KR100935773B1 - Method for manufacturing of semiconductor device - Google Patents
Method for manufacturing of semiconductor device Download PDFInfo
- Publication number
- KR100935773B1 KR100935773B1 KR1020070121143A KR20070121143A KR100935773B1 KR 100935773 B1 KR100935773 B1 KR 100935773B1 KR 1020070121143 A KR1020070121143 A KR 1020070121143A KR 20070121143 A KR20070121143 A KR 20070121143A KR 100935773 B1 KR100935773 B1 KR 100935773B1
- Authority
- KR
- South Korea
- Prior art keywords
- poly gate
- dummy oxide
- gate
- forming
- drain
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 22
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims description 27
- 239000007943 implant Substances 0.000 claims description 24
- 125000006850 spacer group Chemical group 0.000 claims description 16
- 239000011810 insulating material Substances 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000035882 stress Effects 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7847—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate using a memorization technique, e.g. re-crystallization under strain, bonding on a substrate having a thermal expansion coefficient different from the one of the region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7843—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
본 발명은 반도체 소자의 제조 방법에 관한 것으로, 더미 산화막 폴리 게이트를 이용하여 얕은 소오스/드레인 LDD 접합층 구조의 익스텐션을 미리 형성시킨 후, 실리콘 질화막(Si3N4)을 이용한 응력 기억을 적용하여 서멀에 의한 응력 완화를 최소화함으로써, 누설 전류가 증가하게 되는 요인을 개선하고 이로 인하여 고집적 회로에서 파워 증가를 억제할 수 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for fabricating a semiconductor device, wherein an extension of a shallow source / drain LDD junction layer structure is formed in advance using a dummy oxide poly gate, and then stress memory using a silicon nitride film (Si 3 N 4 ) is applied. By minimizing the stress relaxation caused by the thermal, it is possible to improve the factor causing the leakage current to increase and thereby suppress the increase in power in the highly integrated circuit.
실리콘 질화막, 더미 산화막 게이트, MOSFET Silicon Nitride, Dummy Gate, MOSFET
Description
본 발명은 누설 전류(leakage current; Ioff)의 열화없이 성능을 개선하기 위한 MOSFET 소자의 제조 방법에 관한 것이다. The present invention relates to a method for fabricating a MOSFET device for improving performance without deterioration of leakage current (Ioff).
주지된 바와 같이, MOSFET(Metal Oxide Silicon Field Effect Transistor, 이하, MOSFET라 함)는 게이트(gate) 전극, 소오스/드레인(source/drain) 전극이 절연층(dielectric layer)을 사이에 두고 실리콘 기판에 형성된 구조를 갖는다.As is well known, MOSFETs (Metal Oxide Silicon Field Effect Transistors, hereinafter referred to as MOSFETs) include a gate electrode and a source / drain electrode on a silicon substrate with an insulating layer interposed therebetween. Has a formed structure.
현재 반도체 소자의 소형화, 경량화, 박막화의 추세에 따라 MOSFET의 크기또한 축소(scale down)되고 있는데, 이러한 트랜지스터의 축소는 게이트전극의 유효 채널 길이(channel length)를 감소시켜 소오스와 드레인 사이의 펀치쓰루(punch-through) 특성을 열화시키는 쇼트 채널 효과(short channel effect)를 발생시킨다.As the size of semiconductor devices becomes smaller, lighter, and thinner, MOSFETs are also scaled down, which reduces the effective channel length of the gate electrode, resulting in punch-through between the source and drain. It generates a short channel effect that degrades the punch-through characteristic.
이를 해결하기 위하여 MOSFET의 소오스 및 드레인에 얕은 접합을 이용하는 LDD(Lightly Doped Drain) 구조가 등장하게 되었다. In order to solve this problem, a lightly doped drain (LDD) structure using shallow junctions to source and drain of a MOSFET has been introduced.
도 1은 일반적인 반도체 소자의 MOSFET 구조를 나타낸 단면도로서, 이를 참 조하여 종래의 MOSFET 제조 방법을 설명하면 다음과 같다. 1 is a cross-sectional view showing a MOSFET structure of a general semiconductor device, referring to the conventional MOSFET manufacturing method as follows.
즉, 반도체 기판으로서 실리콘 기판(10)에 소자분리 및 웰 공정을 진행한 후에 기판 전면에 게이트 절연막(12)을 형성한다. 게이트 절연막(12) 위에 도프트 폴리실리콘을 증착하고 이를 패터닝하여 게이트 전극(14)을 형성한다. 그리고 게이트 절연막(12) 및 게이트 전극(14) 전면에 버퍼 절연막(buffer dielectric layer)(16)으로서 실리콘 산화막(SiO2)을 얇게 형성한다. 그 다음 LDD 임플란트 공정을 진행하여 게이트 전극(14) 양쪽 기판내에 저농도의 불순물(n-/p-)이 주입된 얕은 LDD 접합층(18)을 형성한다. 그리고 게이트 전극(14)의 버퍼 절연막(16) 측벽에 절연물질, 예컨대 실리콘 질화막(Si3N4)으로 스페이서(spacer)(20)를 형성한 후에, 소오스/드레인 임플란트 공정을 진행하여 스페이서(20) 양쪽 기판내 에 고농도의 불순물(n+/p+)이 주입된 소오스/드레인 접합층(22)을 형성한다. 이와 같이 제조된 MOSFET는 기판 표면의 채널 사이에 LDD(18) 구조의 소오스/드레인 접합층(22)을 갖으며 LDD 접합층(18) 상부에 게이트 절연막(12)을 사이에 두고 도전성을 갖는 게이트 전극(14)이 형성되어 있으며 게이트 전극(14)의 측벽에 절연물질로 이루어진 스페이서(20)가 형성되어 있다.That is, after the device isolation and the well process are performed on the
그러나, 상기한 바와 같이 동작되는 배경 기술에서 65㎚ 이하의 고집적화가 진행되면서 종래 MOSFET에서 게이트 산화막 두께 감소와 채널 농도의 증가로 캐리어 이동이 감소하게 되어 결국 누설 전류(Ioff)를 증가시키는 요인으로 작용한다. 이는 직접도가 증가하는 제품에서 파워(Power) 증가를 유발하는 직접적인 원인이 되는 문제점이 있다. However, in the background technology operated as described above, as the high integration of 65 nm or less proceeds, carrier movement is reduced due to the decrease in the thickness of the gate oxide film and the increase in the channel concentration in the conventional MOSFET, which eventually increases the leakage current (Ioff). do. This is a problem that is a direct cause of the increase in power (Power) in a product that has increased directness.
이에, 본 발명의 기술적 과제는 상술한 바와 같은 문제점을 해결하기 위해 안출한 것으로, 더미 산화막 폴리 게이트를 이용하여 얕은 소오스/드레인 LDD 접합층 구조의 익스텐션(extension)을 미리 형성시킨 후, 실리콘 질화막(Si3N4)을 이용한 응력 기억(stress memorized)을 적용하여 서멀(thermal)에 의한 응력 완화를 최소화함으로써, 누설 전류(Ioff)가 증가하게 되는 요인을 개선하고 이로 인하여 고집적 회로에서 파워 증가를 억제할 수 있는 반도체 소자의 제조 방법을 제공한다. Accordingly, the technical problem of the present invention is to solve the above-described problems, and after forming the extension of the shallow source / drain LDD junction layer structure using a dummy oxide poly gate, the silicon nitride film ( By applying stress memorized with Si 3 N 4 ) to minimize thermal stress relaxation, it improves the factor of increasing leakage current (Ioff), thereby suppressing the power increase in high density circuit Provided are a method of manufacturing a semiconductor device.
본 발명의 실시예에 따른 반도체 소자의 제조 방법은, 웰 임플란트 공정이 실시된 기판에 더미 산화막 폴리 게이트를 형성하는 단계와, 상기 형성된 더미 산화막 폴리 게이트에 대하여 LDD(Lightly Doped Drain) 임플란트 공정 및 열처리 공정을 진행하여 상기 더미 산화막 폴리 게이트 양쪽 기판내에 익스텐션(extension) 을 형성하는 단계와, 상기 익스텐션이 형성된 더미 산화막 폴리 게이트 상부에 절연물질을 형성하고, 상기 더미 산화막 폴리 게이트를 선택적으로 제거하는 단계와, 상기 제거된 영역에 게이트 산화막 및 폴리 게이트를 순차적으로 형성하며, 상기 절연물질을 선택적으로 제거하는 단계와, 상기 폴리 게이트의 측벽에 스페이서를 형성시킨 다음에, 소오스/드레인 임플란트 공정을 진행하여 상기 스페이서 양쪽 기판내에 소오스/드레인 접합층을 형성하는 단계를 포함한다.A method of manufacturing a semiconductor device according to an embodiment of the present invention includes forming a dummy oxide poly gate on a substrate on which a well implant process is performed, and performing a lightly doped drain (LDD) implant process and heat treatment on the formed dummy oxide poly gate. Forming an extension in both substrates of the dummy oxide poly gate by forming a process; forming an insulating material on the dummy oxide poly gate in which the extension is formed, and selectively removing the dummy oxide poly gate; And sequentially forming a gate oxide film and a poly gate in the removed region, selectively removing the insulating material, forming a spacer on the sidewall of the poly gate, and then performing a source / drain implant process. Source / drain junction layers in both spacers Forming a step.
상기 절연물질은, 실리콘 질화막(Si3N4)인 것을 특징으로 한다.The insulating material is characterized in that the silicon nitride film (Si 3 N 4 ).
상기 실리콘 질화막은, NMOS의 경우 저압력 화학기상증착 공정을 사용하며, PMOS의 경우 플라즈마 화학 증착 공정을 사용하여 형성하는 것을 특징으로 한다.The silicon nitride film is formed using a low pressure chemical vapor deposition process in the case of NMOS, and plasma chemical vapor deposition in the case of PMOS.
상기 더미 산화막 폴리 게이트는, 100㎚∼180㎚ 범위의 두께로 형성하는 것을 특징으로 한다.The dummy oxide film poly gate is formed to have a thickness in the range of 100 nm to 180 nm.
상기 익스텐션은, 소오스/드레인 LDD 접합층인 것을 특징으로 한다.The extension is characterized in that the source / drain LDD junction layer.
상기 폴리 게이트는, 화학기상증착에 의해 형성되는 것을 특징으로 한다.The poly gate is formed by chemical vapor deposition.
상기 폴리 게이트는, CMP 공정에 의해 평탄화되는 것을 특징으로 한다.The poly gate is flattened by a CMP process.
본 발명은 더미 산화막 폴리 게이트를 이용하여 얕은 소오스/드레인 LDD 접합층 구조의 익스텐션을 미리 형성시킨 후, 실리콘 질화막(Si3N4)을 이용한 응력 기억을 적용하여 서멀에 의한 응력 완화를 최소화함으로써, 누설 전류가 증가하게 되 는 요인을 개선하고 이로 인하여 고집적 회로에서 파워 증가를 억제할 수 있는 효과가 있다.According to the present invention, an extension of a shallow source / drain LDD junction layer structure is formed in advance using a dummy oxide poly gate, and then stress stress using a silicon nitride film (Si 3 N 4 ) is applied to minimize stress relaxation by thermal. This improves the factor that increases leakage current and, therefore, has the effect of suppressing the increase in power in highly integrated circuits.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. Hereinafter, the operating principle of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, when it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Terms to be described later are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators. Therefore, the definition should be made based on the contents throughout the specification.
도 2a 내지 도 2h는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 각 공정별 수직 단면도이다.2A to 2H are vertical cross-sectional views of respective processes for describing a method of manufacturing a semiconductor device according to an exemplary embodiment of the present invention.
즉, 도 2a에 도시된 바와 같이, 반도체 기판(P-Substrate)(예컨대, 실리콘 기판)(201)에 서멀 산화막(thermal oxide)(203)을 형성한 다음에, 형성된 서멀 산화막(203) 상부 전면에 웰 임플란트 공정(205)을 실시한다. 이때, 서멀 산화막(203)은 5㎚∼15㎚ 범위의 두께로 형성하는 것이 바람직하다.That is, as shown in FIG. 2A, a
다음으로, 웰 임플란트 공정 후, 형성된 서멀 산화막(203)을 식각 공정(예컨대, 습식방식)을 사용하여 제거한 다음에, 화학기상증착(Chemical Vapor Deposition, 이하, CVD라 함) 공정을 이용하여 산화막을 도포하고, 도포된 산화막 상부에 폴리 게이트 영역을 정의하기 위한 PR 패턴을 형성하며, 형성된 PR 패턴을 마스크로 식각 공정(예컨대, 건식 방식)을 실시하여 도포된 산화막을 선택적으로 제거하여 일 예로, 도 2b에 도시된 바와 같이 더미 산화막 폴리 게이트(207)를 형성한다. 여기서, 더미 산화막 폴리 게이트(207)는 100㎚∼180㎚ 범위의 두께로 형성하는 것이 바람직하다.Next, after the well implant process, the formed
이후, 형성된 더미 산화막 폴리 게이트(207)에 대하여 LDD 임플란트 공정(209)을 진행한 다음에, 불순물을 활성화 시키기 위해 급속 열처리 프로세싱(Rapid Thermal Processing, 이하, RTP라 함)을 이용하여 일 예로, 도 2c에 도시된 바와 같이 더미 산화막 폴리 게이트(207) 양쪽 기판내에 얕은 소오스/드레인 LDD 접합층 구조의 익스텐션(extension)(211)을 형성한다. Thereafter, the
다음에, 채널(channel)에 응력(stress)을 기억(memorized)하기 위하여 익스텐션(211)이 형성된 더미 산화막 폴리 게이트(207) 상부에 CVD를 이용하여 실리콘 질화막(Si3N4)을 전면 형성한 다음에 CMP(Chemical Mechanical Polishing) 공정을 실시하여 일 예로, 도 2d에 도시된 바와 같이 더미 산화막 폴리 게이트(207)가 노출되는 높이까지 평탄화시킨 실리콘 질화막(Si3N4)(213)을 형성한다. 여기서, CVD 공정을 실시하여 실리콘 질화막(Si3N4)(213)을 형성할 경우, NMOS의 경우 저압력 화학기상증착(Low Pressure Chemical Vapor Deposition, 이하, LPCVD라 함) 공정을 사용하며, PMOS의 경우 플라즈마 화학 증착(Plasma Enhanced Chemical Vapor Deposition, 이하, PECVD라 함) 공정을 선택적으로 사용하고, 실리콘 질화막(Si3N4)(213) 대신에 실리콘 카본(SiC)를 사용할 수 있는 것이 바람직하다.Next, a silicon nitride film (Si 3 N 4 ) is entirely formed on the dummy
다음으로, 실리콘 질화막(Si3N4)(213)을 형성한 상태에서 식각 공정(예컨대, 습식 방식)을 이용하여 일 예로, 도 2e에 도시된 바와 같이 더미 산화막 폴리 게이트(207)를 선택적으로 제거(215)한다. Next, using an etching process (eg, a wet method) in a state in which a silicon nitride film (Si 3 N 4 ) 213 is formed, the dummy
이어서, 더미 산화막 폴리 게이트(207)를 제거한 다음에 세정(cleaning) 공정을 진행하고, 제거(215)된 영역에 게이트 산화막(217)을 성장시킨 후, CVD를 이용하여 폴리 실리콘을 도포한 다음에, 평탄화 공정인 CMP(Chemical Mechanical Polishing)를 실시하여 일 예로, 도 2f에 도시된 바와 같이 폴리 게이트(219)를 형성한다. Subsequently, the dummy
다음으로, 폴리 게이트(219)가 형성된 실리콘 질화막(Si3N4)(213)에 대하여 식각 공정(예컨대, 습식 방식)을 실시하여 일 예로, 도 2g에 도시된 바와 같이 실리콘 질화막(Si3N4)(213)을 선택적으로 제거한다. Next, an etching process (eg, a wet method) is performed on the silicon nitride film (Si 3 N 4 ) 213 on which the
마지막으로, 실리콘 질화막(Si3N4)(213)을 제거하는 공정에서 발생되는 폴리 에지 게이트 산화막을 회복시키기 위하여 저온(예컨대, 750℃ 이하)에서 측벽 산화막(oxidation) 공정과 TEOS 및 실리콘 질화막(Si3N4)을 이용하여 폴리 게이트(219)의 측벽에 스페이서(221)를 형성시킨 다음에, 소오스/드레인 임플란트 공정(223)을 진행하여 일 예로, 도 2h에 도시된 바와 같이 스페이서(219) 양쪽 기판내에 고농도 의 불순물(n+/p+)이 주입된 소오스/드레인 접합층(225)을 형성한다. 여기서, TEOS는 15㎚∼25㎚ 범위의 두께로 형성하고, 실리콘 질화막(Si3N4)은 50㎚∼80㎚ 범위의 두께로 형성하는 것이 바람직하다.Finally, in order to recover the poly-edge gate oxide film generated in the process of removing the silicon nitride film (Si 3 N 4 ) 213, the sidewall oxidation process and the TEOS and silicon nitride film ( The
이상 설명한 바와 같이, 본 발명은 더미 산화막 폴리 게이트를 이용하여 얕은 소오스/드레인 LDD 접합층 구조의 익스텐션을 미리 형성시킨 후, 실리콘 질화막(Si3N4)을 이용한 응력 기억을 적용하여 서멀에 의한 응력 완화를 최소화함으로써, 누설 전류가 증가하게 되는 요인을 개선하고 이로 인하여 고집적 회로에서 파워 증가를 억제할 수 있다. As described above, in the present invention, an extension of a shallow source / drain LDD junction layer structure is formed in advance using a dummy oxide poly gate, and then a stress caused by thermal is applied by applying a stress memory using a silicon nitride film (Si 3 N 4 ). By minimizing mitigation, it is possible to improve the factor that increases leakage current and thereby suppress power increase in highly integrated circuits.
한편 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되지 않으며, 후술되는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다. Meanwhile, in the detailed description of the present invention, specific embodiments have been described, but various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the scope of the following claims, but also by those equivalent to the scope of the claims.
도 1은 반도체 소자의 MOSFET 구조를 나타낸 단면도,1 is a cross-sectional view showing a MOSFET structure of a semiconductor device,
도 2a 내지 도 2h는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 각 공정별 수직 단면도.2A to 2H are vertical cross-sectional views of respective processes for explaining a method of manufacturing a semiconductor device according to a preferred embodiment of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
201 : 반도체 기판 203 : 서멀 산화막201: semiconductor substrate 203: thermal oxide film
205 : 웰 임플란트 공정 207 : 더미 산화막 폴리 게이트205
209 : LDD 임플란트 공정 211 : 익스텐션209: LDD implant process 211: Extension
213 : 실리콘 질화막(Si3N4) 217 : 게이트 산화막213: silicon nitride film (Si 3 N 4 ) 217: gate oxide film
219 : 폴리 게이트 221 : 스페이서219
223 : 소오스/드레인 임플란트 공정223 source / drain implant process
225 : 소오스/드레인 접합층225: source / drain bonding layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070121143A KR100935773B1 (en) | 2007-11-26 | 2007-11-26 | Method for manufacturing of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070121143A KR100935773B1 (en) | 2007-11-26 | 2007-11-26 | Method for manufacturing of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090054338A KR20090054338A (en) | 2009-05-29 |
KR100935773B1 true KR100935773B1 (en) | 2010-01-06 |
Family
ID=40861515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070121143A KR100935773B1 (en) | 2007-11-26 | 2007-11-26 | Method for manufacturing of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100935773B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9653572B2 (en) | 2015-01-30 | 2017-05-16 | Samsung Electronics Co., Ltd. | Method for fabricating semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015749A (en) | 1999-07-02 | 2001-01-19 | Sony Corp | Manufacture of semiconductor device |
JP2001044421A (en) * | 1999-07-27 | 2001-02-16 | Mitsubishi Electric Corp | Manufacture of misfet |
US20020025638A1 (en) | 2000-02-07 | 2002-02-28 | United Microelectronics Corp. | Reducing lithography limitation by reverse-offset spacer process |
KR20070100028A (en) * | 2006-04-06 | 2007-10-10 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device |
-
2007
- 2007-11-26 KR KR1020070121143A patent/KR100935773B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015749A (en) | 1999-07-02 | 2001-01-19 | Sony Corp | Manufacture of semiconductor device |
JP2001044421A (en) * | 1999-07-27 | 2001-02-16 | Mitsubishi Electric Corp | Manufacture of misfet |
US20020025638A1 (en) | 2000-02-07 | 2002-02-28 | United Microelectronics Corp. | Reducing lithography limitation by reverse-offset spacer process |
KR20070100028A (en) * | 2006-04-06 | 2007-10-10 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9653572B2 (en) | 2015-01-30 | 2017-05-16 | Samsung Electronics Co., Ltd. | Method for fabricating semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR20090054338A (en) | 2009-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9978870B2 (en) | FinFET with buried insulator layer and method for forming | |
US8900956B2 (en) | Method of dual EPI process for semiconductor device | |
KR100844933B1 (en) | Transistor in semiconductor device and method for manufacturing the same | |
US8828832B2 (en) | Strained structure of semiconductor device | |
US8530316B2 (en) | Method for fabricating a semiconductor device | |
US9761718B2 (en) | Semiconductor device and method for manufacturing same | |
US8343872B2 (en) | Method of forming strained structures with compound profiles in semiconductor devices | |
US20110147810A1 (en) | Method of fabricating strained structure in semiconductor device | |
WO2006117734A1 (en) | Method of manufacturing a semiconductor device and semiconductor device obtained by means of said method | |
US7608498B2 (en) | Method of manufacturing semiconductor device | |
US8574978B1 (en) | Method for forming semiconductor device | |
GB2489067A (en) | Transistor and manufacturing method thereof | |
US20120238086A1 (en) | Reducing equivalent thickness of high-k dielectrics in field effect transistors by performing a low temperature anneal | |
US7238581B2 (en) | Method of manufacturing a semiconductor device with a strained channel | |
CN104795362A (en) | Method for making semiconductor device | |
KR100935773B1 (en) | Method for manufacturing of semiconductor device | |
CN105097534A (en) | Method of manufacturing semiconductor device | |
KR100906051B1 (en) | Method for manufacturing of semiconductor device | |
CN111755336B (en) | Preparation method of field effect transistor, field effect transistor and semiconductor substrate | |
KR100666933B1 (en) | Method for fabricating semiconductor device | |
CN107623034B (en) | Semiconductor device, preparation method and electronic device | |
KR100714929B1 (en) | Strained finfet cmos device structures | |
JP2007116044A (en) | Method of manufacturing semiconductor device | |
KR20100018830A (en) | Fabrication method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |