 채취 반응 및 산화환원 반응은 당해 기술분야에서 통상적으로 사용하는 방법에 따라 실시한다.The electrolytic picking reaction and the oxidation-reduction reaction are carried out according to a method commonly used in the art.
전해 채취란 용액 중에 존재하는 금속 이온을 외부에서 전압을 가하여 석출시키는 공정이다. 전해 채취시 전류밀도를 조절하여 인듐을 효과적으로 회수할 수 있다.Electrolytic sampling is a process in which metal ions present in a solution are precipitated by externally applying a voltage. Indium can be effectively recovered by adjusting the current density during electrolysis.
전해 채취 반응을 살펴 보면 상기 과정에 따라 얻은 인듐 함유 고형물을 산에 용해하여 pH를 1 ~ 2로 조절한 다음 이를 전해 채취하여 고순도 인듐을 얻을 수 있다.In the electrolytic picking reaction, the indium-containing solid obtained according to the above procedure is dissolved in an acid to adjust the pH to 1 to 2, and then electrolyzed to obtain high purity indium.
산화환원 반응은 알루미늄(Al) 칩(chip) 또는 아연(Zn) 칩을 투입하여 산화환원에 의해 인듐을 석출하는 것이다. The redox reaction is to deposit an aluminum (Al) chip or a zinc (Zn) chip to precipitate indium by redox.
이하, 본 발명을 하기 실시예들을 보다 상세하게 설명하기로 하되, 본 발명이 하기 실시예들로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
본 실험에 사용된 인듐 함유 폐산은 박막 트랜지스터-액정표시장치(thin film The indium-containing waste acid used in this experiment was a thin film transistor-
transistor liquid crystal display: TFT-LCD) 제조 공정에서 발생된 폐액이며, 하기 표 1에 나타난 조성을 나타낸다transistor liquid crystal display (TFT-LCD) manufacturing process, and the composition shown in Table 1 below
(as H2SO4)Total
(as H2SO4)
실시예Example 1 One
표 1의 조성을 갖는 In 함유 폐산 2 리터에 탄산나트륨(소다회)을 투입하여 혼합물의 pH를 약 2.1로 조절하였다. 이어서 상기 혼합물에 옥살산 2 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 7.46 당량임)을 투입하여 5시간 교반한 뒤 여과를 실시하였다. 그 여액에 다시 탄산나트륨을 투입하여 혼합물의 pH를 5.6으로 조절하였다.Sodium carbonate (soda ash) was added to 2 liters of an In-containing spent acid having the composition shown in Table 1 to adjust the pH of the mixture to about 2.1. Then, 2 g of oxalic acid (content of oxalic acid relative to 1 equivalent of lead (Pb) in the indium-containing waste acid was 7.46 equivalent) was added to the mixture, followed by stirring for 5 hours and filtration. The pH of the mixture was adjusted to 5.6 by addition of sodium carbonate to the filtrate.
반응 혼합물을 약 3시간동안 천천히 교반을 실시하면 결정이 형성되었다. 얻어진 결정을 여과한 다음, 여과된 고형물을 증류수로 1 회 세척한 뒤 50 ℃로 유지되는 오븐에 넣고 건조시켰다. 건조된 생성물 0.5g을 50 중량%의 염산 용액 50ml에 녹인 뒤 이 용액을 적당히 희석하여, 미국 퍼킨엘머사의 ICP-OES(모델 : Plasma 7000 DV)로 분석하였다.The reaction mixture was stirred slowly for about 3 hours to form crystals. The obtained crystals were filtered, and the filtered solid was washed once with distilled water, then placed in an oven maintained at 50 ° C, and dried. 0.5 g of the dried product was dissolved in 50 ml of a 50% hydrochloric acid solution, and the solution was appropriately diluted and analyzed by ICP-OES (Model: Plasma 7000 DV, Perkin Elmer, USA).
실시예Example 2 2
표 1의 조성을 갖는 In 함유 폐산 2 리터에 소다회를 투입하여 pH를 약 2.0으로 조절한 후 옥살산 2 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 7.46당량임)을 투입하여 5시간 교반한 뒤 여과를 하였다. 그 여액에 다시 소다회를 투입하여 pH 5.5으로 조절하고 결정이 형성되도록 3 시간 동안 천천히 교반을 실시하였다. 얻어진 고형물을 여과하였다. 2 g of oxalic acid (content of oxalic acid relative to 1 equivalent of lead (Pb) in the indium-containing waste acid is 7.46 equivalent) was added to 2 liters of indium-containing waste acid to adjust the pH to about 2.0 by adding soda ash After agitation, filtration was carried out. Soda ash was added to the filtrate again to adjust the pH to 5.5, and the mixture was slowly stirred for 3 hours to form crystals. The resulting solid was filtered.
고형물을 증류수로 1 회 세척한 뒤 50 ℃로 유지되는 오븐에 넣고 건조시켰다. 건조된 생성물 0.5g을 50 중량%의 염산 용액 50ml에 녹인 뒤 이 용액을 적당히 희석하여, 미국 퍼킨엘머사의 ICP-OES(모델: Plasma 7000 DV)로 분석하였다.The solids were washed once with distilled water and then placed in an oven maintained at 50 < 0 > C and allowed to dry. 0.5 g of the dried product was dissolved in 50 ml of a 50% hydrochloric acid solution, and the solution was appropriately diluted and analyzed by ICP-OES (Model: Plasma 7000 DV, Perkin Elmer, USA).
실시예Example 3 3
옥살산의 함량이 1.34 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 5당량)으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하였다.Except that the content of oxalic acid was changed to 1.34 g (1 equivalent of lead (Pb) in indium-containing waste acid to 5 equivalents of oxalic acid).
실시예Example 4 4
옥살산의 함량이 2.01 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 7.5당량)으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하였다.Except that the content of oxalic acid was changed to 2.01 g (the content of oxalic acid was 7.5 equivalents relative to 1 equivalent of lead (Pb) in the indium-containing waste acid)).
실시예Example 5 5
옥살산의 함량이 2.68 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 10당량)으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하였다.Except that the content of oxalic acid was changed from 2.68 g (1 equivalent of lead (Pb) in the indium-containing waste acid to 10 equivalent of oxalic acid).
실시예Example 6 6
옥살산의 함량이 0.67 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 2.5당량)으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하였다.Except that the content of oxalic acid was changed from 0.67 g (1 equivalent of lead (Pb) in indium-containing waste acid to 2.5 equivalents of oxalic acid).
실시예Example 7 7
옥살산의 함량이 3.35 g(인듐 함유 폐산의 납(Pb) 1 당량 대비 옥살산의 함량은 12.5당량)으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하였다.Except that the content of oxalic acid was changed from 3.35 g (1 equivalent of lead (Pb) in the indium-containing waste acid to 12.5 equivalents of oxalic acid).
비교예Comparative Example 1 One
표 1의 조성을 갖는 In 함유 폐산 2 리터에 탄산나트륨(소다회)을 투입하여 혼합물의 pH를 약 2.2로 조절하였다. 이어서 상기 혼합물에 탄산나트륨을 투입하여 혼합물의 pH를 5.7로 조절하였다.Sodium carbonate (soda ash) was added to 2 liters of the impurity-containing waste acid having the composition shown in Table 1 to adjust the pH of the mixture to about 2.2. The pH of the mixture was then adjusted to 5.7 by the addition of sodium carbonate to the mixture.
반응 혼합물을 약 3시간동안 천천히 교반을 실시하면 결정이 형성되었다. 얻어진 결정을 여과한 다음, 여과된 고형물을 증류수로 1 회 세척한 뒤 50 ℃로 유지되는 오븐에 넣고 건조시켰다. 건조된 생성물 0.5g을 50 중량%의 염산 용액 50ml에 녹인 뒤 이 용액을 적당히 희석하여, 미국 퍼킨엘머사의 ICP-OES(모델 : Plasma 7000 DV)로 분석하였다.The reaction mixture was stirred slowly for about 3 hours to form crystals. The obtained crystals were filtered, and the filtered solid was washed once with distilled water, then placed in an oven maintained at 50 ° C, and dried. 0.5 g of the dried product was dissolved in 50 ml of a 50% hydrochloric acid solution, and the solution was appropriately diluted and analyzed by ICP-OES (Model: Plasma 7000 DV, Perkin Elmer, USA).
비교예Comparative Example 2 2
표 1의 조성을 갖는 In 함유 폐산 2 리터에 플레이크 형태의 수산화나트륨(가성소다)를 사용하여 pH를 약 1 부근까지 조절한 후 액상 50% 수산화나트륨(가성소다)를 사용하여 pH 2.0으로 중화하고 여과를 실시하였다. 그 여액에 대하여 액상 50% 가성소다를 사용하여 pH 5.4로 2 차 조절을 실시하고 3 시간 동안 천천히 교반하여 고형물을 얻었다. 얻어진 고형물을 실시예 2와 동일하게 여과를 실시하였다.The pH was adjusted to about 1 by using sodium hydroxide (caustic soda) in the form of flakes in 2 liters of the impurity containing In having the composition shown in Table 1, neutralized to pH 2.0 with 50% sodium hydroxide solution (caustic soda) Respectively. The filtrate was adjusted to pH 5.4 using a liquid 50% caustic soda and stirred slowly for 3 hours to obtain a solid. The obtained solid was subjected to filtration in the same manner as in Example 2.
평가예Evaluation example 1: 유도결합 1: Inductive coupling 플라즈마plasma 분광분석기 ( Spectrometer ( ICP-ICP- OESOES (Inductively Coupled Plasma Optical Emission Spectrometer: ICP-(Inductively Coupled Plasma Optical Emission Spectrometer: ICP- OESOES ) 분석) analysis
실시예 1 및 비교예 1에 따라 실시하여 얻어진 생성물을 유도결합 플라즈마 분광분석기를 이용하여 분석을 실시하였다. 유도결합 플라즈마 분광분석기로는 미국 퍼킨엘머사의 ICP-OES(모델 : Plasma 7000 DV) 를 이용하였다.The products obtained in accordance with Example 1 and Comparative Example 1 were analyzed using an inductively coupled plasma spectrometer. As the inductively coupled plasma spectrometer, ICP-OES (Model: Plasma 7000 DV) manufactured by Perkin Elmer of USA was used.
상기 분석 결과는 하기 표 2와 같다.The results of the analysis are shown in Table 2 below.
(%)In
(%)
(ppm)Fe
(ppm)
(ppm)Cu
(ppm)
(ppm)Sn
(ppm)
(ppm)Al
(ppm)
(ppm)Pb
(ppm)
(ppm)Zn
(ppm)
상기 표 2를 참조하여, 옥살산이 전해 채취에 악영향을 미치는 Pb의 제거에 효과가 매우 우수하다는 것을 알 수 있었다. Referring to Table 2, it was found that the effect of oxalic acid on the removal of Pb adversely affecting electrolytic harvesting was very good.
2)실시예 2-62) Example 2-6
실시예 2 내지 6에 따라 실시한 경우, 최종적으로 얻어진 생성물에 대한 When carried out according to Examples 2 to 6, the final product obtained
ICP-OES 분석을 실시하였다. ICP-OES 분석을 통하여 확인된 납의 함량은 하기 표 3에 나타내었다. 납은 전해 채취 시 방해물질로 작용하는 주요 금속 성분이다. ICP-OES analysis was performed. The content of lead identified through ICP-OES analysis is shown in Table 3 below. Lead is a major metal component that acts as an obstruction in electrolytic harvesting.
(1.34 g)5 eq.
(1.34 g)
(2.01 g)7.5 equivalent
(2.01 g)
(2.68 g)10 equivalent
(2.68 g)
(0.67 g)2.5 eq.
(0.67 g)
(3.35 g)12.5 equivalent
(3.35 g)
상기 표 3에 나타난 바와 같이, 옥살산의 함량이 2.5 내지 12.5 당량일 때 납(Pb) 제거 효과가 우수하고 특히 5 ~ 10 당량이 가장 적절한 범위임을 알 수 있다.As shown in Table 3, when the content of oxalic acid is in the range of 2.5 to 12.5 equivalents, the lead (Pb) removal effect is excellent, and in particular, 5 to 10 equivalents are most suitable.
평가예Evaluation example 2: 여과 시간 2: Filtration time
실시예 2 및 비교예 2에 따라 실시한 경우, 고형물의 여과 소요 시간을 조사하였고, 그 결과를 하기 표 4에 나타내었다.The filtration time of the solid material was examined in accordance with Example 2 and Comparative Example 2, and the results are shown in Table 4 below.
상기 표 4에 나타난 바와 같이, 실시예 2에 따라 실시하는 경우 비교예 2에 비하여 여과에 걸리는 시간이 많이 감소된다는 것을 알 수 있었다. As shown in Table 4, it can be seen that the time taken for filtration is significantly reduced as compared with Comparative Example 2 when it is carried out according to Example 2.
상기 실시예 1, 실시예 2 내지 6에 따라 실시한 경우 실시예 2와 동등한 수준의 여과 소요시간을 나타냈다. 이와 같이 실시예 1-6에 따라 실시하면 비교예 2의 경우에 비하여 여과에 드는 시간이 매우 줄어든다는 것을 확인할 수 있었다.The filtration time required for filtration was the same as in Example 2, when the filtration was carried out according to Example 1 and Examples 2 to 6 above. As described above, it was confirmed that the filtration time of Example 1-6 was much shorter than that of Comparative Example 2.
평가예Evaluation example 3: 인듐의 순도 3: Purity of indium
상기 실시예 1-6에 따라 제조된 인듐 함유 고형물을 염산에 용해하여 pH를 약 1로 조절하고 전해 채취를 실시하였다. 이 때 전해채취 조건에 대하여 살펴보면, 양극으로는 Pt 메시 전극을 이용하고, 음극으로는 Cu판을 이용하고 전해온도는 약 25℃이고 전류밀도는 1.0 내지 5 ASD로 조절하였다.The indium-containing solids prepared in Example 1-6 were dissolved in hydrochloric acid to adjust the pH to about 1 and electrolysis was performed. As for the electrolytic sampling conditions, a Pt mesh electrode was used as an anode, a Cu plate was used as a cathode, an electrolytic temperature was about 25 ° C, and a current density was adjusted to 1.0 to 5 ASD.
전해채취를 통해 회수된 인듐을 ICP를 이용하여 순도를 확인하였다.The purity of indium recovered through electrolysis was confirmed by ICP.
그 결과, 실시예 1-6에 따라 제조된 인듐 함유 고형물을 이용한 경우 순도가 99.99% 이상인 In 금속을 회수할 수 있다는 것을 알 수 있었다.As a result, it was found that the In metal having a purity of 99.99% or more can be recovered by using the indium-containing solid produced according to Example 1-6.
이상에서는 도면 및 실시예를 참조하여 일구현예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 구현예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the exemplary embodiments or constructions. It will be apparent to those skilled in the art that various modifications and variations are possible in light of the above teachings will be. Accordingly, the scope of protection of the present invention should be determined by the appended claims.
Claims (6)
상기 제1단계에 따라 얻어진 반응 혼합물을 제1여과하고, 그 여액에 대해 탄산계 알칼리화제를 부가하여 pH 5 내지 6으로 조절하는 제2단계; 및
상기 제2단계에 따라 얻어진 반응 혼합물을 제2여과하고 얻어진 고형물인 탄산인듐(In2(CO3)3)과 수산화인듐 (In(OH)3)의 혼합물을 세척 및 건조하는 제3단계;를 포함하며,
상기 제3단계에 따라 얻은 생성물을 산에 녹인 후 pH를 1 ~ 2로 조절한 다음 이를 전해 채취 또는 산화환원 반응을 실시하여 인듐을 얻는 단계를 더 포함하며,
상기 유기산은 인듐 함유 폐산에 존재하는 존재하는 납(Pb) 1당량을 기준으로 하여 5 내지 10 당량에 해당되는 함량으로 부가하는 인듐 함유 폐산으로부터 인듐을 회수하며,
상기 유기산은 구연산(citric acid), 옥살산(oxalic acid), 말론산(malonic acid), 사과산(malic acid), 주석산(tartaric acid), 초산(acetic acid), 푸마르산(fumaric acid), 젖산(lactic acid), 포름산(formic acid), 프로피온산(propionic acid), 부티르산(butyric acid), 이미노디아세트산(iminodiacetic acid), 글리옥실산(glyoxylic acid), 아스코르빈산(ascorbic acid), 락트산(Lactic acid), 말레산(maleic acid), 아크릴산(acrylic acid), 발레산(valeric acid), 피발산(pivalicacid), n-헥산산(hexanoic acid), t-옥탄산(octanoic acid), 2-에칠-헥산산(2-ethyl-hexanoic acid), 네오데칸산(neodecanoic acid), 라우르산(lauric acid), 스테아린산(stearic acid), 올레산(oleic acid), 나프텐산(naphthenic acid), 도데칸산(dodecanoic acid), 리놀레산(linoleic acid)로 이루어진 군으로부터 선택된 하나 이상인 인듐 함유 폐산으로부터 인듐을 회수하는 방법.Adding a carbonate-based alkalizing agent to the indium-containing waste acid to adjust the pH to 1.5 to 2.5, adding an organic acid to react, and aging at 45 to 70 ° C for 1.5 to 4 hours;
A second step of firstly filtering the reaction mixture obtained according to the first step and adding a carbonic acid alkalizing agent to the filtrate to adjust the pH to 5 to 6; And
And a third step of washing and drying a mixture of indium carbonate (In 2 (CO 3) 3 ) and indium hydroxide (In (OH) 3 ) obtained by filtering the reaction mixture obtained in the second step In addition,
The step of dissolving the product obtained in the third step in an acid, adjusting the pH to 1 to 2, and conducting an electrolytic pickling or redox reaction to obtain indium,
The organic acid recovers indium from the indium-containing waste acid added in an amount corresponding to 5 to 10 equivalents based on 1 equivalent of the existing lead (Pb) present in the indium-containing waste acid,
The organic acid may be selected from the group consisting of citric acid, oxalic acid, malonic acid, malic acid, tartaric acid, acetic acid, fumaric acid, lactic acid But are not limited to, formic acid, propionic acid, butyric acid, iminodiacetic acid, glyoxylic acid, ascorbic acid, lactic acid, Maleic acid, acrylic acid, valeric acid, pivalic acid, hexanoic acid, t-octanoic acid, 2-ethyl-hexanoic acid 2-ethyl-hexanoic acid, neodecanoic acid, lauric acid, stearic acid, oleic acid, naphthenic acid, dodecanoic acid, , Linoleic acid, and the like.
상기 제1단계 및 제2단계에서 사용된 탄산계 알칼리화제는 탄산칼륨(K2CO3), 탄산칼슘(CaCO3), 탄산나트륨(Na2CO3), 탄산암모늄(NH4)2CO3) 및 탄산수소나트륨(NaHCO3, 탄산마그네슘)으로 이루어진 군으로부터 선택된 하나 이상인 인듐 함유 폐산으로부터 인듐을 회수하는 방법.The method according to claim 1,
The carbonic acid alkalizing agent used in the first and second steps may be potassium carbonate (K 2 CO 3 ), calcium carbonate (CaCO 3 ), sodium carbonate (Na 2 CO 3 ), ammonium carbonate (NH 4 ) 2 CO 3 , And sodium hydrogencarbonate (NaHCO 3 , magnesium carbonate).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160053525A KR101766863B1 (en) | 2016-04-29 | 2016-04-29 | Recovery of indium from the waste acid including indium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160053525A KR101766863B1 (en) | 2016-04-29 | 2016-04-29 | Recovery of indium from the waste acid including indium |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101766863B1 true KR101766863B1 (en) | 2017-08-10 |
Family
ID=59652338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160053525A KR101766863B1 (en) | 2016-04-29 | 2016-04-29 | Recovery of indium from the waste acid including indium |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101766863B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230059319A (en) | 2021-10-26 | 2023-05-03 | 부경대학교 산학협력단 | Method for recovering metallic zinc and organic acid from zinc oxalate and zinc-mediated carbon dioxide fixation process using the same |
KR20240066642A (en) | 2022-11-08 | 2024-05-16 | 정수호 | Method for recovering indium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005314786A (en) | 2004-03-31 | 2005-11-10 | Mitsui Mining & Smelting Co Ltd | Method for collecting indium |
JP2009215623A (en) * | 2008-03-12 | 2009-09-24 | Dowa Metals & Mining Co Ltd | Method for recovering indium |
KR101251887B1 (en) | 2012-02-28 | 2013-04-08 | 주식회사 엔코 | Indium & acids recovery method of indium-containing waste-acids by the vacuum evaporation and condensation |
-
2016
- 2016-04-29 KR KR1020160053525A patent/KR101766863B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005314786A (en) | 2004-03-31 | 2005-11-10 | Mitsui Mining & Smelting Co Ltd | Method for collecting indium |
JP2009215623A (en) * | 2008-03-12 | 2009-09-24 | Dowa Metals & Mining Co Ltd | Method for recovering indium |
KR101251887B1 (en) | 2012-02-28 | 2013-04-08 | 주식회사 엔코 | Indium & acids recovery method of indium-containing waste-acids by the vacuum evaporation and condensation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230059319A (en) | 2021-10-26 | 2023-05-03 | 부경대학교 산학협력단 | Method for recovering metallic zinc and organic acid from zinc oxalate and zinc-mediated carbon dioxide fixation process using the same |
KR102576972B1 (en) * | 2021-10-26 | 2023-09-08 | 부경대학교 산학협력단 | Method for recovering metallic zinc and organic acid from zinc oxalate and zinc-mediated carbon dioxide fixation process using the same |
KR20240066642A (en) | 2022-11-08 | 2024-05-16 | 정수호 | Method for recovering indium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2666230C (en) | Method for collection of valuable metal from ito scrap | |
KR101155359B1 (en) | Method for collection of valuable metal from ito scrap | |
KR20090055649A (en) | Method for collection of valuable metal from ito scrap | |
KR100940621B1 (en) | Method for withdrawing indium from indium-containing material | |
KR101251887B1 (en) | Indium & acids recovery method of indium-containing waste-acids by the vacuum evaporation and condensation | |
JP4852720B2 (en) | Indium recovery method | |
KR101249990B1 (en) | Recovery of indium, tin and acid from spent ito etching solution | |
KR101766863B1 (en) | Recovery of indium from the waste acid including indium | |
JP6662230B2 (en) | Method for producing high-purity indium | |
JP2010138490A (en) | Method of recovering zinc | |
US10202703B2 (en) | Method for treating waste liquid from process of etching indium tin oxide | |
JP4734603B2 (en) | Indium recovery method | |
KR101546611B1 (en) | Method of manufacturing gallium oxide for oxide semiconductor through wet recycling of indium, gallium, zinc oxide target | |
JP4663053B2 (en) | Indium recovery method | |
KR101439505B1 (en) | METHOD FOR RECOVERING In, Sn AND ACID FROM USED ITO ETCHING SOLUTION | |
JP6373772B2 (en) | Method for recovering indium and gallium | |
JP2011106010A (en) | Method for separating indium from tin by using organic solvent | |
KR20080100030A (en) | Method for recycling indium | |
KR100639932B1 (en) | Method for withdrawing indium, tin, and acid from spent ITO etching solution | |
KR20150078431A (en) | Method for recycling indium from ITO scrap | |
KR20120134821A (en) | Recovery of indium metal using hydrothermal method | |
JP5177471B2 (en) | Method for recovering indium hydroxide or indium | |
KR100725282B1 (en) | Method for withdrawing indium | |
KR101249327B1 (en) | Indium hydrate cake and copper sulfide cake extraction method from spent acids of the ito sputtering process | |
JP2007092143A (en) | High purity indium metal and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |