KR100992398B1 - Filament nonwoven fabric - Google Patents
Filament nonwoven fabric Download PDFInfo
- Publication number
- KR100992398B1 KR100992398B1 KR1020090099596A KR20090099596A KR100992398B1 KR 100992398 B1 KR100992398 B1 KR 100992398B1 KR 1020090099596 A KR1020090099596 A KR 1020090099596A KR 20090099596 A KR20090099596 A KR 20090099596A KR 100992398 B1 KR100992398 B1 KR 100992398B1
- Authority
- KR
- South Korea
- Prior art keywords
- resin
- biodegradable
- weight
- nonwoven fabric
- long fiber
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/14—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
- D04H3/153—Mixed yarns or filaments
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B18/00—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
- A62B18/02—Masks
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/22—Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
- D04H3/009—Condensation or reaction polymers
- D04H3/011—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/015—Natural yarns or filaments
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/12—Physical properties biodegradable
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/06—Packings, gaskets, seals
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/10—Packaging, e.g. bags
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
본 발명은 생분해성 나노복합수지를 활용한 생분해성 복합 장섬유 부직포에 관한 것으로, 특히 상용성 및 가교성이 취약하여 장섬유부직포 생산시 단사현상 및 융점의 차이(PLA융점: 155℃, PBS,PBSA,PBA융점: 90℃~110℃)로 박리되는 현상을 생분해성 나노복합 수지를 활용하여 극복한 가교성과 상용성이 우수한 생분해성 복합 장섬유 부직포 및 이의 제조방법과 제품에 관한 것이다. The present invention relates to a biodegradable composite long fiber nonwoven fabric using a biodegradable nanocomposite resin, in particular, the difference in single yarn phenomenon and melting point in the production of long fiber nonwoven fabric due to poor compatibility and crosslinkability (PLA melting point: 155 ℃, PBS, PBSA, PBA melting point: 90 ℃ ~ 110 ℃) to overcome the phenomenon of using a biodegradable nanocomposite resin to a biodegradable composite long-fiber nonwoven fabric having excellent crosslinkability and compatibility, and a method and a manufacturing method thereof.
일반적으로, 장섬유 부직포는 마스크, 꽃 포장지, 쇼핑백, 산업자재와 같이 대부분 일회용 상품에 많이 활용된다. In general, long-fiber nonwovens are mostly used in disposable products such as masks, flower wrappers, shopping bags, industrial materials.
장섬유부직포 수지는 대부분 비분해성인 PP나 PET로 구성되는데, 이는 폐기시 100년이 넘어야 분해되므로 환경문제를 야기할 뿐만 아니라 원유의 고갈시점이 다가옴에 따라 이를 대체할 수 있는 수지의 개발이 요구되고 있다.The long-fiber nonwoven resin is mostly composed of non-degradable PP or PET, which is decomposed over 100 years when disposed, which not only causes environmental problems, but also requires the development of a resin that can replace it as the oil is depleted. It is becoming.
현재 개발된 식물유래 생분해성 지방족 수지인 PLA(Poly Lactic Acid), PBS, PBSA, PBA는 이미 많이 알려져 있는 저탄소 녹색제품으로 각광받고 있으나, 온도 및 습기에 분해되는 단점으로 인해 생산시 열분해와 가수분해가 급격하게 발생되는 문제점이 있고, 또 상용성이 없어 지금까지 사용해오고 있는 PP나 PET를 이용한 장섬유 부직포를 대체할 수 있는 수지 개발에 어려움이 있었다.Currently developed plant-derived biodegradable aliphatic resins, PLA (Poly Lactic Acid), PBS, PBSA, and PBA are widely known as low-carbon green products, but due to the disadvantages of being decomposed by temperature and moisture, they are thermally decomposed and hydrolyzed during production. There is a problem that occurs rapidly, and there is no compatibility, there was a difficulty in developing a resin that can replace the long-fiber nonwoven fabric using PP or PET that has been used until now.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 창안한 것으로, 그 목적은, PLA수지와 PBS,PBSA,PBA중 택일된 수지와 생분해성 나노복합수지를 활용하여 상용성 및 가교성이 우수한 생분해성 장섬유 부직포를 얻을 수 있도록 하는데 그 목적이 있다.The present invention has been made to solve the conventional problems as described above, the purpose of which is, biodegradable excellent compatibility and crosslinkability by utilizing a resin selected from PLA resin, PBS, PBSA, PBA and biodegradable nanocomposite resin The purpose is to be able to obtain a long-fiber nonwoven fabric.
본 발명의 다른 목적은, 본 발명 생분해성 나노복합수지의 MI 폭을 일정한 온도에서 안정된 흐름이 유지되도록 함으로써 생분해성 장섬유 부직포의 생산성을 향상시키는데 그 목적이 있다.Another object of the present invention is to improve the productivity of the biodegradable long-fiber nonwoven fabric by maintaining a stable flow of the MI width of the biodegradable nanocomposite of the present invention at a constant temperature.
아울러 본 발명은 상기 100%지방족 생분해성 나노복합수지로 제조된 장섬유 부직포로 폐기시 분해되고, 온실가스와 환경부하를 저감시켜 저탄소 녹색상품에 부합될 수 있는 미래 비분해성 대체 상품이 될 수 있도록 하는데 목적이 있다.In addition, the present invention is decomposed when the long-fiber non-woven fabric made of the 100% aliphatic biodegradable nano-composite resin, and can be a future non-degradable alternative product that can meet the low-carbon green products by reducing greenhouse gases and environmental loads The purpose is to.
상기 목적을 달성하기 위한 본 발명 생분해성 복합 장섬유 부직포는,Biodegradable composite long fiber nonwoven fabric of the present invention for achieving the above object,
천연오일 중 팜유의 함량이 10중량%~15중량%, PLA함량이 12중량%~15중량%,백운모 65중량%~73중량%의 나노복합수지를 제조하는 제1단계;A first step of preparing a nanocomposite resin having a content of palm oil in a natural oil of 10% by weight to 15% by weight, a PLA content of 12% by weight to 15% by weight, and a weight of 65% to 73% by weight of mica;
제1단계에서 제조된 생분해성 나노복합수지 0.5중량%~2중량%와 PBS,PBSA,PBA수지중 택일된 수지 98중량%~99.5중량%를 분산 및 확산을 위한 컴파운딩하는 제2단계;A second step of compounding for dispersing and diffusing 0.5 wt% to 2 wt% of the biodegradable nanocomposite resin prepared in the first step and 98 wt% to 99.5 wt% of the PBS, PBSA and PBA resins;
PLA수지 90중량%~95중량%와 PBS,PBSA,PBA수지중 택일된 수지 4.8중량%~9.95중량%와 제2단계에서 과정을 통해 컴파운딩된 생분해성 나노복합수지 0.2중량%~0.05중량%를 컴파운딩하는 제3단계;90% to 95% by weight of PLA resin, 4.8% to 9.95% by weight of PBS, PBSA, PBA resin, and 0.2% to 0.05% by weight of biodegradable nanocomposite compounded in the second step Compounding the third step;
제1단계, 제2단계, 제3단계에서 선택된 수지로 구성된 생분해성 나노복합수지를 제1번 스크류 200℃부터 다이스온도 220℃까지 설정하여 장섬유 압출연신하는 제4단계;A fourth step of extruding the long fiber by setting the biodegradable nanocomposite resin composed of the resin selected in the first step, the second step, and the third step from the first screw 200 ° C. to the die temperature 220 ° C .;
상기 제4단계에 의해 압출연신된 수지를 순간 온도 터치방식에 의한 압착 및 융착과 동시에 결정화하여 생분해성 복합 장섬유 부직포를 형성하는 제5단계;A fifth step of forming a biodegradable composite long fiber nonwoven fabric by simultaneously crystallizing the resin extruded and stretched by the fourth step simultaneously with pressing and fusion by an instantaneous temperature touch method;
상기 제5단계의 생분해성 복합 장섬유 부직포를 후가공하는 제6단계; 로 구성된 제조방법에 의해 제조된다.A sixth step of post-processing the biodegradable composite long fiber nonwoven fabric of the fifth step; It is manufactured by a manufacturing method consisting of.
본 발명은 생분해성 복합 장섬유 부직포는, 타수지와 상용성이 없고, 작업성에 문제점을 가지고 있는 PLA수지에 중성계 및 약산성 나노사이즈 기공에 생분해성 수지를 Branch화 시킨 생분해성 나노복합수지를 활용하여 가교성 및 상용성을 원활하도록 한 장점이 있다. 즉, PLA수지와 상용성 및 가교성이 탁월한 중성계 또는 약산성계의 나노사이즈 무기광물(백운모 등) 기공에 생분해성 PLA수지가 기공속으로 흘러들어가 Branch가 되게 하여 PLA수지와 PBS,PBSA,PBA 수지의 상용성이 우수하도록 하는 것이다The present invention utilizes a biodegradable nanocomposite resin in which a biodegradable composite long fiber nonwoven fabric is branched into a biodegradable resin in neutral and weakly acidic nanosized pores in a PLA resin which is incompatible with other resins and has problems in workability. Thus, there is an advantage that the crosslinkability and compatibility is smooth. That is, biodegradable PLA resin flows into the pores in the neutral or weakly acidic nano-sized inorganic minerals (such as muscovite) pores, which have excellent compatibility and crosslinkability with PLA resins, forming branches and forming PLA resin, PBS, PBSA, PBA. To make the resin compatible
또한, 생분해성 복합수지의 용융지수(MI : melt index)폭을 일정하게 유지시 켜 생산성이 양호하고, 후가공시 작업성을 탁월하게 개선한 효과가 있다. In addition, the melt index (MI: melt index) width of the biodegradable composite resin is kept constant, the productivity is good, there is an effect of excellent workability during post-processing.
따라서 비분해성 합성수지로 이루어진 일회용품 시장인 마스크, 쇼핑백 산업자재외 꽃 포장지, 방진복 등 다양한 제품군을 생분해성 합성수지로 대체할 수 있게 되었다.Therefore, biodegradable synthetic resins can be replaced with various products such as mask, shopping bag industry materials, flower wrapping paper, and dustproof clothing, which are disposable products market made of non-degradable synthetic resin.
도 1은 본 발명에 따른 생분해성 복합 장섬유 부직포 제조공정도이다.Figure 1 is a biodegradable composite long fiber nonwoven fabric manufacturing process according to the present invention.
상기한 도면에 도시한 바와 같이 본 발명 생분해성 나노복합 수지를 활용한 생분해성 복합수지 장섬유 부직포의 제조단계는 총 6단계로 구성한다.As shown in the drawings, the manufacturing step of the biodegradable composite resin long fiber nonwoven fabric using the biodegradable nanocomposite resin of the present invention comprises six steps.
이를 순서에 따라 나열하면, If you list them in order,
제 1단계: 생분해성 나노복합수지 제조단계; First step: preparing biodegradable nanocomposite resin;
제 2단계: 생분해성 나노복합수지와 PBS,PBSA,PBA중 택일된 수지와 분산 및 확산을 위해 1차컴파운딩 단계; Second step: a first compounding step for dispersing and diffusing the biodegradable nanocomposite resin and an alternative resin among PBS, PBSA and PBA;
제 3단계: PLA수지와 제2단계를 2차컴파운딩 하는 단계; Third step: second compounding the PLA resin and the second step;
제 4단계: 장섬유 압출 연신단계; Fourth step: long fiber extrusion stretching step;
제 5단계: 순간 온도 터치방식에 의한 압착 및 융착과 동시에 결정화 단계;Fifth step: crystallization step simultaneously with pressing and fusion by the instantaneous temperature touch method;
제 6단계: 후가공 단계; 이다.Sixth step: post-processing step; to be.
전술한 바와 같이 총 6단계로 이루어진 본 발명 생분해성 나노복합 수지를 활용한 생분해성 복합수지 장섬유 부직포의 제조방법을 각 단계별로 상세히 설명하면 다음과 같다.As described above, the manufacturing method of the biodegradable composite resin long fiber nonwoven fabric using the present invention biodegradable nanocomposite resin consisting of a total of six steps will be described in detail for each step.
제 1단계First stage
제 1단계는 생분해성 나노복합수지 제조단계로써, 그 구성비는 천연오일 중 팜유의 함량이 10중량%~15중량%,PLA함량이 12중량%~15중량%,백운모 65중량%~73중량%이다.[특허등록 제10-0655914호]]The first step is a biodegradable nanocomposite manufacturing step, the composition ratio of the content of palm oil in natural oil 10% to 15% by weight, PLA content 12% to 15% by weight, mucosa 65% to 73% by weight [Patent Registration No. 10-0655914]]
상기 중성계 및 약산성계 무기광물(백운모)을 사용하는 것은, 약산성(PH6)인 PLA수지가 강알칼리계인 Talc, CaCo₃ Tio₂와 같은 무기광물계와의 컴파운딩되면 서로간에 체인구조를 약화 시킬 수 있기 때문이다.The reason why the neutral and weakly acidic inorganic minerals (Dolomite) is used is that weakly acidic (PH6) PLA resins can weaken the chain structure of each other when compounded with inorganic minerals such as Talc and CaCo₃ Tio₂, which are strong alkalis. .
제 2단계2nd step
제 2단계는 상기 1단계에서 제조된 생분해성 나노복합수지와 PBS,PBSA,PBA수지중 택일된 수지와 분산 및 확산을 위한 1차컴파운딩 단계로, 이는 후술될 3단계를 진행하기 이전 반드시 거쳐야 할 단계이며, 전술한 바와 같이 생분해성 나노복합수지의 분산 및 확산성 향상에 큰 영향을 주는 공정이다. 만일 이 공정을 거치지 않게 되면 장섬유 생산시 방사성 저하와 단사현상으로 나타나게 된다.The second step is a first compounding step for dispersion and diffusion with the biodegradable nanocomposite resin prepared in step 1 and an alternative resin among PBS, PBSA and PBA resins, which must be passed before proceeding to step 3 to be described later. As described above, the step is a process that greatly affects the dispersion and diffusion of the biodegradable nanocomposite resin. If this process is not carried out, the production of long fiber will result in radioactive degradation and single yarn phenomena.
제2단계를 진행하는 조성물 구성비는 제1단계에서 제조된 생분해성 나노복합수지 0.5중량%~2중량%와 PBS,PBSA,PBA수지중 택일된 수지 98중량%~99.5중량% 이다.Composition ratio of proceeding the second step is 0.5% to 2% by weight of the biodegradable nanocomposite resin prepared in the first step and 98% to 99.5% by weight of the selected resin of PBS, PBSA, PBA resin.
컴파운딩을 위한 압출조건은 155℃~170℃사이에서 실시한다. 이는 압출온도 조건중 스크류온도 및 다이스 온도가 155℃미만일때 생분해성 나노복합수지중 Branch화된 PLA수지가 융점이 155℃로 PBS,PBSA,PBA중 택일된 수지와 가교시 융점 이하로 충분하게 분산이 안될 뿐만 아니라 가교성이 떨어지고 170℃이상 일때는 PBS,PBSA,PBA중 택일된 수지가 융점이 110℃미만으로 생분해성 수지가 충분하게 분산 및 가교화가 되기전에 열분해 될 우려가 있기 때문이다.Extrusion conditions for compounding are carried out between 155 ℃ ~ 170 ℃. This is because branched PLA resin in biodegradable nanocomposite resin has melting point of 155 ℃ when screw temperature and die temperature is less than 155 ℃ under extrusion temperature condition, and it is sufficiently dispersed below melting point when crosslinking with alternative resin among PBS, PBSA and PBA. Not only is it poor in crosslinkability, but when it is 170 ° C. or higher, the selected resin among PBS, PBSA, and PBA may have thermal melting point before the biodegradable resin is sufficiently dispersed and crosslinked due to melting point of less than 110 ° C.
본 발명중 생분해성 나노복합수지의 함량이 생분해성 나노복합수지 총중량%에 0.2중량% 이상이면 배향 연신시 단사현상이 있을 수 있고 0.05%미만이면 PLA수지와 PBS,PBSA,PBA중 택일된 수지와 상용성 및 가교성이 떨어진다.In the present invention, if the content of the biodegradable nanocomposite is 0.2% by weight or more based on the total weight of the biodegradable nanocomposite, there may be a single yarn phenomenon during orientation stretching, and if it is less than 0.05%, the resin selected from PLA resin, PBS, PBSA, PBA, and Poor compatibility and crosslinkability.
또한, 본 발명중 생분해성 나노복합수지중 PBS,PBSA,PBA중 택일된 수지의 함량이 총중량%중 9.8중량% 미만이면 PLA특성이 강하게 나타나 브리틀한 특성이 나타나고, 9.95% 이상이면 PLA수지와 가교화된 수지인 PBS,PBSA,PBA수지중 택일된 수지의 특성인 저융점의 특성으로 인해 내열온도가 100℃ 이하가되어 열변형으로인한 작업성이 저하될 우려가 있다.In addition, if the content of the selected resin of PBS, PBSA, PBA in the biodegradable nano-composite resin of the present invention is less than 9.8% by weight of the total weight, PLA properties are strong, brittle properties appear, and if more than 9.95% PLA resin and Due to the low melting point, which is the characteristic of the resin selected from PBS, PBSA, and PBA resins, which are crosslinked resins, the heat resistance temperature may be 100 ° C. or lower, resulting in deterioration of workability due to heat deformation.
제 3단계3rd step
제 3단계는 PLA수지와 제2단계의 수지를 2차컴파운딩 하는 단계로써, 제2단계에서 컴파운딩된 수지와 PLA수지를 스크류 온도 및 압출다이스 온도를 155℃~170℃사이에서 일반 수지 작업공정과 동일하게 진행한다. 이때 중요한 것은 컴파운딩된 수지의 수분함량이 50ppm 미만으로 제습건조 하는 것이다.The third step is the secondary compounding of the PLA resin and the resin of the second step, the general resin working process of the screw and the extrusion die temperature of the compound and the PLA resin compounded in the second step between 155 ℃ ~ 170 ℃ Proceed as in At this time, it is important to dehumidify and dry the water content of the compounded resin below 50 ppm.
수지의 구성비는 PLA수지 90중량%~95중량%와, PBS,PBSA,PBA수지중 택일된 수지 4.8중량%~9.95중량%와 제2단계에서 과정을 통한 생분해성 나노복합수지 0.05중량%~0.2중량%의 비율로 실시한다.The composition ratio of the resin is 90% to 95% by weight of PLA resin, 4.8% to 9.95% by weight of the selected resin among PBS, PBSA and PBA resins, and 0.05% to 0.2% of the biodegradable nanocomposite resin through the second step. It is carried out in the ratio of weight%.
상기 PBS,PBSA,PBA중 택일된 수지는 MI(melt index)가 15g~20g인 수지를 선 택하여 사용한다. 이는 PBS,PBSA,PBA중 택일된 수지의 MI가 15g미만이면 생분해성 복합수지의 MI(220℃)가 30g미만이 될 수 있고, MI가 20g이상의 수지를 사용하면 생분해성 복합수지의 MI(220℃)가 50g이상이 되어 장섬유 부직포 생산성을 어렵게하고 단사현상을 발생 시킬 수 있기 때문이다.Among the PBS, PBSA, and PBA, the selected resin is selected from a resin having a MI (melt index) of 15 g to 20 g. If the MI of PBS, PBSA, PBA is less than 15g, the biodegradable composite resin's MI (220 ℃) can be less than 30g. If the MI is more than 20g, the biodegradable composite's MI (220) ℃) is more than 50g to make long-fiber nonwovens productivity difficult and monofilament can occur.
상기 본 발명중 제1단계, 제2단계, 제3단계를 거쳐 개발된 생분해성 나노복합수지가 함유된 생분해성 복합수지의 MI range는 안정성을 확보할 수 있으나, PLA단일수지나 PBS,PBSA,PBA수지중 택일된 단일수지로 장섬유 부직포를 생산할때 온도 상승에 따른 MI의 급상승으로 인한 MI변화폭이 심하여 방사에 어려움이 발생되거나 단사현상이 발생된다.The MI range of the biodegradable composite resin containing the biodegradable nanocomposite resin developed through the first, second, and third steps of the present invention can secure stability, but it is possible to obtain stability of PLA single resin, PBS, PBSA, When producing long-fiber nonwoven fabric from PBA resin as the single resin, the change of MI is severe due to the rapid rise of MI due to the temperature increase, which causes difficulty in spinning or single yarn phenomenon.
(실험예 1)Experimental Example 1
A. 온도변화에 따른 각 수지의 MI는 표 1과 같다.A. MI of each resin according to temperature change is shown in Table 1.
여기서 MI 측정은, 일정온도(PLA, PBS, 복합수지 : 190℃∼230℃), 일정하중(2.16㎏)에서 용융체가 규정된 오리피스(내경2.09mm, 높이 8mm)를 이동하여 10분간 압출되는 수지의 중량(g)을 측정한 값이다.Here, the MI measurement is a resin extruded for 10 minutes by moving an orifice (inner diameter 2.09mm, height 8mm) in which a melt is defined at a constant temperature (PLA, PBS, composite resin: 190 ° C to 230 ° C) and a constant load (2.16kg). It is the value which measured the weight (g) of.
B. 온도변화에 따른 각 수지의 MI 변동폭은 표 2와 같다.B. MI variation of each resin according to temperature change is shown in Table 2.
(실험예 2)Experimental Example 2
A. PBS MI에 따른 복합수지의 온도(220℃, 230℃)별 MI변화는 표 3과 같다.A. MI change according to temperature (220 ℃, 230 ℃) of composite resin according to PBS MI is shown in Table 3.
이때, MI 측정은 : 일정온도(PBS : 200℃, 생분해성 복합수지 : 220℃ 및 230℃), 일정하중(2.16㎏)에서 용융체가 규정된 오리피스(내경2.09mm, 높이 8mm)을 이동하여 10분간 압출되는 수지의 중량(g)을 측정한 값이다.At this time, the MI measurement is: 10 at a constant temperature (PBS: 200 ℃, biodegradable composite resin: 220 ℃ and 230 ℃), a fixed load (2.16 kg) by moving the orifice (inner diameter 2.09mm, height 8mm) prescribed the melt It is the value which measured the weight (g) of resin extruded for a minute.
아래의 표 3은, MI가 10g, 15g, 및 30g일때의 PBS와 컴파운딩된 복합수지의 온도(220℃, 230℃)별 MI에 변화를 나타낸 것이다.Table 3 below shows the change in the MI according to the temperature (220 ℃, 230 ℃) of the composite resin compounded with PBS when the MI is 10g, 15g, and 30g.
상기 실험예1, 실험예2에서 보는 것과 같이 생분해성 장섬유 부직포 방사조건중 220℃근처에서 MI변동폭이 가장 작게 나타나므로 이때의 복합수지 방사성이 우수할 뿐만 아니라 단사현상을 방지할 수 있다.As shown in Experimental Example 1 and Experimental Example 2, the MI fluctuation width was the smallest at around 220 ° C. in the biodegradable long fiber nonwoven spinning condition, so that the composite resin spinning property was excellent at this time and the single yarn phenomenon could be prevented.
즉, 생분해성 복합수지의 방사온도는 220℃전후에서 MI가 32g 인 것이 우수한 상품성을 나타냈고 실험예1과 같이 230℃일때 PLA의 MI는 65g PBS는 실시예1의 경우 45g 복합수지는 39g으로 나타났으므로 생분해성수지의 단점인 열분해를 방지하고 단사현상을 제어할 수 있었다.That is, the spinning temperature of the biodegradable composite resin showed excellent merchandise that the MI was 32g around 220 ° C. As shown in Experiment 1, the PLA MI was 65g, the PBS was 45g, and the composite resin was 39g in Example 1 at 230 ° C. As a result, it was possible to prevent thermal decomposition and control single yarn phenomenon, which are disadvantages of biodegradable resins.
제 4단계4th step
제 4단계는 장섬유 압출 연신단계로써, 제1단계, 제2단계, 제3단계를 거친 생분해성 복합수지를 압출 연신하는 것이다. 이때 온도조건은, 열분해가 방지 될 수 있도록 제1번 스크류 200℃부터 다이스온도 220℃까지 설정하는 것이 좋으나 일부 기계조건 및 생산 시스템에 따른 변화는 있을 수 있다.The fourth step is a long-fiber extrusion stretching step, the extrusion stretching the biodegradable composite resin passed through the first step, the second step, and the third step. At this time, it is preferable to set the temperature from the first screw 200 ℃ to the die temperature 220 ℃ to prevent thermal decomposition, but there may be a change depending on some mechanical conditions and production systems.
그리고 생분해성 복합수지는 220℃에서의 MI가 30g전후인 것이 좋다. 물론 압출시 스크류압이나, 스크류 구조에 따라 다소 차이가 있을 수 있다. In addition, the biodegradable composite resin should have a MI of about 30g at 220 ° C. Of course, the extrusion pressure may vary slightly depending on the screw pressure, the screw structure.
실험에 의하면 220℃ 일때와 230℃일때에 MI의 변동폭이 작으면 작을수록 방사성은 우수하고 열분해를 방지 할 수 있는 것으로 나타났다.Experimental results show that the smaller the variation of MI at 220 ℃ and 230 ℃, the better the radioactivity and preventing pyrolysis.
실험예 1처럼 온도(220℃∼230℃)에 따른 MI변동폭은 아래와 같다.MI variation width according to temperature (220 degreeC-230 degreeC) like Experimental example 1 is as follows.
본 발명에 있어 생산조건 중 연신에 따른 온도 조건이 연신비 및 단사현상을 방지 할 수 있는 중요한 조건중에 하나이다.In the present invention, the temperature condition according to the stretching of the production conditions is one of the important conditions that can prevent the draw ratio and single yarn phenomenon.
이러한 맥락에서 다이스를 통과한 생분해성 복합수지의 냉각온도는 수지의 직접온도가 55℃미만이 되어서는 안된다. 이는 생분해성 복합수지는 PLA특성으로 인해 냉각온도에 따라 수지온도가 55℃미만이면 유리전이온도 이하가 되어 배향연신시 단사현상이 발생 될 수 있기 때문이다.In this context, the cooling temperature of the biodegradable composite resin passed through the die should not be less than 55 ℃. This is because the biodegradable composite resin has a glass transition temperature below the glass transition temperature of 55 ° C or less depending on the cooling temperature.
바람직하게는 다이스를 통과한 수지온도의 직접온도가 90℃~110℃인 것이 좋다. 이는 배향연신시 4배~6배까지 우수한 연신성을 나타낸다. 즉, 수지의 직접 온도가 110℃이상이면 결국 PLA수지의 융점인 155℃에 근접하게 되는 것이 되므로 그 결과 배향 연신후 결정화 하는데 결정성을 약화시키거나 배향연신시 단사현상을 일으킬 수 있다.Preferably the direct temperature of the resin temperature passed through the die is 90 ℃ ~ 110 ℃. This shows excellent stretchability up to 4 to 6 times in orientation stretching. That is, when the direct temperature of the resin is 110 ° C or higher, the resin is close to 155 ° C, which is the melting point of the PLA resin. As a result, crystallinity may be weakened in crystallization after orientation stretching or may cause monoclinic phenomenon during orientation stretching.
생분해성 복합수지 장섬유 부직포는 모노 실의 굵기는 1.5데니아~ 3데니아까지 생산이 가능하며, 일반수지와 유사한 방법으로 생산하고, 또 생산속도 및 압출조건에 따라 '㎡당' 15g~200g까지의 부직포 생산이 가능하다.Biodegradable composite resin filament non-woven fabric can be produced from 1.5 denier to 3 denier in mono thread thickness, and produced in a similar way to ordinary resin, and from 15g to 200g per '㎡ depending on production speed and extrusion conditions. Nonwoven fabric production is possible.
연신 조건은 수지 직접온도 90℃~110℃사이에서 순간배향 연신으로 4배~6배까지 연신하는 것이 다단연신보다 연신에 따른 단사현상을 방지 할 수 있다.Stretching conditions are stretched 4 to 6 times by instantaneous stretching between the resin direct temperatures of 90 ° C. to 110 ° C., which can prevent single yarn phenomena due to stretching rather than multistage stretching.
다단연신은 PLA수지 특성상 55℃~110℃사이에서 연신이 가능하지만 단계별 배향연신을 할때 일부분이 결정성을 이루고 일부분은 비결정성으로 인해 단사현상이 발생될 수 있으므로 순간배향 연신결정으로 결정성을 동시에 이루는 것이 작업성 및 물성이 우수하다.Multi-stretch can be stretched between 55 ℃ ~ 110 ℃ due to the characteristics of PLA resin, but when it is oriented stretching step by step, partly crystallization and partly single crystal may occur due to amorphousness. At the same time, workability and physical properties are excellent.
제 5단계5th step
순간배향연신 결정성이 된 생분해성 복합 장섬유 부직포는 두 개의 압착 포리씽롤을 통과시켜 엠보 및 결정화를 이루게 한다.The biodegradable composite long-fiber nonwoven fabric, which is instantaneous oriented crystalline, passes through two press-forcing rolls to achieve embossing and crystallization.
본 발명에 결정화 조건은 순간온도 터치 방법에 준하되 기특허(특허등록 제10-0833583호)와 동일한 방법으로 실시한다. 즉, 2개의 포리싱롤 또는 엠보싱롤의 온도를 100℃∼110℃로 하고 생분해성 복합 장섬유 부직포의 직접온도가 90℃~110℃가 되도록 하여 순간온도 터치 방식으로 0.5초∼0.1초 사이로 구개의 포리싱롤 또는 엠보싱롤을 통과 시켜 결정화한다. 물론, 결정화 온도 조건은 방사속도 및 포리씽롤에 회전속도에 따라 조정할 수 있으나, 생분해성 복합 장섬유 부직포의 직접온도가 90℃이하이면 부직포 장섬유가 박리의 우려가 있고 110℃이상이면 결정성이 약화 될 수 있다.Crystallization conditions in the present invention are carried out in the same manner as the patent (patent registration No. 10-0833583), but in accordance with the instantaneous temperature touch method. That is, the temperature of the two polishing rolls or the embossing rolls is set at 100 ° C to 110 ° C, and the direct temperature of the biodegradable composite long fiber nonwoven fabric is made to be 90 ° C to 110 ° C. It is crystallized by passing through a processing roll or an embossing roll. Of course, the crystallization temperature conditions can be adjusted according to the spinning speed and the rotating speed of the polishing roll, but if the direct temperature of the biodegradable composite long fiber nonwoven fabric is below 90 ° C., the nonwoven long fiber may be peeled off and if the crystallization temperature is above 110 ° C. Can be weakened.
제 6단계6th step
생분해성 복합 장섬유 부직포에 후가공시 열선이 직접 닫으면 생분해성 장섬유 부직포가 열선에 녹아 붙을 수 있으므로 실링 열선위에 실리콘과 같이 피복된 간접실링 방법에 의해 생분해성 복합 장섬유 부직포에 직접온도가 90℃~110℃사이에 실링한다.If the heating wire is directly closed on the biodegradable composite long-fiber nonwoven fabric, the biodegradable long-fiber nonwoven fabric can be melted on the heating wire, so the direct temperature is 90 ° C on the biodegradable composite long-fiber nonwoven fabric by indirect sealing method coated with silicone on the sealing heating wire. Seal between ~ 110 ℃.
생분해성 복합수지로된 장섬유 부직포는 PBS,PBSA,PBA중 택일된 수지가 연질성으로 인해 후가공작업이 원활하고 인장강도 및 충격강도를 상승시켜 준다.The long-fiber nonwoven fabric made of biodegradable composite resin is made of PBS, PBSA, and PBA, which makes the post-processing work smooth and increase the tensile strength and impact strength.
상기 본 발명의 제조방법에 의해 제조된 생분해성 장섬유부직포를 물성을 측정하였고, 그 수치를 일반 비분해성 소제인 PP와 PET 제품의 물성과 비교한 결과 를 표 5에 도시하였다.The physical properties of the biodegradable long fiber nonwoven fabric produced by the above-described manufacturing method of the present invention were measured, and the results of comparing the numerical values with those of PP and PET products, which are general non-degradable materials, are shown in Table 5.
PP
PP
StrengthTensile
Strength
strengthtear
strength
P
E
T
P
E
T
StrengthTensile
Strength
strengthtear
strength
복합수지Biodegradable
Compound Resin
StrengthTensile
Strength
strengthtear
strength
상기 표 5에서와 같이 본 발명 생분해성 장섬유 부직포는 일반 비분해성 제품과 대등한 물성을 갖는 것으로 나타났다.As shown in Table 5, the biodegradable long fiber nonwoven fabric of the present invention was found to have properties comparable to those of general non-degradable products.
도 1은 본 발명에 따른 생분해성 복합 장섬유 부직포 제조공정도1 is a biodegradable composite long fiber nonwoven fabric manufacturing process according to the present invention
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090099596A KR100992398B1 (en) | 2009-10-20 | 2009-10-20 | Filament nonwoven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090099596A KR100992398B1 (en) | 2009-10-20 | 2009-10-20 | Filament nonwoven fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100992398B1 true KR100992398B1 (en) | 2010-11-05 |
Family
ID=43409386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090099596A KR100992398B1 (en) | 2009-10-20 | 2009-10-20 | Filament nonwoven fabric |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100992398B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101225617B1 (en) | 2011-07-19 | 2013-01-24 | 김병구 | Pla vegetation mat |
KR102138634B1 (en) * | 2020-06-02 | 2020-07-28 | 에콜그린텍(주) | Biodegradable Nonwoven Fabric for Mask and Manufacturing Method Thereof |
KR20200122045A (en) | 2019-04-17 | 2020-10-27 | 에콜그린텍(주) | Pla mask pack and preparing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1046462A (en) | 1996-07-29 | 1998-02-17 | Oji Paper Co Ltd | Biodegradable conjugated continuous filament nonwoven fabric |
KR100655914B1 (en) | 2006-01-27 | 2006-12-11 | 에스케이네트웍스 주식회사 | Biodegradable nanocomposite |
KR100833583B1 (en) | 2008-02-19 | 2008-05-30 | 에콜그린 주식회사 | Nature-friendly biodegradable sheet |
KR100847932B1 (en) | 2000-12-28 | 2008-07-22 | 킴벌리-클라크 월드와이드, 인크. | Breathable, Biodegradable and Compostable Laminates |
-
2009
- 2009-10-20 KR KR1020090099596A patent/KR100992398B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1046462A (en) | 1996-07-29 | 1998-02-17 | Oji Paper Co Ltd | Biodegradable conjugated continuous filament nonwoven fabric |
KR100847932B1 (en) | 2000-12-28 | 2008-07-22 | 킴벌리-클라크 월드와이드, 인크. | Breathable, Biodegradable and Compostable Laminates |
KR100655914B1 (en) | 2006-01-27 | 2006-12-11 | 에스케이네트웍스 주식회사 | Biodegradable nanocomposite |
KR100833583B1 (en) | 2008-02-19 | 2008-05-30 | 에콜그린 주식회사 | Nature-friendly biodegradable sheet |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101225617B1 (en) | 2011-07-19 | 2013-01-24 | 김병구 | Pla vegetation mat |
KR20200122045A (en) | 2019-04-17 | 2020-10-27 | 에콜그린텍(주) | Pla mask pack and preparing method thereof |
KR102138634B1 (en) * | 2020-06-02 | 2020-07-28 | 에콜그린텍(주) | Biodegradable Nonwoven Fabric for Mask and Manufacturing Method Thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109183281B (en) | PE spun-bonded non-woven fabric and manufacturing method thereof | |
CN103739962A (en) | Polyolefin microporous air-permeable membrane and preparation method thereof | |
CN103724791A (en) | Ultrahigh-performance plastic film as well as preparation method and composite material thereof | |
CN110965208B (en) | Preparation method for manufacturing polypropylene non-woven fabric by spinning and melting method and non-woven fabric product | |
KR101884227B1 (en) | Fabricated Film For Agiculture Using High―Tenacity Polyethylene Flat―Yarn | |
KR101431765B1 (en) | Manufacturing method of wrapping cloth from polypropylene | |
JP6641953B2 (en) | Moisture permeable laminate | |
KR100992398B1 (en) | Filament nonwoven fabric | |
CN105926079A (en) | Polypropylene film splitting fibers and preparation method thereof as well as air filtering material prepared from polypropylene film splitting fibers | |
TWI675135B (en) | Conjugated fiber and method for manufacturing the same | |
CN104831402A (en) | Black flame-retardant terylene FDY filament and production method thereof | |
KR100439560B1 (en) | Process for preparing high-strength pe tarpaulin | |
KR101370501B1 (en) | Heat sealing conjugate fiber having blue color and fluorescent color and preparing same | |
TWI705164B (en) | Thermoplastic polyurethane fiber and method for producing the same | |
CN102560731A (en) | Anti-ultraviolet and moisture transmitting polyster fibers as well as preparation method and application thereof | |
KR102037496B1 (en) | Improved Plasticity Spunbonded Nonwoven for Primary Carpet Backing, and Method for Manufacturing the Same | |
KR101450456B1 (en) | Process Of Producing Nylon 6 Draw―Textured―Yarn With High Crimpability | |
KR101155454B1 (en) | Process Of Producing Nylon 6 Draw?Textured?Yarn With High Elasticity | |
CN106917158A (en) | A kind of High-strength polypropylene fiber and its manufacture method | |
CN108978048A (en) | Low elongation non-woven fabrics and its preparation method and application | |
KR101112698B1 (en) | Polypropylene staple with improved hot plate Weldability, manufacturing method thereof, and nonwoven fabric prepared from the same | |
KR101690837B1 (en) | Nonwoven web having an excellent soft property and the preparing process thereof | |
CN109249663B (en) | Dustproof composite non-woven fabric and preparation method thereof | |
JPH07103490B2 (en) | Composite heat-fusible fiber | |
KR101097377B1 (en) | Polyester nonwoven fabrics and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131029 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20141029 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150922 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160705 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170719 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20180202 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20190221 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20200303 Year of fee payment: 11 |