JP4205368B2 - Curable composition for optical materials - Google Patents
Curable composition for optical materials Download PDFInfo
- Publication number
- JP4205368B2 JP4205368B2 JP2002169683A JP2002169683A JP4205368B2 JP 4205368 B2 JP4205368 B2 JP 4205368B2 JP 2002169683 A JP2002169683 A JP 2002169683A JP 2002169683 A JP2002169683 A JP 2002169683A JP 4205368 B2 JP4205368 B2 JP 4205368B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- silicon
- containing polymer
- curable composition
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 94
- 239000000203 mixture Substances 0.000 title claims description 58
- 239000000463 material Substances 0.000 title claims description 47
- 229920005573 silicon-containing polymer Polymers 0.000 claims description 65
- 125000003700 epoxy group Chemical group 0.000 claims description 41
- -1 deuterium compound Chemical class 0.000 claims description 33
- 229920000642 polymer Polymers 0.000 claims description 29
- 238000006482 condensation reaction Methods 0.000 claims description 27
- 238000006460 hydrolysis reaction Methods 0.000 claims description 26
- 239000005046 Chlorosilane Substances 0.000 claims description 25
- 230000007062 hydrolysis Effects 0.000 claims description 25
- 239000003054 catalyst Substances 0.000 claims description 24
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 claims description 24
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 22
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 19
- 239000004593 Epoxy Substances 0.000 claims description 18
- 125000005372 silanol group Chemical group 0.000 claims description 18
- 229910008051 Si-OH Inorganic materials 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910006358 Si—OH Inorganic materials 0.000 claims description 15
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 229910052805 deuterium Inorganic materials 0.000 claims description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 238000006459 hydrosilylation reaction Methods 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 claims description 12
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 10
- 125000004429 atom Chemical group 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 claims description 6
- 125000005037 alkyl phenyl group Chemical group 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 125000003884 phenylalkyl group Chemical group 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- XAYDWGMOPRHLEP-UHFFFAOYSA-N 6-ethenyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1CCCC2OC21C=C XAYDWGMOPRHLEP-UHFFFAOYSA-N 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- ACYOLLCKTPRYDI-UHFFFAOYSA-N dimethyl(oxiran-2-ylmethoxy)silane Chemical compound C[SiH](C)OCC1CO1 ACYOLLCKTPRYDI-UHFFFAOYSA-N 0.000 claims description 5
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 3
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 claims description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 claims description 3
- ZBSKZKPSSKTLNE-UHFFFAOYSA-N 4-methylpent-3-enoxysilane Chemical compound CC(=CCCO[SiH3])C ZBSKZKPSSKTLNE-UHFFFAOYSA-N 0.000 claims description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 claims description 3
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 claims description 3
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 claims description 3
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 claims description 3
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 claims description 3
- NUFVQEIPPHHQCK-UHFFFAOYSA-N ethenyl-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)C=C NUFVQEIPPHHQCK-UHFFFAOYSA-N 0.000 claims description 3
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 claims description 3
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 3
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 claims description 3
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 claims description 3
- 239000005050 vinyl trichlorosilane Substances 0.000 claims description 3
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims description 2
- 230000002140 halogenating effect Effects 0.000 claims 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 238000006243 chemical reaction Methods 0.000 description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 239000003463 adsorbent Substances 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 20
- 239000011162 core material Substances 0.000 description 19
- 238000001723 curing Methods 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 239000000758 substrate Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 11
- 239000002861 polymer material Substances 0.000 description 11
- 238000005160 1H NMR spectroscopy Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 229920002050 silicone resin Polymers 0.000 description 9
- 238000005253 cladding Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000000016 photochemical curing Methods 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 5
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- LFQSCWFLJHTTHZ-LIDOUZCJSA-N ethanol-d6 Chemical compound [2H]OC([2H])([2H])C([2H])([2H])[2H] LFQSCWFLJHTTHZ-LIDOUZCJSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- DSVRVHYFPPQFTI-UHFFFAOYSA-N bis(ethenyl)-methyl-trimethylsilyloxysilane;platinum Chemical compound [Pt].C[Si](C)(C)O[Si](C)(C=C)C=C DSVRVHYFPPQFTI-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- XYYQWMDBQFSCPB-UHFFFAOYSA-N dimethoxymethylsilane Chemical compound COC([SiH3])OC XYYQWMDBQFSCPB-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- QALDFNLNVLQDSP-UHFFFAOYSA-N triethoxy-(2,3,4,5,6-pentafluorophenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=C(F)C(F)=C(F)C(F)=C1F QALDFNLNVLQDSP-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004260 weight control Methods 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FNDFKMXAOATGJU-UHFFFAOYSA-N 1-phenyl-2-sulfonylethanone Chemical class O=S(=O)=CC(=O)C1=CC=CC=C1 FNDFKMXAOATGJU-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- KKPXPUOMUHTLNO-UHFFFAOYSA-N 2-(2-hydroxyethylamino)ethanol;titanium Chemical class [Ti].OCCNCCO KKPXPUOMUHTLNO-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- FUIQBJHUESBZNU-UHFFFAOYSA-N 2-[(dimethylazaniumyl)methyl]phenolate Chemical compound CN(C)CC1=CC=CC=C1O FUIQBJHUESBZNU-UHFFFAOYSA-N 0.000 description 1
- SLJFKNONPLNAPF-UHFFFAOYSA-N 3-Vinyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1C(C=C)CCC2OC21 SLJFKNONPLNAPF-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- NHJIDZUQMHKGRE-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-yl 2-(7-oxabicyclo[4.1.0]heptan-4-yl)acetate Chemical compound C1CC2OC2CC1OC(=O)CC1CC2OC2CC1 NHJIDZUQMHKGRE-UHFFFAOYSA-N 0.000 description 1
- SKSSDYOHCHLUBZ-UHFFFAOYSA-N 8-(7-oxabicyclo[4.1.0]heptan-4-yl)octyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCCCCCCCCC1CC2OC2CC1 SKSSDYOHCHLUBZ-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RLAHWVDQYNDAGG-UHFFFAOYSA-N Methanetriol Chemical compound OC(O)O RLAHWVDQYNDAGG-UHFFFAOYSA-N 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- OJGMBLNIHDZDGS-UHFFFAOYSA-N N-Ethylaniline Chemical compound CCNC1=CC=CC=C1 OJGMBLNIHDZDGS-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000005410 aryl sulfonium group Chemical group 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 description 1
- ZXPDYFSTVHQQOI-UHFFFAOYSA-N diethoxysilane Chemical compound CCO[SiH2]OCC ZXPDYFSTVHQQOI-UHFFFAOYSA-N 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- LSHXECWFSXBAMI-UHFFFAOYSA-N disilanyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound C(C1CO1)OCCC[SiH2][SiH2][SiH3] LSHXECWFSXBAMI-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- DRUOQOFQRYFQGB-UHFFFAOYSA-N ethoxy(dimethyl)silicon Chemical compound CCO[Si](C)C DRUOQOFQRYFQGB-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- QPPQHRDVPBTVEV-UHFFFAOYSA-N isopropyl dihydrogen phosphate Chemical compound CC(C)OP(O)(O)=O QPPQHRDVPBTVEV-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- LHTGBZMVHWJBQB-UHFFFAOYSA-N n,2-diethylaniline Chemical compound CCNC1=CC=CC=C1CC LHTGBZMVHWJBQB-UHFFFAOYSA-N 0.000 description 1
- GUAWMXYQZKVRCW-UHFFFAOYSA-N n,2-dimethylaniline Chemical compound CNC1=CC=CC=C1C GUAWMXYQZKVRCW-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical class CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- KBXJHRABGYYAFC-UHFFFAOYSA-N octaphenylsilsesquioxane Chemical compound O1[Si](O2)(C=3C=CC=CC=3)O[Si](O3)(C=4C=CC=CC=4)O[Si](O4)(C=5C=CC=CC=5)O[Si]1(C=1C=CC=CC=1)O[Si](O1)(C=5C=CC=CC=5)O[Si]2(C=2C=CC=CC=2)O[Si]3(C=2C=CC=CC=2)O[Si]41C1=CC=CC=C1 KBXJHRABGYYAFC-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RLJWTAURUFQFJP-UHFFFAOYSA-N propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(C)O.CC(C)O.CC(C)O RLJWTAURUFQFJP-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- GXMNGLIMQIPFEB-UHFFFAOYSA-N tetraethoxygermane Chemical compound CCO[Ge](OCC)(OCC)OCC GXMNGLIMQIPFEB-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N tetraisopropyl titanate Substances CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical group [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Optical Integrated Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は光学材料用組成物に関する。詳しくは、種々の光学部品、光集積回路、光配線板、光導波路等に利用できる光学材料用組成物及び光導波路に関する。
【0002】
【従来の技術】
光導波路は、例えば、基板の表面もしくは基板表面直下に、周囲よりわずかに屈折率の高い部分を作ることにより光を閉じ込め、光の合波・分波やスイッチングなどを行う特殊な光部品である。具体的には、通信や光情報処理の分野で有用な光合分波回路、周波数フィルター、光スイッチ又は光インターコネクション部品等が挙げられる。例えば、時間分割された信号を異なる波長において伝送するWDMシステムは、高度情報化社会に必要な高速大容量通信を実現できるシステムとして有望視されているが、このWDMシステムにおいてキーとなる光デバイスは、光源、光増幅器、光合分波器、光スイッチ、波長可変フィルター、波長変換器などが挙げられる。
【0003】
光導波路デバイスは、光ファイバー部品と比較して、精密に設計された導波回路を基に高機能をコンパクトに実現できること、量産が可能であること、多種類の光導波路を1つのチップに集積可能であること等の利点が挙げられる。
【0004】
従来、光導波路用としては、透明性に優れ光学異方性の小さい無機ガラスが主に用いられてきた。しかし、無機ガラスは重く破損し易く、生産コストが高い等の問題を有しており、最近では、無機ガラスの代わりに、1.3−1.55μm等の通信波長で透明な高分子材料を使って、光導波路部品を製造しようとする動きが活発化してきている。
光導波路用高分子としては、アクリル樹脂、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂、ポリカーボネート樹脂等を挙げることができる。
【0005】
光導波路材料として高分子を用いると以下の2点が特徴として考えられる。
第一に、高分子材料はスピンコート法やディップ法等による薄膜形成が容易であり、大面積の光学部品を作製するのに適している。成膜に際して高温での熱処理工程を含まないことから、石英等の無機ガラス材料を用いる場合に比べて、半導体基板やプラスチック基板等、高温での熱処理が困難な基板上に光導波路を作製できるという利点がある。更に、高分子の柔軟性や強靱性を生かしたフレキシブルな光導波路の作製も可能である。こうしたことから、光通信の分野で用いられる光配線板等の光導波路部品を、高分子光学材料を用いて大量・安価に製造できることが期待されている。
【0006】
第二に、一般的に高分子材料は石英等の無機ガラス材料に比べて屈折率の温度依存性定数(TO定数)がおよそ1桁大きい。高分子材料のTO定数は、体積膨張の温度変化により支配されており、1桁大きいTO定数は高分子材料の柔軟性を反映した特徴である。このTO定数の高い高分子材料を用いると、消費電力の小さい熱光学スイッチや熱光学波長可変フィルターを作製することが可能になる。以上の2点は一般的に高分子が有する特徴であるが、光導材料に求められる特性は多岐に渡り、屈折率制御性は無論、透明性、耐熱性、光学等方性、加工性、耐湿性等の要求もクリアーしなければならない。
【0007】
透明性に関しては、通信波長域とされる近赤外領域では、炭素−水素(ハイドロカーボン骨格など)、酸素−水素(水酸基など)の振動吸収の倍音が透明性を減少させる要因となっている。従って、重水素化物、フルオロカーボン、シロキサン骨格の導入などが試みられている。
耐熱性に関しては、剛直な骨格のポリイミド樹脂や堅牢なシロキサン骨格、熱や光による架橋構造などが採用されている。
光学等方性に関しては、芳香環など光学異方性のある成分が配向しないことが望ましい。但し、前述した耐熱性向上のための剛直または堅牢な骨格は分子の配向を促進させるため、通常、耐熱性と光学等方性とは相反する傾向にある。
加工性は、光導波路の場合は、主に、コア・クラッド構造の形成性を指す。高分子量の高分子材料を溶液からスピンコートする場合はインターミキシングが起こり易く、導波路加工性に問題が多い。一方、低分子のオリゴマーを成膜した後、それを光や熱で架橋するタイプは、架橋後の成膜したポリマーは溶媒に不溶化するので、インターミキシングを防ぐことができる。その結果、加工性に優れるものが多いという傾向がある。
【0008】
高分子光学材料は耐熱性又は耐湿性といった耐環境性の点で問題があるとされてきたが、近年、ベンゼン環などの芳香族基を含有させたり、或いは無機高分子を用いることにより耐熱性を向上させた材料が開示されている。高分子材料は上述のように薄膜作製や熱処理工程などに特徴をもっており、耐熱性や耐湿性といった問題も改善されつつある。
【0009】
以上のような要求特性に比較的近いものとして、ポリイミド樹脂とシリコーン樹脂が挙げられる。シリコーン樹脂に関しては、熱架橋シリコーンを用いたデバイスが報告されている[渡辺ら、エレクトロニクス・レターズ、第33巻18号、p1547 (1997年)]。この熱架橋シリコーンは、シルセスキオキサン構造を分子骨格とし、ラダー構造を有するため優れた耐熱性を示す。又、側鎖のフェニル基やアルキル基が疎水性であるため耐湿性が高い。側鎖に含まれるC−H結合の水素がハロゲンまたは重水素に置換されているためにC−H結合の伸縮または変角振動の倍音または結合音に起因する近赤外域における吸収が低減されている。
【0010】
熱架橋シリコーン高分子を用いて、コア/クラッド構造からなる光導波路を作製する場合、精密に制御された屈折率差を有する少なくとも2種の材料が必要となる。その比屈折率差は一般的には0.1〜5%の範囲である。例えば、シングルモード光ファイバーと導波光のモード径を合わせる場合、コア部の形状は8μm角の正方形、比屈折率差は0.3%であることが望ましい。
前記文献に記載の高分子光学材料においては、側鎖の異なる繰り返し単位を共重合することにより、屈折率の制御を行っている。例えば、高屈折率の側鎖としてフェニル基、低屈折率の側鎖としてメチル基等の直鎖状アルキル基が知られている。即ち、フェニル基側鎖のポリフェニルシルセスキオキサンをコア材料とした場合、フェニルシルセスキオキサンとメチルシルセスキオキサンとの共重合体をクラッド材料として用いることができる。
例えば、コア部断面形状が8μm角の正方形であるシングルモード光導波路をシリコン基板上に形成する場合、メタルクラッディングの影響を回避するにためには、下部クラッドとして15μm程度以上の膜厚が必要になる。ここで、メタルクラッディングとは下部クラッドの厚さが薄い場合にコア部を導波する光がシリコン基板へ引き込まれて、導波損失が顕著に大きくなることをいう。また、上部クラッドに関しても表面の塵または汚れ、外部からの応力等の影響がコア部を導波する光に及ばないようにするためには、上部クラッドとしてコア上面から8μm程度の膜厚が必要となる。実際、側鎖が全てフェニル基であるポリフェニルシルセスキオキサンを用いた場合には、硬化後の薄膜が硬いためクラックが入り易く、15μm程度以上の膜厚を信頼性よく得るのは困難であった。
しかし、フェニル基以外の側鎖を導入することにより、硬化後の薄膜の柔軟性を向上し、クラックの発生率を大幅に低減することができる。そのための側鎖として、従来、メチル基等の直鎖状アルキル基が知られていた。即ち、フェニル基に代えて側鎖の一部にメチル基等の直鎖状アルキル基を導入した場合、側鎖のアルキル基の含有量が増えるにつれて、硬化後の薄膜はより柔軟となりクラックの発生率が大幅に低減する。即ち、側鎖にメチル基等の直鎖状アルキル基を導入することは、ポリシルセスキオキサン系の架橋型高分子光学材料に、前記の屈折率制御性を与えると同時に、耐クラック性をも与えるものである。
【0011】
WDMシステムに用いられる1.55μm波長帯に関して、C−H結合の伸縮または変角振動の倍音または結合音に起因する光吸収が現れる場合があり、導波損失に大きな影響を及ぼす。例えば、メチル基の場合はC−H結合が1.52μm付近に、重水素化フェニルの場合にはC−D結合が1.50μm付近に、またO−H結合が1.55μm付近に現れることが知られている。そこで、1.53−1.61μmの通信波長において、透明性を向上させるためにC−H、C−D結合のHやDをフッ素に置換する方法が有効であることが知られている。
【0012】
また、熱架橋シリコーンで光導波路の回路パターンを形成するには、リソグラフィー工程が必要であり、感光性樹脂を用いれば、直接露光により回路パターンが作製できる利点がある。感光性樹脂の反応基としては、エポキシ基やビニル基などが挙げられる。
エポキシ基は硬化により水酸基が生成し、これが通信波長の1.55μm付近に出現するという欠点があるが、ビニル基に比べて、硬化収縮が少ない等の利点がある。エポキシ基を有するシリコーン樹脂としては、特開平9−124793号公報にはグリシジルアルコール系エポキシ化剤により、エポキシ基を導入する方法が提案されている。ポリシルセスキオキサンを合成する手法としてはゾル・ゲル法がよく利用される。ゾル・ゲル法とは、前駆体分子の加水分解とそれに続く重縮合反応により、架橋した無機酸化物が低温で得られる反応である。この反応はpH変化によって行われることが一般的で、グリシジルアルコール系エポキシ化剤を用いる方法はpH変化を伴うため、シリコーン樹脂の構造や分子量制御、更に生成物の安定性が問題となる。
【0013】
また、このゾル・ゲル法で得られる無機性素材は、短期間でゲル化するなど、保存安定性が悪いという問題がある。日本化学会誌、1998(No.9)、571(1998)には、トリアルコキシアルキルシランのアルキル基の鎖長による縮合速度の相違に着目し、メチルトリメトキシシランの重縮合後に縮合速度の遅いトリアルコキシ長鎖アルキルシランを添加してポリシロキサン中のシラノール基を封止すること、更には、アルミニウム触媒を用いてメチルトリメトキシシランの縮合反応を行い所定の分子量に到達した時点でアセチルアセトンを添加して、反応系中で配位子交換を行い保存安定性の改良を試みている。しかしこれらの方法では保存安定性の改善は不十分であった。
【0014】
【発明が解決しようとする課題】
光導波路用の高分子材料への要求項目は多く、中には耐熱性と光学等方性のように、分子構造上相反する要求もあり、全ての条件を同時に満たす材料は極めて少ないという解決すべき課題がある。しかし、皆無ではなく、例えば、熱硬化シリコーン樹脂のように、ラダー状シロキサン骨格による透明性と耐熱性の両立、ランダム熱架橋による光学等方性の確保、オリゴマーを成膜し熱架橋して溶媒不溶化することによるコア・クラッド構造形成の容易さを同時に満たす例もある。
【0015】
このように、光導波路材料として傑出した特性を有するシリコーン樹脂ではあるが、加工性においては、コアリッジを作製する際に、ガラスや半導体などの無機材料と同様に、ドライエッチングプロセスにより、複数の工程で長時間の加工を要するという、まだ不十分な部分を有している。従って、光導波路用シリコーン樹脂に関しては、一部の高分子系、即ち、光硬化性樹脂で既に実現されているように、光架橋し未反応部分を溶媒で洗い流す簡便な方法で直接コアリッジを作製できることが望まれる。
【0016】
通常、シリコーンオリゴマーに光硬化性を付与する方法としては、光カチオン重合性を有するエポキシ基やビニルエーテル基、或いはラジカル重合性のアクリル基を、シリコーンオリゴマー自体に共有結合で組み込む方法が用いられる。しかしながら、これらの方法では、シロキサン結合よりも架橋による側鎖間の結合が支配的となり、耐熱性等に問題が生じるばかりでなく、エポキシの場合は水酸基が、ビニルエーテルやアクリルの場合は炭化水素の比率が増えることによる導波損失増大が避けられない。更に、得られた硬化性組成物は、構造や分子量制御が不十分で、その結果、屈折率制御が不十分であったり、保存安定性に問題があった。
【0017】
本発明は、このような現状に鑑みてなされた光導波路用途に優れた光学材料用組成物に関し、その目的は、上記従来の課題を解決し、高分子材料に対して、新たに感光性を付与し、簡易かつ高速な導波路形成を可能とし、屈折率制御性、通信波長における透明性(光損失)、耐熱性、耐湿性、耐溶剤性、可撓性に優れた高分子光導波路及びその材料を提供することにある。
【0018】
【課題を解決するための手段】
本発明者らは鋭意検討を重ねた結果、上記課題を解決することができた。
即ち、本発明は、エポキシ基を有し、少なくとも3つの結合元素が酸素原子であるケイ素原子を含み、Si−R基(Rは、アルキル基、フェニル基、アルキルフェニル基若しくはフェニルアルキル基又はR中の水素原子の一部若しくは全部がハロゲン化若しくは重水素化された、アルキル基、フェニル基、アルキルフェニル基若しくはフェニルアルキル基)を有し、500〜100万の重量平均分子量を有し、かつトリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルビニルメトキシシラン、ジメチルビニルエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ―(メタクリロイルオキシプロピル)トリメトキシシラン、N―β(アミノエチル)γ―アミノプロピルトリメトキシシラン、N―β(アミノエチル)γ―アミノプロピルメチルジメトキシシラン、γ―アミノプロピルトリエトキシシラン、これらの各アルコキシ基をクロル化したもの、これらのアルコキシ基以外の基の水素原子の一部若しくは全部をハロゲン化したもの、これらのアルコキシ基以外の基の水素原子の一部若しくは全部を重水素化したもの、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルシクロヘキセンオキシド及びグリシドキシジメチルシランからなる群から選択される1種以上のモノマーを重合して得られる重合体をオルト蟻酸エステルで処理することによりシラノール基(Si−OH)を封止して完全に無くしたケイ素含有重合体であって、前記ケイ素含有重合体のエポキシ基が、前記モノマーの中から選択されるエポキシ基を有するアルコキシシラン若しくはエポキシ基を有するクロロシランの1種以上の加水分解・縮合反応により導入されたものであるか、前記モノマーの中から選択されるシラン基(Si−H)を有するアルコキシシラン、シラン基(Si−H)を有するクロロシラン若しくはこれらの少なくとも一種の重合体の1種以上と、前記モノマーの中から選択されるビニル基(−CH=CH 2 )を有するエポキシ化合物とのヒドロシリル化反応により導入されたものであるか、又は前記モノマーの中から選択されるビニル基(−CH=CH 2 )を有するアルコキシシラン、ビニル基(−CH=CH 2 )を有するクロロシラン若しくはこれらの少なくとも一種の重合体の1種以上と、前記モノマーの中から選択されるシラン基(Si−H)を有するエポキシ化合物とのヒドロシリル化反応により導入されたものであるケイ素含有重合体と、硬化触媒とを必須の構成成分として含有することを特徴とする光学材料用硬化性組成物を提供するものである。
また、ケイ素含有重合体は、活性重水素化合物で処理することが好ましい。
活性重水素化合物は、重水又は重水素化アルコールであることが好ましい。
ケイ素含有重合体は、ケイ素以外の原子として、ホウ素、マグネシウム、アルミニウム、リン、チタン、鉄、ジルコニウム、ニオブ、スズ、テルル、タンタル、ゲルマニウムからなる群から選ばれる原子を1種又は2種以上含有することが好ましい。
本発明の光学材料用硬化性組成物を前述の活性重水素化合物で処理することも好ましい。
さらに、本発明は、前記光学材料用硬化性組成物を硬化させ形成した光導波路を包含する。
【0019】
【発明の実施の形態】
(ケイ素含有重合体)
まず本発明の光学材料用硬化性組成物の必須の構成成分であるケイ素含有重合体について説明する。
本発明で用いられるケイ素含有重合体はその構造中に、エポキシ基を有し、少なくとも3つの酸素原子に結合しているケイ素原子を有している。
さらに本発明で用いられるケイ素含有重合体は、その構造中にSi−R基を有しており、Rは、アルキル基、フェニル基、アルキルフェニル基若しくはフェニルアルキル基又はR中の水素原子の一部若しくは全部がハロゲン化若しくは重水素化されている、アルキル基、フェニル基、アルキルフェニル基若しくはフェニルアルキル基である。近赤外領域の透明性の点から、R中の水素原子の一部若しくは全部がハロゲン化若しくは重水素化されていることが好ましい。ハロゲン化は、フッ素化が好ましく、具体的には、3,3,3−トリフルオロプロピル基、ペンタフルオロフェニル基等が好ましい。重水素化されている基としては、重水素化フェニル基が好ましい。
また本発明で用いられるケイ素含有重合体は、その構造中にSi−OH基を有さない。
また本発明で用いられるケイ素含有重合体の重量平均分子量は、ポリスチレン換算で、500から100万であり、好ましくは1000から50万である。500より小さいと望ましい物性が得られず、100万より大きいと、やはり充分な物性が得られない。
本発明で用いられるケイ素含有重合体中、エポキシ基の数は、得られるケイ素含有重合体の分子量に依存し、特に限定されるものではないが、ケイ素含有重合体1分子当たり1個以上、最も多くてケイ素原子1個当たり1個である。
また、ケイ素含有重合体中のエポキシ基は、酸素原子を介さずにケイ素原子と結合していることが好ましい。
【0020】
また本発明のケイ素含有重合体は、ケイ素以外の原子として、ホウ素、マグネシウム、アルミニウム、リン、チタン、鉄、ジルコニウム、ニオブ、スズ、テルル、タンタル、ゲルマニウムからなる群から選ばれる原子を1種又は2種以上含有してもよく、特にホウ素、アルミニウム、リン、チタン、ジルコニウム、スズ、ゲルマニウムが好ましい。これら原子の導入には、アルコキシシランまたはクロロシランと、他の原子のアルコラートを併用して加水分解・縮合反応を行うか、他の原子の錯体で処理すればよい。
【0021】
(ケイ素含有重合体へのエポキシ基の導入方法)
(加水分解・縮合反応)
エポキシ基を有する、アルコキシシラン及び/又はクロロシランの加水分解・縮合反応により、ケイ素含有重合体へエポキシ基を導入することができる。
(ヒドロシリル化反応)
シラン基(Si−H)を有するアルコキシシラン及び/又はシラン基(Si−H)を有するクロロシラン、又はこれらの少なくとも一種の重合体と、ビニル基を有するエポキシ化合物(例えばビニルシクロヘキセンオキシド等)とのヒドロシリル化反応により、ケイ素含有重合体へエポキシ基を導入することができる。或いは、ビニル基(−CH=CH2)を有するアルコキシシラン及び/又はビニル基(−CH=CH2)を有するクロロシラン、又はこれらの少なくとも一種の重合体と、シラン基(Si−H)を有するエポキシ化合物とのヒドロシリル化反応により、導入することもできる。
より具体的には、シラン基(Si−H)を有する、アルコキシシラン及び/又はクロロシランの加水分解・縮合反応により得られた重合体と、ビニル基を有するエポキシ化合物とをヒドロシリル化反応に供することが好ましい。また、ビニル基(−CH=CH2)を有する、アルコキシシラン及び/又はクロロシランの加水分解・縮合反応により得られた重合体と、シラン基を有するエポキシ化合物(例えばグリシドキシジメチルシラン)とを、ヒドロシリル化反応に供することにより導入することができる。
これらエポキシ基導入の方法はいずれを用いてもよく、併用してもよい。
【0022】
(ケイ素含有重合体の製造方法)
上述のように、本発明に使用するケイ素含有重合体は、アルコキシシラン及び/又はクロロシランの加水分解・縮合反応の際、エポキシ基を有する、アルコキシシラン及び/又はクロロシランを存在させることにより製造することができる。この場合、エポキシ基を有する、アルコキシシラン及び/又はクロロシランだけで加水分解・縮合反応を行ってもよいが、物性の点から、他のアルコキシシランと混合し、加水分解・縮合反応を行うことが好ましい。
また、本発明に使用するケイ素含有重合体は、アルコキシシラン及び/又はクロロシランの加水分解・縮合反応の際、シラン基を有するアルコキシシラン及び/又はシラン基を有するクロロシランを存在させ、シラン基を有する重合体を形成し、その後、該重合体と、ビニル基を有するエポキシ化合物(例えばビニルシクロヘキセンオキシド等)とをヒドロシリル化反応に供し、製造することができる。
或いは、アルコキシシラン及び/又はクロロシランの加水分解・縮合反応の際、ビニル基を有するアルコキシシラン及び/又はビニル基を有するクロロシランを存在させ、ビニル基を有する重合体を形成し、その後、該重合体と、シラン基を有するエポキシ化合物とを、ヒドロシリル化反応に供し、製造することができる。
またシラン基(Si−H)とビニル基(−CH=CH2)のヒドロシリル化反応により、本発明で用いられるケイ素含有重合体を得る場合、白金触媒等の従来公知の触媒を使用してヒドロシリル化反応を行なえばよい。
ヒドロシリル化反応によって、ケイ素含有重合体へエポキシ基を導入するために用いるエポキシ化合物としては、エポキシ基とビニル基を有する化合物又はエポキシ基とシラン基を有する化合物であればよい。具体的には、ビニルシクロへキセンオキシド、グリシドキシジメチルシラン等が挙げられる。
【0023】
本発明で用いられるケイ素含有重合体を得るための、アルコキシシランの加水分解・縮合反応は、いわゆるゾル・ゲル反応を行えばよく、そのようなゾル・ゲル反応として、無溶媒もしくは溶媒中で、酸又は塩基等の触媒で加水分解・縮合反応を行う方法が挙げられる。ここで用いる溶媒は、特に限定されず、具体的には、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、トルエン等が挙げられ、これらの1種を用いることも、2種以上を混合して用いることもできる。
【0024】
上記アルコキシシランの加水分解縮合反応は、アルコキシシランが、水による加水分解により、シラノール基(Si−OH)を生成し、この生成したシラノール基同士又はシラノール基とアルコキシ基が縮合することにより進む。この反応を進ませるためには、適量の水を加えることが好ましく、水は溶媒中に加えてもよく、触媒を水に溶解して加えてもよい。また、空気中の水分あるいは、溶媒中に含まれる微量の水分によっても加水分解反応は進む。
【0025】
上記加水分解・縮合反応で用いられる酸、塩基等の触媒は、加水分解・縮合反応を促進するものであれば、特に限定されず、具体的には、塩酸、リン酸、硫酸等の無機酸類;酢酸、p−トルエンスルホン酸、リン酸モノイソプロピル等の有機酸類;水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等の無機塩基類;トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン等のアミン化合物類;テトライソプロピルチタネート、テトラブチルチタネート等のチタンエステル類;ジブチル錫ラウレート、オクチル酸錫等の錫カルボン酸塩類;トリフルオロボロン等のホウ素化合物類;鉄、コバルト、マンガン、亜鉛等の金属の塩化物やナフテン酸塩あるいはオクチル酸塩等の金属カルボン酸塩類;アルミニウムトリスアセチルアセテート等のアルミニウム化合物等が挙げられ、これらの1種を用いることも、2種以上を併用することもできる。酸触媒を加えて、酸性下(pH7以下)で反応を進ませた後、塩基触媒を加えて塩基性下(pH7以上)で反応を行う方法が好ましい例として挙げられる。
【0026】
上記加水分解・縮合反応を行うときには、攪拌することが好ましく、また加熱することで反応を促進することができる。加水分解・縮合反応の順序は特に限定されず、例えば、エポキシ基を導入するために、エポキシ基を有するアルコキシシランを使用する場合、エポキシ基を有するアルコキシシランと他のアルコキシシランを両者混合して、加水分解・縮合反応を行ってもよく、単独で、ある程度加水分解・縮合反応を行った後、他を加えてさらに加水分解・縮合反応を行ってもよい。
アルコキシシラン以外にクロロシランを使用する場合もアルコキシシランと同様に加水分解縮合反応を行なえばよい。
加水分解縮合反応で生成したケイ素含有重合体を得るためには、反応溶媒、水、触媒を除去すればよく、例えば、ブタノール等の溶媒を加えて溶媒抽出後、抽出溶媒を窒素気流下で減圧留去すればよい。
【0027】
また本発明で用いられるケイ素含有重合体は、アルコキシシラン、クロロシラン以外に、ケイ酸ナトリウムからナトリウムをイオン交換等で除去後、二酸化ケイ素の縮合物を利用することもできる。
【0028】
(アルコキシシラン、クロロシラン)
本発明で用いられるケイ素含有重合体の製造に使用されるアルコキシシランまたはクロロシランは、分子中に加水分解・縮合反応をするアルコキシ基を有するか、Si−Cl基を有すればよく、具体的には、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメトキシメチルシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン、ジメチルビニルメトキシシラン、ジメチルビニルエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ―(メタクリロイルオキシプロピル)トリメトキシシラン、N―β(アミノエチル)γ―アミノプロピルトリメトキシシラン、N―β(アミノエチル)γ―アミノプロピルメチルジメトキシシラン、γ―アミノプロピルトリエトキシシラン及びこれらの各アルコキシ基の代わりにクロル化物、さらには、これらのアルコキシ基以外の基の水素原子の一部又は全部がハロゲン化(特にフッ素化)、又は重水素化されているものが挙げられ、これらの1種又は2種以上を用いることができる。
特に近赤外領域の透明性の点から、一部または全部がハロゲン化(特にフッ素化)もしくは重水素化されているものを使用するのが好ましい。具体的には、重水素化フェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン等が好ましく用いられる。またエポキシ基の導入のために、シラン基(Si−H)、ビニル基(−CH=CH2)、ビニルシラン基(Si−CH=CH2)を有するものが好ましい。
【0029】
(エポキシ基を有するアルコキシシラン)
本発明で用いられるケイ素含有重合体でエポキシ基導入のために使用されるエポキシ基を有するアルコキシシランは、分子中にエポキシ基を持っていればよく、具体的にはγ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられ、これらの1種又は2種以上を用いることができる。これらのエポキシ基は、途中に酸素原子を介さずにケイ素原子に結合していることが好ましい。また、特に光硬化性の点から、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシランが好ましい。
【0030】
(エポキシ基を有するクロロシラン)
本発明で用いられるケイ素含有重合体でエポキシ基導入のために使用されるエポキシ基を有するクロロシランは、分子中にエポキシ基を持っていればよい。
【0031】
(硬化触媒)
本発明の光材料用組成物は、さらに硬化触媒を必須の構成成分とする。以下に硬化触媒について説明する。
本発明で用いられる硬化触媒は、エポキシを硬化させる触媒であればよく、具体的には、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、m−フェニレンジアミン、p,p’−ジアミノジフェニルメタン、p,p’−ジアミノジフェニルスルホン、p,p’−ジアミノジフェニルエーテル、アニリン・BF3、p−トルイジン・BF3、o−トルイジン・BF3、ジメチルアニリン・BF3、N−メチルアニリン・BF3、N−エチルアニリン・BF3、N,N’−ジメチルアニリン・BF3、N,N’−ジエチルアニリン・BF3、エチルアミン・BF3、n−ブチルアミン・BF3、ピペリジン・BF3、ジフェニルアミン・BF3、o−ジメチルアミノメチルフェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、トリエタノールアミン・ホウ酸塩などのアミン系硬化剤、ポリアミド樹脂、ジアセトンアクリルアミド錯体、ジシアンジアミドなどのアミド系硬化剤、無水フタル酸、トリメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、無水マレイン酸、ヘキサヒドロフタル酸無水物、ヘチルナジック酸無水物、無水グルタル酸、ピロメリット酸無水物、フェニレンービス(3−ブタンー1,2−ジカルボン酸)無水物、テトラブロモフタル酸無水物などの酸無水物系硬化剤、フタルイミド、イミダゾール錯体などのその他の硬化剤などが挙げられる。
また光硬化をさせる場合の光硬化触媒としては、エネルギー線照射によりカチオン重合を開始させる物質を放出する物質であればよく、具体的にはアリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、スルホニルアセトフェノン、アレン−イオン錯体等が挙げられる。これら硬化触媒は2種以上を併用することもできる。
硬化触媒は、ケイ素含有重合体に対して、0.05〜5重量%含有することが好ましい。
【0032】
(架橋剤)
また、本発明の光学材料組成物には、必須の構成成分である、ケイ素含有重合体、硬化触媒のほかに、架橋剤として、従来公知のエポキシ化合物、エポキシオリゴマーまたはエポキシ樹脂を配合してもよく、ビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、エポキシシリコーン樹脂、アルファオレフィンオキサイド、エポキシ化脂肪酸等エポキシ基を有する化合物なら制限はないが、本発明の光学材料用硬化性組成物を、光硬化させる場合には、脂環式エポキシ樹脂を用いることが好ましい。脂環式エポキシ樹脂の例としては、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルオクチル−3,4−エポキシシクロヘキサンカルボキシレート等が挙げられる。
これら架橋剤として使用されるエポキシ化合物の、本発明の光学材料用硬化性組成物中の量は、特に限定されないが、ケイ素含有重合体に対して0〜50重量%が好ましい。
【0033】
(加水分解性エステル化合物処理)
また、本発明で用いられるケイ素含有重合体を、あるいはケイ素含有重合体を得るために行なった加水分解・縮合反応後の溶液を、そのまま或いは脱触媒処理を行ってから、トリメチルクロロシラン等のクロロシラン化合物、あるいは加水分解性エステル化合物で処理してもよい。特に加水分解性エステル化合物で処理することにより、ケイ素含有重合体中のシラノール基(Si−OH)を封止して、完全に無くすことができるため好ましい。
加水分解性エステル化合物の例としては、オルト蟻酸エステル、オルト酢酸エステル、テトラアルコキシメタン、炭酸エステルなどが挙げられ、これらの1種又は2種以上を使用すればよい。とりわけオルト蟻酸トリアルキルエステル、テトラアルコキシメタン等が好ましい。
加水分解性エステルでの処理方法は、ケイ素含有重合体又はケイ素含有重合体と溶媒との混合物又はケイ素含有重合体を含有する光学材料組成物に、過剰量の加水分解性エステルを加えればよく、その時攪拌、加熱をすることが好ましい。処理後、そのまま使用するか、或いは窒素気流下、加熱減圧して、未反応の加水分解性エステルを除去処理すればよい。この処理によって、シラノール基がなくなり、保存安定性や透明性がよくなる。
【0034】
(活性重水素化合物処理)
また本発明では、本発明で用いられるケイ素含有重合体、本発明の光学材料用硬化性組成物又は本発明の光学材料用硬化性組成物に配合される架橋剤若しくはエポキシ化合物を活性重水素化合物で処理することが好ましい。
活性重水素化化合物で処理することにより、近赤外領域の透明性を損なう原因である、ケイ素含有重合体中または光学材料用硬化性組成物中に存在するC−H結合、O−H結合等のHを重水素化でき、透明性を改善することができる。
重水素化化合物の例としては、重水や重水素化メタノール、重水素化エタノール等の重水素化アルコール等が挙げられる。
【0035】
(光導波路)
本発明の光学材料用硬化性組成物は、熱硬化、光硬化ともに可能である。特に光硬化を行なうことにより、光導波路を簡便に作製できる。即ち、本発明の光学材料用硬化性組成物を所定のパターンで硬化させ光導波路を製造することが出来る。
例えば、光学材料用硬化性組成物を基板あるいはクラッド上に塗布し、位置合わせしてマスクを通してあるいは直接UV光照射し、照射していない部分を溶媒で溶解除去することにより導波路リッジパターンを形成する。
【0036】
光導波路の作製方法の例を具体的に述べる。図1(a)から(d)は本発明により光導波路を形成する工程を示す概略断面図である。
図1(a)に示すように、基板1上にクラッド部分形成用樹脂の層2を形成し、その上にコア部分形成用の紫外線硬化組成物の層3を形成する。次いで、図1(b)に示すように、コア部分形状のパターンを有するマスク4を紫外線硬化組成物の層3の上に被せ、マスク4を通してUV光5を照射する。これにより、紫外線硬化組成物の層3はコア部分6のみ硬化する。その後、紫外線硬化組成物の層3のうち、UV光の未照射部分を溶媒で溶解除去すると、図1(c)に示すようなコア部分6のリッジパターンが形成される。このコア部分6が埋め込まれるように、クラッド部分形成用樹脂の層2と同一の樹脂を塗布して、図1(d)に示すようなクラッド部分7を形成する。こうして作製された光導波路は、耐溶剤性に優れ、また用いた材料の複屈折が小さいために偏波依存性が小さく、かつ低導波損失で、耐熱性、耐湿性に優れている。
【0037】
【実施例】
以下、実施例により本発明を更に説明するが、本発明はこれら実施例によって限定されるものではない。尚、実施例中の「部」や「%」は重量によるものである。
【0038】
合成例1:ケイ素含有重合体A
メチルトリエトキシシラン15部に0.032%リン酸水溶液14部を10℃にて混合攪拌した。更に、フェニルトリメトキシシラン9部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン5.5部を加えて3時間攪拌した。続いて、水酸化ナトリウム水溶液にて反応液を中和後、30〜50℃にて1.5時間反応した。反応後、オルトギ酸トリエチルを350部添加して130℃にて1時間攪拌後、吸着剤(協和化学工業製キョワード600S、以下同様)0.2部を加えて100℃にて処理した。吸着剤を濾過して除去後、100℃、5mmHgにて揮発成分を除去し、ケイ素含有重合体Aを得た。GPCによる分析の結果、重量平均分子量は5600であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0039】
合成例2:ケイ素含有重合体B
メチルトリエトキシシラン11部に0.032%リン酸水溶液23部を10℃にて混合攪拌した。更に、重水素化フェニルトリメトキシシラン31部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン9.2部を加えて2時間攪拌した。続いて、エタノール99部を加えてから水酸化ナトリウム水溶液にて反応液を中和後、30℃にて15分間反応した。反応後、オルトギ酸トリエチルを590部添加して130℃にて1時間攪拌後、吸着剤1.0部を加え、100℃にて処理した。吸着剤を濾過して除去後、120℃、4mmHgにて揮発成分を除去してから、トルエン30部とメタノール570部を加え2層分離した。上層を120℃、4mmHgにて揮発成分を除去し、ケイ素含有重合体Bを得た。GPCによる分析の結果、重量平均分子量は2600であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0040】
合成例3:ケイ素含有重合体C
ジメチルジエトキシシラン24部に0.032%リン酸水溶液140部を10℃にて混合攪拌した。更に、フェニルトリメトキシシラン240部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン59部を加えて2時間攪拌した。続いて、エタノール570部を加えてから水酸化ナトリウム水溶液にて反応液を中和後、トルエン620部加えて70〜120℃にて10時間反応した。反応後、オルトギ酸トリエチルを3700部添加して130℃にて1時間攪拌後、吸着剤を6部加え、100℃にて処理した。吸着剤を濾過して除去後、125℃、4mmHgにて揮発成分を除去し、ケイ素含有重合体Cを得た。GPCによる分析の結果、重量平均分子量は8100であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0041】
合成例4:ケイ素含有重合体D
ジメチルジエトキシシラン9.2部に0.032%リン酸水溶液56部を10℃にて混合攪拌した。更に、重水素化フェニルトリメトキシシラン94部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン23部を加えて2時間攪拌した。続いて、エタノール220部を加えてから水酸化ナトリウム水溶液にて反応液を中和後、トルエン240部を加えて70〜80℃にて3.5時間反応した。反応後、オルトギ酸トリエチルを1460部添加して135℃にて30分間攪拌後、吸着剤を20部加え、100℃にて処理した。吸着剤を濾過して除去後、130℃、3mmHgにて揮発成分を除去してから、トルエン61部とメタノール550部を加え2層分離した。下層を120℃、5mmHgにて揮発成分を除去し、ケイ素重合体Dを得た。GPCによる分析の結果、重量平均分子量は8900であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0042】
合成例5:ケイ素含有重合体E
(3,3,3−トリフルオロプロピル)トリメトキシシラン1.1部に0.032%リン酸水溶液4.5部を10℃にて混合攪拌した。更に、重水素化フェニルトリメトキシシラン7.3部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン1.9部を加えて2時間攪拌した。続いて、エタノール17部を添加後、水酸化ナトリウム水溶液にて反応液を中和後、トルエン39部を加えて70〜105℃にて11時間反応した。反応後、オルトギ酸トリエチルを119部添加し、130℃にて1時間攪拌後、吸着剤を0.35部加え、100℃にて処理した。吸着剤を濾過して除去後、120℃、3mmHgにて揮発成分を除去してから、トルエン6部、メタノール50部を加え2層分離した。下層を125℃、3mmHgにて揮発成分を除去し、ケイ素含有重合体Eを得た。GPCによる分析の結果、重量平均分子量は4700であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0043】
合成例6:ケイ素含有重合体F
(3,3,3−トリフルオロプロピル)トリメトキシシラン4.8部、0.032%リン酸水溶液26部、エタノール6部を10℃にて混合攪拌した。更に、重水素化フェニルトリメトキシシラン2.4部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン1.5部を加えて2時間攪拌した。続いて、水酸化ナトリウム水溶液にて反応液を中和後、トルエン245部を加え、60〜105℃にて4時間反応した。反応後、オルトギ酸トリエチルを120部添加して130℃にて1時間攪拌後、吸着剤を1.1部加え、100℃にて処理した。吸着剤を濾過して除去後、120℃、3mmHgにて揮発成分を除去してから、トルエン6部とメタノール54部を加え2層分離した。下層を125℃、3mmHgにて揮発成分を除去し、ケイ素含有重合体Eを得た。GPCによる分析の結果、重量平均分子量は36000であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0044】
合成例7:ケイ素含有重合体G
ペンタフルオロフェニルトリエトキシシラン9.9部、0.032%リン酸水溶液54部、エタノール54部を10℃にて混合攪拌した。更に、(3,3,3−トリフルオロプロピル)トリメトキシシラン12部を加えて攪拌後、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン3.7部を加えて2時間攪拌した。続いて、水酸化ナトリウム水溶液にて反応液を中和後、トルエンを216部加え、70℃〜100℃にて4時間反応した。反応後、オルトギ酸トリエチルを236部添加して130℃にて1時間攪拌後、吸着剤を20部加え100℃にて処理した。吸着剤を濾過して除去後、120℃、5mmHgにて揮発成分を除去してから、トルエン20部とメタノール180部を加え2層分離した。下層を120℃、5mmHgにて揮発成分を除去し、ケイ素含有重合体Gを得た。GPCによる分析の結果、重量平均分子量は5600であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0045】
合成例8:ケイ素含有重合体H
重水素化フェニルトリメトキシシラン12部、ジメトキシメチルシラン4.2部、0.032%リン酸水溶液9.0部を10℃にて混合攪拌した。続いて、エタノール36部を加えてから水酸化ナトリウム水溶液にて中和後、トルエン39部を加え、70〜100℃にて2時間反応した。反応後、オルトギ酸トリエチルを236部添加して130℃にて1時間攪拌後、吸着剤を0.2部加え100℃にて処理した。吸着剤を濾過して除去後、120℃、4mmHgにて揮発成分を除去した。得られた反応物の8.0部にトルエン4.1部、4−ビニル−1−シクロヘキセンオキサイド3.3部、触媒として白金−ジビニルテトラメチルジシロキサン錯体0.0005部を加えて70℃にて3時間反応した。反応液にメタノール200部を加えて洗浄後、70℃、4mmHgにて揮発成分を除去し、ケイ素含有重合体Hを得た。GPCによる分析の結果、重量平均分子量は5300であり1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0046】
合成例9:ケイ素含有重合体I
重水素化フェニルトリメトキシシラン12部、メチルビニルジメトキシシラン5.3部、0.032%リン酸水溶液9.0部を混合し、10℃にて2時間攪拌した。続いて、エタノール36部を加えてから水酸化ナトリウム水溶液にて中和後、トルエン39部を加え、70〜100℃にて2時間反応した。反応後、オルトギ酸トリエチル236部を加え、130℃にて1時間攪拌後、吸着剤0.2部を加え100℃にて処理した。吸着剤を濾過して除去後、120℃、4mmHgにて揮発成分を除去した。得られた反応物の8.0部にトルエン4.1部、グリシドキシジメチルシラン3.6部、触媒として白金−ジビニルテトラメチルジシロキサン錯体0.0005部を加えて70℃にて3時間反応した。反応液にメタノール200部を加えて洗浄後、70℃、4mmHgにて揮発成分を除去し、ケイ素含有重合体Iを得た。GPCによる分析の結果、重量平均分子量は8000であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0047】
合成例10:ケイ素含有重合体J
(3,3,3−トリフルオロプロピル)トリメトキシシラン8.2部、テトラエトキシゲルマン1.3部、エタノール50部、1.03%リン酸水溶液4.5部を10℃にて混合攪拌した。更に、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン1.8部を加えて2時間攪拌した。続いて、水酸化ナトリウム水溶液にて反応液を中和後、90℃にて1時間反応した。反応後、オルトギ酸トリエチルを120部加え、130℃にて1時間攪拌後、吸着剤1.0部を加え100℃にて処理した。吸着剤をろ過して除去後、80℃、4〜20mmHgにて30分間揮発成分を留去し、ケイ素含有重合体Jを得た。GPCによる分析の結果、重量平均分子量は5000であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。
【0048】
<光学材料用硬化性組成物(紫外線硬化性組成物)の調製>
表1に示すように、各ケイ素含有重合体X部、エポキシ樹脂[3,4−エポキシシクロヘキシルオクチル−3,4−エポキシシクロヘキサンカルボキシレート]Y部、光硬化触媒[4−(2−クロロ−4−ベンゾイルフェニルチオ)フェニルビス(4−クロロフェニル)スルホニウムヘキサフルオロアンチモネート]0.15部を混合して、本発明の光学材料用硬化性組成物である、紫外線硬化性組成物を得た。
【表1】
【0049】
<屈折率>
各光材料用硬化性組成物を酢酸プロピル、MIBK(メチルイソブチルケトン)、アセトン等の溶媒で希釈し、ガラス板上に膜厚が約10μmになるようにスピンコートした。次いで、光量10mW/cm2の紫外線を20秒間照射後、120℃にて30分間加熱して硬化させ、エリプソメーターを用い、He−Neレーザー633nm、入射角60°にて、屈折率を測定した。結果を表2に示す。
【0050】
<光損失>
厚さ1−5mmのセルに、表1に示した光学材料用硬化性組成物[但し、この場合は、光硬化触媒4−(2−クロロ−4−ベンゾイルフェニルチオ)フェニルビス(4−クロロフェニル)スルホニウムヘキサフルオロアンチモネートの代わりに、熱硬化触媒2−ブチニルテトラメチレンスルフォニウムヘキサフルオロアンチモネート0.017部添加]を入れ、140℃にて2時間熱硬化後、セルから硬化物を取り出して近赤外吸収スペクトルを測定し、膜厚に対する吸光度の傾きから、光損失を算出した。波長1.3μm及び1.55μmについて表2に示す。
【0051】
<耐熱性(溶融はんだ浸漬試験)>
光損失の測定で作製した硬化物を、200℃の溶融はんだに1分間浸漬後の光損失の変化を測定した。結果を表2に示す。
【0052】
<耐湿度性>
光損失の測定で作製した硬化物を、75℃×90%RHにて7日間放置後の光損失の変化を測定した。結果を表2に示す。
【表2】
【0053】
<活性重水素化合物処理例1>
3,4−エポキシシクロヘキシルオクチル−3,4エポキシシクロヘキサンカルボキシレート10部に重水素化エタノール(CH3CH2OD)10部、クロロホルム100部を加え攪拌、更に無水硫酸ナトリウム20部を加え攪拌後、静置した。これをメンブランフィルターで濾過し、120℃、5mmHgにて揮発成分を除去した。
このエポキシ樹脂を、活性重水素化合物処理していないエポキシ樹脂に変える以外、前記硬化性組成物4と同様に作製し、硬化性組成物4−2を得た。硬化性組成物4−2を硬化させ、光損失を算出したところ、λ=1.3μmでは0.1>dB/cm、λ=1.55μmでは0.32dB/cmであった。
【0054】
<活性重水素化合物処理例2>
活性重水素化合物処理例1と同様に、硬化性組成物4を活性重水素化合物で処理し、硬化性組成物4−3を得た。
この硬化性組成物を硬化させ、光損失を算出したところ、λ=1.3μmでは0.1>dB/cm、λ=1.55μmでは0.28dB/cmであった。
【0055】
<回路パターン作製例>
シリコン基板をヘキサメチルジシラザンに浸漬してから90℃にて加熱処理した。このシリコン基板に前記硬化性組成物3をMIBKで希釈してスピンコート法により20μmの厚さに積層し、光量10mW/cm2の紫外線を20秒間照射後、120℃にて30分間加熱した。次いで、硬化性組成物4をMIBKに希釈してスピンコート法により8μmの厚さに積層し、フォトマスクを使用して、光量10mW/cm2の紫外線を10秒間照射した。トリメチルベンゼンで現像し、120℃にて30分間加熱硬化させ、幅8μmのパターンを形成した。更に、硬化性組成物3をMIBKで希釈してスピンコート法により20μmの厚さに積層し、光量10mW/cm2の紫外線を20秒間照射後、120℃にて30分間加熱した。
従来の光導波路の作製は、「基板に下部クラッドとなる樹脂を塗布し、加熱乾燥などにより溶媒を除去する→コアとなる樹脂を塗布し、フォトプロセスによりレジストにマスクと紫外線露光を用いてパターンを形成し、酸素ガス中での反応性リアクティブイオンエッチングを行った後、レジストを除去することによりコアを形成する→上部クラッドとなる樹脂を塗布し、加熱や紫外線照射により硬化し、回路パターンを形成する」などの工程が必要であるが、本発明の光学材料用硬化性組成物を用いると、コアは直接露光により回路パターンの作製が可能となり、大幅に工程が簡略化できた。
【0056】
【発明の効果】
本発明によれば、屈折率制御性、通信波長における透明性、高分子材料のなかでも優れた加工性、耐熱性及び耐湿性に優れた光学材料用硬化性組成物を提供でき、これにより優れた性能を有する高分子光導波路を提供することができる。
【図面の簡単な説明】
【図1】本発明の光導波路を形成する工程を示す概略断面図である
【符号の説明】
1 基板、2 クラッド部分形成用樹脂の層、3 コア部分形成用紫外線硬化組成物の層、4 マスク、5 UV光、6 コア部分、7 クラッド部分。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition for optical materials. Specifically, the present invention relates to an optical material composition and an optical waveguide that can be used for various optical components, optical integrated circuits, optical wiring boards, optical waveguides, and the like.
[0002]
[Prior art]
An optical waveguide is a special optical component that confines light by creating a portion with a slightly higher refractive index than the surroundings, for example, on the surface of the substrate or directly below the substrate surface, and combines, demultiplexes, or switches light. . Specifically, an optical multiplexing / demultiplexing circuit, a frequency filter, an optical switch, or an optical interconnection component that is useful in the fields of communication and optical information processing can be used. For example, a WDM system that transmits time-divided signals at different wavelengths is promising as a system that can realize high-speed and large-capacity communication necessary for an advanced information society, but the key optical device in this WDM system is , Light source, optical amplifier, optical multiplexer / demultiplexer, optical switch, wavelength tunable filter, wavelength converter, and the like.
[0003]
Compared with optical fiber components, optical waveguide devices can realize high functionality compactly based on a precisely designed waveguide circuit, can be mass-produced, and can integrate many types of optical waveguides on one chip. There are advantages such as.
[0004]
Conventionally, inorganic glass having excellent transparency and small optical anisotropy has been mainly used for optical waveguides. However, inorganic glass is heavy and easily broken, and has problems such as high production cost. Recently, instead of inorganic glass, a transparent polymer material with a communication wavelength of 1.3-1.55 μm or the like is used. The use of optical waveguide parts has been actively used.
Examples of the optical waveguide polymer include acrylic resin, polyimide resin, silicone resin, epoxy resin, and polycarbonate resin.
[0005]
When a polymer is used as the optical waveguide material, the following two points are considered as features.
First, a polymer material can be easily formed into a thin film by a spin coating method, a dip method or the like, and is suitable for producing a large-area optical component. Since the film does not include a high-temperature heat treatment step, the optical waveguide can be produced on a substrate that is difficult to heat at high temperatures, such as a semiconductor substrate or a plastic substrate, as compared with the case of using an inorganic glass material such as quartz. There are advantages. Furthermore, it is possible to produce a flexible optical waveguide that takes advantage of the flexibility and toughness of the polymer. For these reasons, it is expected that optical waveguide components such as optical wiring boards used in the field of optical communications can be manufactured in large quantities and at low cost using polymer optical materials.
[0006]
Second, in general, a polymer material has a temperature dependency constant (TO constant) of a refractive index that is approximately an order of magnitude higher than that of an inorganic glass material such as quartz. The TO constant of the polymer material is governed by the temperature change of the volume expansion, and the TO constant that is one digit larger is a feature that reflects the flexibility of the polymer material. By using a polymer material having a high TO constant, it becomes possible to produce a thermo-optic switch or a thermo-optic wavelength tunable filter with low power consumption. The above two points are the characteristics of polymers in general. However, the properties required for optical materials are diverse, and of course refractive index controllability, transparency, heat resistance, optical isotropy, workability, moisture resistance You must clear the demands of sex.
[0007]
Regarding transparency, in the near-infrared region, which is the communication wavelength region, overtones of vibration absorption of carbon-hydrogen (such as a hydrocarbon skeleton) and oxygen-hydrogen (such as a hydroxyl group) are factors that reduce transparency. . Accordingly, attempts have been made to introduce deuterides, fluorocarbons, siloxane skeletons, and the like.
In terms of heat resistance, a rigid skeleton polyimide resin, a robust siloxane skeleton, a crosslinked structure by heat or light, and the like are employed.
Regarding optical isotropy, it is desirable that components having optical anisotropy such as aromatic rings are not oriented. However, since the above-mentioned rigid or robust skeleton for improving heat resistance promotes molecular orientation, heat resistance and optical isotropy usually tend to conflict.
In the case of an optical waveguide, workability mainly refers to the formability of a core / cladding structure. When a high molecular weight polymer material is spin-coated from a solution, intermixing is likely to occur, and there are many problems in waveguide processability. On the other hand, in the type in which a low-molecular oligomer is formed into a film and then crosslinked with light or heat, the polymer formed after the crosslinking is insolubilized in a solvent, so that intermixing can be prevented. As a result, there is a tendency that many are excellent in workability.
[0008]
Polymer optical materials have been considered to have problems in terms of environmental resistance such as heat resistance or moisture resistance. However, in recent years, heat resistance can be achieved by adding an aromatic group such as a benzene ring or using an inorganic polymer. A material with improved performance is disclosed. As described above, polymer materials are characterized by thin film production and heat treatment processes, and problems such as heat resistance and moisture resistance are being improved.
[0009]
A polyimide resin and a silicone resin are mentioned as being relatively close to the required characteristics as described above. Regarding silicone resins, devices using thermally crosslinked silicone have been reported [Watanabe et al., Electronics Letters, Vol. 33, No. 18, p1547 (1997)]. This thermally cross-linked silicone has a silsesquioxane structure as a molecular skeleton and has a ladder structure, and thus exhibits excellent heat resistance. Further, since the side chain phenyl group or alkyl group is hydrophobic, the moisture resistance is high. Since the hydrogen of C—H bond contained in the side chain is substituted with halogen or deuterium, absorption in the near-infrared region due to the overtone or bond sound of C—H bond stretching or bending vibration is reduced. Yes.
[0010]
When producing an optical waveguide having a core / cladding structure using a thermally crosslinked silicone polymer, at least two materials having a precisely controlled difference in refractive index are required. The relative refractive index difference is generally in the range of 0.1 to 5%. For example, when the mode diameters of the single mode optical fiber and the guided light are matched, it is desirable that the shape of the core portion is an 8 μm square and the relative refractive index difference is 0.3%.
In the polymer optical material described in the above document, the refractive index is controlled by copolymerizing repeating units having different side chains. For example, a phenyl group is known as a side chain with a high refractive index, and a linear alkyl group such as a methyl group is known as a side chain with a low refractive index. That is, when polyphenylsilsesquioxane having a phenyl group side chain is used as a core material, a copolymer of phenylsilsesquioxane and methylsilsesquioxane can be used as a cladding material.
For example, when a single mode optical waveguide having a square cross section of 8 μm square is formed on a silicon substrate, a film thickness of about 15 μm or more is required as a lower cladding in order to avoid the influence of metal cladding. become. Here, the metal cladding means that when the thickness of the lower clad is thin, the light guided through the core portion is drawn into the silicon substrate, and the waveguide loss is remarkably increased. Also, the upper cladding needs to have a film thickness of about 8 μm from the upper surface of the core so that the influence of dust or dirt on the surface, external stress, etc. does not affect the light guided through the core. It becomes. Actually, when polyphenylsilsesquioxane whose side chains are all phenyl groups is used, the cured thin film is hard, so that cracks easily occur, and it is difficult to reliably obtain a film thickness of about 15 μm or more. there were.
However, by introducing a side chain other than a phenyl group, the flexibility of the thin film after curing can be improved, and the occurrence rate of cracks can be greatly reduced. Conventionally, a linear alkyl group such as a methyl group has been known as a side chain for that purpose. That is, when a linear alkyl group such as a methyl group is introduced in part of the side chain instead of the phenyl group, the cured thin film becomes more flexible and cracks occur as the content of the side chain alkyl group increases. The rate is greatly reduced. That is, introduction of a linear alkyl group such as a methyl group into the side chain gives the above-mentioned refractive index controllability to the polysilsesquioxane-based crosslinked polymer optical material, and at the same time, provides crack resistance. Also give.
[0011]
With respect to the 1.55 μm wavelength band used in the WDM system, light absorption due to the overtone or coupled sound of C—H coupling or bending vibration may appear, which greatly affects the waveguide loss. For example, in the case of a methyl group, a CH bond appears near 1.52 μm, in the case of deuterated phenyl, a CD bond appears near 1.50 μm, and an OH bond appears near 1.55 μm. It has been known. Therefore, it is known that a method of replacing H or D of C—H and C—D bonds with fluorine in order to improve transparency at a communication wavelength of 1.53 to 1.61 μm is effective.
[0012]
Further, in order to form a circuit pattern of an optical waveguide with thermally crosslinked silicone, a lithography process is required. If a photosensitive resin is used, there is an advantage that a circuit pattern can be produced by direct exposure. Examples of the reactive group of the photosensitive resin include an epoxy group and a vinyl group.
The epoxy group has a drawback that a hydroxyl group is generated by curing and appears in the vicinity of a communication wavelength of 1.55 μm. However, the epoxy group has advantages such as less curing shrinkage than the vinyl group. As a silicone resin having an epoxy group, JP-A-9-124793 proposes a method of introducing an epoxy group with a glycidyl alcohol epoxidizing agent. As a method for synthesizing polysilsesquioxane, a sol-gel method is often used. The sol-gel method is a reaction in which a crosslinked inorganic oxide is obtained at a low temperature by hydrolysis of precursor molecules and subsequent polycondensation reaction. This reaction is generally carried out by pH change, and the method using a glycidyl alcohol-based epoxidizing agent involves pH change, so that the structure and molecular weight control of the silicone resin and the stability of the product are problems.
[0013]
In addition, the inorganic material obtained by this sol-gel method has a problem of poor storage stability, such as gelation in a short period of time. The Journal of Chemical Society of Japan, 1998 (No. 9), 571 (1998) pays attention to the difference in condensation rate due to the chain length of the alkyl group of trialkoxyalkylsilane. Add alkoxy long-chain alkyl silane to seal silanol groups in polysiloxane, and then add acetylacetone when a predetermined molecular weight is reached by condensation reaction of methyltrimethoxysilane using an aluminum catalyst. Attempts to improve storage stability through ligand exchange in the reaction system. However, these methods have been insufficient in improving the storage stability.
[0014]
[Problems to be solved by the invention]
There are many requirements for polymer materials for optical waveguides, and there are also conflicting demands on the molecular structure, such as heat resistance and optical isotropy, so that there are very few materials that satisfy all conditions simultaneously. There are issues to be solved. However, it is not nothing, for example, like a thermosetting silicone resin, both transparency and heat resistance are achieved by ladder-like siloxane skeleton, optical isotropy is ensured by random thermal crosslinking, oligomer is formed and thermally crosslinked to form a solvent There is also an example that satisfies the ease of forming a core-clad structure by insolubilization at the same time.
[0015]
Thus, although it is a silicone resin that has outstanding properties as an optical waveguide material, in terms of workability, when producing a core ridge, as with inorganic materials such as glass and semiconductor, a plurality of steps are performed by a dry etching process. However, it still has an inadequate part that requires long processing time. Therefore, as for silicone resins for optical waveguides, core ridges are directly produced by a simple method of photocrosslinking and washing away unreacted parts with a solvent, as already realized with some polymer systems, ie, photo-curing resins. It is hoped that it can be done.
[0016]
Usually, as a method of imparting photocurability to the silicone oligomer, a method of incorporating an epoxy group, vinyl ether group or radical polymerizable acrylic group having photocationic polymerizability into the silicone oligomer itself by a covalent bond is used. However, in these methods, the bond between side chains by crosslinking is more dominant than the siloxane bond, which not only causes problems in heat resistance, but also in the case of epoxy, the hydroxyl group, and in the case of vinyl ether or acrylic, hydrocarbons. An increase in waveguide loss due to an increase in the ratio is inevitable. Furthermore, the resulting curable composition has insufficient structure and molecular weight control, and as a result, the refractive index control is insufficient and storage stability is problematic.
[0017]
The present invention relates to a composition for optical materials excellent in optical waveguide applications made in view of such a current situation, and the object thereof is to solve the above-mentioned conventional problems, and to provide new sensitivity to a polymer material. Polymer optical waveguide with excellent refractive index controllability, transparency at the communication wavelength (light loss), heat resistance, moisture resistance, solvent resistance, and flexibility. To provide that material.
[0018]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have been able to solve the above problems.
That is, the present invention includes an epoxy group and a silicon atom in which at least three bonding elements are oxygen atoms, and a Si-R group (R is an alkyl group, a phenyl group, an alkylphenyl group, a phenylalkyl group, or R An alkyl group, a phenyl group, an alkylphenyl group, or a phenylalkyl group in which some or all of the hydrogen atoms are halogenated or deuterated,500 to 1 millionWeight average molecular weightAnd trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethylvinylmethoxysilane, dimethylvinylethoxysilane, Methylvinyldimethoxysilane, methylvinyldiethoxysilane, diphenyldimethoxysilane, phenyltrimethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxy Silane, γ- (methacryloyloxypropyl) trimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxy Silane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, a chlorinated version of each of these alkoxy groups, a part of hydrogen atoms of groups other than these alkoxy groups or All halogenated, some or all of hydrogen atoms other than these alkoxy groups deuterated, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, one or more selected from the group consisting of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, vinylcyclohexene oxide and glycidoxydimethylsilane Polymer obtained by polymerizing monomersSilicon-containing polymer that is completely eliminated by sealing silanol groups (Si-OH) by treatment with orthoformateThe epoxy group of the silicon-containing polymer is introduced by one or more hydrolysis / condensation reactions of an alkoxysilane having an epoxy group selected from the monomers or a chlorosilane having an epoxy group. One or more of alkoxysilane having a silane group (Si-H), chlorosilane having a silane group (Si-H), or at least one polymer thereof selected from the monomers, and Vinyl group selected from among (—CH═CH 2 A vinyl group (—CH═CH) introduced by a hydrosilylation reaction with an epoxy compound having 2 ), Alkoxy group having a vinyl group (—CH═CH 2 Silicon introduced by a hydrosilylation reaction between one or more of chlorosilane having a silane or at least one polymer thereof and an epoxy compound having a silane group (Si—H) selected from the monomers Containing polymerAnd a curing catalyst as an essential constituent. The present invention provides a curable composition for optical materials.
The silicon-containing polymer is preferably treated with an active deuterium compound.
The active deuterium compound is preferably deuterated water or deuterated alcohol.
The silicon-containing polymer contains one or more atoms selected from the group consisting of boron, magnesium, aluminum, phosphorus, titanium, iron, zirconium, niobium, tin, tellurium, tantalum, and germanium as atoms other than silicon. It is preferable to do.
It is also preferable to treat the curable composition for optical materials of the present invention with the aforementioned active deuterium compound.
Furthermore, the present invention includes an optical waveguide formed by curing the curable composition for optical materials.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(Silicon-containing polymer)
First, the silicon-containing polymer that is an essential component of the curable composition for optical materials of the present invention will be described.
The silicon-containing polymer used in the present invention has, in its structure, a silicon atom having an epoxy group and bonded to at least three oxygen atoms.
Furthermore, the silicon-containing polymer used in the present invention has a Si—R group in its structure, and R is an alkyl group, a phenyl group, an alkylphenyl group, a phenylalkyl group, or a hydrogen atom in R. It is an alkyl group, a phenyl group, an alkylphenyl group or a phenylalkyl group, part or all of which are halogenated or deuterated. From the viewpoint of transparency in the near-infrared region, part or all of the hydrogen atoms in R are preferably halogenated or deuterated. The halogenation is preferably fluorination, and specifically, 3,3,3-trifluoropropyl group, pentafluorophenyl group and the like are preferable. As the deuterated group, a deuterated phenyl group is preferable.
Further, the silicon-containing polymer used in the present invention does not have a Si—OH group in its structure.
The weight average molecular weight of the silicon-containing polymer used in the present invention is from 500 to 1,000,000, preferably from 1,000 to 500,000 in terms of polystyrene. If it is smaller than 500, desirable physical properties cannot be obtained, and if it is larger than 1,000,000, sufficient physical properties cannot be obtained.
In the silicon-containing polymer used in the present invention, the number of epoxy groups depends on the molecular weight of the obtained silicon-containing polymer, and is not particularly limited. At most one per silicon atom.
Moreover, it is preferable that the epoxy group in the silicon-containing polymer is bonded to a silicon atom without an oxygen atom.
[0020]
In the silicon-containing polymer of the present invention, the atoms other than silicon include one or more atoms selected from the group consisting of boron, magnesium, aluminum, phosphorus, titanium, iron, zirconium, niobium, tin, tellurium, tantalum, and germanium. Two or more kinds may be contained, and boron, aluminum, phosphorus, titanium, zirconium, tin, and germanium are particularly preferable. For introduction of these atoms, hydrolysis / condensation reaction may be carried out using alkoxysilane or chlorosilane and an alcoholate of another atom in combination or treatment with a complex of another atom.
[0021]
(Method of introducing epoxy group into silicon-containing polymer)
(Hydrolysis / condensation reaction)
An epoxy group can be introduced into a silicon-containing polymer by hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane having an epoxy group.
(Hydrosilylation reaction)
An alkoxysilane having a silane group (Si-H) and / or a chlorosilane having a silane group (Si-H), or at least one of these polymers, and an epoxy compound having a vinyl group (for example, vinylcyclohexene oxide) Epoxy groups can be introduced into the silicon-containing polymer by a hydrosilylation reaction. Alternatively, a vinyl group (—CH═CH2) -Containing alkoxysilane and / or vinyl group (—CH═CH2), Or at least one of these polymers and an epoxy compound having a silane group (Si—H) can also be introduced.
More specifically, a polymer obtained by hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane having a silane group (Si—H) and an epoxy compound having a vinyl group are subjected to a hydrosilylation reaction. Is preferred. In addition, vinyl group (-CH = CH2) And a polymer obtained by hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane and an epoxy compound having a silane group (for example, glycidoxydimethylsilane) are introduced by subjecting to a hydrosilylation reaction. be able to.
Any of these epoxy group introduction methods may be used, or may be used in combination.
[0022]
(Method for producing silicon-containing polymer)
As described above, the silicon-containing polymer used in the present invention is produced by the presence of alkoxysilane and / or chlorosilane having an epoxy group in the hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane. Can do. In this case, the hydrolysis / condensation reaction may be carried out only with alkoxysilane and / or chlorosilane having an epoxy group, but from the viewpoint of physical properties, the hydrolysis / condensation reaction may be performed by mixing with other alkoxysilanes. preferable.
In addition, the silicon-containing polymer used in the present invention has a silane group in the presence of alkoxysilane having a silane group and / or chlorosilane having a silane group in the hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane. A polymer can be formed, and then the polymer and an epoxy compound having a vinyl group (for example, vinylcyclohexene oxide, etc.) can be subjected to a hydrosilylation reaction to produce the polymer.
Alternatively, in the hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane, an alkoxysilane having a vinyl group and / or a chlorosilane having a vinyl group is present to form a polymer having a vinyl group, and then the polymer And an epoxy compound having a silane group can be subjected to a hydrosilylation reaction for production.
Silane group (Si-H) and vinyl group (-CH = CH2When the silicon-containing polymer used in the present invention is obtained by the hydrosilylation reaction of), the hydrosilylation reaction may be performed using a conventionally known catalyst such as a platinum catalyst.
The epoxy compound used for introducing the epoxy group into the silicon-containing polymer by hydrosilylation reaction may be a compound having an epoxy group and a vinyl group or a compound having an epoxy group and a silane group. Specific examples include vinylcyclohexene oxide and glycidoxydimethylsilane.
[0023]
The hydrolysis / condensation reaction of alkoxysilane for obtaining the silicon-containing polymer used in the present invention may be carried out by so-called sol-gel reaction, and as such sol-gel reaction, without solvent or in a solvent, The method of performing a hydrolysis and a condensation reaction with catalysts, such as an acid or a base, is mentioned. The solvent used here is not particularly limited. Specifically, water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, toluene and the like can be used. 1 type of these can be used, and 2 or more types can also be mixed and used.
[0024]
The hydrolysis-condensation reaction of the alkoxysilane proceeds when the alkoxysilane is hydrolyzed with water to generate a silanol group (Si—OH) and the generated silanol groups or silanol groups and the alkoxy group are condensed. In order to advance this reaction, it is preferable to add an appropriate amount of water. Water may be added to the solvent, or the catalyst may be added after dissolving in water. In addition, the hydrolysis reaction also proceeds due to moisture in the air or a small amount of moisture contained in the solvent.
[0025]
The catalyst such as acid or base used in the hydrolysis / condensation reaction is not particularly limited as long as it promotes the hydrolysis / condensation reaction. Specifically, inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid and the like are used. Organic acids such as acetic acid, p-toluenesulfonic acid and monoisopropyl phosphate; inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia; amine compounds such as trimethylamine, triethylamine, monoethanolamine and diethanolamine Titanium esters such as tetraisopropyl titanate and tetrabutyl titanate; Tin carboxylates such as dibutyltin laurate and tin octylate; Boron compounds such as trifluoroboron; Chlorination of metals such as iron, cobalt, manganese and zinc And metal carboxylates such as naphthenates or octylates; Mini um aluminum compound tris acetyl acetate, etc., and the like, also the use of these one may be used in combination of two or more. A preferred example is a method in which an acid catalyst is added and the reaction is allowed to proceed under acidic conditions (pH 7 or lower), and then a basic catalyst is added and the reaction is performed under basic conditions (pH 7 or higher).
[0026]
When the hydrolysis / condensation reaction is performed, stirring is preferable, and the reaction can be accelerated by heating. The order of the hydrolysis / condensation reaction is not particularly limited. For example, when an alkoxysilane having an epoxy group is used to introduce an epoxy group, both the alkoxysilane having an epoxy group and another alkoxysilane are mixed. Alternatively, the hydrolysis / condensation reaction may be carried out, or the hydrolysis / condensation reaction may be carried out to some extent, and then the others may be added to further carry out the hydrolysis / condensation reaction.
In the case of using chlorosilane in addition to alkoxysilane, the hydrolysis condensation reaction may be performed in the same manner as alkoxysilane.
In order to obtain the silicon-containing polymer produced by the hydrolysis-condensation reaction, the reaction solvent, water, and catalyst may be removed. For example, after adding a solvent such as butanol to extract the solvent, the extraction solvent is reduced in a nitrogen stream. What is necessary is just to distill off.
[0027]
In addition to alkoxysilane and chlorosilane, the silicon-containing polymer used in the present invention can also use a silicon dioxide condensate after sodium is removed from sodium silicate by ion exchange or the like.
[0028]
(Alkoxysilane, chlorosilane)
The alkoxysilane or chlorosilane used in the production of the silicon-containing polymer used in the present invention may have an alkoxy group that undergoes a hydrolysis / condensation reaction in the molecule or an Si-Cl group. Are trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethoxymethylsilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyldimethoxysilane, methyldiethoxysilane, Dimethylethoxysilane, dimethylvinylmethoxysilane, dimethylvinylethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, diphenyldimethoxysilane, phenyltrimethoxysilane, dipheny Diethoxysilane, phenyltriethoxysilane, vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ- (methacryloyloxypropyl) trimethoxysilane, N-β (aminoethyl) γ Aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, and chlorinated products instead of these alkoxy groups, and other than these alkoxy groups A group in which some or all of the hydrogen atoms in the group are halogenated (particularly fluorinated) or deuterated can be used, and one or more of these can be used.
In particular, from the viewpoint of transparency in the near-infrared region, it is preferable to use one that is partially or fully halogenated (particularly fluorinated) or deuterated. Specifically, deuterated phenyltrimethoxysilane, pentafluorophenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane and the like are preferably used. For introduction of epoxy groups, silane groups (Si-H), vinyl groups (-CH = CH2), Vinylsilane group (Si-CH = CH2) Is preferred.
[0029]
(Alkoxysilane having an epoxy group)
The alkoxysilane having an epoxy group used for introduction of an epoxy group in the silicon-containing polymer used in the present invention may have an epoxy group in the molecule, and specifically, γ-glycidoxypropyltrisilane. And methoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like. 1 type (s) or 2 or more types can be used. These epoxy groups are preferably bonded to silicon atoms without any oxygen atoms in the middle. In particular, from the viewpoint of photocurability, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltriethoxysilane are preferable.
[0030]
(Chlorosilane having an epoxy group)
The chlorosilane having an epoxy group used for introduction of an epoxy group in the silicon-containing polymer used in the present invention may have an epoxy group in the molecule.
[0031]
(Curing catalyst)
The composition for optical materials of the present invention further comprises a curing catalyst as an essential component. The curing catalyst will be described below.
The curing catalyst used in the present invention may be any catalyst that cures epoxy, specifically, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, m-phenylenediamine, p, p'-diaminodiphenylmethane, p, p'-diaminodiphenylsulfone, p, p'-diaminodiphenyl ether, aniline / BF3, P-Toluidine / BF3, O-Toluidine / BF3, Dimethylaniline, BF3, N-methylaniline, BF3N-ethylaniline BF3, N, N'-dimethylaniline, BF3, N, N'-Diethylaniline / BF3, Ethylamine / BF3, N-Butylamine BF3, Piperidine BF3, Diphenylamine BF3, Amine curing agents such as o-dimethylaminomethylphenol, 2,4,6-tris (dimethylaminomethyl) phenol, triethanolamine and borate, polyamide resins, diacetone acrylamide complexes, amide curing such as dicyandiamide Agent, phthalic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride, maleic anhydride, hexahydrophthalic anhydride, hexyl nadic anhydride, glutaric anhydride, pyromellitic anhydride, phenylene bis (3-butane 1,2-dicarboxylic acid) anhydrides, acid anhydride curing agents such as tetrabromophthalic anhydride, and other curing agents such as phthalimide and imidazole complexes.
The photocuring catalyst for photocuring may be any substance that releases a substance that initiates cationic polymerization upon irradiation with energy rays. Specifically, aryldiazonium salts, aryliodonium salts, arylsulfonium salts, sulfonylacetophenones And allene-ion complexes. Two or more of these curing catalysts can be used in combination.
The curing catalyst is preferably contained in an amount of 0.05 to 5% by weight based on the silicon-containing polymer.
[0032]
(Crosslinking agent)
Further, the optical material composition of the present invention may be blended with a conventionally known epoxy compound, epoxy oligomer or epoxy resin as a crosslinking agent in addition to the silicon-containing polymer and the curing catalyst which are essential components. Well, there is no limitation as long as the compound has an epoxy group such as bisphenol type epoxy resin, alicyclic epoxy resin, epoxy silicone resin, alpha olefin oxide, epoxidized fatty acid, etc., but the curable composition for optical materials of the present invention is photocured. When it is used, it is preferable to use an alicyclic epoxy resin. Examples of the alicyclic epoxy resin include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloctyl-3,4-epoxycyclohexanecarboxylate, and the like.
Although the quantity in the curable composition for optical materials of this invention of the epoxy compound used as these crosslinking agents is not specifically limited, 0 to 50 weight% is preferable with respect to a silicon containing polymer.
[0033]
(Hydrolysable ester compound treatment)
In addition, the silicon-containing polymer used in the present invention, or the solution after the hydrolysis / condensation reaction performed to obtain the silicon-containing polymer is used as it is or after decatalytic treatment, and then a chlorosilane compound such as trimethylchlorosilane. Alternatively, it may be treated with a hydrolyzable ester compound. In particular, the treatment with a hydrolyzable ester compound is preferable because silanol groups (Si—OH) in the silicon-containing polymer can be sealed and completely eliminated.
Examples of the hydrolyzable ester compound include orthoformate ester, orthoacetate ester, tetraalkoxymethane, carbonate ester and the like, and one or more of these may be used. In particular, orthoformic acid trialkyl ester, tetraalkoxymethane and the like are preferable.
The treatment method with the hydrolyzable ester may be performed by adding an excessive amount of the hydrolyzable ester to the silicon-containing polymer, the mixture of the silicon-containing polymer and the solvent, or the optical material composition containing the silicon-containing polymer. At that time, it is preferable to stir and heat. After the treatment, it can be used as it is, or it can be heated and decompressed under a nitrogen stream to remove the unreacted hydrolysable ester. This treatment eliminates silanol groups and improves storage stability and transparency.
[0034]
(Active deuterium compound treatment)
Moreover, in this invention, the crosslinking agent or epoxy compound mix | blended with the silicon-containing polymer used by this invention, the curable composition for optical materials of this invention, or the curable composition for optical materials of this invention is made into an active deuterium compound. It is preferable to treat with.
C—H bond, O—H bond present in silicon-containing polymer or curable composition for optical material, which is a cause of impairing transparency in near infrared region by treatment with active deuterated compound H can be deuterated, and transparency can be improved.
Examples of the deuterated compound include deuterated alcohol such as deuterated water, deuterated methanol, and deuterated ethanol.
[0035]
(Optical waveguide)
The curable composition for optical materials of the present invention can be both thermoset and photocured. In particular, the optical waveguide can be easily produced by performing photocuring. That is, the optical waveguide can be produced by curing the curable composition for optical materials of the present invention in a predetermined pattern.
For example, a waveguide ridge pattern is formed by applying a curable composition for optical materials on a substrate or clad, aligning and irradiating with UV light through a mask or directly, and dissolving and removing unirradiated portions with a solvent To do.
[0036]
An example of an optical waveguide manufacturing method will be specifically described. FIGS. 1A to 1D are schematic cross-sectional views showing a process for forming an optical waveguide according to the present invention.
As shown in FIG. 1 (a), a clad part forming
[0037]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. In the examples, “parts” and “%” are based on weight.
[0038]
Synthesis Example 1: Silicon-containing polymer A
14 parts of 0.032% phosphoric acid aqueous solution was mixed and stirred at 10 ° C. with 15 parts of methyltriethoxysilane. Furthermore, 9 parts of phenyltrimethoxysilane and 5.5 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane were added and stirred for 3 hours. Subsequently, the reaction solution was neutralized with an aqueous sodium hydroxide solution and then reacted at 30 to 50 ° C. for 1.5 hours. After the reaction, 350 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 0.2 part of an adsorbent (Kyowa Chemical Industry Kyoward 600S, the same applies hereinafter) was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 100 ° C. and 5 mmHg to obtain a silicon-containing polymer A. As a result of analysis by GPC, the weight average molecular weight is 5600,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0039]
Synthesis Example 2: Silicon-containing polymer B
11 parts of methyltriethoxysilane and 23 parts of a 0.032% phosphoric acid aqueous solution were mixed and stirred at 10 ° C. Furthermore, 31 parts of deuterated phenyltrimethoxysilane and 9.2 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane were added and stirred for 2 hours. Subsequently, 99 parts of ethanol was added, the reaction solution was neutralized with an aqueous sodium hydroxide solution, and reacted at 30 ° C. for 15 minutes. After the reaction, 590 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 1.0 part of an adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 4 mmHg, and 30 parts of toluene and 570 parts of methanol were added to separate the two layers. Volatile components were removed from the upper layer at 120 ° C. and 4 mmHg to obtain a silicon-containing polymer B. As a result of analysis by GPC, the weight average molecular weight is 2600,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0040]
Synthesis Example 3: Silicon-containing polymer C
To 24 parts of dimethyldiethoxysilane, 140 parts of 0.032% phosphoric acid aqueous solution were mixed and stirred at 10 ° C. Further, 240 parts of phenyltrimethoxysilane and 59 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane were added and stirred for 2 hours. Subsequently, after adding 570 parts of ethanol, the reaction solution was neutralized with an aqueous sodium hydroxide solution, and then 620 parts of toluene was added and reacted at 70 to 120 ° C. for 10 hours. After the reaction, 3700 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 6 parts of adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 125 ° C. and 4 mmHg to obtain a silicon-containing polymer C. As a result of analysis by GPC, the weight average molecular weight is 8100,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0041]
Synthesis Example 4: Silicon-containing polymer D
To 9.2 parts of dimethyldiethoxysilane, 56 parts of a 0.032% phosphoric acid aqueous solution were mixed and stirred at 10 ° C. Furthermore, 94 parts of deuterated phenyltrimethoxysilane and 23 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane were added and stirred for 2 hours. Subsequently, after adding 220 parts of ethanol, the reaction solution was neutralized with an aqueous sodium hydroxide solution, and then 240 parts of toluene was added and reacted at 70-80 ° C. for 3.5 hours. After the reaction, 1460 parts of triethyl orthoformate was added and stirred at 135 ° C. for 30 minutes, and then 20 parts of adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 130 ° C. and 3 mmHg, and then 61 parts of toluene and 550 parts of methanol were added to separate the two layers. Volatile components were removed from the lower layer at 120 ° C. and 5 mmHg to obtain a silicon polymer D. As a result of analysis by GPC, the weight average molecular weight is 8900,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0042]
Synthesis Example 5: Silicon-containing polymer E
To 1.0 parts of (3,3,3-trifluoropropyl) trimethoxysilane, 4.5 parts of 0.032% phosphoric acid aqueous solution was mixed and stirred at 10 ° C. Further, 7.3 parts of deuterated phenyltrimethoxysilane and 1.9 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane were added and stirred for 2 hours. Subsequently, after adding 17 parts of ethanol, the reaction solution was neutralized with an aqueous sodium hydroxide solution, 39 parts of toluene was added, and the mixture was reacted at 70 to 105 ° C. for 11 hours. After the reaction, 119 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 0.35 parts of an adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 3 mmHg, and 6 parts of toluene and 50 parts of methanol were added to separate the two layers. Volatile components were removed from the lower layer at 125 ° C. and 3 mmHg to obtain a silicon-containing polymer E. As a result of analysis by GPC, the weight average molecular weight is 4700,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0043]
Synthesis Example 6: Silicon-containing polymer F
4.8 parts of (3,3,3-trifluoropropyl) trimethoxysilane, 26 parts of a 0.032% phosphoric acid aqueous solution and 6 parts of ethanol were mixed and stirred at 10 ° C. Furthermore, 2.4 parts of deuterated phenyltrimethoxysilane and 1.5 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane were added and stirred for 2 hours. Subsequently, the reaction solution was neutralized with an aqueous sodium hydroxide solution, 245 parts of toluene was added, and the mixture was reacted at 60 to 105 ° C. for 4 hours. After the reaction, 120 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 1.1 parts of an adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 3 mmHg, and 6 parts of toluene and 54 parts of methanol were added to separate the two layers. Volatile components were removed from the lower layer at 125 ° C. and 3 mmHg to obtain a silicon-containing polymer E. As a result of analysis by GPC, the weight average molecular weight is 36000,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0044]
Synthesis Example 7: Silicon-containing polymer G
9.9 parts of pentafluorophenyltriethoxysilane, 54 parts of 0.032% phosphoric acid aqueous solution, and 54 parts of ethanol were mixed and stirred at 10 ° C. Further, 12 parts of (3,3,3-trifluoropropyl) trimethoxysilane was added and stirred, and then 3.7 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added and stirred for 2 hours. Subsequently, the reaction solution was neutralized with an aqueous sodium hydroxide solution, 216 parts of toluene was added, and the mixture was reacted at 70 to 100 ° C. for 4 hours. After the reaction, 236 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 20 parts of adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 5 mmHg, and then 20 parts of toluene and 180 parts of methanol were added to separate the two layers. Volatile components were removed from the lower layer at 120 ° C. and 5 mmHg to obtain a silicon-containing polymer G. As a result of analysis by GPC, the weight average molecular weight is 5600,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0045]
Synthesis Example 8: Silicon-containing polymer H
12 parts of deuterated phenyltrimethoxysilane, 4.2 parts of dimethoxymethylsilane, and 9.0 parts of 0.032% phosphoric acid aqueous solution were mixed and stirred at 10 ° C. Subsequently, 36 parts of ethanol was added, neutralized with an aqueous sodium hydroxide solution, 39 parts of toluene was added, and the mixture was reacted at 70 to 100 ° C. for 2 hours. After the reaction, 236 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 0.2 part of an adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 4 mmHg. To 8.0 parts of the obtained reaction product, 4.1 parts of toluene, 3.3 parts of 4-vinyl-1-cyclohexene oxide, and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex as a catalyst were added, and the mixture was heated to 70 ° C. For 3 hours. After washing by adding 200 parts of methanol to the reaction solution, volatile components were removed at 70 ° C. and 4 mmHg to obtain a silicon-containing polymer H. As a result of analysis by GPC, the weight average molecular weight is 5300.1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0046]
Synthesis Example 9: Silicon-containing polymer I
12 parts of deuterated phenyltrimethoxysilane, 5.3 parts of methylvinyldimethoxysilane, and 9.0 parts of 0.032% phosphoric acid aqueous solution were mixed and stirred at 10 ° C. for 2 hours. Subsequently, 36 parts of ethanol was added, neutralized with an aqueous sodium hydroxide solution, 39 parts of toluene was added, and the mixture was reacted at 70 to 100 ° C. for 2 hours. After the reaction, 236 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 0.2 part of an adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were removed at 120 ° C. and 4 mmHg. To 8.0 parts of the obtained reaction product, 4.1 parts of toluene, 3.6 parts of glycidoxydimethylsilane and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex as a catalyst were added, and the mixture was heated at 70 ° C. for 3 hours. Reacted. 200 parts of methanol was added to the reaction solution and washed, and then volatile components were removed at 70 ° C. and 4 mmHg to obtain a silicon-containing polymer I. As a result of analysis by GPC, the weight average molecular weight is 8000,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0047]
Synthesis Example 10: Silicon-containing polymer J
(3,3,3-trifluoropropyl) trimethoxysilane 8.2 parts, tetraethoxygermane 1.3 parts, ethanol 50 parts, 1.03% phosphoric acid aqueous solution 4.5 parts were mixed and stirred at 10 ° C. . Further, 1.8 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added and stirred for 2 hours. Subsequently, the reaction solution was neutralized with an aqueous sodium hydroxide solution and reacted at 90 ° C. for 1 hour. After the reaction, 120 parts of triethyl orthoformate was added and stirred at 130 ° C. for 1 hour, and then 1.0 part of an adsorbent was added and treated at 100 ° C. After removing the adsorbent by filtration, volatile components were distilled off at 80 ° C. and 4 to 20 mmHg for 30 minutes to obtain a silicon-containing polymer J. As a result of analysis by GPC, the weight average molecular weight is 5000,1As a result of analysis by H-NMR, silanol groups (Si—OH) were not detected.
[0048]
<Preparation of curable composition for optical material (ultraviolet curable composition)>
As shown in Table 1, each silicon-containing polymer X part, epoxy resin [3,4-epoxycyclohexyloctyl-3,4-epoxycyclohexanecarboxylate] Y part, photocuring catalyst [4- (2-chloro-4 -Benzoylphenylthio) phenylbis (4-chlorophenyl) sulfonium hexafluoroantimonate] 0.15 part was mixed to obtain an ultraviolet curable composition which is a curable composition for optical materials of the present invention.
[Table 1]
[0049]
<Refractive index>
Each curable composition for optical materials was diluted with a solvent such as propyl acetate, MIBK (methyl isobutyl ketone), and acetone, and spin-coated on a glass plate to a thickness of about 10 μm. Then, the amount of light 10mW / cm2After being irradiated with ultraviolet rays for 20 seconds, it was cured by heating at 120 ° C. for 30 minutes, and the refractive index was measured using an ellipsometer at a He—Ne laser of 633 nm and an incident angle of 60 °. The results are shown in Table 2.
[0050]
<Light loss>
In a cell having a thickness of 1 to 5 mm, a curable composition for optical materials shown in Table 1 [in this case, photocuring catalyst 4- (2-chloro-4-benzoylphenylthio) phenylbis (4-chlorophenyl] ) In place of sulfonium hexafluoroantimonate, the thermosetting catalyst 2-butynyltetramethylene sulphonium hexafluoroantimonate 0.017 part added] was added and after thermosetting at 140 ° C. for 2 hours, the cured product was removed from the cell. The near-infrared absorption spectrum was taken out and the optical loss was calculated from the slope of the absorbance with respect to the film thickness. Table 2 shows the wavelengths of 1.3 μm and 1.55 μm.
[0051]
<Heat resistance (molten solder immersion test)>
Changes in light loss after the cured product prepared by measuring light loss was immersed in molten solder at 200 ° C. for 1 minute were measured. The results are shown in Table 2.
[0052]
<Humidity resistance>
The cured product prepared by measuring the optical loss was measured for changes in optical loss after being left for 7 days at 75 ° C. × 90% RH. The results are shown in Table 2.
[Table 2]
[0053]
<Active deuterium compound treatment example 1>
10 parts of 3,4-epoxycyclohexyloctyl-3,4 epoxycyclohexanecarboxylate is mixed with deuterated ethanol (CH3CH2(OD) 10 parts and 100 parts of chloroform were added and stirred, and further 20 parts of anhydrous sodium sulfate was added and stirred, and then allowed to stand. This was filtered with a membrane filter, and volatile components were removed at 120 ° C. and 5 mmHg.
A curable composition 4-2 was obtained in the same manner as the curable composition 4 except that this epoxy resin was changed to an epoxy resin not treated with an active deuterium compound. When the curable composition 4-2 was cured and the light loss was calculated, it was 0.1> dB / cm at λ = 1.3 μm and 0.32 dB / cm at λ = 1.55 μm.
[0054]
<Active deuterium compound treatment example 2>
In the same manner as in the active deuterium compound treatment example 1, the curable composition 4 was treated with the active deuterium compound to obtain a curable composition 4-3.
When the curable composition was cured and the light loss was calculated, it was 0.1> dB / cm at λ = 1.3 μm and 0.28 dB / cm at λ = 1.55 μm.
[0055]
<Circuit pattern production example>
The silicon substrate was immersed in hexamethyldisilazane and then heat-treated at 90 ° C. The curable composition 3 is diluted with MIBK on this silicon substrate and laminated to a thickness of 20 μm by spin coating, and the light quantity is 10 mW / cm.2Were irradiated for 20 seconds and then heated at 120 ° C. for 30 minutes. Next, the curable composition 4 is diluted with MIBK and laminated to a thickness of 8 μm by a spin coating method, and the amount of light is 10 mW / cm using a photomask.2Was irradiated for 10 seconds. Development with trimethylbenzene and heat curing at 120 ° C. for 30 minutes formed a pattern with a width of 8 μm. Further, the curable composition 3 was diluted with MIBK and laminated to a thickness of 20 μm by spin coating, and the light amount was 10 mW / cm.2Were irradiated for 20 seconds and then heated at 120 ° C. for 30 minutes.
Conventional optical waveguide fabrication is as follows: “Apply a resin that forms the lower clad to the substrate, remove the solvent by heat drying, etc. → Apply the resin that forms the core, and use a mask and UV exposure to the resist by a photo process. After performing reactive reactive ion etching in oxygen gas, the resist is removed to form the core → Apply the resin that will be the upper cladding, cure by heating or ultraviolet irradiation, and the circuit pattern However, when the curable composition for optical materials of the present invention is used, a circuit pattern can be produced by direct exposure of the core, and the process can be greatly simplified.
[0056]
【The invention's effect】
According to the present invention, it is possible to provide a curable composition for an optical material excellent in refractive index controllability, transparency at a communication wavelength, excellent workability among polymer materials, heat resistance and moisture resistance. It is possible to provide a polymer optical waveguide having excellent performance.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a process for forming an optical waveguide of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 board | substrate, 2 layer of resin for clad part formation, 3 layer of ultraviolet curing composition for core part formation, 4 mask, 5 UV light, 6 core part, 7 clad part.
Claims (6)
硬化触媒と
を必須の構成成分として含有することを特徴とする光学材料用硬化性組成物。It has an epoxy group, and at least three bonding elements contain a silicon atom that is an oxygen atom, and a Si-R group (R is an alkyl group, a phenyl group, an alkylphenyl group, a phenylalkyl group, or a hydrogen atom in R). Part or all of which is halogenated or deuterated, having an alkyl group, phenyl group, alkylphenyl group or phenylalkyl group), having a weight average molecular weight of 500 to 1,000,000 , and trimethylmethoxysilane, trimethylethoxy Silane, dimethyldimethoxysilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethylvinylmethoxysilane, dimethylvinylethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxy Sisilane, diphenyldimethoxysilane, phenyltrimethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ- (methacryloyloxypropyl) Trimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, chlorinated each of these alkoxy groups Those obtained by halogenating some or all of the hydrogen atoms other than these alkoxy groups, those obtained by deuterating some or all of the hydrogen atoms other than these alkoxy groups, and γ-glycidoxy Propyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, vinylcyclohexene oxide And a polymer obtained by polymerizing at least one monomer selected from the group consisting of glycidoxydimethylsilane and completely eliminating silanol groups (Si—OH) by treating the polymer with orthoformate. A silicon-containing polymer , wherein the epoxy group of the silicon-containing polymer is an alkoxysilane having an epoxy group selected from the monomers or a chlorosilane having an epoxy group by one or more hydrolysis / condensation reactions. Selected from among the monomers One or more of an alkoxysilane having a silane group (Si-H), a chlorosilane having a silane group (Si-H), or at least one of these polymers, and a vinyl group (-CH = An alkoxysilane having a vinyl group (—CH═CH 2 ), which is introduced by a hydrosilylation reaction with an epoxy compound having CH 2 ), or a vinyl group (—CH═ Introduced by a hydrosilylation reaction between one or more of chlorosilane having CH 2 ) or at least one of these polymers and an epoxy compound having a silane group (Si—H) selected from the monomers. A silicon-containing polymer;
A curable composition for optical materials, comprising a curing catalyst as an essential component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002169683A JP4205368B2 (en) | 2002-06-11 | 2002-06-11 | Curable composition for optical materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002169683A JP4205368B2 (en) | 2002-06-11 | 2002-06-11 | Curable composition for optical materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004010849A JP2004010849A (en) | 2004-01-15 |
JP4205368B2 true JP4205368B2 (en) | 2009-01-07 |
Family
ID=30436165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002169683A Expired - Fee Related JP4205368B2 (en) | 2002-06-11 | 2002-06-11 | Curable composition for optical materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4205368B2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100823321B1 (en) * | 2004-02-25 | 2008-04-18 | 간사이 페인트 가부시키가이샤 | Curable resin composition for optical waveguide formation, curable dry film for optical waveguide formation, resin cured product and optical waveguide |
US7466893B2 (en) | 2004-02-25 | 2008-12-16 | Kansai Paint Co., Ltd. | Curable resin composition for light guide formation, curable dry film for light guide formation, cured resin and light guide |
EP1586603B1 (en) | 2004-04-14 | 2007-06-13 | Rohm and Haas Electronic Materials LLC | Waveguide compositions and waveguides formed therefrom |
JP4586966B2 (en) * | 2004-06-17 | 2010-11-24 | 信越化学工業株式会社 | Adhesive composition and adhesive film |
WO2006003990A1 (en) * | 2004-07-02 | 2006-01-12 | Nippon Kayaku Kabushiki Kaisha | Photosensitive resin composition for optical waveguide and optical waveguide composed of cured product thereof |
JP2006022153A (en) * | 2004-07-06 | 2006-01-26 | Yokohama Rubber Co Ltd:The | Curable resin composition |
TWI287128B (en) * | 2004-09-07 | 2007-09-21 | Ind Tech Res Inst | Variable optical attenuator derived from sol-gel material and manufacturing method thereof |
DE102005002960A1 (en) * | 2005-01-21 | 2006-08-03 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Composite composition for micro-patterned layers with high relaxivity, high chemical resistance and mechanical stability |
JP2007118276A (en) * | 2005-10-26 | 2007-05-17 | Kagawa Univ | Single-layer fine particle film, cumulative fine particle film, and production method thereof. |
JP4979963B2 (en) | 2006-03-10 | 2012-07-18 | 株式会社Adeka | Curable composition for optical material and optical waveguide |
DE102006033280A1 (en) | 2006-07-18 | 2008-01-24 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Composite composition for microstructured layers |
JP5480469B2 (en) * | 2006-10-31 | 2014-04-23 | 株式会社日本触媒 | Resin composition, optical material, and control method of optical material |
JP5095262B2 (en) * | 2007-05-11 | 2012-12-12 | 株式会社Adeka | Dye functional material |
JPWO2009104680A1 (en) * | 2008-02-22 | 2011-06-23 | 日本化薬株式会社 | Radiation sensitive resin composition, cured product thereof, interlayer insulating film using the composition, and optical device |
JP2009280767A (en) * | 2008-05-26 | 2009-12-03 | Asahi Kasei Corp | Siloxane derivative, cured product, and optical semiconductor sealing material |
JP5357629B2 (en) | 2008-07-01 | 2013-12-04 | 新日鉄住金化学株式会社 | Resin composition for optical waveguide and optical waveguide using the same |
WO2010053629A1 (en) | 2008-11-05 | 2010-05-14 | Nitto Denko Corporation | Asymmetric photo-patternable sol-gel precursors and their methods of preparation |
KR20130036184A (en) * | 2010-03-02 | 2013-04-11 | 닛뽄 가야쿠 가부시키가이샤 | Curable resin composition and cured article thereof |
JP2011208094A (en) * | 2010-03-30 | 2011-10-20 | Asahi Kasei Chemicals Corp | Polyorganosiloxane, method for producing the same, curable resin composition containing the same and application thereof |
JP2012116989A (en) * | 2010-12-02 | 2012-06-21 | Nagase Chemtex Corp | Resin lens and optical resin composition |
JP2013057000A (en) * | 2011-09-08 | 2013-03-28 | Mitsubishi Chemicals Corp | Thermosetting resin composition, semiconductor device member and semiconductor light-emitting device using the same |
US20170267825A1 (en) * | 2014-08-22 | 2017-09-21 | Nagase Chemtex Corporation | Solvent-resistant resin container |
TWI831839B (en) * | 2018-09-28 | 2024-02-11 | 日商琳得科股份有限公司 | Curable polysilsesquioxane compound, curable composition, cured product and method of using the curable composition |
CN112739775B (en) * | 2018-09-28 | 2022-11-01 | 琳得科株式会社 | Curable composition, cured product, and method for using curable composition |
CN112739776B (en) * | 2018-09-28 | 2022-10-28 | 琳得科株式会社 | Curable composition, cured product, and method for using curable composition |
JP7246238B2 (en) * | 2019-04-18 | 2023-03-27 | リンテック株式会社 | Die-bonding material, light-emitting device, and method for manufacturing light-emitting device |
WO2023276622A1 (en) * | 2021-06-29 | 2023-01-05 | パナソニックIpマネジメント株式会社 | Resin composition for optical waveguide, and dry film and optical waveguide using same |
-
2002
- 2002-06-11 JP JP2002169683A patent/JP4205368B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004010849A (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4205368B2 (en) | Curable composition for optical materials | |
CN101410432B (en) | Curable composition for optical material and optical waveguide | |
JP5975582B2 (en) | Epoxy functional radiation curable composition containing epoxy functional siloxane oligomer | |
US6700708B2 (en) | Micro-lens array and method of making micro-lens array | |
JP4651935B2 (en) | Active energy ray-curable organopolysiloxane resin composition, light transmission member, and method for producing light transmission member | |
TWI518391B (en) | Methods for fabricating flexible waveguides using alkyl-functional silsesquioxane resins and planar optical waveguide assembly prepared therefrom | |
JP3952149B2 (en) | Optical waveguide forming material and optical waveguide manufacturing method | |
JP3133039B2 (en) | Photosensitive composition for optical waveguide, method for producing the same, and method for forming polymer optical waveguide pattern | |
JP2008536187A (en) | Flexible film optical waveguide using organic-inorganic hybrid material and manufacturing method thereof | |
WO2002088221A1 (en) | Materials for optical applications | |
US20050106400A1 (en) | Organometallic polymer material and process for preparing the same | |
JP2001281475A (en) | Organic/inorganic composite material for optical waveguide and method for manufacturing optical waveguide using the same | |
US7283715B2 (en) | Optical waveguide forming material and method | |
JP2005298796A (en) | Organic metal polymer material and its preparation process | |
JPH07258604A (en) | Optical material and coating composition for optical material | |
JP3449593B2 (en) | Optical material and optical waveguide using the same | |
JP2006117846A (en) | Resin composition for forming pattern and pattern forming process | |
JP2006119472A (en) | Polymeric optical waveguide and manufacturing method therefor | |
KR101627167B1 (en) | Azide-functionalized polysilsesquioxane, preparation method of the same and high-strength film using the same | |
KR101190530B1 (en) | Active energy ray-curable organopolysiloxane resin composition, optical transmission component, and manufacturing method thereof | |
AU2002247562A1 (en) | Materials for optical applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050411 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081016 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |