KR101285701B1 - Process for preparing UV-curing organic-inorganic hybrid compound - Google Patents
Process for preparing UV-curing organic-inorganic hybrid compound Download PDFInfo
- Publication number
- KR101285701B1 KR101285701B1 KR1020110098742A KR20110098742A KR101285701B1 KR 101285701 B1 KR101285701 B1 KR 101285701B1 KR 1020110098742 A KR1020110098742 A KR 1020110098742A KR 20110098742 A KR20110098742 A KR 20110098742A KR 101285701 B1 KR101285701 B1 KR 101285701B1
- Authority
- KR
- South Korea
- Prior art keywords
- inorganic hybrid
- organic
- hybrid compound
- producing
- bpa
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
- C08G77/08—Preparatory processes characterised by the catalysts used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Optical Integrated Circuits (AREA)
Abstract
본 발명은 고성능 광인쇄회로기판(O-PCB)의 도파관 코어(waveguide core)와 클래딩(cladding)용 물질에 관한 것으로, 굴절률 조절이 가능하며 BPA와 TPM를 포함하는 광 경화형 유기-무기 혼성 화합물의 제조 방법에 관한 것이다.
본 발명에 따르면, 알콕시실란 및 다이올을 반응시켜 광 경화형 유기-무기 혼성 화합물의 제조 방법에 있어서, 3-트리메톡시실릴프로필메타크릴레이트(3-trimethoxysilylpropylmethacrylate ;TPM)와 비스페놀 A(Bisphenol A ;BPA)를 촉매 존재 하에 졸-겔 반응시켜 유기-무기 혼성 전구체를 제조하는 단계; 및 상기 유기-무기 혼성 전구체에 광 개시제를 첨가하여 스핀코팅 및 광을 조사하여 가교시키는 단계; 를 포함하는 것을 특징으로 하는 광 경화형 유기-무기 혼성 화합물의 제조 방법을 제공한다.The present invention relates to a waveguide core and a cladding material of a high performance optical printed circuit board (O-PCB), and has a refractive index of the photocurable organic-inorganic hybrid compound including BPA and TPM. It relates to a manufacturing method.
According to the present invention, in the method for producing a photocurable organic-inorganic hybrid compound by reacting an alkoxysilane and a diol, 3-trimethoxysilylpropylmethacrylate (TPM) and bisphenol A (Bisphenol A; Sol-gel reaction of BPA) in the presence of a catalyst to produce an organic-inorganic hybrid precursor; And adding a photoinitiator to the organic-inorganic hybrid precursor to spin-coating and irradiating and crosslinking the light. It provides a method for producing a photo-curable organic-inorganic hybrid compound comprising a.
Description
본 발명은 고성능 광인쇄회로기판(O-PCB)의 도파관 코어(waveguide core) 및 클래딩(cladding)용 물질의 제조방법에 관한 것으로, 상세하게는 굴절률 조절이 가능하며, 비스페놀 A(Bisphenol A ;BPA)와 3-트리메톡시실릴프로필메타크릴레이트(3-trimethoxysilylpropylmethacrylate ;TPM)를 포함하는 광 경화형(UV 경화형) 유기-무기 혼성 화합물의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a waveguide core and a cladding material of a high performance optical printed circuit board (O-PCB), and in detail, the refractive index can be adjusted, and bisphenol A (BPA) is used. ) And 3-trimethoxysilylpropylmethacrylate (TPM), the present invention relates to a method for producing a photocurable (UV curable) organic-inorganic hybrid compound.
현재 광도파로 소자는 통상적으로 반도체 제작 기술이나 또는 MEMS(Micro Electro-Mechanical System)기술을 활용하여 제작되어지며, 평면 기판 상에 광도파로 소자를 제작하는 경우에는 평면 도파로 기술이 이용되고 있다. 또한 이와 같이 제작된 광도파로 소자의 기능을 더욱 집적화하려는 연구가 계속적으로 진행되고 있다.Currently, an optical waveguide device is typically manufactured using a semiconductor manufacturing technology or a MEMS (Micro Electro-Mechanical System) technology, and when manufacturing an optical waveguide device on a flat substrate, a planar waveguide technology is used. In addition, researches for further integrating the functions of the optical waveguide device manufactured as described above have been continuously conducted.
일반적으로 광도파로 소자의 제조방법을 살펴보면 다음과 같다. 우선, 기판 위에 하부 클래드층을 형성한 다음, 이 하부 클래드층 상부에 코어층을 형성한다. 이어서, 상기 코어층 상부에 포토레지스트층을 형성한 다음, 이를 노광 및 현상하여 포토레지스트 패턴을 형성한다. 얻어진 포토레지스트 패턴을 이용하여 코어층을 식각하여 패터닝한다. 그 후, 패터닝된 코어층 상부에 상부 클래드층을 형성함으로써 광도파로가 완성된다.In general, the manufacturing method of the optical waveguide device is as follows. First, a lower clad layer is formed on a substrate, and then a core layer is formed on the lower clad layer. Subsequently, a photoresist layer is formed on the core layer, and the photoresist pattern is exposed and developed to form a photoresist pattern. The core layer is etched and patterned using the obtained photoresist pattern. Thereafter, the optical waveguide is completed by forming an upper cladding layer over the patterned core layer.
상기 클래드층이나 코어층은 통상적으로 스핀 코팅법에 의해 형성되며, 그 형성재료로는 굴절률이 상이한 실리카나 또는 폴리머가 이용되고 있다. 그러나 코어와 클래드층 형성재료로서 실리카가 이용되는 경우 코어와의 굴절률의 차이는 최대 75%까지 얻어진다. 따라서 이러한 재료를 이용하는 경우에는 광도파로의 규모가 제한되어 초소형 광통신용 수동 소자를 제작하기 어렵다는 문제점이 있다.The cladding layer and the core layer are usually formed by spin coating, and silica or polymers having different refractive indices are used as the forming material. However, when silica is used as the core and cladding layer forming material, the difference in refractive index with the core is obtained up to 75%. Therefore, in the case of using such a material, the size of the optical waveguide is limited, making it difficult to manufacture a passive device for micro optical communication.
본 발명과 관련된 종래기술로서 미국특허 제 6,054,253호에서는 졸-겔 방법을 이용한 광 감응성 유기-무기 혼성재료를 이용하여 광도파로를 제작하는데, 광을 조사한 부분과 조사하지 않은 부분의 용매에 대한 용해도의 차이를 이용해서 용매를 이용하여 필요 없는 부분을 식각하여 광도파로를 형성한다. 그리고 미국 특허 제6,144,795에서는 무기-유기 혼성재료를 몰드에 사용하여 광도파로를 형성하는 방법을 개시하고 있다.US Pat. No. 6,054,253 discloses an optical waveguide using a photosensitive organic-inorganic hybrid material using a sol-gel method, which is related to the present invention. Using the difference, the solvent is used to etch away the unnecessary portions to form the optical waveguide. And US Pat. No. 6,144,795 discloses a method of forming an optical waveguide using an inorganic-organic hybrid material in a mold.
본 발명은 고성능 광인쇄회로기판의 도파관 코어와 클래딩용 물질에 관한 것으로, 상세하게는 굴절률을 10- 3스케일로 조절할 수 있고, 원하는 굴절률(1.540, 1.560)을 얻을 수 있는 것을 특징으로 하는 BPA와 TPM를 포함하는 광 경화형 유기-무기 혼성 화합물의 제조 방법을 제공하는 것을 목적으로 한다.The present invention relates to a waveguide core and a cladding material for a high performance optical printed circuit board, specifically a refractive index of 10 - BPA, characterized in that to gain can be adjusted to a third scale, the desired refractive index (1.540, 1.560) and It is an object to provide a method for producing a photocurable organic-inorganic hybrid compound containing a TPM.
본 발명의 적절한 실시 형태에 따르면, 알콕시실란 및 다이올을 반응시켜 광 경화형 유기-무기 혼성 화합물의 제조 방법에 있어서, 3-트리메톡시실릴프로필메타크릴레이트(3-trimethoxysilylpropylmethacrylate ;TPM)와 비스페놀 A(Bisphenol A ; BPA)를 촉매 존재 하에 졸-겔 반응시켜 유기-무기 혼성 전구체를 제조하는 단계; 및 유기-무기 혼성 전구체에 광 개시제를 첨가하여 스핀코팅 및 광을 조사하여 가교시키는 단계; 를 포함하는 것을 특징으로 하는 광 경화형 유기-무기 혼성 화합물의 제조 방법을 제공한다.According to a preferred embodiment of the present invention, 3-trimethoxysilylpropylmethacrylate (TPM) and bisphenol A in the method for producing a photocurable organic-inorganic hybrid compound by reacting an alkoxysilane and a diol Sol-gel reaction of (Bisphenol A; BPA) in the presence of a catalyst to produce an organic-inorganic hybrid precursor; And adding a photoinitiator to the organic-inorganic hybrid precursor to spin-coating and irradiating and crosslinking the light. It provides a method for producing a photo-curable organic-inorganic hybrid compound comprising a.
본 발명의 다른 적절한 실시 형태에 따르면, 촉매는 바륨하이드록사이드 모노하이드레이트(Baruim hydroxide monohydrate ;Ba(OH)2H2O)인 것을 특징으로 한다.According to another suitable embodiment of the invention, the catalyst is characterized in that the barium hydroxide monohydrate (Ba (OH) 2 H 2 O).
본 발명의 또 다른 적절한 실시 형태에 따르면, 광 개시제는 2,2-디메톡시-2-페닐-아세토페논(2,2-dimethoxy -2- phenylacetophenone ;DMPA)인 것을 특징으로 한다.According to another suitable embodiment of the invention, the photoinitiator is characterized in that 2,2-dimethoxy-2-phenyl-acetophenone (2,2-dimethoxy-2-phenylacetophenone; DMPA).
본 발명에 따른 광 경화형 유기-무기 혼성 화합물은 높은 굴절률을 가지며 높은 온도에서도 투명성과 안정성을 잃지 않는 성질을 활용하면 고성능 광인쇄회로기판의 도파관 물질 뿐만 아니라 발광다이오드 포장재용 봉지재로의 활용이 기대된다.When the photocurable organic-inorganic hybrid compound according to the present invention has a high refractive index and does not lose transparency and stability even at a high temperature, the photocurable organic-inorganic hybrid compound is expected to be used as an encapsulant for a light emitting diode packaging material as well as a waveguide material of a high performance optical printed circuit board. do.
도 1은 본 발명의 광 경화형 유기-무기 혼성 화합물에서 TPM에 대한 BPA 함량(몰%)에 따른 굴절률의 변화를 그래프로 나타낸 것이다.
도 2는 본 발명의 광 경화형 유기-무기 혼성 화합물에서 TPM에 대한 BPA 함량이 56mol%, 100mol%로 형성된 필름의 열적 안정성을 보여주는 사진이다.1 is a graph showing the change in refractive index according to the BPA content (mol%) for TPM in the photocurable organic-inorganic hybrid compound of the present invention.
Figure 2 is a photograph showing the thermal stability of the film formed with 56 mol%, 100 mol% BPA content for TPM in the photo-curable organic-inorganic hybrid compound of the present invention.
본 발명에 따른 굴절률 조절이 가능하며 BPA와 TPM를 포함하는 광 경화형 유기-무기 혼성 화합물은 알콜시실란 및 다이올을 촉매 존재 하에서 물을 사용하지 않는 졸-겔 반응으로 합성된다.The photocurable organic-inorganic hybrid compound capable of controlling the refractive index according to the present invention and including BPA and TPM is synthesized by sol-gel reaction of alcoholic silane and diol without using water in the presence of a catalyst.
상기 알콕시실란은 3-트리메톡시실릴프로필메타크릴레이트(3-trimethoxysilylpropylmethacrylate ;TPM) 또는 3-아크릴록시프로필트리메톡시실란(3-acryloxypropyltrimethoxysilane ;APTMS)을 포함할 수 있다.The alkoxysilane may include 3-trimethoxysilylpropylmethacrylate (TPM) or 3-acryloxypropyltrimethoxysilane (APTMS).
상기 다이올은 비스페놀 A(bisphenol A) 또는 4,4-(헥사플루오로이소프로필리딘)디페놀(4,4-hexafluoroisopropylidenediphenol)을 포함할 수 있으며, 바람직하게는 비스페놀 A를 사용할 수 있다.The diol may include bisphenol A or 4,4- (hexafluoroisopropylidine) diphenol (4,4-hexafluoroisopropylidenediphenol), preferably bisphenol A may be used.
그리고, 졸-겔 반응시 사용되는 촉매는 스트론튬하이드록사이드 모노하이드레이트(strontium hydroxide monohydrate), 칼슘하이드록사이드 모노하이드레이트(calcium hydroxide monohydrate) 또는 바륨하이드록사이드 모노하이드레이트(barium hydroxide monohydrate)를 사용할 수 있으며, 바람직하게는 바륨하이드록사이드 모노하이드레이트를 사용할 수 있다. 이때 촉매의 양은 TPM의 0.1 내지 0.5몰/%이고 바람직하게는 0.3몰%이다. 상기 촉매의 양이 0.1몰% 미만이면 반응이 지나치게 느려지고, 0.5몰% 초과하면 유기-무기 혼성 화합물의 물성이 저하된다.In addition, the catalyst used in the sol-gel reaction may include strontium hydroxide monohydrate, calcium hydroxide monohydrate or barium hydroxide monohydrate. Preferably, barium hydroxide monohydrate can be used. The amount of catalyst at this time is 0.1 to 0.5 mol /% of TPM and preferably 0.3 mol%. If the amount of the catalyst is less than 0.1 mol%, the reaction is too slow, and if it exceeds 0.5 mol%, the physical properties of the organic-inorganic hybrid compound are lowered.
상기 졸-겔 반응은 실리콘이나 금속 알콕사이드 단위 전구체(monomer precursor)로부터 다양한 종류의 무기질 망상 조직(network)을 만드는 것으로 알려져 있다. 일반적으로 졸-겔 반응 과정은 가수분해(hydrolysis), 물축합, 알코올축합의 과정으로 나타나며 많은 양의 물을 필요로 한다. 그러나 본 발명에 따른 졸-겔 반응은 가수분해가 필요하지 않은 다이올을 반응물로 사용함으로 물을 사용하지 않는 졸-겔법을 이용하였다.The sol-gel reaction is known to make various kinds of inorganic network from silicon or metal alkoxide unit precursor. In general, the sol-gel reaction process appears as a process of hydrolysis, water condensation, and alcohol condensation and requires a large amount of water. However, the sol-gel reaction according to the present invention uses a sol-gel method without using water by using a diol which does not require hydrolysis as a reactant.
여기서, 반응식 1은 본 발명에 따른 졸-겔 반응에 의한 유기-무기 혼성 화합물의 합성하는 반응식을 나타낸 것이다. Here, Scheme 1 shows a scheme for synthesizing the organic-inorganic hybrid compound by the sol-gel reaction according to the present invention.
[반응식 1][Reaction Scheme 1]
생성된 투명 용액 물질에 광 개시제를 넣고 스핀코팅 한 후 광을 조사하여 가교시킨다. The photoinitiator is added to the resulting transparent solution material, spin-coated, and irradiated with light to crosslink.
상기 광 개시제는 2-벤질-2-(디메틸아미노)-4'-모르폴리노부티로페논(2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone) 또는 2,2-디메톡시-2-페닐-아세토페논 (2,2-Dimethoxy-2-phenyl- acetophenone) 을 사용할 수 있으며, 바람직하게는 2,2-디메톡시-2-페닐-아세토페논(DMPA)을 사용할 수 있다. 이때 광 개시제의 양은 TPM의 1 내지 2몰/%이고 바람직하게는 1.5몰%이다. 상기 광 개시제의 양이 1몰% 미만이면 가교반응이 지나치게 느려지고, 2몰% 초과하면 유기-무기 가교물의 물성이 저하된다. The photoinitiator is 2-benzyl-2- (dimethylamino) -4'-morpholinobutyrophenone (2-benzyl-2- (dimethylamino) -4'-morpholinobutyrophenone) or 2,2-dimethoxy-2- Phenyl-acetophenone (2,2-Dimethoxy-2-phenyl-cetophenone) can be used, and preferably 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) can be used. The amount of photoinitiator at this time is 1 to 2 mol /% of TPM and preferably 1.5 mol%. If the amount of the photoinitiator is less than 1 mol%, the crosslinking reaction becomes too slow, and if it exceeds 2 mol%, the physical properties of the organic-inorganic crosslinked product are lowered.
그다음, 스핀 코팅 후 광을 조사하여 가교시킨 생성물을 이용하여 전체적으로 일정한 두께와 고른 표면을 갖는 필름을 제조할 수 있다. 반응식 2는 광 조사에 의한 가교 반응을 나타낸 것이다.Then, a film having a uniform thickness and an even surface as a whole may be manufactured using a crosslinked product by irradiation with light after spin coating. Scheme 2 shows a crosslinking reaction by light irradiation.
[반응식 2][Reaction Scheme 2]
가교된 유기-무기 혼성 복합재료를 이용하여 필름을 제작하는 방법은 다음과 같다.The method for producing a film using the crosslinked organic-inorganic hybrid composite material is as follows.
졸 상태의 생성물을 원하는 기판 위에 떨어뜨린 다음, PDMS 몰드로 덮은 후 UV를 조사하여 경화시키므로 다양한 패턴을 가진 필름을 제조할 수 있다.The product in a sol state is dropped on a desired substrate, and then covered with a PDMS mold and cured by irradiating UV, thereby producing a film having various patterns.
또한 본 발명에 따른 유기-무기 혼성 화합물은 다이올의 벤젠기의 양에 따라 굴절률이 변화하는데, 다이올의 양이 증가할수록 벤젠기의 양이 증가하므로 굴절률이 증가한다. 즉 다이올인 비스페놀 A의 양이 알콕시실란 즉 3-트리메톡시실릴프로필메타크릴레이트의 양에 대하여 56mol%인 경우에는 굴절률이 1.540인데 반하여, 100mol%인 경우에는 1.560까지 증가하였다. 다이올의 양에 따른 굴절률의 변화를 도 1로 나타내었다.In addition, the refractive index of the organic-inorganic hybrid compound according to the present invention changes depending on the amount of the benzene group of the diol. As the amount of the diol increases, the amount of the benzene group increases, so the refractive index increases. That is, when the amount of bisphenol A, which is a diol, was 56 mol% based on the amount of alkoxysilane, that is, 3-trimethoxysilylpropyl methacrylate, the refractive index was 1.540, whereas when the amount of bisphenol A was 100 mol%, it increased to 1.560. The change in refractive index according to the amount of diol is shown in FIG. 1.
아래에서 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to Examples, but embodiments according to the present invention can be modified in many different forms, and the scope of the present invention is construed as being limited to the embodiments described below. Can not be done.
실시예Example
실시예 1Example 1
TPM 10g과 BPA 5.148g, 졸-겔 반응의 촉매인 BaOH 0.02g를 반응기에 넣고 80℃에서 5시간 이상 교반한다. 그러면 TPM의 알킬기(-OCH3)와 BPA의 히드록시기(-OH)가 축합반응을 일으켜 공유결합을 형성하면서 느슨한 형태의 네트워크(oligosilane)를 형성한다. 이는 매우 투명하고 점도를 가진 액체상이다. 이를 35실린지 필터로 필터링한 후 광 개시제인 DMPA 0.152g를 첨가하고 스핀코팅한 뒤 UV 램프를 이용하여 경화시키면 단단한 형태의 필름이 형성된다. 굴절률을 측정하여 도 1에 나타내었다.10 g of TPM, 5.148 g of BPA, and 0.02 g of BaOH, which is a catalyst for a sol-gel reaction, are added to a reactor and stirred at 80 ° C. for at least 5 hours. Then, an alkyl group (-OCH 3 ) of TPM and a hydroxyl group (-OH) of BPA condensate to form a covalent bond, forming a loose-shaped network (oligosilane). It is a very transparent and viscous liquid phase. After filtering it with a 35 syringe filter, 0.152 g of DMPA, a photoinitiator, was added, spin-coated, and cured using a UV lamp to form a rigid film. The refractive index was measured and shown in FIG. 1.
실시예 2Example 2
BPA를 6.251g, p-자일렌(p-xylene)을 3.285g을 사용한 것 외에는 실시예1과 동일한 방법으로 실시하였다. 굴절률을 측정하여 도 1에 나타내었다.The same procedure as in Example 1 was conducted except that 6.251 g of BPA and 3.285 g of p-xylene were used. The refractive index was measured and shown in FIG. 1.
* 높은 함량의 BPA(65% 이상)를 합성하는 경우 쉽게 굳어버리는 경향이 있는데, 이때는 p-자일렌(p-xylene)을 희석제로 사용한다.* When synthesizing high content of BPA (65% or more), it tends to harden easily. In this case, p-xylene is used as a diluent.
실시예 3Example 3
BPA를 7.722g, p-자일렌(p-xylene)을 3.579g을 사용한 것 외에는 실시예1과 동일한 방법으로 실시하였다. 굴절률을 측정하여 도 1에 나타내었다.BPA was carried out in the same manner as in Example 1 except for using 7.722 g of p-xylene and 3.579 g of p-xylene. The refractive index was measured and shown in FIG. 1.
실시예 4Example 4
BPA를 9.192g, p-자일렌(p-xylene)을 3.873g을 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절률을 측정하여 도 1에 나타내었다.BPA was carried out in the same manner as in Example 1 except that 9.192 g of p-xylene and 3.873 g of p-xylene were used. The refractive index was measured and shown in FIG. 1.
하기 표 1은 실시예 1 내지 실시예 4에 따라 유기-무기 혼성 화합물의 제조에 사용된 물질들의 함량을 나타낸 것이다.Table 1 below shows the contents of the materials used to prepare the organic-inorganic hybrid compound according to Examples 1 to 4.
(g)TPM
(g)
(g)BPA
(g)
(g)BaOH
(g)
(g)DMPA
(g)
(g)p-xylene
(g)
※mole%는 비교물질의 몰비를 %로 나타낸 것이다.※ mole% is the molar ratio of comparative substance in%.
실시예 5Example 5
실시예 1 및 실시예 4를 180℃에서 1시간 동안 어닐링(annealing)하였다. 이 결과를 도 2에 나타내었다.
Example 1 and Example 4 were annealed at 180 ° C. for 1 hour. This result is shown in FIG.
도 1을 보면 발명의 초기 목적대로 굴절률을 10- 3스케일로 미세조정하는 것이 가능하였으며, BPA 함량에 따른 굴절률 변화가 매우 높은 선형성과 재현성을 보인다. 1.560의 굴절률 수치는 기존의 광학 재료 중에서도 매우 높은 수치이며, 100%이상의 함량에서는 더욱 높은 굴절률을 보일 것으로 예상된다.Referring to FIG. 1 as the initial object of the invention the refractive index 10 was possible to finely adjust the scale 3, shows a very high linearity and reproducibility of the refractive index change according to the content of BPA. The refractive index value of 1.560 is very high among existing optical materials, and it is expected that the refractive index will be higher at contents of 100% or more.
도 2는 실시예 1과 실시예 4의 열적 안정성을 실험한 결과로써, 색상이나 투명도의 변화가 관찰되지 않아 높은 열적 안정성을 가지는 것을 알 수 있다. 이 성질을 활용하면 고성능 광인쇄회로기판용 도파관 물질 뿐만 아니라 발광 다이오드 포장재용 봉지재로의 활용이 기대된다.
2 shows the results of experiments of the thermal stability of Example 1 and Example 4, it can be seen that there is no change in color or transparency has a high thermal stability. By utilizing this property, it is expected to be used as a light emitting diode packaging material as well as a waveguide material for a high performance optical printed circuit board.
Claims (3)
3-트리메톡시실릴프로필메타크릴레이트(3-trimethoxysilylpropylmethacrylate ;TPM)와 비스페놀 A(Bisphenol A ;BPA)를 촉매 존재 하에 졸-겔 반응시켜 유기-무기 혼성 전구체를 제조하는 단계; 및
상기 유기-무기 혼성 전구체에 광 개시제를 첨가하여 스핀코팅 및 광을 조사하여 가교시키는 단계;
를 포함하는 것을 특징으로 하는 광 경화형 유기-무기 혼성 화합물의 제조 방법.In the method for producing a photocurable organic-inorganic hybrid compound capable of controlling the refractive index by reacting an alkoxysilane and a diol,
Sol-gel reaction of 3-trimethoxysilylpropylmethacrylate (TPM) and bisphenol A (BPA) in the presence of a catalyst to prepare an organic-inorganic hybrid precursor; And
Adding a photoinitiator to the organic-inorganic hybrid precursor to spin-coating and irradiating light to crosslink it;
Method for producing a photo-curable organic-inorganic hybrid compound comprising a.
상기 촉매는 바륨하이드록사이드 모노하이드레이트(Baruim hydroxide monohydrate ;Ba(OH)2H2O)인 것을 특징으로 하는 광 경화형 유기-무기 혼성 화합물의 제조 방법.The method of claim 1,
The catalyst is a barium hydroxide monohydrate (Baruim hydroxide monohydrate; Ba (OH) 2 H 2 O) A method for producing a photo-curable organic-inorganic hybrid compound, characterized in that.
상기 광 개시제는 2,2-디메톡시-2-페닐-아세토페논(2,2-dimethoxy -2- phenylacetophenone ;DMPA)인 것을 특징으로 하는 광 경화형 유기-무기 혼성 화합물의 제조 방법.
The method of claim 1,
The photoinitiator is a 2,2-dimethoxy-2-phenyl-acetophenone (2,2-dimethoxy-2-phenylacetophenone; DMPA) method for producing a photocurable organic-inorganic hybrid compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110098742A KR101285701B1 (en) | 2011-09-29 | 2011-09-29 | Process for preparing UV-curing organic-inorganic hybrid compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110098742A KR101285701B1 (en) | 2011-09-29 | 2011-09-29 | Process for preparing UV-curing organic-inorganic hybrid compound |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130034719A KR20130034719A (en) | 2013-04-08 |
KR101285701B1 true KR101285701B1 (en) | 2013-07-12 |
Family
ID=48436736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110098742A KR101285701B1 (en) | 2011-09-29 | 2011-09-29 | Process for preparing UV-curing organic-inorganic hybrid compound |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101285701B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101638109B1 (en) * | 2014-12-03 | 2016-07-11 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture with amine grafted hollow mesoporous silica particle |
KR101638107B1 (en) * | 2014-12-03 | 2016-07-11 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6054253A (en) * | 1997-10-10 | 2000-04-25 | Mcgill University-The Royal Institute For The Advancement Of Learning | Solvent-assisted lithographic process using photosensitive sol-gel derived glass for depositing ridge waveguides on silicon |
US6144795A (en) * | 1996-12-13 | 2000-11-07 | Corning Incorporated | Hybrid organic-inorganic planar optical waveguide device |
-
2011
- 2011-09-29 KR KR1020110098742A patent/KR101285701B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6144795A (en) * | 1996-12-13 | 2000-11-07 | Corning Incorporated | Hybrid organic-inorganic planar optical waveguide device |
US6054253A (en) * | 1997-10-10 | 2000-04-25 | Mcgill University-The Royal Institute For The Advancement Of Learning | Solvent-assisted lithographic process using photosensitive sol-gel derived glass for depositing ridge waveguides on silicon |
Also Published As
Publication number | Publication date |
---|---|
KR20130034719A (en) | 2013-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1995264B1 (en) | Curable composition for optical material and optical waveguide | |
JP4205368B2 (en) | Curable composition for optical materials | |
JP5975582B2 (en) | Epoxy functional radiation curable composition containing epoxy functional siloxane oligomer | |
US6818721B2 (en) | Process for producing polysiloxanes and use of the same | |
TW581746B (en) | Photosensitive composition, optical waveguide element and production process therefor | |
JP6408488B2 (en) | Layer or three-dimensional molded article having two regions having different primary structure and / or secondary structure, method for producing molded article, and material for carrying out this method | |
US20130165615A1 (en) | Process for producing polysiloxanes and use of the same | |
US7687654B2 (en) | Silane-based resins that can be photochemically and/or thermally structured, single-step method for their production, parent compounds and production methods that can be used for said resins | |
US6800724B2 (en) | Materials for optical applications | |
US8513372B2 (en) | Asymmetric photo-patternable sol-gel precursors and their methods of preparation | |
US7396873B2 (en) | Organometallic polymer material and process for preparing the same | |
JP3952149B2 (en) | Optical waveguide forming material and optical waveguide manufacturing method | |
KR100705758B1 (en) | Flexible Film Optical Waveguide Using Organic and Inorganic Hybrid Materials and Fabrication Method thereof | |
JP2009525354A (en) | Silicate condensation product and optical waveguide device using the same | |
KR101285701B1 (en) | Process for preparing UV-curing organic-inorganic hybrid compound | |
WO2001003901A1 (en) | Article having uneven surface and method for producing the same | |
US20030195321A1 (en) | Metal alkoxide polymers | |
KR100763936B1 (en) | The method for synthesizing organic-inorganic hybrid materials | |
KR20120091329A (en) | Molded oxide and process for producing same | |
KR100763933B1 (en) | The method for synthesizing organic-inorganic hybrid materials | |
US11644749B2 (en) | Imprinting composition and method of forming a patterned layer using the same | |
KR102369818B1 (en) | Positive photosensitive siloxane resin composition | |
JP2005298796A (en) | Organic metal polymer material and its preparation process | |
KR100760333B1 (en) | The method for synthesizing organic-inorganic hybrid materials | |
KR101441563B1 (en) | Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160602 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170626 Year of fee payment: 5 |