[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101265511B1 - Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers - Google Patents

Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers Download PDF

Info

Publication number
KR101265511B1
KR101265511B1 KR1020110042964A KR20110042964A KR101265511B1 KR 101265511 B1 KR101265511 B1 KR 101265511B1 KR 1020110042964 A KR1020110042964 A KR 1020110042964A KR 20110042964 A KR20110042964 A KR 20110042964A KR 101265511 B1 KR101265511 B1 KR 101265511B1
Authority
KR
South Korea
Prior art keywords
polymers
polymer
solution
formula
solar cell
Prior art date
Application number
KR1020110042964A
Other languages
Korean (ko)
Other versions
KR20120124986A (en
Inventor
김경곤
김봉수
김홍곤
고민재
이도권
손선경
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020110042964A priority Critical patent/KR101265511B1/en
Publication of KR20120124986A publication Critical patent/KR20120124986A/en
Application granted granted Critical
Publication of KR101265511B1 publication Critical patent/KR101265511B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 하기 화학식 (P1) 또는 (P2)의 반복 단위를 포함하는 낮은 밴드갭을 갖는 고분자와 이에 제조 방법 및 이를 이용한 고효율 유기태양전지에 관한 것이다.

Figure 112011033723262-pat00028
Figure 112011033723262-pat00029

(P1) (P2)The present invention relates to a polymer having a low bandgap including repeating units represented by the following formula (P1) or (P2), a method for preparing the same, and a high efficiency organic solar cell using the same.
Figure 112011033723262-pat00028
Figure 112011033723262-pat00029

(P1) (P2)

Description

낮은 밴드갭을 갖는 고분자, 이의 제조 방법 및 이를 포함하는 유기태양전지{Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers} Low band gap polymers, a method for manufacturing the same, and an organic solar cell including the same

본 발명은 신규한 고분자 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 낮은 밴드갭을 갖는 고분자와 이에 제조 방법 및 이를 이용한 고효율 유기태양전지에 관한 것이다. The present invention relates to a novel polymer and a method for manufacturing the same, and more particularly, to a polymer having a low bandgap, a method for manufacturing the same, and a high efficiency organic solar cell using the same.

최근 대표적 에너지원인 화석원료의 유한성과 화석원료 연소에 따른 이산화탄소 배출은 온실효과와 같은 환경 문제를 야기시키며, 환경 친화적 대체에너지 개발의 필요성 부각시켰다. 이러한 문제점을 극복하기 위한 노력의 일환으로 수력과 풍력 등 다양한 에너지원들이 연구되고 있으며, 무한한 사용이 가능한 태양광 역시 신 재생에너지의 에너지원으로서 연구되고 있다. 태양광을 이용한 태양전지는 크게 실리콘과 같은 무기물을 이용한 태양전지와 유기물을 사용한 태양전지로 나눌 수 있는데 특히, 고분자를 이용한 유기 박막 태양전지는 실리콘을 사용하는 무기 태양전지에 비해 낮은 생산단가와 자유자재로 구부릴 수 있는 플렉서블한 소자를 대면적화 할 수 있다는 장점으로 인하여 많은 연구가 진행되고 있다. 유기 박막 태양전지의 광변환활성층에 사용되는 대표적인 물질로는 폴리헥실티오펜 (poly(3-hexylthiophene), P3HT)이 있으며 이를 전자친화도가 높은 C60 풀러렌 유도체와 함께 소자를 제작할 시 4-5 % 가량의 효율을 내는 것으로 보고되어 있다. 그러나 P3HT 의 경우 광흡수영역이 약 650 nm 까지로 제한되는 단점을 지니고 있다 (G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat . Mater ., 2005, 4, 864-868, W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, Adv . Funct . Mater ., 2005, 15, 1617-1622). 따라서 이러한 단점을 극복하고 고효율 유기태양전지를 만들기 위해서는 광흡수영역이 넓은 낮은 밴드갭을 가지고 있으며, 정공이동도가 우수하고, 적절한 분자 준위를 가지는 새로운 고분자를 개발할 필요성이 대두되고 있다.
Recently, the finiteness of fossil raw materials, which are representative energy sources, and carbon dioxide emissions from fossil raw material combustion, cause environmental problems such as greenhouse effect, and emphasize the necessity of developing environmentally friendly alternative energy. As part of efforts to overcome these problems, various energy sources such as hydropower and wind power have been studied, and solar light, which can be used indefinitely, is also being studied as an energy source of renewable energy. Solar cells using solar light can be classified into solar cells using inorganic materials such as silicon and solar cells using organic materials. Especially, organic thin film solar cells using polymers have lower production cost and freedom than inorganic solar cells using silicon. A lot of research is being conducted due to the advantage of the large area of the flexible element that can be bent by material. Polyhexylthiophene (poly (3-hexylthiophene), P3HT) is a typical material used for the photoconversion active layer of organic thin film solar cells, and it is 4-5% when the device is manufactured with C60 fullerene derivative having high electron affinity. It is reported to yield about efficiency. However, P3HT has a disadvantage that the light absorption region is limited to about 650 nm (G. Li, V. Shrotriya, JS Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat . Mater ., 2005, 4, 864-868, WL Ma, CY Yang, X. Gong,. K. Lee and AJ Heeger, Adv. Funct. Mater, 2005, 15, 1617-1622). Therefore, in order to overcome these shortcomings and to make a high efficiency organic solar cell, there is a need to develop a new polymer having a low band gap with a wide light absorption region, excellent hole mobility, and an appropriate molecular level.

본 발명은 유기태양전지에 이용할 수 있는 낮은 밴드갭을 갖는 고분자 및 이의 제조 방법을 제공하는 것이다. 또한 본 발명은 낮은 밴드갭을 갖는 고분자를 포함하는 고효율 유기태양전지를 제공하는 것이다. The present invention provides a polymer having a low bandgap that can be used in an organic solar cell, and a method of manufacturing the same. The present invention also provides a high efficiency organic solar cell including a polymer having a low band gap.

본 발명은 하기 화학식 (P1) 또는 (P2)의 반복 단위를 포함하는 고분자를 제공한다. The present invention provides a polymer comprising a repeating unit of formula (P1) or (P2).

Figure 112011033723262-pat00001
(P1)
Figure 112011033723262-pat00001
(P1)

Figure 112011033723262-pat00002
(P2)
Figure 112011033723262-pat00002
(P2)

상기 식에서, R1 및 R2는 각각 독립적으로 C1-C20의 직쇄 또는 분쇄의 포화 또는 불포화 알킬기이며, n은 1 ~ 100,000의 정수이고, 분자량은 500 ~ 10,000,000 이다. In the above formula, R 1 and R 2 are each independently C 1 -C 20 linear or branched saturated or unsaturated alkyl group, n is an integer of 1 to 100,000, and molecular weight is 500 to 10,000,000.

본 발명의 일실시예에 의하면, 상기 반복 단위는 하기 화학식 (P1-1) 또는 (P2-1) 중에서 선택되는 것이 바람직하다. According to one embodiment of the invention, the repeating unit is preferably selected from the following formula (P1-1) or (P2-1).

Figure 112011033723262-pat00003
(P1-1)
Figure 112011033723262-pat00003
(P1-1)

Figure 112011033723262-pat00004
(P2-1)
Figure 112011033723262-pat00004
(P2-1)

또한 본 발명은 하기 반응식 (1) 또는 (2)에 따라 하기 화학식 (P1-1) 또는 (P2-1)의 반복 단위를 포함하는 고분자를 제조하는 방법을 제공한다. In another aspect, the present invention provides a method for producing a polymer comprising a repeating unit of formula (P1-1) or (P2-1) according to the following scheme (1) or (2).

<반응식 1><Reaction Scheme 1>

Figure 112011033723262-pat00005
Figure 112011033723262-pat00005

<반응식 2><Reaction Scheme 2>

Figure 112011033723262-pat00006
Figure 112011033723262-pat00006

또한 본 발명은 상기 고분자를 포함하는 고효율 유기태양전지를 제공한다. 이때 고분자는 유기태양전지 소자의 광변환활성층에 포함되며, 플러렌 유도체를 더 포함하는 것이 바람직하다.
In another aspect, the present invention provides a high efficiency organic solar cell comprising the polymer. At this time, the polymer is included in the photoconversion active layer of the organic solar cell device, it is preferable to further include a fullerene derivative.

본 발명에 따른 고분자는 낮은 밴드갭을 갖기 때문에 고효율 유기태양전지에 적용할 수 있다. 본 발명에서는 고분자 구조에 티오펜 단량체를 도입함으로써 높은 광자흡수능과 향상된 정공이동도를 가진 전도성 고분자 물질을 제공할 수 있다. 또한, 전자를 당겨주는 디케토피롤로피롤 단량체를 함께 도입함으로써 고분자를 장파장 영역으로 이동시켜 낮은 밴드갭을 갖는 고분자 물질을 획득할 수 있다. 이러한 특징들을 통해, 티오펜과 디케토피롤로피롤 단량체가 포함된 고분자는 유기박막트랜지스터(OTFT)와 유기발광다이오드(OLED)와 같은 유기전자 재료로 사용이 가능하며, n 형 물질인 C60 플러렌 유도체 또는 C70 플러렌 유도체과 함께 사용하여 벌크헤테로정션 타입 (Bulk heterojunction type) 광전변환층을 구성하여 유기태양전지에 적용할 수 있다. 추후 에너지 준위가 적절한 n 형 물질 개발시 더욱 높은 효율달성이 가능하다.
Since the polymer according to the present invention has a low band gap, it can be applied to a high efficiency organic solar cell. In the present invention, by introducing a thiophene monomer into the polymer structure, it is possible to provide a conductive polymer material having high photon absorption ability and improved hole mobility. In addition, by introducing a diketopyrrolopyrrole monomer that attracts electrons together, the polymer can be moved to a long wavelength region to obtain a polymer material having a low band gap. Through these features, polymers containing thiophene and diketopyrrolopyrrole monomer can be used as organic electronic materials such as organic thin film transistor (OTFT) and organic light emitting diode (OLED), and C 60 fullerene derivative which is n-type material. Alternatively, the bulk heterojunction type photoelectric conversion layer may be used together with the C 70 fullerene derivative to be applied to an organic solar cell. Further efficiency can be achieved in the development of n-type materials with appropriate energy levels.

도 1은 본 발명에 따라 합성된 PQTDPP (실시예 1)와 PQTVTDPP (실시예 2)의 용액과 필름상에서의 흡광도 그래프이다.
도 2는 본 발명에 따라 합성된 PQTDPP (실시예 1)와 PQTVTDPP (실시예 2)의 전류밀도-전압(J-V) 곡선 그래프이다.
1 is a graph of absorbance in solution and films of PQTDPP (Example 1) and PQTVTDPP (Example 2) synthesized according to the present invention.
2 is a graph of current density-voltage ( JV) curves of PQTDPP (Example 1) and PQTVTDPP (Example 2) synthesized according to the present invention.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다. The present invention will be described in more detail with reference to the following examples.

본 발명에서는 유기박막 태양전지의 높은 광전변환효율을 획득하기 위하여, 우수한 정공이동도와 높은 광흡수율을 보이는 물질로 보고된 티오펜 단량체와 디피롤로피롤 단량체를 이용하여 낮은 밴드갭을 가지는 새로운 고분자를 합성했다. 본 발명에 따른 고분자는 하기 화학식 (P1) 또는 (P2)의 반복 단위를 포함하는 것이 특징이다.In the present invention, to obtain a high photoelectric conversion efficiency of the organic thin film solar cell, using a thiophene monomer and a dipyrrolopyrrole monomer reported as a material showing excellent hole mobility and high light absorption rate synthesized a new polymer having a low band gap did. The polymer according to the present invention is characterized by including a repeating unit of formula (P1) or (P2).

Figure 112011033723262-pat00007
(P1)
Figure 112011033723262-pat00007
(P1)

Figure 112011033723262-pat00008
(P2)
Figure 112011033723262-pat00008
(P2)

상기 식에서, R1 및 R2는 각각 독립적으로 C1-C20의 직쇄 또는 분쇄의 포화 또는 불포화 알킬기이며, n은 1 ~ 100,000 의 정수이고, 분자량은 500 ~ 10,000,000 이다.In the above formula, R 1 and R 2 are each independently C 1 -C 20 linear or branched saturated or unsaturated alkyl group, n is an integer of 1 to 100,000, and molecular weight is 500 to 10,000,000.

이하 실시예를 통해 본 발명을 보다 상세히 설명하지만, 실시예는 본 발명의 이해를 돕기 위해 예시적으로 제시된 것으로서 본 발명의 범위가 이에 한정되는 것으로 해석되어서는 안된다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the Examples are presented by way of example in order to help understanding of the present invention and should not be construed as being limited thereto.

합성예 Synthetic example

합성예 1: 3-도데실싸이오펜 (화학식 1)Synthesis Example 1 3-dodecylthiophene (Formula 1)

Figure 112011033723262-pat00009
Figure 112011033723262-pat00009

3-브로모싸이오펜(13.0 g, 0.080 mol)과 Ni(dppp)Cl2 (2.16 g, 5 mol%)을 무수 THF(200 mL)에 용해시키고, -10℃에서 질소하에 유지시켰다. 도데실 마그네슘 브로마이드(디에틸에테르 중의 1 M) (95.68 mL, 0.096mol)를 상기 용액에 서서히 첨가한 다음 상기 혼합물을 실온에서 질소하에 5시간 동안 교반했다. 반응이 완결되었을 때, 반응 혼합물을 물에 쏟아 부은 후, 클로로포름으로 추출하고, 무수 황산마그네슘으로 건조시켰다. 진공 하에서 용매를 제거한 후, 생성물을 n-헥산을 이용하여 칼럼크로마토그래피로 정제했다. 3-bromothiophene (13.0 g, 0.080 mol) and Ni (dppp) Cl 2 (2.16 g, 5 mol%) were dissolved in anhydrous THF (200 mL) and kept under nitrogen at −10 ° C. Dodecyl magnesium bromide (1 M in diethyl ether) (95.68 mL, 0.096 mol) was added slowly to the solution and the mixture was stirred at room temperature under nitrogen for 5 hours. When the reaction was completed, the reaction mixture was poured into water, extracted with chloroform and dried over anhydrous magnesium sulfate. After removing the solvent under vacuum, the product was purified by column chromatography using n-hexane.

수율 84% (22.0g) 1H NMR (CDCl3 , 400 MHz): δ7.24 (m, 1H), 6.95 (m, 2H), 2.63 (t, 2H), 1.67 (m, 2H), 1.26-1.38 (m, 18H), 0.88-0.91 (m, 3H)
Yield 84% (22.0 g) 1 H NMR (CDCl 3 , 400 MHz): δ7.24 (m, 1H), 6.95 (m, 2H), 2.63 (t, 2H), 1.67 (m, 2H), 1.26-1.38 (m, 18H), 0.88-0.91 (m, 3H)

합성예 2: 2-브로모 3-도데실싸이오펜 (화학식 2)Synthesis Example 2 2-Bromo 3-dodecylthiophene (Formula 2)

Figure 112011033723262-pat00010
Figure 112011033723262-pat00010

화합물 1 (8.0g, 0.032mol)을 클로로포름(100 mL)과 아세트산(100mL)에 용해시킨 후, N-브로모숙신이미드(NBS; 5.92g, 0.033 mol)를 첨가했다. 상기 용액을 실온에서 3시간 동안 교반했다. 상기 혼합물을 묽은 수산화나트륨 수용액에 붓고, 클로로포름으로 추출했다. 유기물층은 무수 황산마그네슘으로 건조시키고, 용매는 진공 하에 증발시켰다. 반응생성물은 n-헥산을 이용하여 칼럼크로마토그래피로 정제했다. Compound 1 (8.0 g, 0.032 mol) was dissolved in chloroform (100 mL) and acetic acid (100 mL), and then N-bromosuccinimide (NBS; 5.92 g, 0.033 mol) was added. The solution was stirred at rt for 3 h. The mixture was poured into dilute aqueous sodium hydroxide solution and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The reaction product was purified by column chromatography using n-hexane.

수율 96% (10.0g) 1H NMR (CDCl3 , 400 MHz): δ7.20 (d, 1H), 6.82 (d, 1H), 2.75 (t, 2H), 1.75 (m, 2H), 1.26-1.42 (m, 18H), 0.88-0.95 (m, 3H)
Yield 96% (10.0 g) 1 H NMR (CDCl 3 , 400 MHz): δ 7.20 (d, 1H), 6.82 (d, 1H), 2.75 (t, 2H), 1.75 (m, 2H), 1.26-1.42 (m, 18H), 0.88-0.95 (m, 3H)

합성예 3: 2-(트리메틸스태닐)-5-(5-(트리메틸스태닐)싸이오펜-2-일) 싸이오펜 (화학식 3)Synthesis Example 3: 2- (trimethylstannyl) -5- (5- (trimethylstannyl) thiophen-2-yl) thiophene (Formula 3)

Figure 112011033723262-pat00011
Figure 112011033723262-pat00011

무수 THF (80 mL) 중의 2, 2'-바이싸이오펜 용액(1 g, 6.02 mmol)에 t-BuLi (펜탄 중의 7.08 mL, 1.7 M)을 -78℃에서 서서히 첨가했다. 이 용액을 -78℃에서 1시간 동안 교반한 후, 트리메틸틴클로라이드(THF 중의 13.23 mL, 1.0 M)를 -78℃에서 상기 용액에 첨가했다. 반응생성물을 실온으로 올리고, 밤새 교반한 후 물로 반응을 중단시키고, 클로로포름으로 추출했다. 유기물층은 무수 황산마그네슘으로 건조시키고, 용매는 진공하에 증발시켰다. 반응생성물은 메탄올을 이용하여 재결정화했다. To a 2,2'-bithiophene solution (1 g, 6.02 mmol) in anhydrous THF (80 mL) was slowly added t- BuLi (7.08 mL in pentane, 1.7 M) at -78 ° C. After stirring this solution at −78 ° C. for 1 h, trimethyltin chloride (13.23 mL in THF, 1.0 M) was added to the solution at −78 ° C. The reaction product was raised to room temperature, stirred overnight and the reaction was stopped with water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The reaction product was recrystallized with methanol.

수율 78% (2.30 g) 1H NMR (CDCl3 , 400 MHz): δ7.28 (d, 2H), 7.09 (d, 2H), 0.32-0.46 (m, 18H)
Yield 78% (2.30 g) 1 H NMR (CDCl 3 , 400 MHz): δ 7.28 (d, 2H), 7.09 (d, 2H), 0.32-0.46 (m, 18H)

합성예 4: 2-(3-도데실싸이오펜-2-일)-5-(5-(3-도데실싸이오펜-2-일)싸이오펜-2-일)싸이오펜 (화학식 4)Synthesis Example 4 2- (3-dodecylthiophen-2-yl) -5- (5- (3-dodecylthiophen-2-yl) thiophen-2-yl) thiophene (Formula 4)

Figure 112011033723262-pat00012
Figure 112011033723262-pat00012

화합물 3 (1.5g, 3.05 mmol), 화합물 2 (2.53g, 7.62 mmol) 및 Pd(PPh3)4 (0.18 g, 5 mol %) 아르곤으로 처리하고, 10 mL의 탈기된 THF에 용해시켰다. 반응생성물을 아르곤 대기하에 80℃로 가열했다. 용액을 밤새도록 교반한 후, 반응생성물에 물을 넣어 반응을 중단시키고, 클로로포름으로 추출했다. 유기물층은 무수 황산마그네슘으로 건조시키고, 용매는 진공하에 증발시켰다. 반응생성물은 헥산:에틸아세테이트 = 10:1을 이용하여 칼럼크로마토그래피로 정제했다. Compound 3 (1.5 g, 3.05 mmol), compound 2 (2.53 g, 7.62 mmol) and Pd (PPh 3 ) 4 (0.18 g, 5 mol%) argon were treated and dissolved in 10 mL of degassed THF. The reaction product was heated to 80 ° C. under argon atmosphere. After the solution was stirred overnight, water was added to the reaction product to stop the reaction and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The reaction product was purified by column chromatography using hexane: ethyl acetate = 10: 1.

수율 64%. (1.3 g) 1H NMR (CDCl3 , 400 MHz): δ7.18 (d, 2H), 7.12 (d, 2H), 7.01 (d, 2H), 6.94(d, 2H) 2.79 (t, 4H), 1.68 (m, 4H), 1.26-1.38 (m, 36H), 0.83-0.88 (m, 6H)
Yield 64%. (1.3 g) 1 H NMR (CDCl 3 , 400 MHz): δ 7.18 (d, 2H), 7.12 (d, 2H), 7.01 (d, 2H), 6.94 (d, 2H) 2.79 (t, 4H), 1.68 (m, 4H), 1.26-1.38 ( m, 36H), 0.83-0.88 (m, 6H)

합성예 5:3-도데실-2-(5-(5-(3-도데실-5-(트리메틸스태닐)싸이오펜-2-일)싸이오펜-2-일)-5-(트리메틸스태닐) 싸이오펜 (화학식 5)Synthesis Example 5: 3-dodecyl-2- (5- (5- (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) thiophen-2-yl) -5- (trimethyls Tanyl) thiophene (Formula 5)

Figure 112011033723262-pat00013
Figure 112011033723262-pat00013

무수 THF (20 mL) 중의 화합물 4의 용액(0.6g, 0.90 mmol)에 t-BuLi (펜탄 중의 1.22 mL, 1.7 M)을 -78℃에서 서서히 첨가했다. 이 용액을 -78℃에서 1시간 동안 교반한 후, 트리메틸에틸 틴 클로라이드(THF 중의 2.70 mL, 1.0 M)를 -78℃에서 상기 용액에 첨가했다. 반응생성물을 실온으로 올리고, 밤새 교반한 후 물로 반응을 중단시키고, 클로로포름으로 추출했다. 유기물층은 무수 황산마그네슘으로 건조시키고, 용매는 진공하에 증발시켰다. 반응생성물은 메탄올을 이용하여 재결정화했다. To a solution of compound 4 (0.6 g, 0.90 mmol) in dry THF (20 mL) was slowly added t- BuLi (1.22 mL in pentane, 1.7 M) at -78 ° C. After stirring this solution at -78 ° C for 1 hour, trimethylethyl tin chloride (2.70 mL in THF, 1.0 M) was added to the solution at -78 ° C. The reaction product was raised to room temperature, stirred overnight and the reaction was stopped with water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The reaction product was recrystallized with methanol.

수율 97% (0.87 g). 1H NMR (CDCl3 , 400 MHz): δ7.14 (d, 2H), 7.03 (d, 4H), 2.83 (t, 4H), 1.70 (m, 4H), 1.28-1.42 (m, 36H), 0.88-0.92 (m, 6H), 0.34-0.48 (m, 18H)
Yield 97% (0.87 g). 1 H NMR (CDCl 3 , 400 MHz): δ 7.14 (d, 2H), 7.03 (d, 4H), 2.83 (t, 4H), 1.70 (m, 4H), 1.28-1.42 (m, 36H), 0.88-0.92 (m, 6H) , 0.34-0.48 (m, 18H)

합성예 6: 2-(트리메틸스태닐)-5-((E)-2-(5-(트리메틸스태닐)싸이오펜-2-일)비닐)싸이오펜 (화학식 6)Synthesis Example 6 2- (trimethylstannyl) -5-((E) -2- (5- (trimethylstannyl) thiophen-2-yl) vinyl) thiophene (Formula 6)

Figure 112011033723262-pat00014
Figure 112011033723262-pat00014

2-((E)-2-(싸이오펜-2-일)비닐)싸이오펜 (1.0g, 5.20 mmol)을 -78℃, 아르곤 하에서 무수 THF(30 mL)와 탈기된 헥산(15 mL)에 용해시키켰다. 이어서, 상기 혼합 용액에 TMEDA(1.79 mL, 12 mmol)를 주입하고, n-BuLi(헥산 중의 5.20 mL, 2.5M)를 -78℃에서 20분 동안 서서히 첨가했다. n-BuLi를 첨가한 후에, 용액을 1시간 동안 70℃에서 가열한 다음, 온도를 -78℃로 냉각시킨 후 트리메틸틴클로라이드 (THF 중의 13.0 mL, 1.0M)를 용액에 첨가하여 실온으로 올렸다. 이 반응혼합물을 밤새도록 교반한 다음, 클로로포름과 물로 추출했다. 생성물을 무수 황산마그네슘으로 건조시킨 다음, 용매는 진공하에 증발시켰다. 반응생성물은 메탄올을 이용하여 재결정화했다. 2-((E) -2- (thiophen-2-yl) vinyl) thiophene (1.0 g, 5.20 mmol) was added to dry THF (30 mL) and degassed hexane (15 mL) under argon at -78 ° C. Dissolved. Then, TMEDA (1.79 mL, 12 mmol) was injected into the mixed solution, and n-BuLi (5.20 mL in hexane, 2.5M) was slowly added at -78 ° C for 20 minutes. After addition of n-BuLi, the solution was heated at 70 ° C. for 1 hour, then the temperature was cooled to −78 ° C. and then trimethyltin chloride (13.0 mL in THF, 1.0 M) was added to the solution to raise to room temperature. The reaction mixture was stirred overnight and then extracted with chloroform and water. The product was dried over anhydrous magnesium sulfate and then the solvent was evaporated in vacuo. The reaction product was recrystallized with methanol.

수율 61% (1.65 g). 1H NMR (CDCl3 , 400 MHz): δ7.11 (d, 2H), 7.08(s, 2H), 7.06 (d, 2H), 0.36 - 0.48 (m, 18H)
Yield 61% (1.65 g). 1 H NMR (CDCl 3 , 400 MHz): δ 7.11 (d, 2H), 7.08 (s, 2H), 7.06 (d, 2H), 0.36-0.48 (m, 18H)

합성예 7: 3-도데실-2-(5-((E)-2-(5-(3-도데실싸이오펜-2-일)싸이오펜-2-일)비닐)싸이오펜-2-일)싸이오펜 (화학식 7)Synthesis Example 7: 3-dodecyl-2- (5-((E) -2- (5- (3-dodecylthiophen-2-yl) thiophen-2-yl) vinyl) thiophen-2- Thiophene (Formula 7)

Figure 112011033723262-pat00015
Figure 112011033723262-pat00015

화합물 2(2.21g, 6.66 mmol)와 아르곤으로 채워진 혼합된 화합물 6(1.5g, 2.90 mmol)의 탈기된 톨루엔(18mL)과 DMF(3mL)에 용해된 Pd(PPh3)4 (0.167g, 5 mol%) 용액을 첨가했다. 이 반응생성물을 아르곤 대기하에서 100℃로 가열하였다. 반응생성물을 밤새 교반한 후 물과 클로로포름으로 세척했다. 유기물층은 무수 황산마그네슘으로 건조시키고, 용매는 진공하에 증발시켰다. 반응생성물은 헥산:클로로포름 = 10:1을 이용하여 칼럼크로마토그래피로 정제했다. Compound 2 (2.21 g, 6.66 mmol) and Pd (PPh 3 ) 4 (0.167 g, 5) dissolved in degassed toluene (18 mL) and DMF (3 mL) of mixed compound 6 (1.5 g, 2.90 mmol) filled with argon. mol%) solution was added. The reaction product was heated to 100 ° C. under argon atmosphere. The reaction product was stirred overnight and then washed with water and chloroform. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The reaction product was purified by column chromatography using hexane: chloroform = 10: 1.

수율 64% (1.3g) 1H NMR (CDCl3 , 400 MHz): δ7.18 (d, 2H), 7.01 (d, 2H), 6.99 (s, 2H), 6.98(d, 2H), 6.94(d, 2H), 2.81 (t, 4H), 1.70 (m, 4H), 1.27-1.39 (m, 36H), 0.87-0.90 (m, 6H)
Yield 64% (1.3 g) 1 H NMR (CDCl 3 , 400 MHz): δ 7.18 (d, 2H), 7.01 (d, 2H), 6.99 (s, 2H), 6.98 (d, 2H), 6.94 (d, 2H), 2.81 (t, 4H), 1.70 (m , 4H), 1.27-1.39 (m, 36H), 0.87-0.90 (m, 6H)

합성예 8: 3-도데실-2-(5-((E)-2-(5-(3-도데실-5-(트리메틸스태닐)싸이오펜-2-일)싸이오펜-2-일)비닐)싸이오펜-2-일)-5-(트리메틸스태닐)싸이오펜 (화학식 8)Synthesis Example 8: 3-dodecyl-2- (5-((E) -2- (5- (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) thiophen-2-yl ) Vinyl) thiophen-2-yl) -5- (trimethylstannyl) thiophene (Formula 8)

Figure 112011033723262-pat00016
Figure 112011033723262-pat00016

무수 THF(20mL) 중의 화합물 7(1.0 g, 1.40 mmol)의 용액에 t-BuLi(펜탄 중의 1.87 mL, 1.7 M)을 -78℃에서 서서히 첨가했다. 이 용액을 1시간 동안 -78℃에서 교반한 후, 트리메틸틴 클로라이드(3.6 mL, 1.0 M in THF)를 -78℃ 용액에 첨가했다. 이 반응혼합물을 실온으로 올리고, 밤새도록 교반한 다음, 클로로포름과 물로 추출했다. 생성물을 무수 황산마그네슘으로 건조시킨 다음, 용매는 진공하에 증발시켰다. 반응생성물은 메탄올을 이용하여 재결정화했다. To a solution of compound 7 (1.0 g, 1.40 mmol) in anhydrous THF (20 mL) was slowly added t- BuLi (1.87 mL in pentane, 1.7 M) at -78 ° C. The solution was stirred for 1 h at -78 ° C, then trimethyltin chloride (3.6 mL, 1.0 M in THF) was added to the -78 ° C solution. The reaction mixture was raised to room temperature, stirred overnight, and then extracted with chloroform and water. The product was dried over anhydrous magnesium sulfate and then the solvent was evaporated in vacuo. The reaction product was recrystallized with methanol.

수율 54% (0.79 g). 1H NMR (CDCl3 , 400 MHz): δ99 (d, 2H), 6.97 (s, 2H), 6.96 (d, 2H), 6.95 (s, 2H), 2.81 (d, 4H), 1.66 (m, 4H), 1.29-1.34 (m, 36H), 0.85-0.88 (m, 6H), 0.30-0.44 (m, 18H)
Yield 54% (0.79 g). 1 H NMR (CDCl 3 , 400 MHz): δ99 (d, 2H), 6.97 (s, 2H), 6.96 (d, 2H), 6.95 (s, 2H), 2.81 (d, 4H), 1.66 (m, 4H), 1.29-1.34 (m , 36H), 0.85-0.88 (m, 6H), 0.30-0.44 (m, 18H)

합성예 9: 화학식 9, 10 및 11의 화합물Synthesis Example 9 Compounds of Formulas 9, 10, and 11

Figure 112011033723262-pat00017
Figure 112011033723262-pat00017

화합물 9, 10 및 11은 문헌[G.-Y Chen et al . J. Polym . Sci . Part A: Poly.Chem. 2010, 48, 1669-1675]에 기재된 방법에 따라 합성했다.
Compounds 9, 10 and 11 are described in G.-Y Chen et. al . J. Polym . Sci . Part A: Poly. Chem. 2010, 48 , 1669-1675].

합성예 10: 폴리[3-(5-(4-도데실-5-(5-(5-(3-도데실싸이오펜-2-일)싸이오펜-2-일)싸이오펜-2-일)싸이오펜-2-일)싸이오펜-2-일)-2,5-비스(2-에틸헥실)-6-(싸이오펜-2-일)피롤로[3,4-c]피롤-1,4(2H,5H)-디온] (화학식 P1-1: PQTDPP)Synthesis Example 10 Poly [3- (5- (4-dodecyl-5- (5- (5- (3-dodecylthiophen-2-yl) thiophen-2-yl) thiophen-2-yl ) Thiophen-2-yl) thiophen-2-yl) -2,5-bis (2-ethylhexyl) -6- (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1 , 4 (2H, 5H) -dione] (Formula P1-1: PQTDPP)

Figure 112011033723262-pat00018
Figure 112011033723262-pat00018

화합물 5 (0.4g, 0.40 mmol) 및 화합물 11 (0.28 g, 0.40 mmol)을 무수 톨루엔4 mL 에 용해시켰다. 이 용액에 Pd(PPh3)4 (9.3 mg, 0.008 mmol)를 첨가하고 80℃로 아르곤 대기하에서 가열했다. 72시간 동안 교반한 후, 2-브로모-5-메틸싸이오펜 (0.005 mL, 7.14 mmol)를 첨가하여 반응을 중단시키고 이 혼합물을 12시간 더 교반했다. Compound 5 (0.4 g, 0.40 mmol) and Compound 11 (0.28 g, 0.40 mmol) were dissolved in 4 mL of anhydrous toluene. Pd (PPh 3 ) 4 (9.3 mg, 0.008 mmol) was added to this solution and heated to 80 ° C. under argon atmosphere. After stirring for 72 hours, 2-bromo-5-methylthiophene (0.005 mL, 7.14 mmol) was added to stop the reaction and the mixture was stirred for another 12 hours.

반응혼합물을 메탄올/염산 혼합 용액에 쏟아 부은 후, 생성된 고분자를 다시 메탄올로 재침전시켰다. 침전된 물질을 메탄올, 헥산 및 아세톤을 이용하여 Soxhlet 추출법으로 정제했다. 그 다음 남은 고분자를 클로로포름에 용해시키고, 진공하에서 건조시켰다. 고분자 수율 88% (417 mg)
The reaction mixture was poured into a methanol / hydrochloric acid solution, and the resulting polymer was reprecipitated with methanol. The precipitated material was purified by Soxhlet extraction using methanol, hexane and acetone. The remaining polymer was then dissolved in chloroform and dried in vacuo. Polymer yield 88% (417 mg)

합성예 11: 폴리[3-(5-(4-도데실-5-(5-((E)-2-(5-(3-도데실싸이오펜-2-일)싸이오펜-2-일)비닐)싸이오펜-2-일)싸이오펜-2-일)싸이오펜-2-일)-2,5-비스(2-에틸헥실)-6-(싸이오펜-2-일)피롤로[3,4-c]피롤-1,4(2H,5H)-디온](화학식 P2-1 PQTVTDPP)Synthesis Example 11: Poly [3- (5- (4-dodecyl-5- (5-((E) -2- (5- (3-dodecylthiophen-2-yl) thiophen-2-yl) thiophen-2-yl ) Vinyl) thiophen-2-yl) thiophen-2-yl) thiophen-2-yl) -2,5-bis (2-ethylhexyl) -6- (thiophen-2-yl) pyrrolo [ 3,4-c] pyrrole-1,4 (2H, 5H) -dione] (Formula P2-1 PQTVTDPP)

Figure 112011033723262-pat00019
Figure 112011033723262-pat00019

화합물 8(0.3g, 0.29 mmol)과 화합물 11(0.2 g, 0.29 mmol)을 이용하여 상기 합성예 10과 동일한 방법으로 합성했다. 수율 0.30 g (51%).
Using Compound 8 (0.3 g, 0.29 mmol) and Compound 11 (0.2 g, 0.29 mmol) in the same manner as in Synthesis Example 10. Yield 0.30 g (51%).

실시예 1: PQTDPP를 이용한 태양전지 제작Example 1 Fabrication of Solar Cell Using PQTDPP

상기 합성예 10에서 합성된 고분자를 이용하여, ITO/PEDOT:PSS/PQTDPP:PCBM (1:0.8)/Al 구조의 태양전지를 제작하였다. ITO 기판은 아이소프로필알코올에서 10분, 아세톤에서 10분, 마지막으로 아이소프로필알코올에서 10분간 세척 후, 건조하여 사용하였다. 건조한 ITO 기판 위에 PEDOT:PSS 용액을 메탄올에 1:1 비율로 희석시켜 4000 rpm 의 속도로 스핀코팅을 하였고, 이를 110℃에서 10분간 건조하였다. 건조된 기판 위에 클로로벤젠 용액에 고분자 PQTDPP (10 mg/1 mL) 과 PCBM이 1:0.8 비율로 제조된 용액을 1000 rpm 의 속도로 스핀코팅 한 후, 알루미늄 전극을 100 nm 두께로 증착하였다.
Using the polymer synthesized in Synthesis Example 10, a solar cell having an ITO / PEDOT: PSS / PQTDPP: PCBM (1: 0.8) / Al structure was prepared. The ITO substrate was washed with 10 minutes in isopropyl alcohol, 10 minutes in acetone, and finally for 10 minutes in isopropyl alcohol, and dried. The PEDOT: PSS solution was diluted 1: 1 in methanol on a dry ITO substrate and spin coated at a speed of 4000 rpm, which was then dried at 110 ° C. for 10 minutes. After spin-coating a solution prepared with a polymer PQTDPP (10 mg / 1 mL) and a PCBM in a ratio of 1: 0.8 in a chlorobenzene solution at a rate of 1000 rpm on the dried substrate, an aluminum electrode was deposited to a thickness of 100 nm.

실시예 2: PQTVTDPP를 이용한 태양전지 제작Example 2: Fabrication of Solar Cell Using PQTVTDPP

상기 합성예 11에서 합성된 고분자를 이용하여, ITO/PEDOT:PSS/PQTVTDPP: PCBM (1:0.8)/Al 구조의 태양전지를 제작하였다. ITO 기판은 아이소프로필 알코올에서 10분, 아세톤에서 10분, 마지막으로 아이소프로필알코올에서 10분간 세척 후, 건조하여 사용하였다. 건조한 ITO 기판 위에 PEDOT:PSS 용액을 메탄올에 1:1 비율로 희석시켜 스핀코팅을 하였고, 이를 110℃에서 10분간 건조하였다. 건조된 기판 위에 클로로벤젠 용액에 고분자 PQTVTDPP (10 mg/1 mL) 과 PCBM이 1:0.8 비율로 제조된 용액을 1000 rpm 의 속도로 스핀코팅 한 후, 알루미늄 전극을 100 nm 두께로 증착하였다.
Using the polymer synthesized in Synthesis Example 11, a solar cell having an ITO / PEDOT: PSS / PQTVTDPP: PCBM (1: 0.8) / Al structure was prepared. The ITO substrate was washed with 10 minutes in isopropyl alcohol, 10 minutes in acetone, and finally for 10 minutes in isopropyl alcohol, and dried. On a dry ITO substrate, the PEDOT: PSS solution was diluted 1: 1 in methanol and spin coated, and dried at 110 ° C. for 10 minutes. After spin-coating a solution prepared with a polymer PQTVTDPP (10 mg / 1 mL) and a PCBM in a ratio of 1: 0.8 in a chlorobenzene solution at a rate of 1000 rpm on the dried substrate, an aluminum electrode was deposited to a thickness of 100 nm.

실험예 1: 고분자 및 이를 이용한 태양전지의 특성 평가Experimental Example 1 Evaluation of Characteristics of Polymer and Solar Cell Using the Same

도 1 은 본 발명에 따라 합성된 PQTDPP(실시예 1) 및 PQTVTDPP (실시예 2)의 용액과 필름상에서의 흡광도 그래프이다. 이 데이터로부터 결정된 용액과 필름상에서의 흡광최고값과 광학적 밴드갭은 하기 [표 1]에 기재되어 있다. 도 1의 흡광도 그래프를 통해서 PQTDPP와 PQTVTDPP 모두 용액 상태보다 필름 상태에서 고분자체인간 패킹을 통해 광학적 밴드갭이 줄어든 것을 확인할 수 있다. 이로부터 구한 값을 통해 이 두 고분자가 고효율을 내기 위한 낮은 밴드갭을 갖는 물질로 적합함을 알 수 있다.1 is a graph of absorbance in solution and films of PQTDPP (Example 1) and PQTVTDPP (Example 2) synthesized according to the present invention. The absorbance peaks and optical bandgaps on the solutions and films determined from this data are listed in Table 1 below. In the absorbance graph of FIG. 1, it can be seen that the optical band gap is reduced through the packing of the polymer body in the film state of both PQTDPP and PQTVTDPP. From these values, it can be seen that these two polymers are suitable as materials with low bandgap for high efficiency.

용액 (λmax)Solution (λ max ) 필름 (λmax)Film (λ max ) 광학적 밴드갭 (Eg , opt)Optical bandgap (E g , opt ) PQTDPPPQTDPP 647 nm647 nm 682 nm682 nm 1.36 eV1.36 eV PQTVTDPPPQTVTDPP 690 nm690 nm 700 nm700 nm 1.33 eV1.33 eV

또한 상기 실시예 1과 2에서 제작된 태양전지의 특성 측정 결과는 도 2에 나타내었고, 이 그래프에 대한 태양전지성능 주요 지수들은 [표 2]에 기재되어 있다.In addition, the measurement results of the characteristics of the solar cells fabricated in Examples 1 and 2 are shown in Figure 2, the main index of the solar cell performance for this graph is described in [Table 2].

Voc (V)V oc (V) Jsc (mA/cm2)J sc ( mA / cm 2 ) FFFF PCE (%)PCE (%) PQTDPPPQTDPP 0.590.59 5.475.47 0.640.64 2.062.06 PQTVTDPPPQTVTDPP 0.500.50 7.607.60 0.510.51 1.971.97

Claims (7)

하기 화학식 (P1)의 반복 단위를 포함하는 고분자:
Figure 112012109515457-pat00020
(P1)
상기 식에서, R1 및 R2는 각각 독립적으로 C1-C20의 직쇄 또는 분쇄의 포화 또는 불포화 알킬기이고, n은 1 ~ 100,000의 정수이며, 분자량은 500 ~ 10,000,000 이다.
A polymer comprising a repeating unit of formula (P1):
Figure 112012109515457-pat00020
(P1)
Wherein R 1 and R 2 are each independently a C 1 -C 20 straight or branched saturated or unsaturated alkyl group, n is an integer of 1 to 100,000, and a molecular weight is 500 to 10,000,000.
제1항에 있어서,
하기 화학식 (P1-1)의 반복 단위를 포함하는 고분자:
Figure 112012109515457-pat00022
(P1-1)
The method of claim 1,
A polymer comprising a repeating unit of formula (P1-1):
Figure 112012109515457-pat00022
(P1-1)
하기 반응식 (1)에 따라 하기 화학식 (P1-1)의 반복 단위를 포함하는 고분자를 제조하는 방법:
<반응식 1>
Figure 112011033723262-pat00024
To prepare a polymer comprising a repeating unit of formula (P1-1) according to Scheme (1):
<Reaction Scheme 1>
Figure 112011033723262-pat00024
삭제delete 하기 화학식 (P1)의 반복 단위를 포함하는 고분자를 포함하는 유기태양전지:
Figure 112012109515457-pat00026
(P1)
상기 식에서, R1 및 R2는 각각 독립적으로 C1-C20의 직쇄 또는 분쇄의 포화 또는 불포화 알킬기이고, n은 1 ~ 100,000의 정수이며, 분자량은 500 ~ 10,000,000 이다.
An organic solar cell comprising a polymer comprising a repeating unit of formula (P1):
Figure 112012109515457-pat00026
(P1)
Wherein R 1 and R 2 are each independently a C 1 -C 20 straight or branched saturated or unsaturated alkyl group, n is an integer of 1 to 100,000, and a molecular weight is 500 to 10,000,000.
제5항에 있어서,
상기 고분자는 광변환활성층에 포함되는 것을 특징으로 하는 유기태양전지.
The method of claim 5,
The polymer is an organic solar cell, characterized in that contained in the photoconversion active layer.
제6항에 있어서,
상기 광변환활성층에 플러렌 유도체를 더 포함하는 것을 특징으로 하는 유기태양전지.
The method according to claim 6,
An organic solar cell, further comprising a fullerene derivative in the photoconversion active layer.
KR1020110042964A 2011-05-06 2011-05-06 Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers KR101265511B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110042964A KR101265511B1 (en) 2011-05-06 2011-05-06 Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110042964A KR101265511B1 (en) 2011-05-06 2011-05-06 Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers

Publications (2)

Publication Number Publication Date
KR20120124986A KR20120124986A (en) 2012-11-14
KR101265511B1 true KR101265511B1 (en) 2013-05-20

Family

ID=47510233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110042964A KR101265511B1 (en) 2011-05-06 2011-05-06 Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers

Country Status (1)

Country Link
KR (1) KR101265511B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847489B1 (en) 2016-09-09 2017-12-19 Korea Research Institute Of Chemical Technology Polymer, method of preparing the same, and organic optoelectric device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400077B1 (en) * 2013-01-15 2014-05-28 한국화학연구원 new polymer process for producing the polymer and organic optoelectronic devices using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049323A1 (en) 2008-10-31 2010-05-06 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049323A1 (en) 2008-10-31 2010-05-06 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847489B1 (en) 2016-09-09 2017-12-19 Korea Research Institute Of Chemical Technology Polymer, method of preparing the same, and organic optoelectric device including the same

Also Published As

Publication number Publication date
KR20120124986A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
KR101946076B1 (en) Photovoltaic cell containing novel photoactive polymer
Zhang et al. Synthesis of low bandgap polymer based on 3, 6-dithien-2-yl-2, 5-dialkylpyrrolo [3, 4-c] pyrrole-1, 4-dione for photovoltaic applications
JP6297891B2 (en) Organic material and photoelectric conversion element
CA2781791A1 (en) Novel photoactive polymers
Chen et al. Unsubstituted benzodithiophene-based conjugated polymers for high-performance organic field-effect transistors and organic solar cells
Zhu et al. Single-junction fullerene solar cells with 10% efficiency and high open-circuit voltage approaching 1 V
Kim et al. Efficient small molecule organic semiconductor containing bis-dimethylfluorenyl amino benzo [b] thiophene for high open circuit voltage in high efficiency solution processed organic solar cell
KR20140010156A (en) Semiconducting polymers
KR20130048175A (en) Organic semiconductor compound, process for producing the organic semiconductor compound and organic solar cells using the same
KR102439270B1 (en) Novel polymer and organic electronic device using them
Ma et al. Small molecules based on tetrazine unit for efficient performance solution-processed organic solar cells
KR101514207B1 (en) Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
KR101265511B1 (en) Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell comprising the polymers
Tong et al. Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications
CN103258961B (en) Application of fullerene derivative with double hydrophobic groups in solar cell
Xia et al. Synthesis of dithieno [2, 3-d: 2’, 3’-d’] benzo [1, 2-b: 4, 5-b’] dithiophene-alt-isoindigo conjugated polymer and enhancement of photovoltaic property with diphenyl sulfide additives
KR101636687B1 (en) Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell
KR101550844B1 (en) Conjugated polymer for organic solar cells and Organic solar cells comprising the same
KR101374070B1 (en) Triphenylamine derivatives and organic photovoltaic cell comprising the derivatives
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
KR101962848B1 (en) Asymmetric alkyl substituted organic semiconductor compound and application to solar cells
Gedefaw et al. An alternating copolymer of fluorene donor and quinoxaline acceptor versus a terpolymer consisting of fluorene, quinoxaline and benzothiadiazole building units: synthesis and characterization
KR101214546B1 (en) Organic photoelectric transfer polymer and organic photovoltaic device
KR20130112982A (en) Low band gap polymers, the synthesis of the polymers, and the organic photovoltaic cell
Suleiman et al. Dialkoxymethano [60] fullerenes as electron acceptors in thin-film organic solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee