KR100845403B1 - Manufacturing method for organic-inorganic hybrid coating solution for ambient thermal polymerization - Google Patents
Manufacturing method for organic-inorganic hybrid coating solution for ambient thermal polymerization Download PDFInfo
- Publication number
- KR100845403B1 KR100845403B1 KR1020070036952A KR20070036952A KR100845403B1 KR 100845403 B1 KR100845403 B1 KR 100845403B1 KR 1020070036952 A KR1020070036952 A KR 1020070036952A KR 20070036952 A KR20070036952 A KR 20070036952A KR 100845403 B1 KR100845403 B1 KR 100845403B1
- Authority
- KR
- South Korea
- Prior art keywords
- acrylate
- titanium
- methacrylate
- zirconium
- aluminum
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/80—Processes for incorporating ingredients
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
Description
도 1은 본 발명에 따른 유/무기 하이브리드 코팅제의 화학적 구조 개요도.1 is a schematic diagram of the chemical structure of an organic / inorganic hybrid coating agent according to the present invention.
도 2는 본 발명에 따라 제조된 유/무기 하이브리드 코팅제를 이용한 코팅층의 경도를 나타낸 그래프.Figure 2 is a graph showing the hardness of the coating layer using an organic / inorganic hybrid coating prepared according to the present invention.
도 3 기존의 UV 중합 코팅층 (A; 비커스경도 131 MPa)과 본 발명의 코팅제를 사용한 코팅층의 다이아몬드 압입자의 압입 흔적을 50배의 비율로 각각 나타내는 사진Figure 3 is a photograph showing the indentation traces of the diamond indenter of the conventional UV polymerization coating layer (A; Vickers hardness 131 MPa) and the coating layer of the present invention at 50 times the ratio, respectively.
도 4는 본 발명의 코팅제를 이용한 코팅층의 비커스 경도와 박리 특성을 나타내는 그래프.4 is a graph showing the Vickers hardness and peeling characteristics of the coating layer using the coating agent of the present invention.
도 5는 본 발명의 코팅제의 중합온도와 중합시간에 따른 비커스 경도를 나타내는그래프.5 is a graph showing the Vickers hardness according to the polymerization temperature and polymerization time of the coating agent of the present invention.
도 6은 본 발명의 유/무기 하이브리드 코팅제를 플라스틱 기판 위에 분무 도장하였을 때, 도장 직후 코팅층에 인위적으로 주름을 형성시킨 사진(C)과, 5분 뒤의 코팅층의 레벨링 상태를 나타낸 사진(D), 이를 75℃에서 1시간 동안 경화시킨 후 표면 광택을 나타내는 사진(E)을 각각 1.5배로 확대한 사진.6 is a photo (C) artificially formed wrinkles on the coating layer immediately after the coating when the organic / inorganic hybrid coating agent of the present invention is spray-coated on a plastic substrate, and the photo (D) showing the leveling state of the coating layer after 5 minutes , After curing it at 75 ° C. for 1 hour, photographs (E) showing surface gloss were magnified 1.5 times, respectively.
도 7은 본 발명의 유/무기 하이브리드 코팅제를 이용한 코팅층의 x-cut 시험 실시 후 모습을 2배로 확대한 사진.Figure 7 is a photograph enlarged twice the appearance after the x-cut test of the coating layer using the organic / inorganic hybrid coating of the present invention.
도 8은 본 발명의 유/무기 하이브리드 코팅제 코팅층의 표면 거칠기를 측정한 결과를 나타내는 도면.8 is a view showing the results of measuring the surface roughness of the organic / inorganic hybrid coating agent coating layer of the present invention.
도 9는 본 발명의 유/무기 하이브리드 코팅제의 코팅층 단면을 주사전자현미경으로 관찰하여 1500배 확대한 사진.Figure 9 is an enlarged photograph 1500 times by observing the cross section of the coating layer of the organic / inorganic hybrid coating of the present invention by a scanning electron microscope.
본 발명은 공기 중 열중합이 가능한 유/무기 하이브리드 코팅제 및 그 제조방법과 열경화방법에 관한 것으로, 보다 상세하게는 공기 중에서 간단히 열중합 방식으로 경화할 수 있는 도료를 제공하여 우수한 내마모성 코팅 특성을 얻을 수 있도록 하는 공기 중 열중합이 가능한 유/무기 하이브리드 코팅제 및 그 제조방법과 열경화방법에 관한 것이다.The present invention relates to an organic / inorganic hybrid coating agent capable of thermal polymerization in air, a method of manufacturing the same, and a heat curing method, and more particularly, to provide a coating material that can be cured simply by thermal polymerization in air, thereby providing excellent wear resistance coating properties. The present invention relates to an organic / inorganic hybrid coating agent capable of thermal polymerization in air, a method for preparing the same, and a thermosetting method.
현재 휴대폰 케이스를 비롯한 디지털카메라, 노트북 케이스, 자동차 외장, 자동차 부품, 액정 보호부, 인쇄 분야 등 여러 분야에서 표면 보호를 위한 아크릴 고분자 코팅이 널리 응용되고 있다.Currently, acrylic polymer coatings for surface protection are widely applied in various fields such as mobile phone cases, digital cameras, notebook cases, automobile exteriors, automotive parts, LCD protective parts, and printing fields.
특히, 휴대폰 케이스 경우 하도 페인트 도장을 하고 난 후 상도 투명 도장을 하는데, 대부분은 UV 중합 기술을 사용하고 있지만, 기존의 아크릴 고분자 코팅만으로는 내마모성을 현저히 개선할 수 없으며, 낮은 내마모 특성으로 인해 표면 스 크래치가 많이 발생하고, 코팅층의 계면 결합력에 한계가 있어 경질피막용 코팅으로서의 내구성에 한계를 나타내고 있다.Particularly, in case of mobile phone case, the top coat is applied after paint coating. Most of them use UV polymerization technology, but the existing acrylic polymer coating alone cannot significantly improve the wear resistance. A lot of scratches occur, and there is a limit in the interfacial bonding strength of the coating layer, which shows a limit in durability as a coating for hard coating.
아울러, 최근 국내외적으로 환경 규제 강화에 따라, UV 사용 규제 및 UV 코팅 용액에 함유된 자일렌, 톨루엔, 벤젠 등과 같은 유해 용매에 대한 사용 규제로 인해 도료 코팅분야에서도 UV 코팅 및 중합 방식은 상당한 제약을 받고 있으며, 동 분야에서 친수성 도료로 동향이 변화하고 있다. 아울러, 표면 내마모를 비롯한 내약품성, 계면 결합력 등이 문제점으로 대두되어 보다 더 가혹한 환경에 견딜 수 있는 품질을 요구하고 있다.In addition, due to the recent strengthening of environmental regulations at home and abroad, UV coating and polymerization methods have been considerably restricted in the coating coating field due to restrictions on the use of UV and restrictions on the use of harmful solvents such as xylene, toluene and benzene in UV coating solutions. The trend is changing to hydrophilic coatings in this field. In addition, surface wear resistance, chemical resistance, interfacial bonding strength and the like has emerged as a problem is demanding quality that can withstand more harsh environments.
이에 따라, 국내 휴대폰 케이스 제조업체를 비롯한 각종 코팅기업체에서는 향후 고분자 코팅의 UV 관련 환경 규제에 대비하면서 UV 중합을 대체할 코팅 기술 및 코팅용액에 대한 요구가 커지고 있고, 동시에 고분자 재료의 UV 중합에 따른 고가의 장치와 이에 대한 높은 유지비용을 대체하여 원가를 절감할 수 있는 방안이 모색 되고 있다. 이러한 원가절감 방안과 함께, 코팅층의 내마모성과 계면결합력 측면에서 품질 향상을 더 높이기 위한 노력이 절실하게 요구되고 있다.Accordingly, various coating equipment manufacturers including domestic mobile phone case manufacturers are increasing the demand for coating technology and coating solution to replace UV polymerization while preparing for UV related environmental regulations of polymer coating, and at the same time, high price due to UV polymerization of polymer material The company is looking for ways to reduce the cost by replacing the device and the high maintenance cost. Along with such cost reduction measures, efforts to further improve quality in terms of wear resistance and interfacial bonding strength of the coating layer are urgently required.
이러한 요구에 따라 개발되어 사용되고 있는 방법 중 기존의 라디칼 중합 공정에서는 진공 또는 질소분위기에서 중합해야하므로 양산에 부적합하며, 스퍼터링과 아노다이징의 경우 광택성은 우수하나 양산에 부적합하며, 아노다이징 경우 유해용매를 사용하는 단점이 있다.Among the methods developed and used according to these requirements, the conventional radical polymerization process is required to polymerize in a vacuum or nitrogen atmosphere, so it is not suitable for mass production, and sputtering and anodizing are not suitable for mass production but are not suitable for mass production. There are disadvantages.
상기한 문제점을 해결하기 위한 본 발명의 목적은 유기 아크릴 고분자에 무 기 세라믹을 주성분으로 하여 구성하며, 계면활성제 또는 결합제를 첨가하여 유기 및 무기 성분을 투명하게 하이브리드화하고 세라믹 나노 입자를 첨가함으로써 코팅층의 내마모성, 내화학성 및 계면 결합력을 현저히 향상시키고, 도료 도장 후 공기 중에서 열중합에 의해 경질 피막 형성이 가능하도록 하여 모재의 표면 스크래치를 방지할 뿐만 아니라, 기존의 환경 규제를 받고 있는 UV 코팅 방식을 원천적으로 대체할 수 있도록 하는 데 있다.An object of the present invention for solving the above problems is composed of inorganic ceramics as the main component to the organic acrylic polymer, by adding a surfactant or a binder to transparently hybridize the organic and inorganic components and to add the ceramic nanoparticles coating layer Significantly improves the wear resistance, chemical resistance and interfacial bonding strength of the coating, and enables hard film formation by thermal polymerization in air after coating. To replace it at its source.
상기한 목적을 달성하기 위한 본 발명의 코팅제는 아크릴 고분자 수지와, 상기한 아크릴 고분자 수지의 중량에 대하여 5-35중량% 첨가된 졸겔 무기 세라믹 전구체, 상기의 유기 아크릴 고분자 수지 및 무기 세라믹을 서로 연결시키고 있는 계면활성제 또는 결합제와, 총 중량에 대하여 0.1~5중량% 첨가되는 세라믹 나노입자를 포함한다.The coating agent of the present invention for achieving the above object is connected to the acrylic polymer resin, the sol-gel inorganic ceramic precursor added to the weight of the acrylic polymer resin, the organic acrylic polymer resin and the inorganic ceramic added to each other Surfactant or a binder, and ceramic nanoparticles added at 0.1 to 5% by weight based on the total weight.
그리고, 상기한 도료의 제조방법은, 에폭시계, 우레탄계, 실리콘계, 폴리에스테르계, 폴리에테르계, 폴리에틸렌계, 멜라민계중에서 1종 이상 선택된 아크릴 고분자 수지와 상기한 아크릴 고분자 수지에 대하여 1~30중량%의 메탄올, 에탄올, 부탄올, 이소부탄올, 프로판올, 이소프로판올 중에서 1종 이상 선택된 알코올계 용매를 교반하는 고분자용액 제조 단계; 무기 세라믹을 상기한 아크릴 고분자 수지의 중량에 대하여 5-35중량% 첨가하고, 상기한 무기 세라믹에 4-10배의 몰 수에 해당하는 증류수를 첨가하여 교반하는 세라믹 가수분해 단계; 상기한 고분자용액과 세라믹 가수분해 용액의 총중량에 대하여 양이온성, 음이온성, 또는 비이온성 계면활성제 0.5-5중량% 혹은 실란계, 실라제인계, 실록산계 중에서 1종 이상 선택되고 고 분자용액과 세라믹 가수분해 용액의 총중량에 대하여 0.5~20중량% 첨가되는 결합제를 하나 혹은 모두 첨가하여 하이브리드 용액을 제조하는 단계; 상기한 하이브리드 용액에 실리카, 알루미나, 지르코니아 등의 세라믹 나노입자를 하이브리드 용액 총 중량에 대하여 0.1~5중량% 첨가하는 단계를 포함하여 코팅제를 형성하는 것이다.In addition, the method for producing the paint is 1 to 30% by weight based on the acrylic polymer resin and at least one selected from the group consisting of epoxy, urethane, silicone, polyester, polyether, polyethylene and melamine. Preparing a polymer solution for stirring at least one alcohol solvent selected from% methanol, ethanol, butanol, isobutanol, propanol, and isopropanol; A ceramic hydrolysis step of adding an inorganic ceramic to 5-35 wt% based on the weight of the acrylic polymer resin, and adding and stirring distilled water corresponding to 4-10 times the number of moles to the inorganic ceramic; 0.5-5% by weight of cationic, anionic, or nonionic surfactant or silane, silazane, or siloxane based on the total weight of the polymer solution and the ceramic hydrolysis solution. Preparing a hybrid solution by adding one or both binders added in an amount of 0.5 to 20% by weight based on the total weight of the hydrolysis solution; It is to form a coating agent comprising adding 0.1 to 5% by weight of the ceramic nanoparticles, such as silica, alumina, zirconia and the like to the hybrid solution to the total weight of the hybrid solution.
상기한 구성에서 고분자 용액 제조 단계에서는 아크릴계 모노머가 아크릴 고분자 수지에 대하여 5-30중량% 더 첨가되어 교반되고, 가수분해 단계에서 용매로 에탄올을 무기 세라믹에 2-10배몰 수로 더 첨가한다.In the above-described configuration, in the polymer solution preparation step, the acrylic monomer is further stirred by 5-30% by weight based on the acrylic polymer resin, and in the hydrolysis step, ethanol is further added to the inorganic ceramic in a 2-10-fold molar number.
그리고, 상기한 코팅제에는 중합개시제를 0.1~5중량% 첨가하고, 도장 첨가제 즉 레벨링제를 0.1~2중량% 더 첨가하여 교반한다.In addition, 0.1 to 5% by weight of a polymerization initiator is added to the coating agent, and 0.1 to 2% by weight of a coating additive, that is, a leveling agent, is further added and stirred.
한편, 본 발명에 따른 도료의 열경화 방법은 상기한 바와 같이 구성된 코팅제에 중합개시제를 총중량에 대하여 0.5~5중량%와 레벨링제를 0.1~2중량% 더 첨가하여 공기 혹은 질소, 아르곤 등의 불활성 가스 분위기에서 금속, 플라스틱, 세라믹 모재에 분무 코팅되어 60-90℃에서 30분~4시간 열중합된다.On the other hand, the thermosetting method of the paint according to the present invention by adding 0.5 to 5% by weight of the polymerization initiator and 0.1 to 2% by weight of the leveling agent to the coating agent configured as described above to inert air or nitrogen, argon, etc. It is spray-coated on metal, plastic and ceramic base materials in a gas atmosphere and thermally polymerized at 60-90 ° C for 30 minutes to 4 hours.
상기한 구성에서 아크릴 고분자 수지는, 에폭시계, 우레탄계, 실리콘계, 폴리에스테르계, 폴리에테르계, 폴리에틸렌계, 멜라민계 등에서 선택되는 수지를 1 종 이상 사용하는 것으로서, 구체적으로 기술하면, 에폭시계 수지로서 에폭시 수지(epoxy resin), 에폭시 메타디아크릴레이트(epoxy methadiacrylate), 폴리(비스페놀에이-공중합-에피클로로하이드린) 에폭시 수지 (poly(bisphenol A-co-epichlorohydrin) based on epoxy resin), 비스페놀에이 주재 에폭시 수지의 디글리시딜 에테르 (diglycidyl ether of bisphenol A-based epoxy resins), 에폭시아크릴레이트 올리고머(epoxyacrylate oligomer), 페놀-우레탄 수지(phenol-urethane resin), 우레탄 수지(urethane resin), 폴리우레탄 수지(polyurethane resin), 디우레탄 디메타크릴레이트(diurethane dimethacrylate), 알릴기 지방족 우레탄 디아크릴레이트(allyl aliphatic urethane diacrylate), 우레탄 아크릴레이트(urethane acrylate), 지방족 우레탄 메타크릴레이트(aliphatic urethane methacrylate), 지방족 우레탄 디아크릴레이트(aliphatic urethane diacrylate), 폴리우레탄 디올(polyurethane diol), 폴리메틸 실록산(polydimethyl siloxane), 실리콘 아크릴레이트(silicone acrylate), 실리콘 디아크릴레이트(silocone diacrylate), 실리콘 헥사아크릴레이트(silocone hexaacrylate), 폴리에스테르계 수지로서 폴리에스테르 스티렌 수지(polyester styrene resin), 폴리에스테르 아크릴레이트(polyester acrylate), 폴리에스테르 트리아크릴레이트(polyester triacrylate), 폴리에스테르 테트라아크릴레이트(polyester tetraacrylate), 폴리에스테르 헥사아크릴레이트(polyester hexaacrylate), 폴리에스테르 우레탄 아크릴레이트(polyester urethane acrylate), 폴리에테르 아크릴레이트(polyether acrylate), 폴리에테르 테트라아크릴레이트(polyether tetraacrylate), 폴리에테르 우레탄 아크릴레이트(polyether urethane acrylate)가 있고, 폴리에틸렌 수지(polyethylene resin), 폴리에틸렌 글리콜 아크릴레이트(polyethylene glycol acrylate), 폴리에틸렌 글리콜 디아크릴레이트(polyethylene glycol diacrylate), 폴리에틸렌 글리콜 메틸 에테르 아크릴레이트(polyethylene glycol methyl ether acrylate), 폴리에틸렌-공중합-메타크릴레이트(polyethylene-co-methacrylate), 폴리에틸렌-공중합-에틸 아크릴레이트(polyethylene-co-ethyl acrylate), 폴리에틸렌-공중합-메틸 아크릴레이트 (polyethylene-co-methyl acrylate), 멜라민 수지(melamine resin), 트리클로로멜라민(trichloromelamine), 폴리멜라민-공중합-포름알데히드 (polymelamine-co-formaldehyde), 헥사키스메톡시메틸 멜라민(hexakismethoxymethyl melamine), 부틸레이티드 멜라민(butylated melamine), 이소부틸레이티드 멜라민(isobutylated melamine), 이소부틸레이티드 우레아 멜라민(isobutylated urea melamine), 트리나프틸메틸 멜라민(trinaphthylmethyl melamine)이 있다.In the above-described configuration, the acrylic polymer resin is one or more resins selected from epoxy, urethane, silicone, polyester, polyether, polyethylene, melamine, and the like. Epoxy Resin, Epoxy Methadiacrylate, Poly (bisphenol A-co-epichlorohydrin) based on Epoxy Resin, Bisphenol A Diglycidyl ether of bisphenol A-based epoxy resins, epoxyacrylate oligomers, phenol-urethane resins, urethane resins, polyurethane resins (polyurethane resin), diurethane dimethacrylate, allyl aliphatic urethane di acrylate, urethane acrylate, aliphatic urethane methacrylate, aliphatic urethane diacrylate, polyurethane diol, polydimethyl siloxane, silicone Acrylate (silicone acrylate), silicone diacrylate (silocone diacrylate), silicone hexaacrylate (silocone hexaacrylate), polyester resins, polyester styrene resin, polyester acrylate (polyester acrylate), poly Polyester triacrylate, polyester tetraacrylate, polyester hexaacrylate, polyester urethane acrylate, polyether acrylate, poly Ether tetraacrylate Polyether tetraacrylate, polyether urethane acrylate, polyethylene resin, polyethylene glycol acrylate, polyethylene glycol diacrylate, polyethylene glycol methyl Polyethylene glycol methyl ether acrylate, polyethylene-co-methacrylate, polyethylene-co-ethyl acrylate, polyethylene-co-ethyl acrylate ( polyethylene-co-methyl acrylate, melamine resin, trichloromelamine, polymelamine-co-formaldehyde, hexakismethoxymethyl melamine, butyl ray Butylated melamine, isobutylated melamine melamine), isobutylated urea melamine, and trinaphthylmethyl melamine.
그리고, 아크릴계 모노머로서, 메틸 아크릴레이트(methyl acrylate), 에틸 아크릴레이트(ethyl acrylate), 부틸 아크릴레이트(butyl acrylate), 이소부틸 아크릴레이트(isobutyl acrylate), 하이드록시에틸 아크릴레이트(hydroxyehtyl acrylate), 메틸 메타크릴레이트(methyl methacrylate), 에틸 메타크릴레이트(ethyl methacrylate), 부틸 메타크릴레이트(butyl methacrylate), 이소부틸 메타크릴레이트(isobutyl methacrylate), 알릴 메타크릴레이트(allyl methacrylate), 에틸렌 글리콜 디메타크릴레이트(ethylene glycol dimethacrylate), 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate), 글리시딜 메타크릴레이트(glycidyl methacrylate), 헥산디올 디아크릴레이트(hexandiol diacrylate), 헥산디올 디메타크릴레이트(hexandiol dimethacrylate), 트리메틸로프로판 트리메타크릴레이트(trimethylopropane trimethacrylate), 에틸렌-3-에톡시 아크릴레이트(ethyl-3-ethoxy acrylate), 트리에틸렌 글리콜 디메타크릴레이트(triethylene glycol dimethacrylate), 하이드록시프로필 아크릴레이트(hydroxypropyl acrylate), 하이드록시프로필 메타크릴레이트(hydroxypropyl methacrylate), 하이드록시부틸 아크릴레이트(hydroxybutyl acrylate), 에톡시에틸 아크릴레이트(ethoxyethyl acrylate), 에톡시에틸 메타크릴레이트(ethoxyethyl methacrylate), 에틸헥실 아크릴레이트(ethylhexyl acrylate), 에틸헥실 메타크릴레이트(ethylhexyl methacrylate), 라우릴 아크릴레이트(lauryl acrylate), 라우릴 메타크릴레이트(lauryl methacrylate), 에틸렌 디아크릴레이트(ethylene diacrylate), 에틸-3-에톡시 아크릴레이트(ethyl-3-amino-3-ethoxy acrylate), 3차부틸 아크릴레이트(tert-butyl acrylate), 트리메틸시릴 메타크릴레이트(trimethylsilyl methacrylate), 트리프로필렌 글리콜 디아크릴레이트(tripropylene glycol diacrylate), 헥사플루오로이소프로필 아크릴레이트(hexafluoroisopropyl acrylate), 헥스플루오로이소프로필 메타크릴레이트(hexafluoroisopropyl methacrylate), 페닐 메타크릴레이트(phenyl methacrylate), 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 폴리에틸렌 글리콜 페닐 에테르 아크릴레이트(polyehtylene glycol phenyl ether acrylate), 2-하이드록시-3-페녹시프로필 아크릴레이트(2-hydroxy-3-phenoxypropyl acrylate), 에틸렌 글리콜 디시클로펜테닐 에테르 아크릴레이트(ethylene glycol dicyclopentenyl ether acrylate), 에틸렌 글리콜 디시클로펜테닐 에테르 메타크릴레이트(ethylene glycol dicyclopentenyl ether methacrylate), 소디움 아크릴레이트(sodium acrylate), 소디움 메타크릴레이트(sodium methacrylate), 트리데실 메타크릴레이트(tridecyl methacrylate), 헥실 아크릴레이트(hexyl acrylate), 헥실 메타크릴레이트(hexyl methacrylate), 이소데실 아크릴레이트(isodecyl acrylate), 이소데실 메타크릴레이트(isodecyl methacrylate), 시클로헥실 메타크릴레이트(cyclohexyl methacrylate), 벤질 메타크릴레이트(benzyl methacrylate), 벤질 2-에틸 아크릴레이트(benzyl 2-ethyl acrylate), 에틸 2-N-프로필 아크릴레이트(ethyl 2-N-propyl acrylate, benzyl 2-N-propyl acrylate), 징크 아크릴레이트(zinc acrylate), 부탄디올 디아크릴레이트(butanediol diacrylate), 부탄디올 디메타크릴레이트(butanediol dimethacrylate), 비닐 아크릴레이트(vinyl acrylate), 비닐 메타크릴레이트(vinyl methacrylate)중에서 하나 이상 선택된다.And, as the acrylic monomer, methyl acrylate (methyl acrylate), ethyl acrylate (ethyl acrylate), butyl acrylate (butyl acrylate), isobutyl acrylate (isobutyl acrylate), hydroxyethyl acrylate (hydroxyehtyl acrylate), methyl Methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, allyl methacrylate, ethylene glycol dimethacryl Ethylene glycol dimethacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, hexandiol diacrylate, hexanediol dimethacrylate, Trimethylopropane trimethacrylate, ethylene-3-ethoxy acryl Ethyl-3-ethoxy acrylate, triethylene glycol dimethacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate hydroxybutyl acrylate), ethoxyethyl acrylate, ethoxyethyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, lauryl acrylate acrylate, lauryl methacrylate, ethylene diacrylate, ethyl-3-amino-3-ethoxy acrylate, tert-butyl acrylate (tert) -butyl acrylate), trimethylsilyl methacrylate, tripropylene glycol diacryla te), hexafluoroisopropyl acrylate, hexafluoroisopropyl methacrylate, phenyl methacrylate, tetraethylene glycol diacrylate, polyethylene Polyehtylene glycol phenyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethylene glycol dicyclopentenyl ether acrylate acrylate), ethylene glycol dicyclopentenyl ether methacrylate, sodium acrylate, sodium methacrylate, tridecyl methacrylate, hexyl acryl Hexyl acrylate, hexyl methacrylate l methacrylate, isodecyl acrylate, isodedecyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, benzyl 2-ethyl acrylate 2-ethyl acrylate), ethyl 2-N-propyl acrylate, benzyl 2-N-propyl acrylate, zinc acrylate, butanediol diacrylate, butanediol At least one selected from butanediol dimethacrylate, vinyl acrylate and vinyl methacrylate.
무기 세라믹으로서, 테트라메틸 오소실리케이트(tetramethyl orthosilicate), 테트라에틸 오소실리케이트(tetraethyl orthosilicate), 테트라프로필 오소실리케이트(tetrapropyl orthosilicate), 테트라키스(2-하이드록시에틸) 오소실리케이트(tetrakis (2-hydroxyethyl) orthosilicate), 리튬 오소실리케이트(lithium orthosilicate), 세슘 알루미늄 오소실리케이트(cecium aluminum orthosilicate), 테트라부틸 오소실리케이트(tetrabutyl orthosilicate), 알루미늄 세크-부톡사이드)aluminum sec-butoxide, 알루미늄 트리부톡사이드(aluminum tributoxide), 알루미늄 에톡사이드(aluminum ethoxide), 디에틸 알루미늄 에톡사이드(diethyl aluminum ethoxide), 알루미늄 이소프로폭사이드(aluminum isopropoxide), 알루미늄 3차-부톡사이드(aluminum tert-butoxide), 알루미늄 니트레이트 안하이드라이드(aluminum nitrate anhydride), 알루미늄 니트레이트 노나하이드레이트(aluminum nitrate nonahydrate), 알루미늄 나이트레이트 에네아하이드레이트 (aluminum nitrate eneahydrate), 알루미늄 페녹사이드(aluminum phenoxide), 지르코늄 아세틸아세토네이트(zirconium acetylacetonate), 지르코늄 비스(디에틸 시트라토) 디프로폭사이드(zirconium bis(diethyl citrato) dipropoxide), 지르코늄 3차-부톡사이드(zirconium tert-butoxide), 지르코늄 에톡사이드(zirconium ethoxide), 지르코늄 이소프로폭사이드(zirconium isopropoxide), 지르코늄 트리플루오로아세틸 아세토네이트(zirconium trifluoroacetyl acetonate), 지르코늄 테트라키스(2,2,6,6-테트라메틸-3,5-헵탄디오네이트)(zirconium tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionate)), 지르코늄 디이소프로폭사이드 비스(2,2,6,6-테트라메틸-3,5-헵탄디오네이트(zirconium diisopropoxide bis(2,2,6,6-tetramethyl-3,5-heptanedionate)), 지르코늄 클로라이드(zirconium chloride), 티타늄 비스(에틸 아세토아세테이토) 디이소프포폭사이드(titanium bis(ethyl acetoacetato) diisopropoxide), 티타늄 부톡사이드(titanium butoxide), 티타늄 3차-부톡사이드(titanium tert-butoxide), 티타늄 클로라이드(titanium chloride), 티타늄 디이소프로폭사이드 비스(아세틸아세토네이트)(titanium diisopropoxide bis(acetylacetonate)), 티타늄 디이소프로폭사이드 비스(2,2,6,6-테트라메틸-3,5-헵탄디오네이트)(titanium diisopropoxide bis(2,2,6,6-tetramethyl-3,5-heptanedionate)), 티타늄 에톡사이드(titanium ethoxide), 티타늄 2-에틸-1,3-헥산디올레이트 (titanium 2-ethyl-1,3-hexanediolate), 티타늄 2-에틸헥실옥사이드 (titanium 2-ethylhexyloxide), 티타늄 이소프로폭사이드(titanium isopropoxide), 티타늄 메톡사이드(titanium methoxide), 티타늄 나이트레이트(titanium nitrate), 티타늄 옥사이드 아세틸아세토네이트(titanium oxide acetylacetonate), 티타늄 프로폭사이드(titanium propoxide), 티타늄(트리에탄올아미네이토) 이소프로폭사이드(titanium (triethanolaminato) isopropoxide)중에서 하나 이상 선택된다.As an inorganic ceramic, tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate, tetrakis (2-hydroxyethyl) orthosilicate ), Lithium orthosilicate, cesium aluminum orthosilicate, tetrabutyl orthosilicate, aluminum sec-butoxide, aluminum sec-butoxide, aluminum tributoxide, aluminum Ethoxide (aluminum ethoxide), diethyl aluminum ethoxide, aluminum isopropoxide, aluminum tert-butoxide, aluminum nitrate anhydride anhydride), aluminum nitrate nonahai Aluminum nitrate nonahydrate, aluminum nitrate eneahydrate, aluminum phenoxide, zirconium acetylacetonate, zirconium bis (diethyl citrato) dipropoxide bis (diethyl citrato) dipropoxide, zirconium tert-butoxide, zirconium ethoxide, zirconium isopropoxide, zirconium trifluoroacetyl acetonate ), Zirconium tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate), zirconium tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate), zirconium diiso Zirconium diisopropoxide bis (2,2,6,6-tetramethyl-3,5-heptanedionate), zirconium chloride chloride), tee Titanium bis (ethyl acetoacetato) diisopropoxide, titanium butoxide, titanium tert-butoxide, titanium chloride , Titanium diisopropoxide bis (acetylacetonate), titanium diisopropoxide bis (2,2,6,6-tetramethyl-3,5-heptanedionate) ( titanium diisopropoxide bis (2,2,6,6-tetramethyl-3,5-heptanedionate), titanium ethoxide, titanium 2-ethyl-1,3-hexanediolate (titanium 2-ethyl-1, 3-hexanediolate, titanium 2-ethylhexyloxide, titanium isopropoxide, titanium methoxide, titanium nitrate, titanium oxide acetylacetonate titanium oxide acetylacetonate) Propoxide (titanium propoxide), titanium (triethanol amino Nei Sat) is selected one or more of the isopropoxide (titanium (triethanolaminato) isopropoxide).
계면활성제로서, 폴리옥시에틸렌 노닐 페닐 에테르(polyoxyethylene nonyl phenyl ether), 폴리옥시에틸렌 옥틸 페닐 에테르(polyoxyethylene octyl phenyl ether), 폴리옥시에틸렌 라우릴 에테르(polyoxyethylene lauryl ether), 폴리옥시에틸렌 세틸 에테르(polyoxyethylene cetyl ether), 폴리옥시오틸렌 스테아릴 에테르(polyoxyothylene stearyl ether), 폴리옥시에틸렌 올레익 에테르(polyoxyethylene oleic ether), 폴리옥시에틸렌 브랜치드 데실 에테르(polyoxyethylene branched decyl ether), 폴리옥시에틸렌 트리데실 에테르(polyoxyethylene tridecyl ether), 폴리옥시에틸렌 라우릴 아민(polyoxyethylene lauryl amine), 폴리옥시에틸렌 스테아릴 아민(polyoxyethylene stearyl amine), 폴리옥시에틸렌 올레익 아민(polyoxyethylene oleic amine), 폴리옥시에틸렌 탤로 아민(polyoxyethylene tallow amine)이 있으며, 이중에서 1종 이상 선택되어 사용된다.As the surfactant, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether ether, polyoxyothylene stearyl ether, polyoxyethylene oleic ether, polyoxyethylene branched decyl ether, polyoxyethylene tridecyl ether tridecyl ether, polyoxyethylene lauryl amine, polyoxyethylene stearyl amine, polyoxyethylene oleic amine, polyoxyethylene tallow amine Of these, at least one of them is selected and used.
결합제로서 디실란(disilane), 디클로로디메틸실린(dichlorodimethylsilane), 디메틸디클로로실란(dimethyldichlorosilane), 1,1,1-트리메틸-2,2,2-트리페닐디실란(1,1,1-trimethyl-2,2,2-triphenyldisilane), 디에톡시디메틸실란(diethoxydimethylsilane), 헥사메틸시클로트리실란(hexamethylcyclotrisilane), 하이드록시시클로헥사실란(hydroxycyclohexasilane), 에틸디실란(ethyldisilane), 디바이틸디클로로실란(dibytyldichlorosilane), 마세톡시트리메틸실란(acetoxytrimethylsilane), 2,4,6,8-테트라옥사-5-카바노나실란(2,4,6,8-tetraoxa-5-carbanonasilane), 옥타페닐록사시클로펜타실란(octaphenyloxacyclopentasilane), 2,2-디클로로-1-트리메틸실록시트리실란(2,2-dichloro-1-trimethylsiloxytrisilane), 2-브로모-1-클로로-1,1-디메틸-2-페닐-3-프로필트리실란(2-bromo-1-chloro-1,1-dimethyl-2-phenyl-3-propyltrisilane), 아세틸트티메틸실란(acetyltrimethylsilane), 디클로로에틸실란(dichloroethylsilane), 알릴옥시트리메틸실란(allyloxytrimethylsilane), 알릴트리에톡시실란(allyltriethoxysilane), γ-아미노프로필메틸디메톡시실란(γ-aminopropylmethyldimethoxysilane), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), 3-아미노프로필디에톡시메틸실란(3-aminopropyldiethoxymethylsilane), 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane), N-아미노에틸-3-아미노프로필-트리메톡시실란(N-aminoethyl-3-aminopropyl-trimethoxysilane), N-아미노에틸-3-아미노프로필-디메톡시메틸실란(N-aminoethyl-3-aminopropyl- dimethoxymethylsilane), 페닐트리메톡시실란(phenyltrimethoxysilane), 페닐트리에톡시실란(phenyltriethoxysilane), 메타크릴옥시실란(methacryloxysilane), 3-메타크릴옥시트리메톡시실란(3-methacryloxytrimethoxysilane), 3-메타크릴옥시트리에톡시실란(3-methacryloxytriethoxysilane), 3-메타크릴옥시프로필트리메틸실란(3-methacryloxypropyltrimethylsilane), γ-메타크릴옥시프로필트리에틸실란(γ-methacryloxypropyltriethylsilane), γ-메타크릴옥시프로필트리메톡시실란(γ-methacryloxypropyltrimethoxysilane), 3-메타크릴옥시프로필트리에톡시실린(3-methacryloxypropyltriethoxysilane), 3-크로로프로필트리메톡시실란(3-chloropropyltrimethoxysilane), 메틸트리메톡시실란(methyltrimethoxysilane), 메틸트리에톡시실란(methyltriethoxysilane), 3-메르캅토프로필트리메톡시실란(3-mercaptopropyltrimethoxysilane), 3-메르캅토 프로필트리에톡시실란(3-mercaptopropyltriethoxysilane), 메틸실란(methylsilane), 에틸실란(ethylsilane), 부틸실란(butylsilane), 트리메틸실란(trimethylsilane), 트리에틸실란(triethylsilane), 트리부틸실란(tributylsilane), 트리프로필실란(tripropylsilane), 부틸트리클로로실란(butyltrichlorosilane), 트리이소프로필실란(triisopropylsilane), 디메틸페닐실란(dimethylphenylsilane), 트리메톡시실란(trimethoxysilane), 테트라메톡시실란(tetramethoxysilane), 트리에톡시실란(triethoxysilane), 메틸트리메톡시실란(methyltrimethoxysilane), 메틸디에톡시실란(metyldietoxysilane), 메틸트리에톡시실란(methyltriethoxysilane), 메톡시트리메틸실란(methoxytrimethylsilane), 에틸트리메톡시실란(ethyltrimethoxysilane), 에틸트리에톡시실란(ethyltriethoxysilane), 에톡시트리메틸실란(ethoxytrimetylsilane), 디메틸이소프로필실란(dimethylisopropylsilane), 트리메톡시프로필실란(trimethoxypropylsilane), 트리에톡시프로필실란(triethoxypropylsilane), 트리에톡시-3-우레이도프로필실란(triethoxy-3-ureidopropylsilane), 트리메톡시-3-메타크릴옥시프로필실란(trimethoxy-3-methacryloxypropylsilane), 3-디에틸아미노프로필트리메톡시실란(3-diethylaminopropyltrimethoxysilane), 이소뷰틸트리메톡시실란(isobutyltrimethoxysilane), 3-글리시딜옥시프로필트리메틸실란(3-glycidyloxypropyltrimethylsilane), 3-글리시딜옥시프로필트리메톡시실란(3-glycidyloxypropyltrimethoxysilane), 3-글리시딜옥시프로필트리에톡시실란(3-glycidyloxypropyltriethoxysilane), γ-글리시옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 비닐트리에톡시실란(vinyltriethoxysilane), 3-이소시아네이토프로필트리에톡시실란(3-isocyanatopropyltriethoxysilane), 트리실라제인(trisilazane), 1-아미노디실라제인(1-aminodisilazane), 헥사메틸디실라제인(hexamethyldisilazane), 아미노실라제인(aminosilazane), 디실록산(disiloxane), 헥사실록산(hexasiloxane), 1,1,1-트리메틸디실록산(1,1,1-trimethyldisiloxane), 시클로트리실록산(cyclotrisiloxane), 헥사메틸시클로트리실록산(hexamethylcyclotrisiloxane), 2-메톡시시클로트리실록산(2-methoxycyclotrisiloxane), 헥사클로로디실록산(hexachlorodisiloxane), 디페닐실록산디올(diphenylsiloxanediol)에서 1종 이상 선택되어 사용된다.As a binder, disilane, dichlorodimethylsilane, dimethyldichlorosilane, 1,1,1-trimethyl-2,2,2-triphenyldisilane (1,1,1-trimethyl-2 , 2,2-triphenyldisilane, diethoxydimethylsilane, hexamethylcyclotrisilane, hydroxycyclohexasilane, ethyldisilane, dibityldichlorosilane, Acetoxytrimethylsilane, 2,4,6,8-tetraoxa-5-carbanonasilane (2,4,6,8-tetraoxa-5-carbanonasilane), octaphenyloxacyclopentasilane, 2 , 2-dichloro-1-trimethylsiloxytrisilane (2,2-dichloro-1-trimethylsiloxytrisilane), 2-bromo-1-chloro-1,1-dimethyl-2-phenyl-3-propyltrisilane (2 -bromo-1-chloro-1,1-dimethyl-2-phenyl-3-propyltrisilane, acetyltrimethylsilane, dichloroethyl Silane (dichloroethylsilane), allyloxy-trimethylsilane (allyloxytrimethylsilane), silane (allyltriethoxysilane), γ- aminopropyl methyl dimethoxy silane (γ -aminopropylmethyldimethoxysilane), silane (3-aminopropyltriethoxysilane) to 3-aminopropyl allyl tree, 3-aminopropyldiethoxymethylsilane, 3-aminopropyltrimethoxysilane, N-aminoethyl-3-aminopropyl-trimethoxysilane (N-aminoethyl-3-aminopropyl -trimethoxysilane, N-aminoethyl-3-aminopropyl-dimethoxymethylsilane, phenyltrimethoxysilane, phenyltriethoxysilane, methacryl Oxysilane (methacryloxysilane), 3-methacryloxytrimethoxysilane, 3-methacryloxytriethoxysilane, 3-methacryloxysilane Peel trimethylsilane (3-methacryloxypropyltrimethylsilane), γ - methacryloxypropyl triethylsilane (γ -methacryloxypropyltriethylsilane), γ - methacryloxypropyl trimethoxy silane (γ -methacryloxypropyltrimethoxysilane), published 3-ethoxy-methacryloxy propyltriethoxysilane (3-methacryloxypropyltriethoxysilane), 3-chloropropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, 3-mercaptopropyltrimethoxysilane (3 -mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltriethoxysilane, methylsilane, ethylsilane, ethylbutyl, butylsilane, trimethylsilane, triethylsilane, Tributylsilane, tripropylsilane, butyltrichlorosilane, triisopropylsil ane), dimethylphenylsilane, trimethoxysilane, tetramethoxysilane, triethoxysilane, methyltrimethoxysilane, methyldietoxysilane , Methyltriethoxysilane, methyltriethoxysilane, methoxytrimethylsilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethoxytrimethylsilane, ethoxytrimetylsilane, dimethylisopropylsilane ), Trimethoxypropylsilane (trimethoxypropylsilane), triethoxypropylsilane (triethoxypropylsilane), triethoxy-3-ureidopropylsilane (triethoxy-3-ureidopropylsilane), trimethoxy-3-methacryloxypropylsilane ( trimethoxy-3-methacryloxypropylsilane), 3-diethylaminopropyltrimethoxysilane, isobutyltrimethoxysilane (i sobutyltrimethoxysilane), 3-glycidyloxypropyltrimethylsilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane (3-glycidyloxypropyltriethoxysilane ), γ - glycidyl oxy propyl trimethoxy silane (γ -glycidoxypropyltrimethoxysilane), vinyl triethoxysilane (vinyltriethoxysilane), silane (3-isocyanatopropyltriethoxysilane 3-isocyanato propyltriethoxysilane), tri-sila agent (trisilazane) , 1-aminodisilazane (1-aminodisilazane), hexamethyldisilazane, hexamethyldisilazane, aminosilazane (aminosilazane), disiloxane, hexasiloxane, 1,1,1-trimethyldisiloxane (1,1,1-trimethyldisiloxane), cyclotrisiloxane, hexamethylcyclotrisiloxane, 2-methoxycyclotrisiloxane, hexachlorodisil Acid (hexachlorodisiloxane), D is phenyl siloxane is used at least one selected from the diol (diphenylsiloxanediol).
이상과 같은 특징을 갖는 본 발명의 실시예를 하기에서 첨부된 도면을 참조하여 보다 상세하게 살펴본다.An embodiment of the present invention having the above characteristics will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 고내마모성 유/무기 하이브리드 코팅제의 화학적 구조를 나타내는 개요도로서, 본 발명에 따른 도료는 유기 아크릴 고분자 수지(1)와, 무기 세라믹(2), 상기의 유기 아크릴 고분자 수지(1) 및 무기 세라믹(2)을 서로 연결시키고 있는 계면활성제 또는 결합제(3)와, 세라믹 나노 입자(4)로 구성된다.1 is a schematic view showing the chemical structure of a high wear-resistant organic / inorganic hybrid coating agent according to the present invention, the paint according to the present invention is an organic acrylic polymer resin (1), an inorganic ceramic (2), the organic acrylic polymer resin ( It consists of surfactant (1) and binder (3) which connect 1) and inorganic ceramic (2) with each other, and ceramic nanoparticle (4).
이와 같이 구성된 본 발명의 유/무기 하이브리드 코팅제는, 아크릴 고분자 수지와 무기 세라믹인 졸겔 실리케이트의 화합물로서, 아크릴 고분자 수지는 소수성을 나타내고 졸겔 실리케이트는 친수성을 나타내기 때문에 일반적으로는 서로 섞이지 않으므로, 서로 화학적으로 결합하기 위해서 탄화수소 고분자기와 수산화기를 모두 가진 결합제를 첨가하거나, 소수기와 친수기를 동시에 가진 계면활성제를 사용하여 하이브리드 형태로 화학적 결합한다.The organic / inorganic hybrid coating agent of the present invention configured as described above is a compound of an sol gel silicate which is an acrylic polymer resin and an inorganic ceramic, and since the acrylic polymer resin shows hydrophobicity and the sol gel silicate shows hydrophilicity, In order to bond with each other, a binder having both a hydrocarbon polymer group and a hydroxyl group is added, or chemically bonded in a hybrid form using a surfactant having both a hydrophobic group and a hydrophilic group.
그리고, 세라믹 나노 입자를 첨가하는 경우, 첨가 함량이 5중량% 미만으로 제한되며, 이 이상 첨가되면 용액의 불투명화가 일어나서 코팅층의 광택성이 저하될 뿐만 아니라 표면 조도에도 영향을 미친다. 세라믹 나노 입자의 크기도 매우 큰 영향을 미치는데, 50nm 이하의 입자를 첨가해야 하며, 입자 크기가 이보다 큰 경우 용액 내에서 침강이 일어나며, 코팅 후 코팅층 표면이 균일하지 못하고 거칠게 나타난다.In addition, in the case of adding the ceramic nanoparticles, the addition content is limited to less than 5% by weight, the addition of more than the opacity of the solution occurs not only reduces the glossiness of the coating layer but also affects the surface roughness. The size of the ceramic nanoparticles also has a very large effect. Particles of 50 nm or less must be added, and if the particle size is larger than this, sedimentation occurs in the solution, and after coating, the surface of the coating layer becomes uneven and rough.
상기한 구성에서 아크릴 고분자 수지는 상온에서 점도가 2,000~15,000 cPs 정도로 매우 높아서 상온에서는 알코올에 간단히 용해되지 않기 때문에 매우 강한 교반을 수반하며, 교반매체의 길이가 용기 직경의 3/4 이상 되어야 충분한 교반이 가능하다.In the above-described configuration, the acrylic polymer resin has a very high viscosity of 2,000 to 15,000 cPs at room temperature, so it is not easily dissolved in alcohol at room temperature, and thus requires very strong agitation. The stirring medium should be at least 3/4 of the diameter of the container for sufficient stirring. This is possible.
그리고, 아크릴 고분자 수지를 용해하기 위해 알코올계 용매 외에도 아크릴 모노머가 함께 첨가될 수 있으며, 이 경우 열중합 과정에서 중합도를 더 향상시킬 수 있다. 하지만 아크릴 모노머의 함량이 전체의 30 중량% 이상 첨가될 경우 하도 페인트층을 용해하여 침투하거나 아크릴 계열의 모재 표면과 반응하여 계면 결합력이 저하된다.In addition, in order to dissolve the acrylic polymer resin, an acrylic monomer may be added together with the alcohol solvent, and in this case, the degree of polymerization may be further improved during the thermal polymerization process. However, when the content of the acrylic monomer is added more than 30% by weight of the total, the coating layer dissolves or penetrates the paint layer or reacts with the surface of the acrylic base material to lower the interface bonding force.
코팅제 내에 졸겔 실리케이트를 비롯한 세라믹 성분의 함량이 증가할수록 코팅층의 비커스 경도는 증가하지만, 너무 많이 첨가될 경우 경도 값이 높아지는 반면, 코팅층의 수축 및 탄성률이 증가하여 계면 박리가 일어나거나 코팅층 표면 균열이 발생할 수 있기 때문에 적정 함량을 조절할 필요가 있다.As the content of ceramic components including sol-gel silicates in the coating increases, the Vickers hardness of the coating layer increases, but when too much is added, the hardness value increases, while the contraction and elastic modulus of the coating layer increase, resulting in interfacial peeling or coating surface cracking. Because of this, it is necessary to adjust the proper content.
도 2는 본 발명에서 졸겔 실리게이트인 테트라에틸실리케이트와 알루미나 세라믹 나노입자를 포함한 세라믹의 첨가량에 따라 제조된 유무기 하이브리드 코팅제를 플라스틱 기판 위에 분무 코팅하고, 75℃에서 1시간 동안 경화시킨 다음, 비커스 경도계로 50g의 하중을 인가하여 측정한 코팅층의 경도를 나타낸 것이다.Figure 2 is spray coating on the plastic substrate of the organic-inorganic hybrid coating prepared according to the addition amount of the ceramic including tetraethyl silicate and alumina ceramic nanoparticles sol-gel silicate in the present invention, and cured at 75 ℃ for 1 hour, then Vickers It shows the hardness of the coating layer measured by applying a load of 50g with a hardness tester.
도 2에 나타내는 바와 같이 기존의 UV 코팅에서와 같이 세라믹 성분이 첨가되지 않은 경우, 약 130MPa 정도의 비커스 경도 값을 나타내며, 세라믹 성분이 전체의 5 중량% 정도 첨가되면 경도 값이 약 161 MPa까지 증가함을 알 수 있다. 세라믹 함량에 따라 표면 경도는 증가하지만, 세라믹 성분이 20 중량% 이상 첨가되면 표면 경도는 250 MPa 이상으로 매우 향상되지만, 코팅층에 열십자 격자 칼집을 내고 테이프 탈착 후 박리 상태를 평가하는 x-cut계면 결합력 시험 후 격자의 상당부분이 박리되는 현상이 나타난다. 또한, 고 경도로 인해 탄성력이 저하되어 휨 상태에서는 표면에 큰 균열이 발생되므로 코팅층의 내구성을 위해서는 바람직하지 못하다.As shown in FIG. 2, when the ceramic component is not added as in the conventional UV coating, the Vickers hardness value is about 130 MPa, and when the ceramic component is added about 5% by weight, the hardness value is increased to about 161 MPa. It can be seen. Although the surface hardness increases with the ceramic content, the surface hardness is greatly improved to 250 MPa or more when the ceramic component is added more than 20% by weight. After the bonding test, a large part of the lattice is peeled off. In addition, because of the high hardness, the elastic force is lowered, so that a large crack occurs on the surface in the bending state is not preferable for the durability of the coating layer.
도 3은 상기에 기술한 비커스 경도 측정 후 다이아몬드 압입자의 압입흔적을 50배의 배율로 나타낸 것이다.3 shows the indentation traces of the diamond indenter after the Vickers hardness measurement described above at 50 times magnification.
A는 세라믹스 성분의 첨가 없이 기존의 UV 중합 방식에 의해 고분자 도료로만 코팅된 코팅층의 비커스 경도를 측정한 후 나타낸 다이아몬드 압입자국이다. 비커스 경도는 131 MPa 정도로 나타났고, 사진에서 보는 바와 같이, 고분자에서 전형적으로 나타나는 압입 흔적 가장자리 부분이 밖으로 밀리는 현상이 보여지고 있다. 반면, 본 발명의 유/무기 하이브리드 코팅제에서 고분자 함량에 대해 10 중량% 테트라에틸실리케이트를 첨가한 경우 비커스 경도가 약 194MPa로 나타났으며, 압입자 가장자리가 매우 선명하며, 경도가 높은 재료에서의 전형적인 모습을 보여주고 있다. 또한, 압입 흔적의 크기가 더 작게 나타나는 것이 더 높은 경도를 뒷받침하고 있다.A is a diamond indenter station shown after measuring the Vickers hardness of the coating layer coated only with the polymer paint by the conventional UV polymerization method without adding the ceramic component. The Vickers hardness was about 131 MPa, and as shown in the photograph, the edge of the indentation trail that is typical of the polymer is pushed out. On the other hand, the addition of 10 wt% tetraethylsilicate to the polymer content in the organic / inorganic hybrid coating of the present invention resulted in a Vickers hardness of about 194 MPa, with very sharp indenter edges, typical of high hardness materials. It is showing. In addition, the smaller size of the indentation traces supports higher hardness.
도 4는 고분자에 대해 테트라에틸실리케이트의 함량에 따른 비커스 경도와 계면 박리 특성을 나타내고 있다.Figure 4 shows the Vickers hardness and interfacial peeling properties according to the content of tetraethyl silicate for the polymer.
일반적으로 알콕사이드의 가수분해를 위한 물의 함량은 출발물질 알콕사이드의 알콕시기의 개수와 이에 대한 몰 배수에 의존한다. 테트라에틸실리케이트는 4 개의 에톡시기를 갖고 있고, 이를 완전히 가수분해하기 위해서는 테트라에틸실리케이트의 몰수에 비해 적어도 4 배 몰수 이상의 증류수가 필요하다. 증류수를 첨가하면 테트라에틸실리케이트의 에톡시기가 가수분해 후 수산기로 치환되고 이 수산기는 고분자 또는 결합제와 결합할 수 있다.In general, the content of water for hydrolysis of the alkoxide depends on the number of alkoxy groups of the starting material alkoxide and the molar drainage thereto. Tetraethyl silicate has four ethoxy groups, and in order to completely hydrolyze it, at least four times more moles of distilled water are required than the number of moles of tetraethyl silicate. When distilled water is added, the ethoxy group of tetraethyl silicate is substituted with a hydroxyl group after hydrolysis, and the hydroxyl group can be combined with a polymer or a binder.
하지만, 테트라에틸실리케이트 자체는 소수성 특성을 나타내며, 가수분해시 에톡시기가 수산기로 바뀌면서 친수성으로 바뀌므로 아크릴 고분자와 섞이지 않고 불투명화가 그대로 유지된다. 이를 개선하기 위해서는 소수성 고분자와 친수성 테트라에틸실리케이트를 계면활성제 또는 결합제가 가교 역할을 할 수 있다. 이 과정에서, 너무 많은 증류수가 첨가되면 불투명화가 그대로 이어져 코팅 후에도 불투명화가 그대로 나타난다.However, tetraethylsilicate itself exhibits hydrophobic properties, and when hydrolyzed, the ethoxy group is changed to a hydrophilic group by changing to a hydroxyl group, so that the opacity is maintained without mixing with the acrylic polymer. In order to improve this, a hydrophobic polymer and a hydrophilic tetraethyl silicate may serve as a crosslinking agent or a binder. In this process, when too much distilled water is added, the opacity is maintained and the opacity is maintained even after coating.
테트라에틸실리케이트의 함량도 매우 중요한 인자 중의 하나로서, 이 함량이 증가하면 경도는 매우 증가하나 졸겔 과정의 특징인 큰 수축으로 인해 계면에서 인장응력이 걸려 코팅층이 박리되는 현상이 나타난다.Tetraethyl silicate content is also one of the most important factors. As the content increases, the hardness increases, but due to the large shrinkage characteristic of the sol-gel process, tensile stress is applied at the interface, resulting in peeling of the coating layer.
도 4에 나타내는 바와 같이 고분자에 대해 테트라에틸실리케이트의 함량이 10 중량% 미만의 함량에서 박리는 나타나지 않으나 경도값이 비교적 낮고, 10~15 중량% 범위에서 첨가되었을 경우 적합한 경도 및 계면 결합력 특성을 나타내며, 20 중량% 이상 첨가되었을 때에는 대부분 코팅층이 박리되는 현상이 나타난다. As shown in FIG. 4, the peeling of the tetraethyl silicate is less than 10 wt% with respect to the polymer, but the peeling is not relatively low, and the hardness is relatively low, and when it is added in the range of 10 to 15 wt%, it exhibits suitable hardness and interfacial bonding properties. In addition, when more than 20% by weight, most of the coating layer is peeled.
도 5는 본 발명의 유/무기 하이브리드 코팅제에서 5중량% 무기 졸겔 실리케이트를 첨가한 도료로 플라스틱 모재에 도장한 후, 중합온도와 중합시간에 따른 비커스 경도를 나타낸 것이다. Figure 5 shows the Vickers hardness according to the polymerization temperature and polymerization time after coating the plastic base material with a paint added with 5% by weight inorganic sol gel silicate in the organic / inorganic hybrid coating of the present invention.
일반적으로 고분자 코팅의 열중합도는 중합온도와 시간에 크게 영향을 받는다. 중합온도가 높을수록, 중합시간이 길수록 중합도는 향상되지만, 코팅 수율을 증가하기 위해서는 중합시간을 가능한 한 줄이면서 코팅층의 특성을 향상시키는 것이 중요하다. UV 중합에서는 UV 중합개시제에 의해 수 초 내에 중합이 이루어지지만, 열중합의 경우 30분 이내에서는 충분한 중합이 이루어지지 않으며, 중합개시제 의 분해에 따른 라디칼이 형성되고 여기에 모노머 또는 고분자 수지가 결합하고 사슬을 형성하는데 충분한 시간을 필요로 한다.In general, the thermal polymerization degree of the polymer coating is greatly affected by the polymerization temperature and time. The higher the polymerization temperature, the longer the polymerization time, the higher the degree of polymerization, but in order to increase the coating yield, it is important to improve the properties of the coating layer while reducing the polymerization time as much as possible. In the case of UV polymerization, the polymerization takes place within a few seconds by the UV polymerization initiator, but in the case of thermal polymerization, sufficient polymerization does not occur within 30 minutes, and radicals are formed by decomposition of the polymerization initiator, and monomers or polymer resins are bonded to the chains. It takes enough time to form.
도 5에 나타내는 바와 같이 중합 온도가 증가할수록 비커스 경도가 증가하며 이는 결국 중합도가 증가함을 의미한다. 전체적으로 중합시간이 1시간 보다 2시간 까지 길어졌을 때 중합도는 더욱 향상되며, 본 발명의 유/무기 하이브리드 용액으로 도장하고 중합하였을 때 90℃ 이상에서는 중합도가 안정됨을 알 수 있다. 하지만 90℃ 이상의 온도에서 2시간 정도 중합한 경우 코팅층 수축이 비교적 많이 일어나서 x-cut 시험에서 코팅층이 박리되는 현상이 나타난다. 본 발명의 유/무기 하이브리드 코팅용액에서 5 중량% 무기 졸겔 실리케이트가 첨가된 경우 85 ℃에서 2시간 중합하였을 때 가장 우수한 중합특성을 나타내었다.As shown in FIG. 5, as the polymerization temperature increases, the Vickers hardness increases, which means that the degree of polymerization increases. Overall, the polymerization time is further improved when the polymerization time is longer than 1 hour to 2 hours, it can be seen that the degree of polymerization is stable at 90 ℃ or more when coated with the organic / inorganic hybrid solution of the present invention and polymerized. However, when the polymerization was carried out for about 2 hours at a temperature of 90 ℃ or more, the shrinkage of the coating layer is relatively high, and the coating layer is peeled off in the x-cut test. In the organic / inorganic hybrid coating solution of the present invention, when 5 wt% of inorganic sol-gel silicate was added, the polymerization performance was excellent when the polymerization was performed at 85 ° C. for 2 hours.
이하 실시예 1~3을 통해 본 발명을 더욱 상세히 설명한다. 단, 하기 실시예는 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 3. However, the following examples are merely to illustrate the invention, the present invention is not limited by the following examples.
<< 실시예Example 1~3> 아크릴 고분자와 1 ~ 3> acrylic polymer 테트라에틸실리케이트Tetraethylsilicate 및 알루미나 세라믹 나노 입자가 함유된 유/무기 / Inorganic containing alumina ceramic nanoparticles 하이브리드hybrid 코팅용도료Coating Paint 제조 Produce
실시예 1~3에 대해서, 폴리에스테르 테트라아크릴레이트(polyester tetraacrylate)수지를 삼구 유리 플라스크에 칭량하여 담고, 메틸 메타아크릴레이트(methyl methacrylate)를 수지에 대해 20~50 중량% 첨가하여 교반하였다. 여기에 에탄올을 고분자 함량의 5~10 중량% 첨가하여 교반하면서 수지가 완전히 용해될 때까지 계속 교반하였다. 고분자 수지가 충분히 용해되었을 때 에틸 메타아크릴레이트(ethyl methacrylate) 또는 이소부틸 아크릴레이트(isobutyl acrylate)를 수지에 대해 10~20 중량% 첨가하고 교반함으로써 고분자 출발 용액을 제조하였다.For Examples 1 to 3, a polyester tetraacrylate resin was weighed in a three-necked glass flask, and methyl methacrylate was added to the resin and stirred at 20 to 50% by weight. Ethanol was added to 5 to 10% by weight of the polymer content and stirring was continued until the resin was completely dissolved. When the polymer resin was sufficiently dissolved, 10 to 20 wt% of ethyl methacrylate or isobutyl acrylate was added to the resin and stirred to prepare a polymer starting solution.
제조된 고분자 출발 용액에 무기 성분으로서 테트라에틸실리케이트 (tetraethyl-silicate) 알콕사이드를 고분자 함량에 대해 5~20 중량% 첨가하고, 테트라에틸실리케이트에 대해 5배의 몰 수에 해당하는 에탄올을 용매로 추가로 첨가하였다. 가수분해를 위해 테트라에틸실리케이트에 대해 10배의 몰 수에 해당하는 증류수를 천천히 투입하면서 가수분해하였다.Tetraethyl-silicate alkoxide was added to the prepared polymer starting solution as an inorganic component in an amount of 5 to 20% by weight based on the polymer content, and ethanol corresponding to 5 times the molar number of tetraethyl silicate was added as a solvent. Added. For hydrolysis, hydrolysis was carried out while slowly adding distilled water corresponding to 10 times the number of moles to tetraethyl silicate.
상기에 기술된 바와 같이, 유기 고분자와 무기 테트라에틸실리케이트가 섞인 용액은 서로 섞이지 않은 상태이며, 이를 하이브리드화 하기 위해 계면활성제로서 폴리옥시에틸렌 노닐 페닐 에테르를 전체 중량에 대해 1~5 중량% 첨가하였다. 용액의 코팅 시 모재와 잘 결합하게 하기 위한 결합제로서 테트라메틸에틸실란을 전체 중량에 대해 5~10 중량% 첨가하고, 용액이 투명해질 때까지 계속 교반하였다.As described above, the solution mixed with the organic polymer and the inorganic tetraethyl silicate was not mixed with each other, and in order to hybridize it, polyoxyethylene nonyl phenyl ether was added in an amount of 1 to 5% by weight based on the total weight. . Tetramethylethylsilane was added in an amount of 5 to 10% by weight based on the total weight as a binder to bond well with the base material when the solution was coated, and the stirring was continued until the solution became clear.
용액이 투명해졌을 때 중합개시제로서 AIBN(α,α'-azobisisobutyronitrile)을 전체의 0.8 중량% 첨가하고, 완전히 녹을 때까지 교반하였다. 도장 첨가제로서 폴리에테르 변성 폴리디메틸실록산과 폴리실록산을 전체의 0.1~2.0 중량% 첨가하여 교반하였다. 마지막으로 20nm 크기의 세라믹 알루미나 나노입자를 전체의 3 중량% 첨가함으로써 이중강화 유/무기 하이브리드 코팅제를 완성하였다.When the solution became clear, 0.8 wt% of AIBN (α, α'-azobisisobutyronitrile) was added as a polymerization initiator and stirred until completely dissolved. As a coating additive, 0.1-2.0 weight% of polyether modified polydimethylsiloxane and polysiloxane were added and stirred. Finally, by adding 3% by weight of the ceramic alumina nanoparticles of 20nm size to complete the double reinforced organic / inorganic hybrid coatings.
상기와 같이 완성된 용액을 폴리카보네이트 플라스틱 기판 위에 분무 도장하고, 중합 온도는 70~85 ℃에서, 중합시간은 1~2 시간에 걸쳐 각각 중합하였다. 중 합된 시편을 가로 20mm ×세로 20mm 크기로 절단하고, 마이크로 비커스 경도계로 코팅층의 표면에 다이아몬드 압입자를 50g의 하중으로 10초 동안 인가한 후, 압입자의 가로 및 세로 대각선 길이를 측정하여 비커스 경도 계산식을 적용함으로써 각 시편에 대한 비커스 경도 값을 구하였으며, 그 결과를 표 1에 함께 나타내었다. The completed solution was spray-coated onto a polycarbonate plastic substrate, and the polymerization temperature was polymerized at 70 to 85 ° C. and the polymerization time was 1 to 2 hours, respectively. The polymerized specimen was cut to a size of 20 mm x 20 mm in length, and a diamond indenter was applied to the surface of the coating layer with a micro-Vickers hardness tester for 10 seconds under a load of 50 g, and then the horizontal and vertical diagonal lengths of the indenter were measured. By applying the Vickers hardness value for each specimen was obtained, the results are also shown in Table 1.
표 1은 고분자에 대한 테트라에틸실리케이트 함량별 비커스 경도(단위 : MPa)를 나타내는 것으로, 테트라에틸실리케이트 함량이 증가할수록 코팅층의 경도값이 증가하는 것으로 나타났으며, 테트라에틸실리케이트 및 알루미나 나노 입자가 함유되었을 때 기존의 UV 코팅층보다 훨씬 더 높은 경도값을 나타냈다. 또한, 중합온도가 높을수록, 중합시간이 길수록 경도값이 더 높은 것으로 나타났다. 하지만, 테트라에틸실리케이트 함량이 20 중량% 첨가된 경우, 80℃ 이상의 온도에서 중합된 경우 대부분 x-cut 시험에서 박리되는 현상이 나타났으며, 이 경우 75 ℃가 가장 적합한 중합온도임을 확인하였다. Table 1 shows the Vickers hardness (unit: MPa) by tetraethyl silicate content for the polymer, the hardness value of the coating layer was increased with increasing tetraethyl silicate content, containing tetraethyl silicate and alumina nanoparticles When applied, the hardness value was much higher than that of the conventional UV coating layer. Also, the higher the polymerization temperature, the longer the polymerization time, the higher the hardness value. However, when the tetraethyl silicate content is added 20% by weight, when the polymerization at a temperature of 80 ℃ or more, most of the phenomenon was peeled off in the x-cut test, in this case it was confirmed that 75 ℃ is the most suitable polymerization temperature.
<< 실험예Experimental Example 1> 유/무기 1> organic / inorganic 하이브리드hybrid 코팅용도료의Coating paints 도장 특성 Painting characteristics
도 6은 상기 실시예 2에 따라 유/무기 하이브리드 코팅제를 제조하고, 플라스틱 기판 위에 분무 도장하였을 때, 도장 직후 코팅층에 인위적으로 주름을 형성시킨 사진(C)과, 5분 뒤의 코팅층의 레벨링 상태를 나타낸 사진(D)과, 이를 75℃에서 1시간 동안 경화시킨 후 표면 광택을 나타내는 사진(E)을 각각 1.5배로 확대한 것이다. 6 is an organic / inorganic hybrid coating agent prepared according to Example 2, when the spray coating on a plastic substrate, the photo (C) artificially formed wrinkles on the coating layer immediately after coating, and the leveling state of the coating layer after 5 minutes The photo (D) and the photo (E) showing the surface gloss after curing for 1 hour at 75 ° C. are each magnified 1.5 times.
본 발명에서 첨가된 레벨링제 중의 하나인 폴리에테르 변성 폴리디메틸실록산은 소수성 유기 고분자 및 친수성 졸겔 테트라에틸실리케이트를 잘 조화시키면서 적절하고 균일한 표면장력을 유지하여 단시간 내에 우수한 표면 레벨링 즉, 코팅층 평탄화를 나타냄을 확인할 수 있었다.Polyether-modified polydimethylsiloxane, which is one of the leveling agents added in the present invention, exhibits excellent surface leveling, that is, coating layer flattening in a short time by maintaining a proper and uniform surface tension while well blending hydrophobic organic polymer and hydrophilic sol-gel tetraethyl silicate. Could confirm.
<< 실험예Experimental Example 2> 유/무기 2> organic / inorganic 하이브리드hybrid 코팅층의 계면 결합력 특성 Interfacial Bonding Force Characteristics of Coating Layer
도 7은 상기 실시예 2에 따라 유/무기 하이브리드 코팅 용액을 제조하고, 플라스틱 기판 위에 분무 도장한 후 75℃에서 1시간 동안 경화시킨 시편에 십자 칼날 격자를 인위적으로 형성하고, 투명 접착 테이프를 붙였다가 떼어내는 x-cut 시험을 실시하여 탈락 격자가 없이 코팅층이 잘 붙어있는 모습을 2배로 확대한 사진을 나타낸 것이다.FIG. 7 is an organic / inorganic hybrid coating solution prepared according to Example 2, and cross-shaped lattice is artificially formed on a specimen cured for 1 hour at 75 ° C. after spray coating on a plastic substrate, and a transparent adhesive tape is attached thereto. The x-cut test was performed to remove and show a double enlarged picture of the adhesion of the coating layer without the dropping grating.
상기 실시예 1~3에서 알 수 있듯이, 졸겔 실리케이트 자체는 건조과정에서 큰 수축이 발생하므로, 첨가량이 임계 범위를 벗어날 때에는 x-cut 시험에서 격자가 탈락한다. 하지만, 본 발명에서는 테트라에틸실리케이트의 함량이 10% 미만인 경우, 85℃ 이하의 중합과정에서 첨가된 테트라메틸에틸실란 결합제가 플라스틱 모재와 코팅층을 잘 결합해 줌을 확인할 수 있었다.As can be seen in Examples 1 to 3, since the sol-gel silicate itself has a large shrinkage during drying, the lattice is dropped in the x-cut test when the addition amount is out of the critical range. However, in the present invention, when the content of tetraethyl silicate is less than 10%, it was confirmed that the tetramethylethylsilane binder added during the polymerization at 85 ° C. or less bonds the plastic base material and the coating layer well.
<< 실험예Experimental Example 3> 유/무기 3> organic / inorganic 하이브리드hybrid 코팅층의 Of coating layer 표면조도Surface roughness 특성 characteristic
도 8은 본 발명의 유/무기 하이브리드 코팅 용액으로 플라스틱 기판 위에 분무 도장하고 75℃에서 1시간 동안 경화시킨 다음, 레이저 표면 조도기로 표면 거칠기를 측정한 결과를 나타낸 것이다. Figure 8 shows the result of spray coating on the plastic substrate with the organic / inorganic hybrid coating solution of the present invention and cured at 75 ℃ for 1 hour, and then measured the surface roughness with a laser surface roughness.
도 8에 나타내는 바와 같이 표면이 매우 매끈함을 알 수 있으며, 이는 상기 실험예 1에서 보여지는 것처럼, 우수한 표면 레벨링 특성에서 비롯된 것임을 알 수 있었다. 표면조도의 지표로 평가되는 Ra값은 약 25nm로서 이는 코팅층의 광택도 및 반사도가 매우 우수함을 뒷받침한다.As shown in FIG. 8, it can be seen that the surface is very smooth, which is derived from excellent surface leveling characteristics, as shown in Experimental Example 1 above. The Ra value, which is evaluated as an index of surface roughness, is about 25 nm, which supports the glossiness and reflectivity of the coating layer.
<< 실험예Experimental Example 4> 유/무기 4> organic / inorganic 하이브리드hybrid 코팅층의 두께 Thickness of coating layer
도 9는 본 발명의 유/무기 하이브리드 코팅 용액으로 플라스틱 기판 위에 분무 도장하고 75℃에서 1시간 동안 경화시킨 다음, 코팅층의 단면을 주사전자현미경으로 관찰하여 1500배 확대한 사진을 나타낸 것이다.9 is sprayed on a plastic substrate with an organic / inorganic hybrid coating solution of the present invention and cured at 75 ° C. for 1 hour, and then the cross section of the coating layer is observed by scanning electron microscopy and shows a magnified 1500 times.
분무 도장 방식으로 각 방향을 통해 8 회 정도 분무한 경우 코팅층의 두께는 약 18㎛ 정도로 나타났으며, 분무량을 조절할 경우, 그 이하의 두께도 충분히 가능함을 확인하였다.When sprayed about 8 times in each direction by the spray coating method, the thickness of the coating layer was about 18 μm, and when the spray amount was adjusted, it was confirmed that the thickness thereof was sufficiently low.
상기한 코팅제는 외장코팅제, 섬유접착제, 콘솔박스 섬유 코팅용 결합제로 사용되며, 외장코팅제의 경우에는 내마모성과 계면결합력이 현저히 개선되고, 섬유접착제 및 콘솔박스 섬유 코팅용 결합제는 계면결합력이 현저히 개선된다.The coating agent is used as an exterior coating agent, a fiber adhesive, a binder for the console box fiber coating, in the case of the exterior coating agent, the wear resistance and interfacial bonding strength is significantly improved, and the fiber adhesive and the binder for the console box fiber coating significantly improve the interfacial bonding strength. .
상기한 바와 같은 본 발명의 유/무기 하이브리드 코팅도료는 기존의 UV 중합 방식에 비해 세라믹 성분의 보강으로 내마모성, 내화학성 내부식성을 현저히 증가할 수 있으며, 기존의 하이브리드 방식에 비해서 무기 졸겔 실리케이트 첨가뿐만 아니라 세라믹 나노 입자를 추가로 첨가하므로 내마모성을 이중적으로 강화할 수 있고, 기존 코팅 용액에 비해 플라스틱, 금속, 세라믹 제품의 표면을 보호하는 성능을 더욱 향상시킬 수 있어서 결과적으로 제품의 내구성을 더 증가시킬 수 있다.As described above, the organic / inorganic hybrid coating material of the present invention can significantly increase wear resistance and chemical resistance corrosion resistance by reinforcing ceramic components compared to conventional UV polymerization methods, and only inorganic sol gel silicate is added as compared to conventional hybrid methods. In addition, the addition of additional ceramic nanoparticles can double the abrasion resistance, and can further improve the performance of protecting the surface of plastics, metals, and ceramic products compared to conventional coating solutions, resulting in further durability of the product. have.
또한, 본 발명은 UV를 전혀 사용하지 않고, 또한, 신나와 같은 유해 용매 없이 물과 알코올만 용매로 사용하는 친환경 코팅제이므로, 환경규제에 대비할 수 있을 뿐 아니라 향후 코팅 분야의 추세에 부합할 수 있다.In addition, the present invention does not use any UV, and also because it is an environmentally friendly coating that uses only water and alcohol as a solvent without harmful solvents such as thinner, it is possible to prepare for environmental regulations as well as meet the trend of the future coating field. .
아울러, 첨가된 결합제에 의해 모재와의 계면 결합력이 매우 향상되어 코팅층이 벗겨지는 문제를 상당히 개선할 수 있다.In addition, the interfacial bonding force with the base material is greatly improved by the added binder, thereby significantly improving the problem of peeling off the coating layer.
또한 본 발명의 유/무기 하이브리드 코팅제는 표면장력이 낮은 알코올이 함유되어 있어, 도료 분무 도장 시 신나와 같은 용제를 사용할 필요가 없고, 아크릴계 레벨링 첨가제로 인해 도장 후 레벨링 특성이 매우 우수하여 코팅 환경도 크게 개선할 수 있다.In addition, the organic / inorganic hybrid coating agent of the present invention contains a low surface tension alcohol, there is no need to use a solvent such as thinner when spraying paint coating, and the coating environment is also excellent due to the excellent leveling properties after coating due to acrylic leveling additives It can be greatly improved.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070036952A KR100845403B1 (en) | 2007-04-16 | 2007-04-16 | Manufacturing method for organic-inorganic hybrid coating solution for ambient thermal polymerization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070036952A KR100845403B1 (en) | 2007-04-16 | 2007-04-16 | Manufacturing method for organic-inorganic hybrid coating solution for ambient thermal polymerization |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100845403B1 true KR100845403B1 (en) | 2008-07-10 |
Family
ID=39824259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070036952A KR100845403B1 (en) | 2007-04-16 | 2007-04-16 | Manufacturing method for organic-inorganic hybrid coating solution for ambient thermal polymerization |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100845403B1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100970461B1 (en) | 2010-02-09 | 2010-07-16 | 엘베스트지에이티 주식회사 | Organic inorganic hybrid type composition of coating agent for anticorrosion and manufacturing method of the same |
KR101038440B1 (en) * | 2008-12-26 | 2011-06-01 | (주)뉴옵틱스 | Hard coating agent for modificating the surface of transparent plastics and method for preparing for the same |
KR101080325B1 (en) | 2009-11-06 | 2011-11-04 | 장수관 | Contaminant resistant composition for construction outer wall aqueous paint and method for manufacturing thereof |
KR101084680B1 (en) * | 2010-11-19 | 2011-11-22 | (주)뉴옵틱스 | Hard coating agent for modificating the surface of transparent plastics and method for preparing for the same |
KR101377361B1 (en) * | 2012-08-23 | 2014-03-21 | 금호타이어 주식회사 | Pneumatic tire with improved wet-grip propery |
KR20140072292A (en) * | 2012-11-29 | 2014-06-13 | 재단법인 포항산업과학연구원 | Ultraviolet Cured Organic-Inorganic Hybrid Coating Composition |
KR20140108684A (en) * | 2011-12-22 | 2014-09-12 | 나노코 테크놀로지스 리미티드 | Surface modified nanoparticles |
KR20140147054A (en) * | 2013-06-18 | 2014-12-29 | 주식회사 엘지화학 | Curable composition, cured film manufactured by using the curable composition and display device having the same |
KR101487140B1 (en) | 2014-08-12 | 2015-01-28 | 이성남 | Organic-inorganic hybrid coating agent |
KR101514938B1 (en) * | 2014-12-03 | 2015-04-23 | 주식회사 경민화학 | The methode for manufacturing watersoluble fire-proof paint composition |
CN104974608A (en) * | 2015-07-28 | 2015-10-14 | 季红军 | Preparation method of exterior house paint |
KR101639057B1 (en) * | 2015-03-23 | 2016-07-12 | 김준혁 | Coating agent for restoring car headlights and restoring method for car headlights |
CN106318091A (en) * | 2016-08-19 | 2017-01-11 | 北京金汇利应用化工制品有限公司 | Resin for novel waterborne double-component organic-inorganic hybrid coating and preparation method of resin |
WO2017070922A1 (en) * | 2015-10-30 | 2017-05-04 | Hewlett-Packard Development Company, L.P. | Sol‐gel hybrid coating composition, coating process and composite coating layers |
KR101967268B1 (en) | 2018-12-28 | 2019-04-09 | 주식회사 트라이포드 | Floor coating composition and manufacturing method thereof |
KR20190050139A (en) * | 2017-11-02 | 2019-05-10 | 한국기계연구원 | Protective film compound manufacturing method and transparent electrode manufacturing method with improved visibility |
KR20190081901A (en) * | 2017-12-29 | 2019-07-09 | 에이케이켐텍 주식회사 | Organic-inorganic hybrid coating material and process for manufacturing the same |
KR20190099649A (en) * | 2018-02-19 | 2019-08-28 | (주)삼광기업 | Inorganic ceramic coating agent composite having formed wrinkle embossing |
KR102059418B1 (en) * | 2018-12-19 | 2019-12-27 | 한성크린텍주식회사 | High internal-chemical and high-heat-resistant coating composition |
US10544329B2 (en) | 2015-04-13 | 2020-01-28 | Honeywell International Inc. | Polysiloxane formulations and coatings for optoelectronic applications |
CN110835476A (en) * | 2019-12-12 | 2020-02-25 | 河北科技大学 | Organic-inorganic composite coating material, preparation method and method for preparing wear-resistant coating by using organic-inorganic composite coating material |
KR20200061257A (en) * | 2018-11-23 | 2020-06-02 | 전자부품연구원 | Overcoating composition, overcoat layer using same and silver nano wire transparent electrode film |
KR102142100B1 (en) * | 2019-12-13 | 2020-08-06 | 태화건설 주식회사 | Environmentally-friendly surface protection layer formation method for enhanced durability, preventing salt damage of steel structure having neutralization, waterproofing, and anticorrosion |
KR102445567B1 (en) * | 2022-04-25 | 2022-09-21 | 최헌식 | Coating Composition And Non-Reflective Film Manufactured Therefrom |
CN116656201A (en) * | 2023-06-07 | 2023-08-29 | 苏州热工研究院有限公司 | Anti-contamination film composition for nuclear power plant, preparation method thereof and anti-contamination film for nuclear power plant |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998525A (en) | 1996-12-02 | 1999-12-07 | Fmc Corporation | Coating and composition for transportation and sign surfaces and method of preparing and applying same |
JP2000204292A (en) | 1999-01-13 | 2000-07-25 | Kanegafuchi Chem Ind Co Ltd | Acryl/polyester hybrid resin composition for powder coating |
KR20010043264A (en) * | 1998-05-04 | 2001-05-25 | 캐롤린 에이. 베이츠 | Ceramer Composition Having Abrasion and Stain Resistant Characteristics |
KR20030079112A (en) * | 2002-04-02 | 2003-10-10 | (주)아이컴포넌트 | Coating agent of organic/inorganic hybrid type for display |
KR20040104155A (en) * | 2003-06-03 | 2004-12-10 | 주식회사 루밴틱스 | Organic-inorganic hybrid ultraviolet curable hard coating composition and method for preparing same, and hard coat film manufactured by using same |
KR20040111022A (en) * | 2003-06-10 | 2004-12-31 | 간사이 페인트 가부시키가이샤 | Automobile body external panel-used water based coating composition and multi-layer coating film-forming method |
KR20050090082A (en) * | 2003-02-21 | 2005-09-12 | 아사히 가세이 가부시키가이샤 | Laminate containing silica and application composition for forming porous silica layer |
JP2005350515A (en) | 2004-06-08 | 2005-12-22 | Sekisui Chem Co Ltd | Stain-resistant coating composition and method for coating therewith |
KR20060073076A (en) * | 2004-12-24 | 2006-06-28 | 제일모직주식회사 | Organic-inorganic hybrid hard coating composition and coating method of a substrate using the same |
-
2007
- 2007-04-16 KR KR1020070036952A patent/KR100845403B1/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998525A (en) | 1996-12-02 | 1999-12-07 | Fmc Corporation | Coating and composition for transportation and sign surfaces and method of preparing and applying same |
KR20010043264A (en) * | 1998-05-04 | 2001-05-25 | 캐롤린 에이. 베이츠 | Ceramer Composition Having Abrasion and Stain Resistant Characteristics |
JP2000204292A (en) | 1999-01-13 | 2000-07-25 | Kanegafuchi Chem Ind Co Ltd | Acryl/polyester hybrid resin composition for powder coating |
KR20030079112A (en) * | 2002-04-02 | 2003-10-10 | (주)아이컴포넌트 | Coating agent of organic/inorganic hybrid type for display |
KR20050090082A (en) * | 2003-02-21 | 2005-09-12 | 아사히 가세이 가부시키가이샤 | Laminate containing silica and application composition for forming porous silica layer |
KR20040104155A (en) * | 2003-06-03 | 2004-12-10 | 주식회사 루밴틱스 | Organic-inorganic hybrid ultraviolet curable hard coating composition and method for preparing same, and hard coat film manufactured by using same |
KR20040111022A (en) * | 2003-06-10 | 2004-12-31 | 간사이 페인트 가부시키가이샤 | Automobile body external panel-used water based coating composition and multi-layer coating film-forming method |
JP2005350515A (en) | 2004-06-08 | 2005-12-22 | Sekisui Chem Co Ltd | Stain-resistant coating composition and method for coating therewith |
KR20060073076A (en) * | 2004-12-24 | 2006-06-28 | 제일모직주식회사 | Organic-inorganic hybrid hard coating composition and coating method of a substrate using the same |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101038440B1 (en) * | 2008-12-26 | 2011-06-01 | (주)뉴옵틱스 | Hard coating agent for modificating the surface of transparent plastics and method for preparing for the same |
KR101080325B1 (en) | 2009-11-06 | 2011-11-04 | 장수관 | Contaminant resistant composition for construction outer wall aqueous paint and method for manufacturing thereof |
KR100970461B1 (en) | 2010-02-09 | 2010-07-16 | 엘베스트지에이티 주식회사 | Organic inorganic hybrid type composition of coating agent for anticorrosion and manufacturing method of the same |
WO2011099709A3 (en) * | 2010-02-09 | 2012-01-05 | 엘베스트지에이티 주식회사 | Organic-inorganic hybrid composition for anti-corrosive coating agent and manufacturing method for same |
US8932491B2 (en) | 2010-02-09 | 2015-01-13 | L'beste Gat Ltd. | Organic-inorganic hybrid composition for anti-corrosive coating agent and manufacturing method for the same |
KR101084680B1 (en) * | 2010-11-19 | 2011-11-22 | (주)뉴옵틱스 | Hard coating agent for modificating the surface of transparent plastics and method for preparing for the same |
KR20200027052A (en) * | 2011-12-22 | 2020-03-11 | 나노코 테크놀로지스 리미티드 | Surface modified nanoparticles |
KR20140108684A (en) * | 2011-12-22 | 2014-09-12 | 나노코 테크놀로지스 리미티드 | Surface modified nanoparticles |
US10669475B2 (en) | 2011-12-22 | 2020-06-02 | Nanco Technologies Ltd. | Surface modified nanoparticles |
KR102184715B1 (en) * | 2011-12-22 | 2020-11-30 | 나노코 테크놀로지스 리미티드 | Surface modified nanoparticles |
KR102086729B1 (en) * | 2011-12-22 | 2020-03-10 | 나노코 테크놀로지스 리미티드 | Surface modified nanoparticles |
KR101377361B1 (en) * | 2012-08-23 | 2014-03-21 | 금호타이어 주식회사 | Pneumatic tire with improved wet-grip propery |
KR102027984B1 (en) | 2012-11-29 | 2019-10-02 | 재단법인 포항산업과학연구원 | Ultraviolet Cured Organic-Inorganic Hybrid Coating Composition |
KR20140072292A (en) * | 2012-11-29 | 2014-06-13 | 재단법인 포항산업과학연구원 | Ultraviolet Cured Organic-Inorganic Hybrid Coating Composition |
KR20140147054A (en) * | 2013-06-18 | 2014-12-29 | 주식회사 엘지화학 | Curable composition, cured film manufactured by using the curable composition and display device having the same |
KR101603844B1 (en) * | 2013-06-18 | 2016-03-15 | 주식회사 엘지화학 | Curable composition, cured film manufactured by using the curable composition and display device having the same |
KR101487140B1 (en) | 2014-08-12 | 2015-01-28 | 이성남 | Organic-inorganic hybrid coating agent |
KR101514938B1 (en) * | 2014-12-03 | 2015-04-23 | 주식회사 경민화학 | The methode for manufacturing watersoluble fire-proof paint composition |
KR101639057B1 (en) * | 2015-03-23 | 2016-07-12 | 김준혁 | Coating agent for restoring car headlights and restoring method for car headlights |
US10544329B2 (en) | 2015-04-13 | 2020-01-28 | Honeywell International Inc. | Polysiloxane formulations and coatings for optoelectronic applications |
CN104974608A (en) * | 2015-07-28 | 2015-10-14 | 季红军 | Preparation method of exterior house paint |
WO2017070922A1 (en) * | 2015-10-30 | 2017-05-04 | Hewlett-Packard Development Company, L.P. | Sol‐gel hybrid coating composition, coating process and composite coating layers |
US10533113B2 (en) | 2015-10-30 | 2020-01-14 | Hewlett-Packard Development Company, L.P. | Sol-gel hybrid coating composition, coating process and composite coating layers |
CN106318091A (en) * | 2016-08-19 | 2017-01-11 | 北京金汇利应用化工制品有限公司 | Resin for novel waterborne double-component organic-inorganic hybrid coating and preparation method of resin |
KR102027954B1 (en) * | 2017-11-02 | 2019-10-04 | 한국기계연구원 | Protective film compound manufacturing method and transparent electrode manufacturing method with improved visibility |
KR20190050139A (en) * | 2017-11-02 | 2019-05-10 | 한국기계연구원 | Protective film compound manufacturing method and transparent electrode manufacturing method with improved visibility |
KR20190081901A (en) * | 2017-12-29 | 2019-07-09 | 에이케이켐텍 주식회사 | Organic-inorganic hybrid coating material and process for manufacturing the same |
KR102244958B1 (en) * | 2017-12-29 | 2021-04-27 | 애경특수도료 주식회사 | Organic-inorganic hybrid coating material and process for manufacturing the same |
KR20190099649A (en) * | 2018-02-19 | 2019-08-28 | (주)삼광기업 | Inorganic ceramic coating agent composite having formed wrinkle embossing |
KR102038939B1 (en) * | 2018-02-19 | 2019-10-31 | (주)삼광기업 | Inorganic ceramic coating agent composite having formed wrinkle embossing |
KR20200061257A (en) * | 2018-11-23 | 2020-06-02 | 전자부품연구원 | Overcoating composition, overcoat layer using same and silver nano wire transparent electrode film |
KR102120359B1 (en) | 2018-11-23 | 2020-06-16 | 전자부품연구원 | Overcoating composition, overcoat layer using same and silver nano wire transparent electrode film |
KR102059418B1 (en) * | 2018-12-19 | 2019-12-27 | 한성크린텍주식회사 | High internal-chemical and high-heat-resistant coating composition |
KR101967268B1 (en) | 2018-12-28 | 2019-04-09 | 주식회사 트라이포드 | Floor coating composition and manufacturing method thereof |
CN110835476A (en) * | 2019-12-12 | 2020-02-25 | 河北科技大学 | Organic-inorganic composite coating material, preparation method and method for preparing wear-resistant coating by using organic-inorganic composite coating material |
CN110835476B (en) * | 2019-12-12 | 2021-05-11 | 河北科技大学 | Organic-inorganic composite coating material, preparation method and method for preparing wear-resistant coating by using organic-inorganic composite coating material |
KR102142100B1 (en) * | 2019-12-13 | 2020-08-06 | 태화건설 주식회사 | Environmentally-friendly surface protection layer formation method for enhanced durability, preventing salt damage of steel structure having neutralization, waterproofing, and anticorrosion |
KR102445567B1 (en) * | 2022-04-25 | 2022-09-21 | 최헌식 | Coating Composition And Non-Reflective Film Manufactured Therefrom |
CN116656201A (en) * | 2023-06-07 | 2023-08-29 | 苏州热工研究院有限公司 | Anti-contamination film composition for nuclear power plant, preparation method thereof and anti-contamination film for nuclear power plant |
CN116656201B (en) * | 2023-06-07 | 2023-11-28 | 苏州热工研究院有限公司 | Anti-contamination film composition for nuclear power plant, preparation method thereof and anti-contamination film for nuclear power plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100845403B1 (en) | Manufacturing method for organic-inorganic hybrid coating solution for ambient thermal polymerization | |
US7019069B2 (en) | Silicone resin composition for water repellent coating | |
KR101126374B1 (en) | Antifouling Coating Agent and Article Coated with the Same | |
EP2591060B1 (en) | Coating systems capable of forming ambiently cured highly durable hydrophobic coatings on substrates | |
KR100217961B1 (en) | Anti-fouling release coating composition and coated articles | |
KR102259062B1 (en) | Transparent hydrophobic coating materials with improved durability and methods of making same | |
CN106634064B (en) | Wear-resisting super hydrophobic coating composition | |
KR101296950B1 (en) | Composite Resin, Coating Composition Comprising the Same, and Coated Article | |
JP5525152B2 (en) | UV-curable coating composition, method for producing the same, and resin-coated article coated therewith | |
JP4590705B2 (en) | Anti-reflection laminate | |
KR20020019089A (en) | Coating composition | |
WO2014022368A2 (en) | Anti-reflective hard coat and anti-reflective article | |
WO2014020919A1 (en) | Transparent layered object and process for producing same | |
WO2015152171A1 (en) | Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate | |
KR20120075362A (en) | Coating solution for forming transparent film and substrate coated by transparent film | |
KR20190100259A (en) | Transparent resin substrate | |
JP4502112B2 (en) | Antifouling coating agent and coated article | |
JPWO2009099106A1 (en) | Coating liquid, cured film and resin laminate | |
KR102109345B1 (en) | Composition For Hard Coating and Hard Coating film Including Cured Product Of The Same As The Coating Layer | |
CN110358445B (en) | Composition for forming water-repellent film and water-repellent film | |
JP2007023261A (en) | Coating film-forming coating liquid and the resultant coating film and method for forming the coating film | |
KR102078300B1 (en) | Photocurable coating composition for forming low refractive layer | |
KR102291587B1 (en) | Coating Composition and method thereof | |
JP6470498B2 (en) | Coating liquid for forming transparent film and method for producing substrate with transparent film | |
KR20190129206A (en) | coating composition for Building Materials preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120803 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |