Gedefaw et al., 2016 - Google Patents
An alternating copolymer of fluorene donor and quinoxaline acceptor versus a terpolymer consisting of fluorene, quinoxaline and benzothiadiazole building units …Gedefaw et al., 2016
View PDF- Document ID
- 18394676202170834032
- Author
- Gedefaw D
- Ma Z
- Mulugeta E
- Zhao Y
- Zhang F
- Andersson M
- Mammo W
- Publication year
- Publication venue
- Polymer Bulletin
External Links
Snippet
An alternating polyfluorene copolymer based on fluorene donor and quinoxaline acceptor (P1) and an alternating terpolymer (P2) with fluorene (50%) donor and quinoxaline (25%) and benzothiadiazole (25%) acceptor units were designed and synthesized for use as …
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N Fluorene   C1=CC=C2CC3=CC=CC=C3C2=C1 0 title abstract description 20
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0038—Poly-phenylenevinylene and derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/4253—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/34—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
- C08G2261/344—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/05—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
- H01L51/0504—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
- H01L51/0508—Field-effect devices, e.g. TFTs
- H01L51/0512—Field-effect devices, e.g. TFTs insulated gate field effect transistors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/31—Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/411—Suzuki reactions
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode | |
Sun et al. | High efficiency and high V oc inverted polymer solar cells based on a low-lying HOMO polycarbazole donor and a hydrophilic polycarbazole interlayer on ITO cathode | |
Huo et al. | Alkylthio‐substituted polythiophene: absorption and photovoltaic properties | |
Kim et al. | Incorporation of pyrene units to improve hole mobility in conjugated polymers for organic solar cells | |
Wang et al. | Thieno [3, 2-b] thiophene-Bridged D− π–A Polymer Semiconductor Based on Benzo [1, 2-b: 4, 5-b′] dithiophene and Benzoxadiazole | |
Shen et al. | Enhancing photovoltaic performance of copolymers containing thiophene unit with D–A conjugated side chain by rational molecular design | |
Liu et al. | Benzo [1, 2-b: 4, 5-b′] dithiophene and thieno [3, 4-c] pyrrole-4, 6-dione based donor-π-acceptor conjugated polymers for high performance solar cells by rational structure modulation | |
Gu et al. | Synthesis and photovoltaic properties of copolymers based on benzo [1, 2-b: 4, 5-b′] dithiophene and thiophene with different conjugated side groups | |
Kim et al. | Easily attainable phenothiazine-based polymers for polymer solar cells: advantage of insertion of S, S-dioxides into its polymer for inverted structure solar cells | |
Yue et al. | Poly (oligothiophene-alt-benzothiadiazole) s: tuning the structures of oligothiophene units toward high-mobility “black” conjugated polymers | |
Balaji et al. | Synthesis and photovoltaic properties of a furan-diketopyrrolopyrrole-fluorene terpolymer | |
Xu et al. | Synthesis and characterization of thieno [3, 2‐b] thiophene‐isoindigo‐based copolymers as electron donor and hole transport materials for bulk‐heterojunction polymer solar cells | |
Wen et al. | Synthesis and photovoltaic properties of low‐bandgap 4, 7‐dithien‐2‐yl‐2, 1, 3‐benzothiadiazole‐based poly (heteroarylenevinylene) s | |
Qu et al. | Highly efficient solar cells based on the copolymer of benzodithiophene and thienopyrroledione with solvent annealing | |
Liu et al. | Novel donor–acceptor type conjugated polymers based on quinoxalino [6, 5-f] quinoxaline for photovoltaic applications | |
Medlej et al. | Effect of spacer insertion in a commonly used dithienosilole/benzothiadiazole-based low band gap copolymer for polymer solar cells | |
Liu et al. | A Dithienyl Benzotriazole‐based Polyfluorene: Synthesis and Applications in Polymer Solar Cells and Red Light‐Emitting Diodes | |
Kim et al. | Donor–acceptor polymers with a regioregularly incorporated thieno [3, 4-b] thiophene segment as a π-bridge for organic photovoltaic devices | |
Zhu et al. | Two-dimensional polyfluorenes bearing thienylenevinylene π-bridge-acceptor side chains for photovoltaic solar cells | |
Li et al. | Soluble narrow‐band‐gap copolymers containing novel cyclopentadithiophene units for organic photovoltaic cell applications | |
Gu et al. | Synthesis and photovoltaic properties of conjugated side chains polymers with different electron‐withdrawing and donating end groups | |
Li et al. | Novel low‐bandgap oligothiophene‐based donor‐acceptor alternating conjugated copolymers: Synthesis, properties, and photovoltaic applications | |
Piyakulawat et al. | Effect of thiophene donor units on the optical and photovoltaic behavior of fluorene-based copolymers | |
Kim et al. | Photovoltaic devices using semiconducting polymers containing head‐to‐tail‐structured bithiophene, pyrene, and benzothiadiazole derivatives | |
Zhang et al. | Synthesis and photovoltaic properties of copolymers based on bithiophene and bithiazole |