[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101178860B1 - Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof - Google Patents

Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof Download PDF

Info

Publication number
KR101178860B1
KR101178860B1 KR1020110048092A KR20110048092A KR101178860B1 KR 101178860 B1 KR101178860 B1 KR 101178860B1 KR 1020110048092 A KR1020110048092 A KR 1020110048092A KR 20110048092 A KR20110048092 A KR 20110048092A KR 101178860 B1 KR101178860 B1 KR 101178860B1
Authority
KR
South Korea
Prior art keywords
protein
microalgae
hydrolyzate
seasoning
extraction
Prior art date
Application number
KR1020110048092A
Other languages
Korean (ko)
Inventor
김상무
최승화
Original Assignee
강릉원주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강릉원주대학교산학협력단 filed Critical 강릉원주대학교산학협력단
Priority to KR1020110048092A priority Critical patent/KR101178860B1/en
Application granted granted Critical
Publication of KR101178860B1 publication Critical patent/KR101178860B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/20Proteins from microorganisms or unicellular algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • A23L5/32Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation using phonon wave energy, e.g. sound or ultrasonic waves

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: Natural seasonings including microalgae protein hydrolysate, and a producing method thereof are provided to improve the protein-dissolving capacity of microalgae before hydrolyzing the microalgae. CONSTITUTION: A producing method of natural seasonings including microalgae protein hydrolysate comprises the following steps: processing chlorella vulgaris or tetraselmis suecica with ultrasonic waves using an ultrasonic generator in the frequency of 90-100kHz for 4-5 hours for eluting protein; and producing the protein hydrolysate by hydrolyzing the protein for 50-60 minutes using proteinase in the pH of 6-7. The proteinase is alcalase.

Description

미세조류 단백질 가수분해물을 포함하는 천연조미료 및 이의 제조방법 {Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof}Nature seasoning using micro algae protein hydrolysate and the manufacturing method

본 발명은 미세조류로부터 추출한 단백질의 가수분해물을 포함하는 천연조미료 및 이의 제조방법에 관한 것이다.The present invention relates to a natural seasoning comprising a hydrolyzate of protein extracted from microalgae and a method for producing the same.

미세조류는 담수 및 해수에서 서식하는 부유생물로써 남조류, 규조류, 와편모조류, 녹조류, 홍조류, 황갈색편모조류 및 은편모조류 등이 있으며, 전세계적으로 약 35,000종이 보고되어 있으나, 잠재적으로 약 200,000종 이상이 존재한다고 추정하고 있다. 미세조류들은 일반적인 식물들과 마찬가지로 광합성을 하며 내부에서 당질 및 단백질을 생합성하기 때문에 담수 및 해양에서 기초생산을 담당하고 있으며, 먹이사슬의 생산자로써 중요한 위치를 차지하고 있다.Microalgae are aquatic organisms in freshwater and seawater, including blue algae, diatoms, coarse algae, green algae, red algae, yellow brown algae, and silver algae, and there are about 35,000 species reported worldwide. It is estimated that there exists an abnormality. Microalgae, like other plants, are photosynthetic and biosynthesize sugars and proteins in the interior, and are therefore responsible for basic production in freshwater and the ocean, and are important producers of food chains.

대부분의 미세조류는 종마다 세포벽 내부에 독특한 생리활성물질을 함유하고 있으며 배양환경에 따라 특정물질을 대량생산하는 것이 가능하기 때문에 카로테노이드 계열의 색소, 항산화물질, 지방산, 효소, 기능성 펩티드, 생물독소 및 스테롤 등을 이용할 목적으로 산업적으로 생산되고 있다. 또한, 치어기 및 성어기의 양어사료 및 바이오 에너지의 생산 등 다양한 용도로 활용되고 있다. Most microalgae contain unique bioactive substances inside the cell wall of each species and can produce large quantities of specific substances depending on the culture environment, so carotenoid pigments, antioxidants, fatty acids, enzymes, functional peptides, biotoxins and Industrially produced for the purpose of using sterols and the like. In addition, it is used for a variety of uses, such as the production of fish and bio-energy of juvenile and sexual organs.

그러나 미세조류는 일반적인 식물과 마찬가지로 두껍고 단단한 세포벽을 지니고 있고, 이 세포벽의 구성성분은 셀룰로오스, 헤미셀룰로오스, 펙틴 등으로 이루어져 있어 사람의 탄수화물 분해효소로 분해하기가 매우 어렵다. 또한 미세조류 단백질의 소화율이 일반 식물 및 동물성 단백질 소화율보다 떨어지기 때문에 내부 물질의 이용이 매우 제한적이며, 산업적 적용이 매우 힘든 것으로 알려져 있다. However, microalgae have a thick and hard cell wall like normal plants, and its cell wall consists of cellulose, hemicellulose, pectin, etc., which makes it very difficult to decompose by human carbohydrate degrading enzymes. In addition, since the digestibility of microalgae proteins is lower than that of general plant and animal proteins, the use of internal materials is very limited, and industrial application is very difficult.

최근 환경과 건강을 함께 생각하는 생활양식이 부상함에 따라 정신과 육체가 조화를 이루는 삶, 자연친화적인 삶, 여유 있는 삶을 추구하는 '웰빙(Well-Being)' 문화는 해를 거듭할수록 발전하고 있다. 국내에는 2002년 말부터 웰빙 개념이 도입되기 시작하였으며, 이제는 '로하스(Lifestyle Of Health And Sustainability, LOHAS)'시대가 도래함에 따라 조미료 시장은 Mono sodium glutamate (MSG), 화학복합조미료, 천연복합조미료를 거쳐 천연조미료의 시대로 접어들었다. 또한, 기존 화학조미료의 주종을 이루는 합성 글루타민산을 많이 섭취하였을 때는 두통, 경련, 무력증을 유발하며, 장기간 섭취하였을 시 간경변, 지방간, 여성생식기 발육부진, 대사이상, 체중감소 등으로 건강을 해치기 때문에 소비자들은 화학조미료를 기피하고 천연조미료를 선호하고 있다.With the recent rise of lifestyles that consider the environment and health together, the 'well-being' culture that pursues life in harmony with the mind and body, nature-friendly life, and leisurely life has developed over the years. . In Korea, the concept of well-being began to be introduced at the end of 2002. Now, as the 'Lifestyle Of Health And Sustainability' (LOHAS) era has arrived, the seasoning market has introduced mono sodium glutamate (MSG), chemical compounding seasoning and natural compounding seasoning. After that, it entered the age of natural seasoning. In addition, ingestion of synthetic glutamic acid, which is a predominant chemical condiment, causes headaches, cramps, and asthenia. They avoid chemical seasonings and prefer natural seasonings.

이제 인공첨가물이 들어있는 식품은 소비자들의 이목을 끌지 못할뿐더러, 트렌드에도 맞춰가지 못하는 구세대적 유물로 전락하고 있다. 그리고 그 여파는 모든 식품들에게 미칠 것이며, MSG와 같이 합성조미료로써 명성을 떨치고 있는 어떠한 첨가물도 허용하지 않는 현대의 소비자들에게 천연조미료는 그 대용품으로써의 가치를 발휘하게 될 것이고, 그 시장도 점점 확대될 것이다.Food containing artificial additives is now becoming an old-fashioned artifact that does not catch the attention of consumers and keeps up with the trend. And the aftermath will affect all foods, and natural seasonings will be valued as a substitute for modern consumers who do not allow any additives that have a reputation as a synthetic seasoning, such as MSG, and the market is increasingly becoming a substitute. Will be expanded.

본 발명은 상기와 같은 문제점을 해결하기 위해서, 천연물질 특히, 미세조류의 세포벽에 초음파를 처리하여 단백질 용출능을 증가시키고, 이 단백질을 가수분해하여 생산한 가수분해물을 유효성분으로 포함하는 천연조미료 및 이의 제조방법을 제공하고자 한다.The present invention, in order to solve the above problems, by increasing the protein dissolution ability by treating the cell wall of the natural material, in particular microalgae, natural seasoning comprising a hydrolyzate produced by hydrolyzing the protein as an active ingredient And to provide a method of manufacturing the same.

본 발명은 미세조류의 단백질 가수분해물을 포함하는 천연조미료에 관한 것이다. The present invention relates to natural seasonings comprising protein hydrolysates of microalgae.

또한, 본 발명은 a)미세조류에 초음파처리를 하여 단백질을 용출시키는 단계; 및 b)상기 단백질에 단백질 분해효소를 이용하여 단백질 가수분해물 제조하는 단계;In addition, the present invention comprises the steps of a) eluting the protein by sonicating the microalgae; B) preparing a protein hydrolyzate using protease on the protein;

를 포함하는 천연조미료의 제조방법에 관한 것이다.It relates to a manufacturing method of natural seasoning comprising a.

본 발명의 천연조미료의 제조방법은 기존의 합성조미료의 낮은 식품 안전성에 비하여 천연소재를 사용하기 때문에 식품 안전성이 매우 높으며, 정미 아미노산의 함량이 많아 정미 소재로써의 이용도가 높다. 또한, 초음파 처리에 의하여 단백질의 용출량을 증가시킬 수 있고, 생산 수율을 향상시키는 것이 가능하다는 장점을 가진다.The natural seasoning method of the present invention has a high food safety because it uses a natural material as compared to the low food safety of the conventional synthetic seasonings, it has a high content of net amino acids and high utilization as a net material. In addition, the amount of protein eluted can be increased by sonication, and the production yield can be improved.

도 1은 초음파를 이용한 클로렐라 불가리스(Chlorella vulgaris)의 내부 단백질 추출 시 추출능에 대한 반응표면분석결과의 3차원 도표를 나타낸다.
도 2는 초음파를 이용하여 테트라셀미스 수에시카(Tetraselmis suecica)의 내부 단백질 추출 시 추출능에 대한 반응표면분석결과의 3차원 도표를 나타낸다.
도 3은 알칼라아제(Alcalase) 2.4L을 이용한 Chlorella vulgaris의 단백질 가수분해 시 가수 분해도에 대한 반응표면분석결과의 3차원 도표를 나타낸다.
도 4는 알칼라아제(Alcalase) 2.4L을 이용한 Tetraselmis suecica 의 단백질 가수분해 시 가수 분해도에 대한 반응표면분석결과의 3차원 도표를 나타낸다.
Figure 1 shows a three-dimensional chart of the response surface analysis results for the extraction ability of the internal protein extraction of Chlorella vulgaris by ultrasound.
Figure 2 shows a three-dimensional chart of the response surface analysis results for the extraction ability of the internal protein extraction of Tetraselmis suecica using ultrasonic waves.
Figure 3 Chlorella using Alcalase 2.4L A three-dimensional plot of the response surface analysis results for the degree of hydrolysis during protein hydrolysis of vulgaris is presented.
Figure 4 Tetraselmis using Alcalase 2.4L A three-dimensional plot of the response surface analysis results for the degree of hydrolysis during hydrolysis of suecica is shown.

본 발명은 미세조류의 단백질 가수분해물을 포함하는 천연조미료를 제공한다. The present invention provides a natural seasoning containing protein hydrolyzate of microalgae.

본 발명에서 미세조류의 단백질 가수분해물이란 미세조류에 초음파를 처리하여, 단백질을 용출시키고, 상기 용출된 단백질에 단백질 분해효소를 이용하여 생성된 가수분해물을 말한다.In the present invention, the protein hydrolyzate of the microalgae refers to a hydrolyzate produced by ultrasonically treating the microalgae to elute the protein and using the protease to the eluted protein.

상기 미세조류는 이에 제한되지 않으나, 녹조류(Chlorophyte), 갈조류(Phaeophyceae), 홍조류(Rhodophyte), 남조류(Cyanophyta), 규조류(Bacillariophycea), 와편모조류 (Dinophyta) 또는 착편모조류 (Haptophyta) 일 수 있다.The microalgae may be, but are not limited to, green algae (Chlorophyte), brown algae (Phaeophyceae), red algae (Rhodophyte), cyanophyta, diatoms (Bacillariophycea), dynaphytes or Haptophyta. .

또한, 상기 녹조류는 클로렐라 불가리스(Chlorella vulgaris), 와편모조류는 테트라셀미스 수에시카(Tetrselmis suecica)를 포함할 수 있다.In addition, the green alga is Chlorella vulgaris ( Chlorella vulgaris ), coccyx bird may include Tetrselmis suecica .

상기 미세조류 특히, 미세조류의 세포벽에 초음파를 처리하여 단백질을 용출 시킬 수 있고, 용출된 단백질에 단백질 분해효소를 이용하여 가수분해물을 제조할 수 있다. 본 발명은 상기 가수분해물을 포함하는 천연조미료를 제공하는 것이다.The microalgae, in particular, can be eluted protein by treating the cell wall of the microalgae, it is possible to prepare a hydrolyzate using a protease to the eluted protein. The present invention is to provide a natural seasoning containing the hydrolyzate.

상기 미세조류 단백질 가수분해물은 천연조미료 100 중량부에 대해 5~30 중량부를 포함할 수 있다. 또한, 본 발명은 미세조류 단백질 가수분해물을 포함하는 천연조미료의 제조방법을 제공한다. 보다 구체적으로, The microalgal protein hydrolyzate may include 5-30 parts by weight based on 100 parts by weight of the natural seasoning. The present invention also provides a method for producing natural seasonings comprising microalgal protein hydrolysates. More specifically,

a) 미세조류에 초음파처리를 하여 단백질을 용출시키는 단계; 및 b) 상기 단백질에 단백질 분해효소를 이용하여 단백질 가수분해물 제조하는 단계;a) eluting the protein by sonicating the microalgae; B) preparing a protein hydrolyzate using protease on the protein;

를 포함하는 천연조미료의 제조방법을 제공한다.It provides a method of producing a natural seasoning comprising a.

상기 미세조류의 세포벽에 초음파 처리를 하여 단백질을 용출 시킬 수 있다.The microalgae cell wall can be sonicated to elute the protein.

상기 미세조류는 이에 제한되지 않으나, 녹조류(Chlorophyte), 갈조류(Phaeophyceae), 홍조류(Rhodophyte), 남조류(Cyanophyta), 규조류(Bacillariophycea), 와편모조류 (Dinophyta) 또는 착편모조류 (Haptophyta)를 포함할 수 있다.The microalgae include, but are not limited to, green algae (Chlorophyte), brown algae (Phaeophyceae), red algae (Rhodophyte), cyanophyta, diatoms (Bacillariophycea), warpweed algae (Dinophyta), or flax algae (Haptophyta). Can be.

또한, 상기 녹조류는 클로렐라 불가리스(Chlorella vulgaris), 와편모조류는 테트라셀미스 수에시카(Tetrselmis suecica)를 포함할 수 있다.In addition, the green alga is Chlorella vulgaris ( Chlorella vulgaris ), coccyx bird may include Tetrselmis suecica .

본 발명에서는 상기 a) 단계에서 단백질의 용출(또는 추출)의 추출 주파수, 초음파 추출시간 및 추출온도의 최적조건을 산출할 수 있으며, 본 발명의 일실시예에서는 반응표면분석법(Response Surface Methodology, RSM)을 이용하여 산출할 수 있다. 즉, 추출 주파수, 초음파 추출시간 및 추출온도를 독립변수로 하여 산출한 결과, 초음파처리는 초음파 발생기에서 90-100 kHz 주파수로 4-5 시간 동안, 26~28℃에서 처리할 수 있다.In the present invention, it is possible to calculate the optimum conditions of extraction frequency, ultrasonic extraction time and extraction temperature of the protein eluting (or extraction) in step a), in an embodiment of the present invention (Response Surface Methodology, RSM) Can be calculated using That is, as a result of calculating the extraction frequency, the ultrasonic extraction time and the extraction temperature as independent variables, the ultrasonic treatment can be performed at 26 ~ 28 ℃ for 4-5 hours at a frequency of 90-100 kHz in the ultrasonic generator.

상기 반응 표면 분석법이란 이차 모형을 가정하여 요인수준의 변화에 따른 반응 변수의 변화 패턴으로부터 최적반응 값을 주는 요인들의 최적조건을 찾는 회귀분석방법을 말하는 것으로서, 최근 식품의 제조공정이나 신제품 개발 등에서 많이 사용되고 있다.The response surface analysis method is a regression analysis method that finds an optimal condition of factors that give an optimal response value from a change pattern of a response variable according to a change of factor level on the assumption of a secondary model. It is used.

또한, 본 발명에서 상기 b) 단계의 가수분해의 최적조건을 반응표면분석법(Response Surface Methodology, RSM)을 이용하여 산출할 수 있다. 즉, 단백질 분해효소의 농도, 가수분해시간 및 pH를 독립변수로 하여 산출한 결과, 단백질 분해효소의 농도는 2~3%, 가수분해시간은 50~60분간, pH는 6~7일 수 있다.In addition, in the present invention, the optimal condition for hydrolysis in step b) may be calculated using Response Surface Methodology (RSM). That is, as a result of calculating the concentration, hydrolysis time and pH of the protease as independent variables, the concentration of the protease may be 2 to 3%, the hydrolysis time is 50 to 60 minutes, and the pH may be 6 to 7. .

상기 단백질 분해효소는 알칼라아제(alcalase) 인 것을 포함할 수 있으며, 상기 알칼라아제를 2~3L 사용할 수 있으며, 45~55 ℃에서 가수분해 될 수 있다.The protease may include an alcalase, and may use 2 to 3 L of the alkalase, and may be hydrolyzed at 45 to 55 ° C.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1> 미세조류 단백질  1> Microalgal Proteins 가수분해물의Hydrolyzate 제조 Produce

실시예Example 1-1. 미세조류 고형분의 제조 1-1. Preparation of Microalgal Solids

실험에 사용한 미세조류 중 Chlorella vulgaris는 (주)대상에서 2010년 직접 구입하여 사용하였으며, Tetraselmis suecica는 해양생물연구교육센터에서 직접 배양하여 사용하였다. 상기 구입 및 배양한 미세조류는 원심분리하여 배양액을 제거하였다. 보다 자세하게는 상기 구입 및 배양한 미세조류를 7,000 rpm에서 15분 동안 원심분리하여 상층액과 고형분을 분리하였고, 상층액을 제거한 뒤 고형분만을 사용하였고, 상기 수득한 미세조류는 실험 전까지 -40 ℃에서 보관하였다.
Chlorella in the microalgae used in the experiment vulgaris was purchased directly from Daesang Co., Ltd. in 2010, Tetraselmis suecica was cultured directly at the Marine Biology Research and Education Center. The microalgae purchased and cultured were centrifuged to remove the culture solution. More specifically, the purchased and cultured microalgae were centrifuged at 7,000 rpm for 15 minutes to separate the supernatant and solids, and after removing the supernatant, only the solids were used. Stored.

실시예Example 1-2. 미세조류 유래 단백질의 추출 1-2. Extraction of Microalgae-Derived Proteins

상기 수득한 미세조류의 고형분에 초음파 처리하여 내부 단백질의 추출최적조건을 산출하였고, 추출최적조건을 적용하여 미세조류의 단백질을 추출하였다.Ultrasonic treatment was performed on the solids of the obtained microalgae to calculate the optimal extraction conditions of the internal protein, and the microalgae proteins were extracted by applying the extraction optimum conditions.

보다 상세하게는, 100 g에 900 mL의 물을 첨가하였고, 35-170 kHz의 주파수, 1-6시간, 25-45 ℃의 온도범위로 초음파 추출하였다. 추출 최적조건은 반응표면분석(Response Surface Methodology)을 통하여 계산하였고, 결과는 하기 표 1 및 도 1, 2와 같다.
More specifically, 900 mL of water was added to 100 g, and ultrasonic extraction was performed at a frequency of 35-170 kHz, 1-6 hours, and a temperature range of 25-45 ° C. The optimum extraction conditions were calculated through Response Surface Methodology, and the results are shown in Table 1 and FIGS. 1 and 2.

Run Run Time (hr)Time (hr) Temperature (℃℃)Temperature (℃℃) Frequency
(kHz)
Frequency
(kHz)
ChlorellaChlorella vulgarisvulgaris TetraselmisTetraselmis
suecicasuecica
Protein contents
(mg/mL)
Protein contents
(mg / mL)
Protein contents
(mg/mL)
Protein contents
(mg / mL)
1One 22 2020 170170 0.62 0.62 1.77 1.77 22 66 4545 3535 1.60 1.60 2.54 2.54 33 44 32.532.5 3535 1.89 1.89 2.82 2.82 44 66 32.532.5 170170 1.71 1.71 2.40 2.40 55 22 4545 170170 1.52 1.52 1.64 1.64 66 44 38.7538.75 7272 2.39 2.39 3.55 3.55 77 22 4545 170170 1.52 1.52 1.63 1.63 88 22 32.532.5 100100 1.58 1.58 2.49 2.49 99 22 2020 3535 0.95 0.95 1.94 1.94 1010 66 4545 100100 1.78 1.78 2.58 2.58 1111 22 4545 3535 1.23 1.23 1.85 1.85 1212 66 2020 170170 1.60 1.60 2.33 2.33 1313 22 2020 170170 0.61 0.61 1.76 1.76 1414 22 4545 3535 1.22 1.22 1.88 1.88 1515 44 2020 3535 1.53 1.53 2.52 2.52 1616 66 4545 170170 1.65 1.65 2.02 2.02 1717 44 2020 100100 2.54 2.54 3.79 3.79 1818 66 2020 3535 2.09 2.09 2.67 2.67 1919 66 2020 3535 2.10 2.10 2.65 2.65 2020 22 2020 3535 0.93 0.93 1.93 1.93

Chlorella vulgaris의 추출 주파수, 초음파 추출시간 및 추출온도에 따른 이차방정식 모델(Quadratic model)은 다음과 같다. Chlorella Quadratic models according to the extraction frequency, ultrasonic extraction time and extraction temperature of vulgaris are as follows.

Y (protein content, mg/mL) = 2.40 + 0.31A + 0.068B - 0.030C - 0.42(A)2 - 0.072(B)2 - 0.53(C)2 - 0.24AB - 0.042AC + 0.12BC Y (protein content, mg / mL ) = 2.40 + 0.31 A + 0.068 B - 0.030 C - 0.42 (A) 2 - 0.072 (B) 2 - 0.53 (C) 2 - 0.24 AB - 0.042 AC + 0.12 BC

Where, A = extraction time (hr), B = temperature (℃), C = frequency (kHz)Where, A = extraction time (hr), B = temperature (℃), C = frequency (kHz)

따라서 Chlorella vulgaris 의 단백질 추출 최적조건은 95.8 kHz의 주파수, 27.16 ℃의 온도, 추출시간은 4.99 hr이었다.Thus Chlorella Optimum condition for protein extraction of vulgaris was 95.8 kHz, 27.16 ℃, extraction time was 4.99 hr.

한편, Tetraselmis suecica의 추출 주파수, 초음파 추출시간 및 추출온도에 따른 이차방정식 모델(Quadratic model)은 다음과 같다.Meanwhile , Tetraselmis The quadratic model according to the extraction frequency, ultrasonic extraction time and extraction temperature of suecica is as follows.

Y (protein content, mg/mL) = 3.53 + 0.28A - 0.11B - 0.12C - 0.64(A)2 - 0.12(B)2 - 0.71(C)2 - 0.067AB - 0.038AC - 0.053BC Y (protein content, mg / mL ) = 3.53 + 0.28 A - 0.11 B - 0.12 C - 0.64 (A) 2 - 0.12 (B) 2 - 0.71 (C) 2 - 0.067 AB - 0.038 AC 0.053 BC

Where, A = extraction time (hr), B = temperature (℃), C = frequency (kHz)Where, A = extraction time (hr), B = temperature (℃), C = frequency (kHz)

따라서 Tetraselmis suecica의 단백질 추출 최적조건은 95.8 kHz의 주파수, 27.16 ℃의 온도, 추출시간은 4.99 hr 이었다.
therefore Tetraselmis The optimum protein extraction condition of suecica was 95.8 kHz, 27.16 ℃ temperature and extraction time was 4.99 hr.

실시예Example 1-3. 미세조류 단백질  1-3. Microalgal Proteins 가수분해물의Hydrolyzate 제조 Produce

상기 수득한 미세조류 추출물에 alcalase 2.4L을 첨가하여 단백질 가수분해 최적조건을 산출하였고, 최적조건을 적용하여 단백질 가수분해물을 제조하였으며 이 단백질 가수분해물을 동결 건조하여 미세조류 단백질 가수분해물을 제조하였다.Alcalase 2.4L was added to the obtained microalgae extract to calculate optimal protein hydrolysis conditions. Protein hydrolysates were prepared by applying the optimum conditions, and the protein hydrolysates were lyophilized to prepare microalgal protein hydrolysates.

보다 상세하게는, 단백질을 추출한 미세조류를 52.5 ℃의 항온수조에 넣어 예열시키고, 1-3% 농도의 alcalase 2.4L, 10-60 min의 반응시간, 6-7의 pH 범위로 가수분해 하였다. 가수분해 최적조건은 반응표면분석(Response Surface Methodology)을 통하여 계산하였고, 결과는 하기 표 2 및 도 3, 4와 같다.
More specifically, the microalgae from which the protein was extracted were preheated in a constant temperature water bath at 52.5 ° C., and hydrolyzed at a pH range of 6-7 with alcalase 2.4L at a concentration of 1-3%, a reaction time of 10-60 min, and a pH of 6-7. Optimal hydrolysis conditions were calculated through Response Surface Methodology, and the results are shown in Table 2 and FIGS. 3 and 4.

Run Run Time (hr)Time (hr) Temperature (℃℃)Temperature (℃℃) Frequency
(kHz)
Frequency
(kHz)
ChlorellaChlorella vulgarisvulgaris Tetraselmis
suecica
Tetraselmis
suecica
Degree of hydrolysis (%)Degree of hydrolysis (%) Degree of hydrolysis (%)Degree of hydrolysis (%) 1One 1One 1010 77 20.8820.88 19.8719.87 22 2.52.5 47.547.5 6.56.5 38.1138.11 36.0136.01 33 1One 3535 6.56.5 24.7124.71 24.3124.31 44 22 3535 77 34.3834.38 31.1831.18 55 33 1010 77 25.3525.35 23.923.9 66 22 3535 77 34.3434.34 31.1431.14 77 33 1010 77 25.3625.36 2424 88 1One 6060 77 31.931.9 31.231.2 99 33 6060 77 38.9638.96 36.8636.86 1010 33 3535 66 34.3734.37 33.3733.37 1111 22 6060 66 37.4737.47 36.1736.17 1212 1One 1010 77 20.8120.81 19.8519.85 1313 33 6060 77 38.9838.98 36.836.8 1414 22 1010 6.56.5 22.7922.79 21.4921.49 1515 33 6060 66 38.9438.94 36.0436.04 1616 33 1010 66 24.6524.65 23.2523.25 1717 1One 6060 77 32.1832.18 31.2831.28 1818 1One 6060 66 30.5830.58 30.0830.08 1919 1One 1010 66 20.1520.15 19.1619.16 2020 22 1010 66 22.2922.29 21.0921.09

Chlorella vulgaris의 효소농도, 가수분해시간 및 pH에 따른 이차방정식 모델(Quadratic model)은 다음과 같다. Chlorella The quadratic model according to enzyme concentration, hydrolysis time and pH of vulgaris is as follows.

Y (DH%) = 33.26 + 3.94A + 5.73B + 0.33C - 2.00(A)2 - 1.22(B)2 + 1.52(C)2 - 1.50AB - 0.36AC - 0.33BC Y (DH%) = 33.26 + 3.94 A + 5.73 B + 0.33 C - 2.00 (A) 2 - 1.22 (B) 2 + 1.52 (C) 2 - 1.50 AB - 0.36 AC - 0.33 BC

Where, A = enzyme concentration, (%, v/w), B = hydrolysis time (min),Where, A = enzyme concentration, (%, v / w), B = hydrolysis time (min),

C = pH C = pH

따라서 Chlorella vulgaris 의 가수분해 최적조건은 2.49%의 alcalase 농도에6.01의 pH, 58.70 min의 가수분해 시간이었다.Thus Chlorella The optimum hydrolysis condition of vulgaris was 2.49% alcalase concentration, 6.01 pH, 58.70 min hydrolysis time.

한편, Tetraselmis suecica의 효소농도, 가수분해시간 및 pH에 따른 이차방정식 모델(Quadratic model)은 다음과 같다.Meanwhile , Tetraselmis The quadratic model according to the enzyme concentration, hydrolysis time and pH of suecica is as follows.

Y (DH%) = 32.17 + 3.30A + 6.52B + 0.55C - 2.38(A)2 - 2.55(B)2 + 0.54(C)2 + 0.77AB - 0.27AC - 0.24BC Y (DH%) = 32.17 + 3.30 A + 6.52 B + 0.55 C - 2.38 (A) 2 - 2.55 (B) 2 + 0.54 (C) 2 + 0.77 AB - 0.27 AC - 0.24 BC

Where, A = enzyme concentration, (%, v/w), B = hydrolysis time (min),Where, A = enzyme concentration, (%, v / w), B = hydrolysis time (min),

C = pH C = pH

따라서 Chlorella vulgaris 의 가수분해 최적조건은 2.91%의 alcalase 농도에 6.01의 pH, 58.53 min의 가수분해 시간이었다.Thus Chlorella The optimal hydrolysis conditions for vulgaris were pH of 6.01 and hydrolysis time of 58.53 min at 2.91% alcalase concentration.

각 최적조건을 적용하여 미세조류 가수분해물을 생산하고, 7,000 rpm에서 15분간 원심분리하여 고형분을 제거한 뒤 -80 ℃에서 동결건조하여 Chlorella vulgaris 단백질 가수분해물 14.68 g, Tetraselmis suecica 단백질 가수분해물 14.2 g을 제조하였다.
By applying the respective optimum conditions producing microalgae hydrolyzate, lyophilized at -80 ℃ After removing the solids for 15 minutes was centrifuged at 7,000 rpm Chlorella 14.68 g of vulgaris protein hydrolyzate and 14.2 g of Tetraselmis suecica protein hydrolyzate were prepared.

<< 실시예Example 2> 미세조류 단백질  2> Microalgal Proteins 가수분해물의Hydrolyzate 정미 성분 분석 Net ingredient analysis

실시예Example 2-1. 미세조류 단백질  2-1. Microalgal Proteins 가수분해물의Hydrolyzate 아미노산 분석 Amino acid analysis

상기 실시예 1-3에서 제조된 미세조류 단백질 가수분해물의 구성 및 유리 아미노산을 분석하였다.The composition and free amino acids of the microalgal hydrolyzate prepared in Example 1-3 were analyzed.

일반적으로 유리 아미노산은 향미에 가장 중요한 영향을 미치는 단백질의 분해산물로써 중요한 품질지표로 활용되고 있기 때문에 미세조류 단백질 가수분해물의 구성 및 유리 아미노산의 구성을 분석하였다.In general, since the free amino acid is used as an important quality index as a degradation product of protein having the most important effect on flavor, the composition of microalgae protein hydrolysates and the composition of free amino acids were analyzed.

보다 상세하게, 미세조류 단백질 가수분해물 100 mg에 6 N HCl을 20 mL 가하여 105℃ 정온건조기에서 24시간 분해 시켰다. 분해시킨 시료를 감압농축기(R-114, BUCHI, Flawil, Swiss)로 농축 시킨 후 25 mL로 정용하여 amino acid analyzer(L-8800, Hitachi, Tokyo, Japan)로 분석하였다. 유리 아미노산은 미세조류 단백질 가수분해물 1 g에 75% ethanol 40 mL을 가하여 24시간 교반한 뒤 원심분리(10,000 × g, 15 min)하여 상층액과 고형분을 분리한 다음 24시간 교반한 뒤 원심분리(10,000 × g, 15 min)하여 상층액과 고형분을 분리하며, 3회째부터는 1시간 단위로 교반, 원심분리 과정을 상층액이 무색에 가까워질 때까지 반복하였다. 상층액을 감압농축기(BUCHI)로 농축하여 3차 증류수 25 mL로 정용한 후 amino acid analyzer(L-8800, Hitachi, Tokyo, Japan)로 분석하였으며 구성 및 유리 아미산의 조성은 표 3과 같다.
More specifically, 20 mL of 6 N HCl was added to 100 mg of the microalgae protein hydrolysate and decomposed in a 105 ° C constant temperature dryer for 24 hours. The decomposed sample was concentrated with a reduced pressure concentrator (R-114, BUCHI, Flawil, Swiss), and then analyzed with an amino acid analyzer (L-8800, Hitachi, Tokyo, Japan). The free amino acid was added to 40 g of 75% ethanol in 1 g of microalgal hydrolyzate and stirred for 24 hours, followed by centrifugation (10,000 × g, 15 min) to separate the supernatant and solids, followed by stirring for 24 hours, followed by centrifugation ( 10,000 × g, 15 min) to separate the supernatant and the solids, and from the third time, stirring and centrifugation was repeated for 1 hour until the supernatant became colorless. The supernatant was concentrated with a decompression concentrator (BUCHI) and then purified by 25 mL of distilled water and analyzed with an amino acid analyzer (L-8800, Hitachi, Tokyo, Japan).

Amino acidAmino acid TetraselmisTetraselmis suecicasuecica Chlorella vulgarisChlorella vulgaris FreeFree CompositionalCompositional FreeFree CompositionalCompositional AspAsp 8.8 8.8 4.1 4.1 6.1 6.1 8.1 8.1 ThrThr 5.6 5.6 6.8 6.8 4.4 4.4 5.1 5.1 SerSer 5.9 5.9 7.1 7.1 1.6 1.6 4.1 4.1 GluGlu 12.6 12.6 5.2 5.2 14.9 14.9 7.0 7.0 GlyGly 4.0 4.0 4.3 4.3 3.2 3.2 6.6 6.6 AlaAla 8.9 8.9 5.8 5.8 15.3 15.3 10.3 10.3 ValVal 3.8 3.8 8.5 8.5 6.0 6.0 6.46.4 CysCys 5.1 5.1 1.4 1.4 0.3 0.3 9.1 9.1 MetMet 2.6 2.6 1.6 1.6 3.8 3.8 1.6 1.6 IleIle 6.2 6.2 6.1 6.1 3.4 3.4 4.4 4.4 LeuLeu 7.4 7.4 8.9 8.9 13.8 13.8 9.4 9.4 TyrTyr 2.4 2.4 7.1 7.1 4.2 4.2 3.5 3.5 PhePhe 3.9 3.9 7.8 7.8 7.4 7.4 4.2 4.2 TrpTrp 5.8 5.8 9.4 9.4 3.4 3.4 -- HylysHylys 0.1 0.1 -- 0.2 0.2 -- LysLys 3.0 3.0 6.5 6.5 2.0 2.0 6.2 6.2 HisHis 0.5 0.5 0.8 0.8 1.3 1.3 1.8 1.8 ArgArg 6.2 6.2 5.0 5.0 3.8 3.8 6.3 6.3 ProPro 7.0 7.0 3.7 3.7 4.9 4.9 5.9 5.9 HyproHypro 0.2 0.2 -- -- -- Total (%)Total (%) 100100 100 100 100 100 100 100

구성 아미노산은 Chlorella vulgaris 가수분해물이 Ala (10.3%), Leu (9.4%), Cys (9.1%) 및 Asp (8.1%) 순으로 함량이 많았으며, Tetraselmis suecica 가수분해물이 Phe (9.4%), Ile (8.9%), Val(8.5%) 및 Tyr (7.8%) 순으로 함량이 많았다.The constituent amino acid is Chlorella vulgaris Hydrolyzate was found in the order of Ala (10.3%), Leu (9.4%), Cys (9.1%), and Asp (8.1%), followed by Tetraselmis. suecica Hydrolyzate was the highest in Phe (9.4%), Ile (8.9%), Val (8.5%) and Tyr (7.8%).

한편 유리 아미노산 중 단맛을 내는 트레오닌, 프롤린, 세린, 글리신, 알라닌, 리신 의 함량은 Chlorella vulgaris 가수분해물이 28.2%, Tetraselmis suecica 가수분해물이 30.4% 였으며, 감칠맛 및 짠맛을 내는 아스파르트산, 글루탐산, 시스테인 의 함량은 Chlrella vulgaris 가수분해물이 21.3%, Tetraselmis suecica 가수분해물이 26.6%로써, 전체 아미노산의 49.5% 및 57%가 맛에 관련하여 양호하였으며, 쓴맛과 메티오닌, 이소류신, 류신 등의 아미노산의 함량은 Chlorella vulgaris가 20.9%, Tetraselmis suecica가 16.1%였다. 일반적으로 단백질의 효소적 가수분해과정에서 발생되는 쓴맛은 소수성 아미노산의 함량과 깊은 관계가 있는데, 제조된 미세조류 단백질 가수분해물의 소수성 아미노산의 함량은 전체 아미노산의 20% 내외로 쓴맛을 내는데 큰 영향을 미치지 않았다.On the other hand, the contents of sweet amino acid threonine, proline, serine, glycine, alanine and lysine are Chlorella. vulgaris hydrolyzate 28.2%, Tetraselmis The suecica hydrolyzate was 30.4%, and the content of aspartic acid, glutamic acid and cysteine, which had a rich and salty taste, was Chlrella. vulgaris 21.3% hydrolyzate, Tetraselmis The suecica hydrolyzate was 26.6%, and 49.5% and 57% of the total amino acids were good in terms of taste, and the bitterness and the contents of amino acids such as methionine, isoleucine and leucine were Chlorella. vulgaris 20.9%, Tetraselmis suecica was 16.1%. In general, the bitter taste produced during the enzymatic hydrolysis of proteins is closely related to the content of hydrophobic amino acids. The hydrophobic amino acid content of the prepared microalgal protein hydrolyzate has a great influence on the bitter taste of about 20% of all amino acids. It was not crazy.

따라서 본 연구결과에 따라 미세조류 단백질 가수분해물은 조미료의 맛 원료로써 사용하기에 적합하다고 판단된다.
Therefore, according to the results of this study, microalgal protein hydrolyzate is considered to be suitable for use as a flavoring ingredient of seasonings.

실시예Example 2-2. 미세조류 단백질  2-2. Microalgal Proteins 가수분해물의Hydrolyzate 핵산관련물질 분석 Nucleic Acid Related Substance Analysis

상기 실시예 1-3에서 제조된 미세조류 단백질 가수분해물의 핵산관련물질을 분석하였다.Nucleic acid-related material of the microalgal protein hydrolyzate prepared in Example 1-3 was analyzed.

핵산관련물질 중 IMP는 열에 비교적 안정하고 뉴클레오티드 중 맛 성분으로 알려져 있으며, 특히 아미노산 중 글루타민산과 공존하면 상승작용에 의하여 강한 감칠맛을 나타내는 것으로 밝혀져 있다. 그리고 AMP도 그 자체는 거의 감칠맛을 나타내지 않지만 글루타민산과 공존할 때 상승효과를 나타낸다. Among the nucleic acid-related substances, IMP is relatively stable to heat and is known as a taste component in nucleotides, and especially when coexisted with glutamic acid among amino acids, it has been shown to exhibit a strong umami due to synergy. AMP also shows little synergy in itself, but synergistic effect when coexisted with glutamic acid.

보다 상세하게는, 미세조류 단백질 가수분해물 10 g에 10% 과염소산 25 mL을 가하여 마쇄한 후 5000 rpm에서 10분간 원심 분리하여 상층액을 분리하고, 침전물은 같은 방법으로 3회 처리하여 상층액을 합하였다. 합한 상층액은 5 N KOH 용액으로 pH 6.5로 조정하고 10,000 rpm에서 10분간 원심 분리한 뒤, 과염소산을 이용하여 100 mL로 정용하고 0.45 μm syringe filter(ADVATEC, Tokyo, Japan)로 여과하였다. 이 여과액을 high-performance liquid chromatography(HPLC, Agilent 1100 HPLC Chemstation, Agilent, Santa Clara, CA. USA)로 분석하였으며 분석조건은 다음과 같다. 컬럼은 bondapak C18(ø 39 × 300 mm)을 사용하였으며, 이동상은 1% triethylamine/phosphate(pH, 6.5)를 사용하였고 flow rate는 0.8 mL/min, O.D. 254 nm에서 검출하였고, 0.001-1.0 M 농도의 핵산관련물질(ATP, ADP, AMP, IMP, inosine, hypoxanthinee)로 표준 검량선을 작성하고 이를 활용하여 각 시료용액의 peak 면적을 환산하여 시료 중의 핵산관련물질량을 산출하였으며 결과는 표 4와 같다.
More specifically, 10 ml of 10% perchloric acid was added to 10 g of the microalgal hydrolyzate of the microalgae, followed by crushing. The supernatant was separated by centrifugation at 5000 rpm for 10 minutes, and the precipitate was treated three times in the same manner. It was. The combined supernatant was adjusted to pH 6.5 with 5 N KOH solution, centrifuged at 10,000 rpm for 10 minutes, then purified by 100 mL with perchloric acid and filtered with a 0.45 μm syringe filter (ADVATEC, Tokyo, Japan). The filtrate was analyzed by high-performance liquid chromatography (HPLC, Agilent 1100 HPLC Chemstation, Agilent, Santa Clara, CA. USA). The column used bondapak C18 (ø 39 × 300 mm), mobile phase used 1% triethylamine / phosphate (pH, 6.5), flow rate 0.8 mL / min, OD 254 nm, 0.001-1.0 M concentration. Standard calibration curves were prepared by using nucleic acid-related substances (ATP, ADP, AMP, IMP, inosine, hypoxanthinee), and the peak area of each sample solution was converted to calculate the amount of nucleic acid-related substances in the sample.

Figure 112011037909611-pat00001
Figure 112011037909611-pat00001

미세조류 단백질 가수분해물에서 핵산관련물질은 0.34-0.57의 범위로 정미성분인 IMP가 가장 높았으며, Chlorella vulgaris는 AMP가, Tetraselmis suecica는 hypoxanthine이 다음으로 높았다. 따라서, 본 연구에서 제조한 미세조류 단백질 가수분해물은 쓴맛을 내는 hypoxanthine보다 IMP의 함량이 높아 식품 정미 소재로써 사용하기에 적합하다고 판단된다.
The nucleic acid-related substances from microalgae protein hydrolyzate of IMP was the highest net ingredient in the range of 0.34-0.57, Chlorella vulgaris has AMP, Tetraselmis Suecica was next highest in hypoxanthine. Therefore, the microalgae hydrolyzate prepared in this study has higher IMP content than hypoxanthine, which has a bitter taste.

<< 실시예Example 3> 미세조류 천연조미료의 제조 3> Preparation of Microalgae Natural Seasoning

상기 1-3에서 제조한 미세조류 단백질 가수분해물에 각종 부재료를 첨가하여 미세조류 천연조미료를 제조하였다. The microalgae natural seasoning was prepared by adding various subsidiary materials to the microalgal protein hydrolyzate prepared in the above 1-3.

보다 상세하게는 미세조류 단백질 가수분해물 15 g에 부재료로는 천일염 10 g, 핵산 2.5 g, 포도당 5 g, 고춧가루 2.5 g, 양파분말 0.5 g, 생강분말 0.25 g, 마늘분말 1 g, 된장분말 1.5 g을 혼합하여 천연조미료를 제조하였다.
More specifically, 15 g of microalgae protein hydrolyzate is a natural salt of 10 g, nucleic acid 2.5 g, glucose 5 g, red pepper powder 2.5 g, onion powder 0.5 g, ginger powder 0.25 g, garlic powder 1 g, miso powder 1.5 g To prepare a natural seasoning by mixing.

<< 실시예Example 4> 미세조류 천연조미료의 관능검사 4> Sensory Evaluation of Natural Seasonings of Microalgae

상기 실시예 3에서 제조한 미세조류 천연조미료의 관능검사를 실시하였다.The sensory evaluation of the natural microalgae prepared in Example 3 was carried out.

보다 상세하게, 관능검사는 물 70 mL에 미세조류 천연조미료를 30 g 첨가하여 5분 간 끓는 물에 조리한 뒤 사용하였으며 식품학을 전공하는 대학원생 및 학부생 중 20대 남자 6인, 여자 4인 총 10인의 관능검사요원을 구성하여 맛, 냄새, 색 및 전체적 기호도의 4가지 항목에 한하여 5단계 평점법(5점: 매우 좋다, 4점: 좋다, 3점: 보통이다, 2점: 나쁘다, 1점: 매우 나쁘다)으로 측정하였다. 대조구로는 시판 소고기조미료, 멸치조미료, 해물복합조미료를 같은 조건으로 조리하여 비교평가 하였으며, 모든 실험은 3회 반복하여 실시하였다. More specifically, the sensory test was carried out by adding 30 g of microalgae seasoning to 70 mL of water and cooking it in boiling water for 5 minutes. A total of 10 males and four females in their 20s among graduate students and undergraduate students majoring in food science A five-step scoring method (five points: very good, four points: good, three points: moderate, two points: bad, one point) for four items: taste, smell, color, and overall preference : Very bad). As a control, commercial beef seasonings, anchovy seasonings, and seafood complexing seasonings were cooked under the same conditions and evaluated. All experiments were repeated three times.

관능검사 결과에 대한 통계적인 유의성 검정은 Statistical Packages for Social Science(SPSS, Chicago, IL, USA)를 이용하여 Duncan's multiple range test로 유의수준 5% 이내(p<0.05)로 각 평균값에 대한 유의적 차이를 조사하였다. 데이터는 각 실험치의 평균값과 표준편차로 나타내었으며 미세조류 천연조미료에 대한 관능검사 결과는 표 5와 같다.
The statistical significance test for the sensory test result was Duncan's multiple range test using Statistical Packages for Social Science (SPSS, Chicago, IL, USA) within 5% of the significance level (p <0.05). Was investigated. The data are shown as the mean value and the standard deviation of each experimental value, and the sensory test results for the microalgae natural seasonings are shown in Table 5.

Figure 112011037909611-pat00002
Figure 112011037909611-pat00002

미세조류 천연조미료와 시판되는 천연조미료를 맛, 색, 향 및 전체적 기호도를 척도로 비교한 결과 색 면에서는 조금 떨어졌지만, 맛과 향은 다른 천연조미료와 비교하였을 때 비슷하거나 높은 결과를 보였고, 전체적으로 유의적인 차이(p<0.05)가 없어 미세조류 단백질 가수분해물은 천연 조미료 등의 식품 정미소재로 이용하는 것이 가능하다고 판단된다.
Compared to the microalgae seasonings and commercial seasonings on the scale of taste, color, aroma, and overall preference, the results were slightly lower in color, but the taste and aroma were similar or higher when compared to other natural seasonings. As there is no significant difference (p <0.05), microalgal protein hydrolyzate can be used as food seasoning material such as natural seasoning.

Claims (9)

삭제delete 삭제delete 삭제delete a) 클로렐라 불가리스 또는 테트라셀미스 수에시카에 초음파 발생기에서 90-100kHz 주파수로 4-5 시간 동안, 26-28℃에서 초음파 처리를 하여 단백질을 용출시키는 단계; 및
b) 상기 단백질에 단백질 분해효소를 이용하여 단백질 가수분해물을 제조하는 단계;
를 포함하는 천연조미료의 제조방법.
a) eluting the protein by sonication at 26-28 ° C. for 4-5 hours at a frequency of 90-100 kHz in a Chlorella vulgaris or Tetraselmis suecica sonicator; And
b) preparing a protein hydrolyzate using protease on the protein;
Natural seasoning manufacturing method comprising a.
삭제delete 삭제delete 삭제delete 제4항에 있어서, 상기 b) 단계의 단백질 분해효소는 알칼라 아제(alcalase) 인 것을 특징으로 하는 천연조미료의 제조방법.The method of claim 4, wherein the proteolytic enzyme of step b) is an alkalase. 제4항에 있어서, 상기 b) 단계의 가수분해물은 2~3%의 단백질 분해효소, pH 6-7, 50-60분간 가수분해하여 생성되는 것을 특징으로 하는 천연조미료의 제조방법.

The method of claim 4, wherein the hydrolyzate of step b) is produced by hydrolysis of 2-3% protease, pH 6-7, 50-60 minutes.

KR1020110048092A 2011-05-20 2011-05-20 Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof KR101178860B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110048092A KR101178860B1 (en) 2011-05-20 2011-05-20 Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110048092A KR101178860B1 (en) 2011-05-20 2011-05-20 Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101178860B1 true KR101178860B1 (en) 2012-08-31

Family

ID=46888148

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110048092A KR101178860B1 (en) 2011-05-20 2011-05-20 Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101178860B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056885A1 (en) * 2016-10-05 2018-04-06 Pierre Calleja FOOD OR BEVERAGE BASED ON A MARINE MICROALGUE
KR101904096B1 (en) 2017-01-26 2018-11-21 인하대학교 산학협력단 Seasoning composition with enhancing taste from lipid extracted microalgae
KR102208028B1 (en) * 2019-11-20 2021-01-27 부경대학교 산학협력단 Salt inducible promoter from Chlorella vulgaris and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Food Science Biotechnology 19(6):1519-1528 (2010)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056885A1 (en) * 2016-10-05 2018-04-06 Pierre Calleja FOOD OR BEVERAGE BASED ON A MARINE MICROALGUE
WO2018065531A1 (en) * 2016-10-05 2018-04-12 Odontella Food product or beverage containing a marine microalga
KR101904096B1 (en) 2017-01-26 2018-11-21 인하대학교 산학협력단 Seasoning composition with enhancing taste from lipid extracted microalgae
KR102208028B1 (en) * 2019-11-20 2021-01-27 부경대학교 산학협력단 Salt inducible promoter from Chlorella vulgaris and uses thereof
WO2021100980A1 (en) * 2019-11-20 2021-05-27 부경대학교 산학협력단 Chlorella vulgaris-derived salt-inducible promoter and use thereof

Similar Documents

Publication Publication Date Title
EP2253227B1 (en) Saltiness-strengthening agent and food or drink containing the same
EP2446752B1 (en) Composition for low-salt food or beverage
CN104366427B (en) Production process of functional sea-intestine seasoning particles
CN105053958A (en) Corn peptide salt
KR20090053350A (en) Msg-substitute seasonings using salt-fermented anchovy sauce concentrates and a preparation method thereof
CN105166841A (en) Chicken flavor salt and preparation method thereof
KR101178860B1 (en) Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof
JP2012187068A (en) γ-AMINO BUTYRIC ACID-CONTAINING FOOD, AND METHOD FOR PRODUCING THE SAME
Guo et al. Comprehensive Insights into Microalgae Proteins: Nutritional Profiles and Innovative Applications as Sustainable Alternative Proteins in Health and Food Sciences
Yin et al. Comprehensive review: by-products from surimi production and better utilization
JP4763534B2 (en) Nori fermented food and method for producing the same
Sarabandi et al. Spray-drying stabilization of oleaster-seed bioactive peptides within biopolymers: Pan-bread formulation and bitterness-masking
KR101226097B1 (en) Sauce for cooking and method for producing the same
Wu et al. Effects of addition of Clitocybe squamulose on nutrients and formation of micro-nanoparticles in Chinese three-yellow chicken soup
CN106901311A (en) Flavor peptide and application
JP2002101816A (en) Method for producing kimchi
CN104432285A (en) Shrimp-flavored seasoning soup block and preparation method thereof
Xu et al. Microalgal proteins: Unveiling sustainable alternatives to address the protein challenge
KR101452275B1 (en) Universal seasoning and method for manufacturing thereof
KR20120079977A (en) Anticancer composition comprising enzymatic hydrolysates of ruditapes philippinarum
KR101285152B1 (en) Functional Anchovy Seasoning And Manufacturing Method Thereof
Lu Proteins extracted from brown seaweed and their potential uses as foods and nutraceuticals
Wu Emerging sources and applications of alternative proteins
Tiwari et al. Future Proteins: Sources, Processing, Applications and the Bioeconomy
KR101771126B1 (en) Sauce containing allium hookeri and process for the preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150803

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160810

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190417

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 8