KR101126203B1 - 연료 전지 스택 및 이를 구비한 연료 전지 시스템 - Google Patents
연료 전지 스택 및 이를 구비한 연료 전지 시스템 Download PDFInfo
- Publication number
- KR101126203B1 KR101126203B1 KR1020090125059A KR20090125059A KR101126203B1 KR 101126203 B1 KR101126203 B1 KR 101126203B1 KR 1020090125059 A KR1020090125059 A KR 1020090125059A KR 20090125059 A KR20090125059 A KR 20090125059A KR 101126203 B1 KR101126203 B1 KR 101126203B1
- Authority
- KR
- South Korea
- Prior art keywords
- cooling channels
- fuel cell
- channel
- cooling
- bipolar plate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0263—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0265—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 바이폴라 플레이트의 휨 강도를 높여 휘어짐 불량을 방지하기 위한 연료 전지 스택 및 이를 구비한 연료 전지 시스템에 관한 것이다. 본 발명의 일 실시예에 따른 연료 전지 스택은, ⅰ) 연료와 산화제의 전기 화학적 반응을 이용해 전기 에너지를 생성하는 복수의 막-전극 접합체, 및 ⅱ) 막-전극 접합체들 사이에서 막-전극 접합체들에 밀착 배치되며, 일면에 연료 채널을 형성하고, 반대쪽 일면에 산화제 채널을 형성하는 복수의 바이폴라 플레이트를 포함한다. 바이폴라 플레이트 각각은 한쪽 측면으로부터 반대쪽 측면을 향하여 곡선 모양으로 휘어지면서 바이폴라 플레이트를 관통하는 복수의 냉각 채널을 형성한다.
연료전지, 스택, 막전극접합체, 바이폴라, 세퍼레이터, 냉각채널, 연료채널, 산화제채널
Description
본 발명은 연료 전지 시스템에 관한 것으로서, 보다 상세하게는 연료 전지 스택에 구비되는 바이폴라 플레이트의 형상에 관한 것이다.
연료 전지 시스템은 연료(탄화수소계 연료, 수소, 또는 수소가 풍부한 개질 가스)와 산화제(산소 또는 공기)를 이용하여 전기화학적으로 전력을 생산하는 장치이다. 연료 전지 스택은 복수의 막-전극 접합체와 막-전극 접합체들 사이에 위치하는 바이폴라 플레이트를 포함하며, 막-전극 접합체에서 연료와 산화제의 전기화학 반응에 의해 전기에너지와 물이 발생한다.
바이폴라 플레이트의 일면에는 연료 채널이 형성되어 연료 채널과 마주하는 막-전극 접합체의 애노드 전극에 연료를 균일하게 공급하고, 반대쪽 일면에는 산화제 채널이 형성되어 산화제 채널과 마주하는 막-전극 접합체의 캐소드 전극에 산화제를 균일하게 공급한다. 그리고 공랭식 연료 전지 시스템의 경우, 바이폴라 플레이트에는 이를 관통하는 복수의 냉각 채널이 형성된다.
바이폴라 플레이트는 흑연 또는 금속으로 제조되며, 2개의 플레이트로 개별 제작 후 일체로 접합된다. 즉, 바이폴라 플레이트는 흑연 또는 금속을 기계 가공하여 일면에 연료 채널과 반대쪽 일면에 냉각 채널의 반쪽 형상을 가지는 제1 서브 플레이트와, 일면에 산화제 채널과 반대쪽 일면에 냉각 채널의 반쪽 형상을 가지는 제2 서브 플레이트를 개별 제작 후 제1, 2 서브 플레이트를 일체로 접합시키는 방법으로 제조된다. 제1, 2 서브 플레이트의 대량 생산을 위해 주입 몰딩(injection molding)법 또는 압축 몰딩(compress molding)법이 적용되고 있다.
그런데 제1, 2 서브 플레이트는 단축 방향을 따라 직선 모양으로 길게 이어진 복수의 냉각 채널을 형성하고 있으며, 냉각 채널이 형성된 부위가 극히 얇은 두께를 가지기 때문에, 복수의 냉각 채널이 서로 이웃하는 장축 방향을 따라 제1, 2 서브 플레이트의 휨 강도가 저하된다. 이로써 제1, 2 서브 플레이트는 몰딩 후 장축 방향을 따라 평평한 상태를 유지하지 못하고 휘어지는 불량이 발생하게 된다.
본 발명은 제1, 2 서브 플레이트를 개별 제작 후 일체로 접합시켜 바이폴라 플레이트를 제조하는 과정에서 제1, 2 서브 플레이트의 휘어짐 현상과 휨 강도 저하를 방지할 수 있도록 바이폴라 플레이트를 개선한 연료 전지 스택 및 이를 구비한 연료 전지 시스템을 제공하고자 한다.
본 발명의 일 실시예에 따른 연료 전지 스택은, ⅰ) 연료와 산화제의 전기 화학적 반응을 이용해 전기 에너지를 생성하는 복수의 막-전극 접합체, 및 ⅱ) 막- 전극 접합체들 사이에서 막-전극 접합체들에 밀착 배치되며, 일면에 연료 채널을 형성하고, 반대쪽 일면에 산화제 채널을 형성하는 복수의 바이폴라 플레이트를 포함한다. 바이폴라 플레이트 각각은 한쪽 측면으로부터 반대쪽 측면을 향하여 곡선 모양으로 휘어지면서 바이폴라 플레이트를 관통하는 복수의 냉각 채널을 형성한다.
바이폴라 플레이트는 장방형으로 형성되고, 복수의 냉각 채널은 바이폴라 플레이트의 두 장변측 측면을 잇도록 형성될 수 있다.
복수의 냉각 채널은 바이폴라 플레이트의 중앙을 향해 오목한 형상으로 이루어질 수 있다. 복수의 냉각 채널은 모두 같은 폭과 같은 곡률로 형성될 수 있다.
다른 한편으로, 복수의 냉각 채널 중 바이폴라 플레이트의 중앙부에 위치하는 냉각 채널의 폭은 바이폴라 플레이트의 주변부에 위치하는 냉각 채널의 폭보다 클 수 있다. 바이폴라 플레이트의 가장 안쪽에 위치하는 2개의 냉각 채널의 폭이 나머지 냉각 채널들의 폭보다 클 수 있다.
다른 한편으로, 복수의 냉각 채널은 서로 반대측에 위치하는 2개의 곡률 중심을 갖도록 형성될 수 있다.
냉각 채널들의 곡률은, 바이폴라 플레이트를 어느 하나의 장변측 측면에서 관찰할 때 냉각 채널의 반대측 단부가 보이지 않는 범위로 설정될 수 있다.
바이폴라 플레이트는, 일면에 연료 채널을 형성하고 반대쪽 일면에 하프 냉각 채널을 형성하는 제1 서브 플레이트와, 일면에 산화제 채널을 형성하고 반대쪽 일면에 하프 냉각 채널을 형성하는 제2 서브 플레이트의 접합 구조로 이루어질 수 있다.
제1 서브 플레이트의 하프 냉각 채널과 제2 서브 플레이트의 하프 냉각 채널이 냉각 채널을 구성하며, 2개의 하프 냉각 채널은 같은 폭과 같은 깊이를 가질 수 있다.
본 발명의 일 실시예에 따른 연료 전지 시스템은, ⅰ) 복수의 막-전극 접합체들 및 막-전극 접합체들 사이에 위치하며 복수의 냉각 채널을 형성하는 복수의 바이폴라 플레이트를 구비하는 연료 전지 스택, ⅱ) 연료 전지 스택에 연결되는 연료 공급부, ⅲ) 연료 전지 스택에 연결되는 산화제 공급부, 및 ⅳ) 복수의 냉각 채널에 인접하게 설치되어 복수의 냉각 채널로 냉각 유체를 유입시키는 송풍부를 포함한다. 복수의 냉각 채널은 바이폴라 플레이트의 한쪽 측면으로부터 반대쪽 측면을 향하여 곡선 모양으로 휘어지면서 바이폴라 플레이트를 관통한다.
바이폴라 플레이트는 장방형으로 형성되고, 복수의 냉각 채널은 바이폴라 플레이트의 두 장변측 측면을 잇도록 형성되며, 송풍부는 바이폴라 플레이트의 어느 한 장변측 측면에 인접하게 설치될 수 있다.
복수의 냉각 채널은 바이폴라 플레이트의 중앙을 향해 오목한 형상으로 이루어질 수 있다. 다른 한편으로, 복수의 냉각 채널은 서로 반대측에 위치하는 2개의 곡률 중심을 갖도록 형성될 수 있다. 냉각 채널들의 곡률은, 바이폴라 플레이트를 어느 하나의 장변측 측면에서 관찰할 때 냉각 채널의 반대측 단부가 보이지 않는 범위로 설정될 수 있다.
본 발명의 실시예들에 따르면, 복수의 냉각 채널이 곡선 모양으로 휘어져 있 으므로 바이폴라 플레이트의 장축 방향에 따른 휨 강도를 높여 바이폴라 플레이트의 휘어짐 불량을 방지할 수 있다. 또한, 복수의 냉각 채널이 특정 부위에 급격하게 꺾이지 않고 부드럽게 휘어져 있으므로 냉각 유체 흐름에 대한 저항 발생을 최소화하여 연료 전지 스택의 냉각 효율을 높일 수 있다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 연료 전지 시스템의 전체적인 구성을 개략적으로 나타낸 구성도이다.
도 1을 참고하면, 본 실시예의 연료 전지 시스템(100)은 액체 연료 또는 기체 연료와 산화제의 직접적인 전기 화학적 반응을 이용해 전기 에너지를 발생시키는 직접 산화형 연료 전지(direct oxidation fuel cell) 방식으로 이루어진다.
그러나 본 발명은 직접 산화형 연료 전지로 제한되지 않으며, 연료를 개질하여 수소 또는 수소가 풍부한 개질 가스를 발생시키고, 수소 또는 개질 가스와 산화제를 전기 화학적으로 반응시켜 전기 에너지를 생성하는 고분자 전해질형 연료 전지(polyer electrode membrane fuel cell) 방식으로 이루어질 수도 있다. 이 경우, 연료 전지 시스템은 수소 개질을 위한 개질기를 더 포함한다.
전술한 연료 전지 시스템(100)에서 연료는 메탄올, 에탄올, 액화천연가스, 액화석유가스, 가솔린, 및 부탄 가스와 같이 액상 또는 기상으로 존재하는 탄화수소계 연료를 의미한다. 그리고 연료 전지 시스템(100)은 산화제로서 별도의 저장 수단에 저장된 산소 가스를 사용하거나, 외부 공기를 사용할 수 있다.
본 실시예의 연료 전지 시스템(100)은, 연료와 산화제를 전기 화학적으로 반응시켜 전기 에너지를 발생하는 연료 전지 스택(110)과, 연료 전지 스택(110)으로 연료를 공급하는 연료 공급부(120)와, 연료 전지 스택(110)으로 산화제를 공급하는 산화제 공급부(130)와, 연료 전지 스택(110)의 내부로 냉각 유체를 유입시키는 송풍부(140)를 포함한다.
연료 공급부(120)는 액상 또는 기상의 연료를 저장하는 연료 탱크(121)와, 연료 탱크(121)와 연료 전지 스택(110)을 연결하는 연료 공급관(122)과, 연료 탱크(121)에 연결 설치되는 연료 펌프(123)를 포함한다. 연료 펌프(123)는 소정의 펌핑력으로 연료 탱크(121)에 저장된 연료를 배출시켜 연료 공급관(122)을 통해 연료 전지 스택(110)으로 연료를 공급한다.
산화제 공급부(130)는 연료 전지 스택(110)에 연결되는 산화제 공급관(131)과, 산화제 공급관(131)에 설치되는 산화제 펌프(132)를 포함한다. 산화제 펌프(132)는 소정의 펌핑력으로 외부 공기를 흡입하여 산화제 공급관(131)을 통해 연료 전지 스택(110)으로 산화제를 공급한다. 이때 산화제 공급관(131)에는 산화제의 공급량을 조절하는 제어 밸브(도시하지 않음)가 설치될 수 있다.
송풍부(140)는 연료 전지 스택(110)의 일측에 밀착 배치되며, 냉각 유체(예: 외부 공기)를 빨아들이는 송풍 팬(141)을 포함한다. 송풍부(140)는 다음에 설명하 는 연료 전지 스택(110) 중 바이폴라 플레이트(20)의 냉각 채널(40)과 이어지며, 송풍 팬(141)의 흡입력에 의해 외부 공기가 냉각 채널(40)로 유입된다. 본 실시예의 연료 전지 시스템(100)은 공기를 이용하여 연료 전지 스택(110)을 냉각시키는 공랭식 구조를 이룬다.
도 2는 도 1에 도시한 연료 전지 시스템 중 연료 전지 스택의 일부를 나타낸 분해 사시도이다.
도 2를 참고하면, 연료 전지 스택(110)은 서로간 거리를 두고 위치하는 복수의 막-전극 접합체(10)와, 막-전극 접합체들(10) 사이에서 막-전극 접합체들(10)에 밀착 배치되는 복수의 바이폴라 플레이트(20)를 포함한다. 하나의 막-전극 접합체(10)와 이의 양쪽에 배치되는 2개의 바이폴라 플레이트(20)가 전기 에너지를 생성하는 하나의 전기 생성 유닛(단위 셀)을 구성한다. 바이폴라 플레이트(20)는 '세퍼레이터'로도 불린다.
연료 전지 스택(110)의 최외곽에는 연료 전지 스택(110)을 지지하는 엔드 플레이트(30)가 위치한다. 연료 전지 스택(110)은 2개의 엔드 플레이트(30)를 관통하는 볼트와 같은 체결 수단(도시하지 않음)에 의해 견고하게 조립된다.
도 3은 도 2에 도시한 연료 전지 스택 중 막-전극 접합체의 단면도이다.
도 2와 도 3을 참고하면, 막-전극 접합체(10)는 전해질막(11)과, 전해질막(11)의 일측에 위치하는 애노드 전극(12)과, 전해질막(11)의 타측에 위치하는 캐소드 전극(13)을 포함한다.
애노드 전극(12)은 바이폴라 플레이트(20)를 통해 연료를 공급받는 부분으로 서, 산화 반응에 의해 연료 중의 수소 가스를 전자와 수소 이온으로 변환시키는 촉매층(151)과, 촉매층(151)의 외면에 위치하며 전자와 수소 이온의 이동을 원활하게 하는 가스 확산층(161)으로 구성된다.
캐소드 전극(13)은 바이폴라 플레이트(20)를 통해 산화제를 공급받는 부분으로서, 환원 반응에 의해 산화제 중의 산소를 전자와 산소 이온으로 변환시키는 촉매층(152)과, 촉매층(152)의 외면에 위치하며 전자와 산소 이온의 이동을 원활하게 하는 가스 확산층(162)으로 구성된다.
그리고 전해질막(11)은 대략 50㎛ 내지 200㎛의 두께로 형성되는 고체 폴리머 전해질로서, 애노드 전극(12)의 촉매층(151)에서 생성된 수소 이온을 캐소드 전극(13)의 촉매층(152)으로 이동시키는 이온 교환 기능을 가진다.
도 4는 도 2에 도시한 연료 전지 스택 중 2개의 바이폴라 플레이트를 나타낸 사시도이다.
도 2와 도 4를 참고하면, 바이폴라 플레이트(20)는 일측에 위치하는 막-전극 접합체(10)의 애노드 전극(12)과 타측에 위치하는 막-전극 접합체(10)의 캐소드 전극(13)을 직렬로 연결하는 전도체로 기능한다.
그리고 바이폴라 플레이트(20)는 애노드 전극(12)과 마주하는 일면에 연료 공급을 위한 연료 채널(21)을 형성하고, 캐소드 전극(13)과 마주하는 일면에 산화제 공급을 위한 산화제 채널(22)을 형성한다. 연료 채널(21)과 산화제 채널(22)은 지그재그 형태로 이어진 오목한 홈으로 이루어질 수 있다.
연료 공급을 위해 바이폴라 플레이트(20)의 코너측 가장자리에는 연료 채 널(21)과 연결되는 연료 입구 매니폴드(23) 및 연료 출구 매니폴드(24)가 형성된다. 또한 산화제 공급을 위해 바이폴라 플레이트(20)의 다른 코너측 가장자리에는 산화제 채널(22)과 연결되는 산화제 입구 매니폴드(25) 및 산화제 출구 매니폴드(26)가 형성된다.
전술한 구성의 연료 전지 스택(110)은 전기 에너지를 생성하는 과정에서 부수적으로 열이 발생하므로 이 열을 저감시켜야 한다. 이를 위해 바이폴라 플레이트(20)에는 연료 채널(21)과 산화제 채널(22) 사이에 일 방향을 따라 바이폴라 플레이트(20)의 내부를 관통하는 복수의 냉각 채널(40)이 형성된다.
냉각 채널(40)의 일단은 송풍부(140)(도 1 참조)와 연결되며, 송풍 팬(141)(도 1 참조)의 흡입력에 의해 냉각 채널(40)로 외부 공기가 유입된다. 외부 공기와 연료 전지 스택(110)의 열교환에 의해 연료 전지 스택(110)의 과열을 방지할 수 있다. 그리고 연료 전지 스택(110)의 내부에서 열교환된 따뜻한 공기는 송풍 팬(141)을 거쳐 외부로 방출된다.
도 5는 도 4에 도시한 바이폴라 플레이트의 분해 사시도이다.
도 4와 도 5를 참고하면, 바이폴라 플레이트(20)는 제1 서브 플레이트(51)와 제2 서브 플레이트(52)로 개별 제조 후 일체로 접합되어 완성될 수 있다. 제1, 2 서브 플레이트(51, 52)는 한 쌍의 장변과 한 쌍의 단변을 가지는 장방형으로 이루어지며, 흑연 또는 금속을 주입 몰딩법 또는 압축 몰딩법으로 기계 가공하는 방식으로 제조된다.
제1 서브 플레이트(51)는 제2 서브 플레이트(52)를 향한 일면에 복수의 하프 냉각 채널(41)을 형성하고, 제2 서브 플레이트(52) 역시 제1 서브 플레이트(51)를 향한 일면에 복수의 하프 냉각 채널(42)을 형성한다. 2개의 하프 냉각 채널(41, 42)은 같은 폭과 같은 깊이를 가지며, 2개의 하프 냉각 채널(41, 42)이 조합되어 냉각 채널(40)을 구성한다.
하프 냉각 채널(41, 42)은 제1, 2 서브 플레이트(51, 52)의 두 장변측 측면을 잇도록 형성되며, 직선 모양으로 뻗는 대신 곡선 모양으로 휘어진다. 곡선 모양으로 휘어진 냉각 채널(40)은 냉각 유체의 흐름에 큰 저항을 유발하지 않으면서 제1, 2 서브 플레이트(51, 52)의 장축 방향에 따른 휨 강도를 향상시키는 기능을 한다.
제1 실시예의 연료 전지 스택(110)에서, 복수의 하프 냉각 채널(41, 42)은 제1, 2 서브 플레이트(51, 52)의 중앙을 향해 오목한 형상으로 이루어진다. 즉, 장축 방향을 따라 제1, 2 서브 플레이트(51, 52)를 2개의 영역으로 나눌 때, 제1 영역(좌측 영역)에 위치하는 복수의 하프 냉각 채널(41, 42)은 제2 영역(우측 영역)을 향해 오목한 형상으로 이루어지고, 제2 영역(우측 영역)에 위치하는 복수의 하프 냉각 채널(41, 42)은 제1 영역(좌측 영역)을 향해 오목한 형상으로 이루어진다.
복수의 냉각 채널(40)은 모두 같은 폭과 같은 곡률로 형성되어 냉각 유체가 통과하는 유로의 길이와 유속에 대한 저항을 같게 할 수 있다.
냉각 채널(40)의 곡률은, 바이폴라 플레이트(20)를 어느 하나의 장변측 측면에서 관찰할 때 냉각 채널(40)의 반대측 단부가 보이지 않는 범위로 설정될 수 있다. 냉각 채널(40)의 반대측 단부가 보인다는 것은 냉각 채널(40)을 거의 직선에 가까운 큰 곡률로 형성한 것이므로, 냉각 채널(40)의 곡선화에 따른 휨 강도 향상 효과를 기대할 수 없다.
이와 같이 복수의 냉각 채널(40)이 곡선 모양으로 휘어짐에 따라, 장축 방향에 따른 휨 강도를 향상시킬 수 있다. 즉, 복수의 냉각 채널이 단축 방향을 따라 직선 모양으로 곧게 뻗은 경우에는 단축 방향과 수직한 장축 방향을 따라 휨 강도가 현저하게 저하되지만, 본 실시예에서는 복수의 냉각 채널(40)이 특정 방향으로 뻗지 않고 휘어져 있으므로 특정 방향으로의 휨 강도 저하를 유발하지 않는다.
따라서 제1, 2 서브 플레이트(51, 52)는 몰딩 가공 이후 장축 방향을 따라 평평한 상태를 유지하므로 휘어짐 불량을 효과적으로 예방할 수 있다. 또한, 복수의 냉각 채널(40)이 특정 부위에 급격하게 꺾이지 않고 부드럽게 휘어지므로 냉각 유체 흐름에 대한 저항 발생을 최소화하여 연료 전지 스택(110)의 냉각 효율을 높일 수 있다.
도 6은 본 발명의 제2 실시예에 따른 연료 전지 스택 중 바이폴라 플레이트의 분해 사시도이다.
도 6을 참고하면, 제2 실시예의 바이폴라 플레이트(210)는 제1, 2 서브 플레이트(511, 521)의 중앙부에 위치하는 하프 냉각 채널(43)의 폭이 제1, 2 서브 플레이트(511, 521)의 주변부에 위치하는 다른 하프 냉각 채널(44)의 폭보다 크게 형성된 것을 제외하고 전술한 제1 실시예의 바이폴라 플레이트와 동일한 형상으로 이루어진다.
하프 냉각 채널(43, 44)의 오목한 형상에 의해 바이폴라 플레이트(210)의 중 앙에는 냉각 채널이 존재하지 않으므로 연료 전지 스택(110)의 중앙부에서 냉각 효율이 저하된다. 따라서 제1, 2 서브 플레이트(511, 521)의 가장 안쪽에 위치하는 2개의 하프 냉각 채널(43)의 폭을 나머지 하프 냉각 채널들(44)의 폭보다 크게 형성함으로써 보다 많은 양의 냉각 유체가 바이폴라 플레이트(210)의 중앙부에 흐르도록 하여 냉각 효율 저하를 보상할 수 있다.
도 7은 본 발명의 제3 실시예에 따른 연료 전지 스택 중 바이폴라 플레이트의 분해 사시도이다.
도 7을 참고하면, 제3 실시예의 바이폴라 플레이트(220)는 복수의 하프 냉각 채널(45)이 2개의 곡률 중심을 갖도록 형성된 것을 제외하고 전술한 제1 실시예의 바이폴라 플레이트와 동일한 형상으로 이루어진다. 이때, 2개의 곡률 중심은 서로 반대측에 위치한다.
즉, 단축 방향을 따라 제1, 2 서브 플레이트(512, 522)의 2개의 영역으로 나눌 때, 도면을 기준으로 제1 영역(상측 영역)에서 하프 냉각 채널(45)의 곡률 중심은 오른쪽에 위치하고, 제2 영역(하측 영역)에서 하프 냉각 채널(45)의 곡률 중심은 왼쪽에 위치한다. 물론 복수의 하프 냉각 채널(45)은 제1 영역에서 곡률 중심이 왼쪽에 위치하고, 제2 영역에서 곡률 중심이 오른쪽에 위치하도록 형성될 수 있다.
이와 같이 복수의 하프 냉각 채널(45)이 대략적인 에스(S)자 모양으로 형성됨에 따라, 바이폴라 플레이트(220) 전체에 냉각 채널을 고르게 형성할 수 있어 연료 전지 스택(110) 전체에 걸쳐 고른 냉각 효율을 발휘할 수 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
도 1은 본 발명의 일 실시예에 따른 연료 전지 시스템의 전체적인 구성을 개략적으로 나타낸 구성도이다.
도 2는 본 발명의 제1 실시예에 따른 연료 전지 시스템 중 연료 전지 스택의 일부를 나타낸 분해 사시도이다.
도 3은 도 2에 도시한 연료 전지 스택 중 막-전극 접합체의 단면도이다.
도 4는 도 2에 도시한 연료 전지 스택 중 2개의 바이폴라 플레이트를 나타낸 사시도이다.
도 5는 도 4에 도시한 바이폴라 플레이트의 분해 사시도이다.
도 6은 본 발명의 제2 실시예에 따른 연료 전지 스택 중 바이폴라 플레이트의 분해 사시도이다.
도 7은 본 발명의 제3 실시예에 따른 연료 전지 스택 중 바이폴라 플레이트의 분해 사시도이다.
- 도면의 주요 부분에 대한 부호의 설명-
100: 연료 전지 시스템 110: 연료 전지 스택
120: 연료 공급부 130: 산화제 공급부
140: 송풍부 10: 막-전극 접합체
20: 바이폴라 플레이트 21: 연료 채널
22: 산화제 채널 40: 냉각 채널
51: 제1 서브 플레이트 52: 제2 서브 플레이트
Claims (15)
- 연료와 산화제의 전기 화학적 반응을 이용해 전기 에너지를 생성하는 복수의 막-전극 접합체; 및상기 막-전극 접합체들 사이에서 상기 막-전극 접합체들에 밀착 배치되며, 일면에 연료 채널을 형성하고, 반대쪽 일면에 산화제 채널을 형성하는 복수의 바이폴라 플레이트를 포함하며,상기 바이폴라 플레이트 각각은 장방형으로 형성되고, 상기 바이폴라 플레이트를 단축 방향을 따라 관통하면서 곡선 모양으로 휘어진 복수의 냉각 채널을 형성하는 연료 전지 스택.
- 삭제
- 제1항에 있어서,상기 복수의 냉각 채널은 상기 바이폴라 플레이트의 중앙을 향해 오목한 형상으로 이루어지는 연료 전지 스택.
- 제3항에 있어서,상기 복수의 냉각 채널은 모두 같은 폭과 같은 곡률로 형성되는 연료 전지 스택.
- 제3항에 있어서,상기 복수의 냉각 채널 중 상기 바이폴라 플레이트의 중앙부에 위치하는 냉각 채널의 폭이 상기 바이폴라 플레이트의 주변부에 위치하는 냉각 채널의 폭보다 큰 연료 전지 스택.
- 제5항에 있어서,상기 복수의 냉각 채널 중 상기 바이폴라 플레이트의 가장 안쪽에 위치하는 2개의 냉각 채널의 폭이 나머지 냉각 채널들의 폭보다 큰 연료 전지 스택.
- 제1항에 있어서,상기 복수의 냉각 채널은 2개의 곡률 중심을 갖도록 형성되며, 상기 2개의 곡률 중심은 서로 반대측에 위치하는 연료 전지 스택.
- 제1항에 있어서,상기 냉각 채널들의 곡률은, 상기 바이폴라 플레이트를 어느 하나의 장변측 측면에서 관찰할 때 상기 냉각 채널의 반대측 단부가 보이지 않는 범위로 설정되는 연료 전지 스택.
- 제1항, 제3항 내지 제8항 중 어느 한 항에 있어서,상기 바이폴라 플레이트는, 일면에 상기 연료 채널을 형성하고 반대쪽 일면에 하프 냉각 채널을 형성하는 제1 서브 플레이트와, 일면에 상기 산화제 채널을 형성하고 반대쪽 일면에 하프 냉각 채널을 형성하는 제2 서브 플레이트의 접합 구조로 이루어지는 연료 전지 스택.
- 제9항에 있어서,상기 제1 서브 플레이트의 하프 냉각 채널과 상기 제2 서브 플레이트의 하프 냉각 채널이 상기 냉각 채널을 구성하며, 상기 2개의 하프 냉각 채널은 같은 폭과 같은 깊이를 가지는 연료 전지 스택.
- 복수의 막-전극 접합체들 및 상기 막-전극 접합체들 사이에 위치하며 복수의 냉각 채널을 형성하는 복수의 바이폴라 플레이트를 구비하는 연료 전지 스택;상기 연료 전지 스택에 연결되는 연료 공급부;상기 연료 전지 스택에 연결되는 산화제 공급부; 및상기 복수의 냉각 채널에 인접하게 설치되어 상기 복수의 냉각 채널로 냉각 유체를 유입시키는 송풍부를 포함하며,상기 바이폴라 플레이트 각각은 장방형으로 형성되고, 상기 복수의 냉각 채널은 상기 바이폴라 플레이트의 단축 방향을 따라 상기 바이폴라 플레이트를 관통하면서 곡선 모양으로 휘어져 형성된 연료 전지 시스템.
- 제11항에 있어서,상기 송풍부는 상기 바이폴라 플레이트의 어느 한 장변측 측면에 인접하게 설치되어 상기 냉각 채널과 연통하는 연료 전지 시스템.
- 제12항에 있어서,상기 복수의 냉각 채널은 상기 바이폴라 플레이트의 중앙을 향해 오목한 형상으로 이루어지는 연료 전지 시스템.
- 제12항에 있어서,상기 복수의 냉각 채널은 2개의 곡률 중심을 갖도록 형성되며, 상기 2개의 곡률 중심은 서로 반대측에 위치하는 연료 전지 시스템.
- 제13항 또는 제14항에 있어서,상기 냉각 채널들의 곡률은, 상기 바이폴라 플레이트를 어느 하나의 장변측 측면에서 관찰할 때 상기 냉각 채널의 반대측 단부가 보이지 않는 범위로 설정되는 연료 전지 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090125059A KR101126203B1 (ko) | 2009-12-15 | 2009-12-15 | 연료 전지 스택 및 이를 구비한 연료 전지 시스템 |
US12/926,730 US8945786B2 (en) | 2009-12-15 | 2010-12-07 | Fuel cell stack and fuel cell system including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090125059A KR101126203B1 (ko) | 2009-12-15 | 2009-12-15 | 연료 전지 스택 및 이를 구비한 연료 전지 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110068205A KR20110068205A (ko) | 2011-06-22 |
KR101126203B1 true KR101126203B1 (ko) | 2012-03-22 |
Family
ID=44143319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090125059A KR101126203B1 (ko) | 2009-12-15 | 2009-12-15 | 연료 전지 스택 및 이를 구비한 연료 전지 시스템 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8945786B2 (ko) |
KR (1) | KR101126203B1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020046431A2 (en) * | 2018-05-03 | 2020-03-05 | Lawrence Livermore National Security, Llc | Compact temperature control system and method for energy modules |
KR102025749B1 (ko) * | 2018-05-04 | 2019-09-26 | 에스퓨얼셀(주) | 연료전지용 다공체 및 이를 포함하는 연료전지 스택 |
FR3116660B1 (fr) * | 2020-11-26 | 2022-11-11 | Commissariat Energie Atomique | Plaque bipolaire pour réacteur électrochimique |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234438A (ja) * | 2006-03-02 | 2007-09-13 | Honda Motor Co Ltd | 燃料電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4324844A (en) * | 1980-04-28 | 1982-04-13 | Westinghouse Electric Corp. | Variable area fuel cell cooling |
US8153316B2 (en) * | 2002-11-15 | 2012-04-10 | 3M Innovative Properties Company | Unitized fuel cell assembly and cooling apparatus |
KR100637504B1 (ko) * | 2004-08-30 | 2006-10-20 | 삼성에스디아이 주식회사 | 연료 전지 시스템 및 그 스택 |
JP2006147466A (ja) | 2004-11-24 | 2006-06-08 | Honda Motor Co Ltd | 燃料電池及び燃料電池用セパレータ |
JP2007299661A (ja) | 2006-05-01 | 2007-11-15 | Toyota Motor Corp | 燃料電池用セパレータ製造技術 |
US8148035B2 (en) * | 2008-05-16 | 2012-04-03 | GM Global Technology Operations LLC | Bipolar plate coating architecture for fuel cells and methods of making and using the same |
-
2009
- 2009-12-15 KR KR1020090125059A patent/KR101126203B1/ko not_active IP Right Cessation
-
2010
- 2010-12-07 US US12/926,730 patent/US8945786B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234438A (ja) * | 2006-03-02 | 2007-09-13 | Honda Motor Co Ltd | 燃料電池 |
Also Published As
Publication number | Publication date |
---|---|
US8945786B2 (en) | 2015-02-03 |
KR20110068205A (ko) | 2011-06-22 |
US20110143247A1 (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7799482B2 (en) | Stack of generators and fuel cell system having the same | |
EP2211408B1 (en) | Fuel cell stack and fuel cell system using thereof | |
JP2009076294A (ja) | 燃料電池用セパレータ | |
KR101126203B1 (ko) | 연료 전지 스택 및 이를 구비한 연료 전지 시스템 | |
US7951508B2 (en) | Fuel cell | |
KR101155925B1 (ko) | 연료 전지 스택 | |
JP2014505332A (ja) | 燃料電池システムおよびスタック | |
US20060228617A1 (en) | Fuel cell stack | |
KR101118666B1 (ko) | 세퍼레이터 및 이를 이용한 연료 전지 스택 | |
KR100637490B1 (ko) | 연료 전지용 스택과 이를 갖는 연료 전지 시스템 | |
US7329472B2 (en) | Fuel cell system and stack used thereto | |
US7691516B2 (en) | Fuel cell system and stack used therein | |
KR101162666B1 (ko) | 연료 전지 | |
KR101294206B1 (ko) | 연료 전지 시스템 및 이의 연료 전지 스택 | |
KR101201814B1 (ko) | 연료 전지 스택 | |
US20220336826A1 (en) | Separator for fuel cell and fuel cell stack | |
KR20110135735A (ko) | 연료 전지 스택 | |
KR102495975B1 (ko) | 가스 분배 모듈 및 이를 구비하는 연료전지 시스템 | |
KR101433933B1 (ko) | 세퍼레이터 모듈 및 이를 포함한 연료 전지 스택 | |
KR100542202B1 (ko) | 연료 전지 시스템 및 이에 사용되는 스택 | |
KR100637506B1 (ko) | 연료 전지 시스템 및 스택 | |
US20050186465A1 (en) | Fuel cell system and stack used therein | |
KR20060059461A (ko) | 연료 전지 시스템 및 그 스택 | |
KR100529081B1 (ko) | 연료 전지 시스템 및 이에 사용되는 스택 | |
KR20200020519A (ko) | 연료전지 스택 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150211 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |