[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100739422B1 - Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof - Google Patents

Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof Download PDF

Info

Publication number
KR100739422B1
KR100739422B1 KR1020050034624A KR20050034624A KR100739422B1 KR 100739422 B1 KR100739422 B1 KR 100739422B1 KR 1020050034624 A KR1020050034624 A KR 1020050034624A KR 20050034624 A KR20050034624 A KR 20050034624A KR 100739422 B1 KR100739422 B1 KR 100739422B1
Authority
KR
South Korea
Prior art keywords
tissue
heparin
acellular
biological tissue
solution
Prior art date
Application number
KR1020050034624A
Other languages
Korean (ko)
Other versions
KR20060112332A (en
Inventor
박기동
이준우
배진우
고동현
이중석
Original Assignee
박기동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박기동 filed Critical 박기동
Priority to KR1020050034624A priority Critical patent/KR100739422B1/en
Publication of KR20060112332A publication Critical patent/KR20060112332A/en
Application granted granted Critical
Publication of KR100739422B1 publication Critical patent/KR100739422B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3625Vascular tissue, e.g. heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 (a) 인간 이외 동물의 생체조직을 무세포성 생체조직으로 처리하는 단계; (b) 상기 무세포성 생체조직을 글루타르알데히드 용액으로 가교처리하는 단계; 및 (c) 상기 가교처리된 무세포성 생체조직에 헤파린을 결합시키는 단계를 포함하는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법에 관한 것이다. The present invention relates to a heparin-coupled anticalcification acellular tissue implants and a method for producing the same, and more specifically, (a) treating a biological tissue of an animal other than a human with an acellular biological tissue; (b) crosslinking the acellular biological tissues with a glutaraldehyde solution; And (c) binding heparin to the cross-linked acellular biological tissue.

본 발명의 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물은 항석회화 기능, 생체 내 내구성, 혈액친화성(blood compatibility) 및 조직친화성(tissue compatibility)이 우수하여 인공심장판막, 조직혈관 및 순환계 수술용 패치(Patch), 조직재생막 및 조직충진제 등 무세포성 생체조직 이식물로 유용하게 사용될 수 있다.The heparin-coupled anticalcification-free acellular tissue implant of the present invention is excellent in anticalcification function, durability in vivo, blood compatibility and tissue compatibility (tissue compatibility), artificial heart valves, tissue vessels and It may be usefully used as an acellular biological tissue implant such as a circulatory surgical patch, tissue regeneration membrane, and tissue filler.

헤파린, 항석회화(calcification-resistance), 혈액적합성(blood compatibility), 조직적합성(tissue compatibility), 인공심장판막(artificial cardiac valve), 수술용 조직 패치, 조직재생막, 조직충진제 Heparin, calculation-resistance, blood compatibility, tissue compatibility, artificial cardiac valve, surgical tissue patch, tissue regeneration membrane, tissue filler

Description

헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 및 그 제조방법{Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof}Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method

[산업상 이용 분야][Industrial use]

본 발명은 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 항석회화 기능, 생체 내 내구성, 혈액친화성(blood compatibility) 및 조직친화성(tissue compatibility)이 우수하여 인공심장판막, 조직혈관 및 순환계 수술용 패치(Patch), 조직재생막 및 조직충진제 등 무세포성 생체조직 이식물로 유용하게 사용될 수 있는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 및 그 제조방법에 관한 것이다.The present invention relates to a heparin-coupled anticalcification acellular biological tissue implant and a method for preparing the same, and more particularly, anticalcification function, in vivo durability, blood compatibility and tissue compatibility (tissue compatibility) Heparin-conjugated anticalcifiable acellular tissues that can be used as acellular tissue implants such as artificial heart valves, tissue vessel and circulatory surgical patches, tissue regeneration membranes, and tissue fillers It relates to water and a method for producing the same.

[종래 기술][Prior art]

생체조직 이식물 (bioprosthetic tissue implants)이란 사람 또는 동물의 생체조직을 화학적으로 처리하여 면역특성을 제거하고 특정 기능을 부여한 것을 질병 등으로 손상된 사람의 조직이나 장기에 이식할 수있는 생체조직을 말한다. 상기 생체조직 이식물의 제조를 위한 동물의 생체조직으로는 돼지의 대동맥 판막(porcine aortic valve)이나 심막(porcine pericardium), 소의 심막(bovine pericardium) 및 소 또는 돼지의 경막(dura mater)들이 일반적으로 사용되 고 있다.Bioprosthetic tissue implants are biological tissues that can be implanted into human tissues or organs damaged by diseases such as chemical treatment of human or animal tissues to remove immune characteristics and confer specific functions. Porcine aortic valves (porcine aortic valve) or periccardium (porcine pericardium), bovine pericardium (bovine pericardium) and dura mater (bovine or swine) are commonly used as animal tissues for the preparation of the biotissue implants. Being.

상기 동물의 생체조직을 임상적으로 사용하기 위해서 이식된 생체조직이 숙주에 의한 면역 거부반응을 유도하지 않는 상태에서 강도와 유연성을 유지할 수 있는 방법이 필요하다. 현재, 임상용 생체조직의 일반적인 제조방법은 먼저 생체조직을 채취하여 행크 용액(Hanks Solution)으로 씻어 가용성 항원물질을 제거한 뒤에, 글루타르알데히드 완충용액으로 화학처리(개질)하여 생체조직 중에 포함된 당단백질의 아미노기들과 글루타르알데히드를 가교결합(corsslinking)시킨 후 수산화붕소나트륨(NaBH4)으로 환원시켜 생체조직을 안정화시키는 방법이다(A. 카펜티어, Biological Tissue in Heart Replacement, M.I. Ionescu et all. (Eds), Butterworth, London, 1972). In order to clinically use the biological tissue of the animal, there is a need for a method capable of maintaining strength and flexibility in a state where the transplanted biological tissue does not induce an immune rejection reaction by the host. At present, a general method for preparing clinical tissues is to first collect biological tissues, wash them with Hanks Solution to remove soluble antigenic substances, and then chemically treat (modify) the glutaraldehyde buffer solution to the glycoproteins contained in the biological tissues. A method of stabilizing biological tissues by crosslinking amino groups of glutaraldehyde and reducing with sodium borohydride (NaBH 4 ) (A. Carpentier, Biological Tissue in Heart Replacement, MI Ionescu et all. Eds), Butterworth, London, 1972).

상기와 같이 제조되는 대표적인 생체조직 이식물로는 생체조직 심장판막(tissue heart valve), 수술용 조직패치, 조직혈관(bioprosthetic vascular graft), 인대, 힘줄 대체조직(ligament and tendon substitute) 등이 있다. Representative biological tissue implants prepared as described above include tissue tissue valves, surgical tissue patches, bioprosthetic vascular grafts, ligaments, ligament and tendon substitutes, and the like.

그 중 현재 상업적으로 사용되는 인공심장판막은 크게 기계식 판막과 생체조직 판막으로 나눌 수 있다. 기계식 판막은 내구성이 뛰어나지만, 혈전형성 (thrombogenesis)이 수반되므로 항응혈제(anticoagulants)를 복용해야 한다. 반면, 생체조직 판막은 기능 및 형태가 생체와 유사하여 혈전 형성율이 아주 낮아서 항응혈제를 복용할 필요가 없는 등 기계식 판막에 비하여 우수하나, 체내내구성이 취약하고, 판막첨판의 비후단축, 특히 병리적 석회화로 인하여 이식 후 판막의 유연성이 떨어지는 결함이 있다.The commercially available artificial heart valves can be divided into mechanical valves and biological tissue valves. Mechanical valves are durable but require anticoagulants because they involve thrombogenesis. On the other hand, biological tissue valves have similar functions and morphologies to living organisms, and have a very low thrombus formation rate and thus do not require anticoagulants. Due to pathological calcification, there is a defect in the valve's flexibility after transplantation.

또한 생체조직으로 널리 사용되는 수술용 조직패치는 선천적 이상이나 질병 또는 사고로 손상된 심장, 혈관, 조직의 결함부위를 보강, 대체하기 위하여 사용되고 있는데, 현재 인조 합성패치(Synthetic patch) 및 동물의 조직패치(xenograft tissue patch)가 사용되고 있다. 이 중에서 동물의 조직패치는 우수한 혈액적합성(blood compatibility) 및 조직적합성을 가지고 있으나, 상기 생체조직 판막과 같이 생체 내에서 석회화에 의하여 내구성이 떨어지는 단점이 있다.In addition, surgical tissue patches widely used as biological tissues are used to reinforce and replace defects in the heart, blood vessels and tissues damaged by congenital abnormalities, diseases, or accidents. Currently, synthetic patches and animal tissue patches are used. (xenograft tissue patch) is used. Among these, tissue patches of animals have excellent blood compatibility and tissue compatibility, but have a disadvantage in that durability is inferior due to calcification in vivo as in the biological tissue valve.

또한 생체조직으로 널리 사용되는 조직혈관은 고분자 인조혈관과 함께 손상된 혈관을 대체하기 위하여 사용되고 있다. 이 외에 동물의 생체조직을 이용하여 인대, 힘줄 등 조직대체 이식물로 사용되며 조직 재생, 상처 치유 및 약물 전달 체계용으로 응용할 수 있다.In addition, tissue vessels widely used as living tissues are used to replace damaged vessels together with artificial artificial vessels. In addition, it is used as a tissue replacement implant such as ligaments and tendons using animal tissues and can be applied for tissue regeneration, wound healing and drug delivery system.

그러나 이러한 생체조직 이식물은 숙주에 의한 면역반응을 피하고 유연성 및 강도를 유지할 수 있으나, 장기간 사용할 경우 석회화에 의하여 내구성이 떨어지는 단점이 있다.However, such a living tissue implant can avoid the immune response by the host and maintain flexibility and strength, but has a disadvantage of poor durability due to calcification when used for a long time.

이상 설명한 생체조직 심장판막(tissue heart valve), 수술용 조직패치, 조직혈관(bioprosthetic vascular graft), 인대, 힘줄 대체조직(ligament and tendon substitute) 등의 생체조직의 공통적인 문제점으로 석회화를 들 수 있는데, 석회화(Calcification)란 체내에 이식된 재료 내부에 수산화인회석(hydroxyapatite, Ca10(PO4)6(OH)2)과 같은 인산칼슘 또는 탄산칼슘과 같은 칼슘화합물이 침착되는 것을 말하며, 이로 인하여 생체 조직재료의 물성, 특히 유연성이 떨어지고 결국 파괴 및 생체 내 분해를 일으킨다.Calcification is a common problem in living tissues such as tissue heart valves, surgical tissue patches, bioprosthetic vascular grafts, ligaments, ligament and tendon substitutes. Calcification refers to the deposition of calcium compounds, such as calcium phosphate or calcium carbonate, such as hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 ), into the material implanted in the body, The physical properties of the tissue material, in particular its flexibility, are inferior and eventually lead to destruction and degradation in vivo.

현재까지 석회화의 발생기전(mechanism)은 명확히 밝혀지지 않고 있으나, ⅰ)생체조직 처리과정 및 그에 사용된 화합물, 특히 글루타르알데히드의 부작용 및 미반응 잔여 글루타르알데히드, ⅱ)조직의 화학적 구조의 변경 및 인체(숙주)의 면역 반응, ⅲ) 단백질 및 순환하고 있는 세포의 흡착 등 복합적인 원인에 의하여 석회화가 일어나는 것으로 밝혀져 있다.To date, the mechanism of calcification is not clear, but i) the side effects of biological tissue processing and the compounds used therein, in particular glutaraldehyde and unreacted residual glutaraldehyde, ii) alteration of the chemical structure of the tissue. And calcification occurs due to a complex cause such as the immune response of the human body (host), adsorption of proteins and circulating cells.

특히, 화학적으로 처리하지 않은 생체조직이 체내 분해도는 크지만, 석회화가 크게 감소한다는 사실로부터 글루타르알데히드 처리법 자체가 석회화의 일차원인으로 지적되어, 글루타르알데히드 대신에 카보디이미드 도는 폴리에틸렌글리콜 디글리세리딜 에테르와 같은 디에폭시 화합물로 가교처리하는 방법이 연구되었으나(T. Okoshi 등, TASAIO, 35, 411, 1990), 생체내 안정성 및 혈액적합성에 있어 추가 연구가 필요한 실정이다. 또한 석회화를 일으키는 칼슘이온이 양이온이므로, 프로타민을 결합하거나(G.Golomb 등, J.Biomed. Mater. Res., 25, 85, 1991) 또는 알루미늄(C.L. Webb등, TASAIO, 34, 855, 1988), 철화합물(M. Bailwin 등, Trans. Soc. Biomat., 14,61, 1991)과 같은 양이온을 생체조직에 미리 도입하여 전기적 반발력으로 칼슘의 흡착을 억제하려는 방법도 연구된 바 있다.In particular, biologically untreated tissues have a high degree of decomposition in the body, but the fact that the calcification is greatly reduced is indicated that glutaraldehyde treatment itself is a one-dimensional dimension of calcification, and carbodiimide or polyethylene glycol diglycerides instead of glutaraldehyde. Crosslinking treatments with diepoxy compounds such as ridyl ethers have been studied (T. Okoshi et al., TASAIO, 35, 411, 1990), but further studies are required for in vivo stability and blood compatibility. In addition, calcium ions that cause calcification are positive ions, thus binding protamine (G.Golomb et al., J. Biomed. Mater. Res., 25, 85, 1991) or aluminum (CL Webb et al., TASAIO, 34, 855, 1988). A method of suppressing the adsorption of calcium by electrical repulsive force by introducing a cation such as, an iron compound (M. Bailwin et al., Trans. Soc. Biomat., 14,61, 1991) into the tissue in advance.

또한, 콘드로이틴황산염과 같은 음이온 다당류(G.M. Bernacca 등, Biomaterials, 13, 345, 1992)나 키토산(J.Chanda 등, Biomaterials, 15, 465, 1994), 아세틸살리실산(미국특허 4,838,888), 아크릴산 또는 아크릴에스테르(미국특허 4,770,665), 아미노올레산(WO 89/06945) 생리적 석회화 억제제인 디포스포네이트(R.J. Levy 등, Circulation, 81, 349, 1985), 황산도데실나트륨과 같은 세척제(R.J. Levy 등, CRC Crit. Rev. Biocompat., 2, 147, 1986), 술폰산화폴리에틸렌옥시드(한국특허공보 제1996-3746호 및 제1998-66242호)를 도입하는 방법이 제안된 바도 있다.In addition, anionic polysaccharides such as chondroitin sulfate (GM Bernacca et al., Biomaterials, 13, 345, 1992), chitosan (J. Chanda et al., Biomaterials, 15, 465, 1994), acetylsalicylic acid (US Pat. No. 4,838,888), acrylic acid or acrylic esters (US Pat. No. 4,770,665), aminooleic acid (WO 89/06945) physiological calcification inhibitor diphosphonate (RJ Levy et al., Circulation, 81, 349, 1985), cleaning agents such as sodium dodecyl sulfate (RJ Levy et al., CRC Crit. Rev. Biocompat., 2, 147, 1986), sulfonated polyethylene oxides (Korean Patent Nos. 1996-3746 and 1998-66242) have been proposed.

그러나 상기 방법들은 제조 공정이 용이하지 않을 뿐 아니라, 제안된 화합물들은 생체내 안정성 및 혈액적합성이 검증되지 못하여 임상적으로 사용하기에는 추가 연구가 필요한 실정이다.However, the above methods are not easy to manufacture, and the proposed compounds have not been tested for in vivo stability and blood compatibility, requiring further research for clinical use.

이를 개선하기 위하여 글루타르알데히드로 개질된 생체조직에 생리 항혈전성 물질인 헤파린을 결합시킨 생체조직 이식물(대한민국특허공개 제2001-38908호)이 제안된 바 있고, 또한 글루타르알데히드로 개질된 생체조직에 생체조직 아미노산의 하나인 아르기닌을 화학적으로 결합시킨 생체조직 이식물(대한민국특허공개 제2004-0070988호)이 제안된 바 있으나, 지금까지 인간 또는 동물로부터 추출된 생체조직에 무세포성 생체조직 처리를 한 후 항혈전성 물질인 헤파린을 결합시킨 생체조직 이식물에 대하여 소개된 바는 없었다.In order to improve this, a biotissue implant (Korean Patent Laid-Open No. 2001-38908) has been proposed, in which heparin, a physiological antithrombogenic substance, is bound to a glutaraldehyde-modified biological tissue, and a glutaraldehyde modified Biotissue implants (Korean Patent Publication No. 2004-0070988) have been proposed that chemically binds arginine, one of the amino acid amino acids, to biological tissues. However, until now, acellular tissues have not been applied to biological tissues extracted from humans or animals. There was no introduction of biotissue implants that bind heparin, an antithrombogenic substance after treatment.

본 발명은 상술한 석회화 문제점을 해결하기 위한 것으로서, 본 발명의 구체적인 목적은 항석회화 기능, 생체 내 내구성, 혈액친화성(blood compatibility) 및 혈관생성 촉진 기능이 우수하여 인공심장판막, 순환계 수술용 패치(Patch), 조직혈관, 피부재생 등 무세포성 생체조직 이식물로 유용하게 사용될 수 있는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법을 제공하는 것이다.The present invention is to solve the above-mentioned calcification problem, the specific object of the present invention is excellent in anti-calcification function, in vivo durability, blood compatibility (blood compatibility) and angiogenesis function, artificial heart valve, circulatory surgical patch (Patch), tissue vessels, skin regeneration, etc. It provides a method for producing a heparin-coupled anti-calcifying acellular biological tissue implants that can be usefully used as acellular biological tissue implants.

본 발명의 목적은 또한 상기 방법으로 제조된 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물을 제공하는 것이다.It is also an object of the present invention to provide a heparin-bound anticalcifiable acellular biological tissue implant prepared by the above method.

상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention

(a) 인간 이외 동물의 생체조직을 무세포성 생체조직으로 처리하는 단계;(a) treating biological tissues of animals other than humans with acellular biological tissues;

(b) 상기 무세포성 생체조직을 글루타르알데히드 용액으로 가교처리하는 단 계; 및(b) crosslinking the acellular biological tissue with a glutaraldehyde solution; And

(c) 상기 가교처리된 무세포성 생체조직에 헤파린을 결합시키는 단계(c) binding heparin to the cross-linked acellular biological tissue;

를 포함하는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법을 제공한다.It provides a method for producing anti-calcification acellular biological tissue implants comprising heparin-containing.

본 발명은 또한 상기 방법으로 제조된 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물을 제공한다.The present invention also provides a heparin-bound anticalcifiable acellular tissue implant prepared by the above method.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 인간 이외 동물로부터 추출한 생체조직에 무세포성 생체조직 처리를 한 후 헤파린을 결합시켰을 경우 종래 무세포성 생체조직 처리를 하지 않은 생체조직에 헤파린을 결합한 생체조직 이식물에 비하여 항석회화 기능, 생체 내 내구성, 혈액친화성(blood compatibility) 및 조직적합성(tissue compatibility)이 우수함을 발견하고 본 발명을 완성하기에 이르렀다.The present inventors have shown that when heparin is bound to biological tissues extracted from animals other than humans, and then heparin is bound, anti-calcification function and biomarkers are compared with those of hepatin-binding biological tissues which have not been treated with conventional acellular biological tissues. It has been found to be excellent in durability, blood compatibility and tissue compatibility and has come to complete the present invention.

본 발명의 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법은 첫째, 인간 이외 동물의 생체조직을 무세포성 생체조직으로 처리하는 단계; 둘째, 상기 무세포성 생체조직을 글루타르알데히드 용액으로 가교처리하는 단계; 및 셋째, 상기 가교처리된 무세포성 생체조직에 헤파린을 결합시키는 단계로 이루어진다. 이하 상기 세 가지 단계에 대하여 보다 상세히 설명하기로 한다.Heparin-coupled anticalcification-free acellular tissue graft production method of the present invention comprises the steps of first, treating the non-human animal tissues with acellular biological tissue; Second, crosslinking the acellular biological tissues with a glutaraldehyde solution; And third, binding heparin to the cross-linked acellular biological tissue. Hereinafter, the three steps will be described in more detail.

첫째, 인간 이외 동물의 생체조직을 무세포성 생체조직으로 처리한다. 본 단계에 적용될 수 있는 인간 이외 동물의 생체조직은 소, 말, 돼지 등으로부터 추출된 생체조직이 바람직하며, 특히 심장판막(cardiac valve), 심막(pericardium) 및 경막(dura mater)이 바람직하다. 본 발명에서는 생체조직을 글루타르알데히드 용액으로 고정 처리하기 전 생체조직에 포함된 세포를 용혈시키고 화학적, 효소적 처리를 통하여 세포내 구성성분을 제거하는 방법으로 생체조직을 무세포성 생체조직으로 처리한다. 세포 용혈과정에서 사용되는 용액으로는 저장 트리스 버퍼(Hypotonic tris buffer, pH 8.0)를 이용하며, 단백질 분해효소 억제제로는 페닐메틸설포닐플루오라이드(Phenylmethyl-sulfonyl fluoride)가 바람직하다. 상기 단백질 분해효소 억제제를 포함하는 저장 트리스 버퍼 용액을 이용하여 무세포성 생체조직을 처리하고, 1% 옥틸페녹시폴리에톡시에탄올(octylphenoxypolyethoxyethanol, Triton X-100)을 함유한 단백질분해효소 억제제를 포함하는 저장 트리스 버퍼 용액에 처리한 후 행크 용액으로 세척한다. 본 단계는 사용되는 무세포성 생체조직에 따라 수회 반복될 수 있다. 생체조직 중에 잔존하는 핵산은 1% Triton X-100이 함유된 단백질분해효소 억제제를 포함하는 저장 트리스 버퍼 용액으로 처리함과 동시에 리보뉴클리아제(ribonuclease) 및 디옥시리보뉴클리아제(deoxyribonuclease)와 같은 효소로 처리함으로써 분해(degradation)시킨다. 이 후, 행크 용액으로 세척하고 1% SDS 용액으로 처리하여 무세포성 생체조직 내부에 잔존하는 구성성분을 제거한다.First, non-human animal tissues are treated with acellular tissues. The biological tissues of animals other than humans that can be applied to this step are preferably biological tissues extracted from cattle, horses, pigs, and the like, particularly cardiac valve, pericardium, and dura mater. In the present invention, the biological tissue is treated as an acellular biological tissue by the method of hemolysis of the cells contained in the biological tissue and the removal of the intracellular components through chemical and enzymatic treatment before the biological tissue is fixed with the glutaraldehyde solution. . As a solution used in the cell hemolysis process, a storage tris buffer (pH 8.0) is used, and as a protease inhibitor, phenylmethyl-sulfonyl fluoride is preferable. Treating acellular biological tissue using a storage tris buffer solution containing the protease inhibitor, and comprising a protease inhibitor containing 1% octylphenoxypolyethoxyethanol (Triton X-100). Treat with stock Tris buffer solution and wash with Hank's solution. This step can be repeated several times depending on the acellular tissue used. Residual nucleic acids in biological tissues are treated with a stock Tris buffer solution containing a protease inhibitor containing 1% Triton X-100, while enzymes such as ribonuclease and deoxyribonuclease Degradation by treatment with. Thereafter, washing with Hank's solution and treatment with 1% SDS solution removes remaining components inside the acellular biological tissue.

이렇게 처리된 무세포성 생체조직은 잔존하는 세포를 제거하여 콜라겐 매트 릭스로써 응용함으로써 세포성 생체조직이 가지는 단점인 이물반응과 면역반응에서의 문제점을 개선할 수 있으며, 최대 인장강도와 최대 연신율이 증가함을 보여 물리적 성질 또한 개선되는 효과가 있다. 이처럼 무세포성 생체조직으로 처리한 후 염색을 통해 광학현미경 (Light Microscopy)을 이용하여 세포의 잔존 여부를 확인할 수 있으며, 셀이 존재하는 부분의 면적이 전체 면적의 0.1%를 넘지 않는 것이 바람직하다. The acellular tissues treated in this way can remove the remaining cells and apply them as collagen matrix to improve the problems of foreign body reactions and immune responses, which are disadvantages of cellular tissues, and increase the maximum tensile strength and the maximum elongation. Physical properties are also improved. As such, after treatment with acellular living tissue, staining may be performed using light microscopy, and the area of the cell where the cell exists is preferably not more than 0.1% of the total area.

둘째, 무세포성 생체조직을 글루타르알데히드 용액으로 가교처리한다. 상기 추출된 무세포성 생체조직은 조직을 훼손하지 않는 안정적인 pH 조건에서 보존되어 처리되어야 할 필요가 있다. 본 발명에서는 종래 사용되고 있는 방법(카펜티어 등)에 따라 상기 무세포성 생체조직의 기계적 물성 개선, 체내분해 감소, 면역반응에 의한 부작용 제거 및 살균을 위하여 글루타르알데히드 수용액으로 처리하였다. 무세포성 생체조직을 처리에 사용되는 글루타르알데히드 수용액의 농도는 0.05~1.5%가 바람직하고, 0.1~1.0%가 더욱 바람직하다. 만약 글루타르알데히드 수용액의 농도가 0.05% 미만이면 상기한 글루타르알데히드 용액 처리에 따른 가교반응 효과를 기대하기 힘들고, 1.5%를 넘게 되면 가교반응이 급속하게 진행되어 글루타르알데히드가 무세포성 생체조직과 균일하게 가교되지 못하는 문제점이 발생한다.Second, acellular living tissue is crosslinked with glutaraldehyde solution. The extracted acellular biological tissues need to be preserved and treated at stable pH conditions that do not damage the tissues. In the present invention, in accordance with the conventional method (Carpenter, etc.) was treated with an aqueous solution of glutaraldehyde in order to improve the mechanical properties of the acellular biological tissues, to reduce the degradation in the body, to remove the side effects caused by the immune response and sterilization. 0.05-1.5% is preferable and, as for the density | concentration of the aqueous solution of glutaraldehyde used for processing acellular biological tissue, 0.1-1.0% is more preferable. If the concentration of the glutaraldehyde aqueous solution is less than 0.05%, it is difficult to expect the crosslinking reaction effect of the above-mentioned glutaraldehyde solution treatment, and if it exceeds 1.5%, the crosslinking reaction is rapidly progressed and the glutaraldehyde is formed into the acellular biological tissue. There is a problem that can not be uniformly crosslinked.

또한 글루타르알데히드 수용액으로 무세포성 생체조직을 처리하는 경우의 pH는 7.0 내지 7.6이 바람직하고, 7.1 내지 7.5가 보다 바람직하다. 이를 위해서 글 루타르알데히드 수용액을 적절한 완충용액(buffer solution)과 함께 처리하는 것이 바람직하다. 이러한 완충용액의 조건으로는 상기 무세포성 생체조직의 글루타르알데히드 처리 또는 보관을 위하여 안정성이 뛰어나야 하며, 글루타르알데히드에 의한 가교반응에 간섭하지 않는 불활성이며 완충능력이 뛰어나야 바람직하며, 대표적으로 인산염 완충식염수(phosphate buffered saline, PBS, pH 7.4, 0.01~0.02M)를 사용할 수 있다.Moreover, 7.0-7.6 are preferable and, as for pH in the case of processing acellular biological tissue with glutaraldehyde aqueous solution, 7.1-7.5 are more preferable. For this purpose, it is preferable to treat the glutaraldehyde aqueous solution with an appropriate buffer solution. Conditions for the buffer solution should be excellent in stability for the treatment or storage of glutaraldehyde of the acellular biological tissues, preferably inert and excellent buffering capacity that does not interfere with the cross-linking reaction by glutaraldehyde, typically phosphate buffer Saline (phosphate buffered saline, PBS, pH 7.4, 0.01 ~ 0.02M) can be used.

셋째, 상기 가교처리된 무세포성 생체조직에 헤파린을 결합시킨다. 상기 글루타르알데히드 용액으로 가교처리된 무세포성 생체조직은 글루타르알데히드 용액으로 가교처리 및 보존 공정에서 미반응 글루타르알데히드가 생체재료에 잔류하게 되고, 이 미반응 글루타르알데히드가 바로 생체 재료의 석회화를 일으키는 주요 원인으로 지목되고 있다. 따라서 아미노기를 함유하는 적당한 화합물로서 미반응 글루타르알데히드기를 제거하는 방법들이 항석회화 효과를 나타내는 것으로 보고 되었으며, 키토산(J. Chanda 등, Biomaterials, 15, 465 (1994) 참조), 아미노올레인산 (WO 89/06945 참조), 아미노폴리에틸렌옥시드술폰산(김 영하 등, 한국특허 131046 및 181691 참조) 등이 대표적인 예이다. Third, heparin is bound to the cross-linked acellular living tissue. The acellular biological tissue crosslinked with the glutaraldehyde solution is left unreacted glutaraldehyde in the biomaterial during the crosslinking and preservation process with the glutaraldehyde solution, and the unreacted glutaraldehyde is the calcification of the biomaterial. It is pointed out as the main cause of this. Therefore, methods for removing unreacted glutaraldehyde groups as suitable compounds containing amino groups have been reported to exhibit anticalcification effects, and chitosan (see J. Chanda et al., Biomaterials, 15, 465 (1994)), aminooleic acid (WO 89). / 06945), amino polyethylene oxide sulfonic acid (Kim Youngha et al., See Korean Patent 131046 and 181691) and the like are representative examples.

그러나 상기 항석회화용 아미노기 함유 화합물들은 체내 이식물에 사용된 예가 거의 없으므로 안정성을 검증할 필요가 있다. 이에 반하여, 본 발명에서 사용된 헤파린은 체내에서 합성되는 다분산성 천연다당류로서 현재 임상에서 대표적 항혈 전제로 사용되고 있는 안전한 화합물이다. 헤파린은 종류에 따라 2,000 내지 5,000의 저분자 헤파린 및 7,000 내지 20,000의 고분자 헤파린이 있고, 저분자 헤파린이 고분자 헤파린에 비하여 항혈전성이 높은 것으로 보고 되고 있다(R.D. Rosengerg, Heparin: New Biochemical and Medical Aspects, Witt Ed., Walter de Gruyter, Berle (1983) 참조). However, since the amino group-containing compounds for anticalcification are rarely used in implants in the body, it is necessary to verify the stability. In contrast, heparin used in the present invention is a polydisperse natural polysaccharide synthesized in the body and is a safe compound currently used as a representative anti-blood premise in the clinic. Heparin has a low molecular weight heparin of 2,000 to 5,000 and a high molecular heparin of 7,000 to 20,000 depending on the type, and low molecular heparin has been reported to have higher antithrombogenicity than polymer heparin (RD Rosengerg, Heparin: New Biochemical and Medical Aspects, Witt) Ed., Walter de Gruyter, Berle (1983).

본 발명의 방법에 사용되는 헤파린의 농도는 0.05 내지 20 %가 바람직하며, 0.1 내지 10 %가 더욱 바람직하다. 헤파린의 농도가 0.05 % 미만이면 농도가 너무 작아서 헤파린 처리효과가 저감되며, 20 %를 초과하면 고가의 헤파린 처리효과가 비례하여 증가하지 않아 경제적이지 못하다는 문제점이 있다.The concentration of heparin used in the method of the present invention is preferably 0.05 to 20%, more preferably 0.1 to 10%. If the concentration of heparin is less than 0.05%, the concentration is too small to reduce the heparin treatment effect, if it exceeds 20% there is a problem that the expensive heparin treatment effect does not increase in proportion to economical.

또한 본 발명에 있어서는 경우에 따라 헤파린을 산화 등 적당한 방법으로 분해한 것을 사용할 수도 있다. 헤파린의 산화에 대해서는 문헌[J. Chanda 등, Biomaterials, 15, 465 (1994)]에 자세히 기재되어 있다. Moreover, in this invention, what decompose | disassembled heparin by suitable methods, such as oxidation, can also be used as needed. For oxidation of heparin, see J. Chanda et al., Biomaterials, 15, 465 (1994).

헤파린의 구조는 다당류 골격에 많은 술폰산기(항혈전성 발현) 이외에 상당한 농도의 아미노기와 카르복실산기를 함유하므로, 알데히드기와 반응하여 각각 쉬프(Schiff) 염기 및 아세탈화합물로 결합될 수 있다(R.D.Rosenberg, Heparin: New biomedical and medical aspects, W.de Gruyter, Berlin (1983) 참조). 헤파린 결 합과정 중 생성된 쉬프 염기는 수소화붕소나트륨(NaBH4)을 써서 환원하여 안정화시키는 것이 바람직하다. 쉬프염기 환원에 사용되는 수소화붕소나트륨의 농도는 0.001 N 내지 1 N이 바람직하며, 0.005 N 내지 0.5 N이 더욱 바람직하다. 만일 수소화붕소나트륨의 농도가 0.001 N 미만이면 환원반응이 충분하지 못하며, 1 N을 초과하면 환원효과가 비례하여 증가하지 않는다는 문제점이 있다.Since the structure of heparin contains a considerable concentration of amino groups and carboxylic acid groups in addition to many sulfonic acid groups (antithrombogenic expression) in the polysaccharide skeleton, they can be reacted with aldehyde groups and combined with Schiff bases and acetal compounds, respectively (RD Rosenberg, Heparin: New biomedical and medical aspects, W.de Gruyter, Berlin (1983). The Schiff base produced during the heparin bonding process is preferably stabilized by reducing with sodium borohydride (NaBH 4 ). The concentration of sodium borohydride used for the Schiff base reduction is preferably 0.001 N to 1 N, more preferably 0.005 N to 0.5 N. If the concentration of sodium borohydride is less than 0.001 N, the reduction reaction is not sufficient, if the concentration exceeds 1 N there is a problem that the reduction effect does not increase proportionally.

이상 설명한 방법으로 제조된 항석회화성 무세포성 생체조직 이식물은 필요에 의하여 적당한 처리(PBS 세척, 아미노산 용액 세척, 메탄올 처리)를 하여 심장판막, 외과/순환계/치과 분야의 수술용 조직 패치, 조직 혈관, 조직 힘줄, 인대, 조직공학용 다공성 지지체로 사용될 수 있다.Anticalcified acellular biotissue implants prepared by the methods described above were subjected to appropriate treatments (PBS wash, amino acid solution wash, methanol treatment) as needed to treat surgical tissue patches, tissues in the heart valve, surgical / circulatory / dental fields. It can be used as a porous support for blood vessels, tissue tendons, ligaments and tissue engineering.

이하, 본 발명의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 다만, 본 발명이 이들 실시예에 의하여 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by these examples.

(실시예 1)(Example 1)

무세포성 처리 및 글루타알데히드 가교 처리Acellular Treatment and Glutaaldehyde Crosslinking Treatment

소에서 추출한 심막을 행크(Hanks') 용액 내에 보존하고 식염수로 추가의 혈액과 조직을 제거한 후 멸균실에서 심막에 부착된 두터운 지방층을 제거한 다음 페닐메틸설포닐플루오라이드(Phenylmethyl-sulfonyl fluoride, 0.35mg/L)를 포함한 저장 트리스 버퍼(Hypotonic tris buffer, pH 8.0) 용액에 24시간 동안 4℃에서 균일한 속도로 교반하여 세포를 용혈(lysis)시켰다. 다음 단계로 1% 옥틸페녹시폴리에톡시에탄올(octylphenoxypolyethoxyethanol, Triton X-100)을 함유한 단백질분해효소 억제제를 포함하는 저장 용액에 4℃에서 24시간 처리하고 행크용액으로 세척하였다. 세 번째 단계로 리보뉴클리아제(ribonuclease) 용액 및 디옥시리보뉴클리아제(deoxyribonuclease) 혼합용액으로 시료를 37℃에서 3시간 처리하고, 1% 옥틸페녹시폴리에톡시에탄올(octylphenoxypolyethoxyethanol, Triton X-100)을 함유한 단백질분해효소 억제제를 포함하는 저장 tris buffer 용액에 4℃에서 48시간 처리하였다. 마지막으로 행크용액에 세척하고 1% SDS 용액으로 처리한 후 행크용액에 보관하였다. 그 다음 처리된 심막 생체조직을 PBS로 여러 번 세척한 후 0.625% 글루타르알데히드 용액 내에 3일 동안 담가 놓은 다음 다시 PBS로 세척을 반복하였다. The pericardium extracted from the cows was preserved in Hanks' solution, and additional blood and tissues were removed with saline, and then the thick fat layer attached to the pericardium was removed from the sterilization chamber, followed by phenylmethyl-sulfonyl fluoride (0.35 mg). Cells were lysed by stirring at a constant rate at 4 ° C. for 24 hours in a solution of Hypotonic tris buffer (pH 8.0). In the next step, a stock solution containing a protease inhibitor containing 1% octylphenoxypolyethoxyethanol (Triton X-100) was treated at 4 ° C. for 24 hours and washed with Hank solution. In the third step, the sample was treated with a ribonuclease solution and a deoxyribonuclease mixed solution at 37 ° C. for 3 hours, followed by 1% octylphenoxypolyethoxyethanol (Triton X-100). The stored tris buffer solution containing the protease inhibitor containing was treated for 48 hours at 4 ℃. Finally it was washed in Hank solution, treated with 1% SDS solution and stored in Hank solution. The treated pericardial tissues were then washed several times with PBS, soaked in 0.625% glutaraldehyde solution for 3 days, and then washed again with PBS.

무세포성 조직의 헤파린 고정화 반응Heparin Immobilization in Acellular Tissues

얻어진 무세포성 조직을 2.5%의 헤파린(미국 시그마사, 분자량 4,000, 활성도 100 unit/mg)이 녹아 있는 완충용액(pH 11.0)에서 4℃에서, 2일 동안 반응시켰다. 헤파린이 고정화 처리된 생체조직을 0.01M PBS로 여러 번 수세한 후 0.01N NaBH4 용액에 4℃에서, 16 시간 넣어 환원시켰다.The resulting acellular tissue was reacted for 2 days at 4 ° C. in a buffer solution (pH 11.0) in which 2.5% heparin (US Sigma, molecular weight 4,000, activity 100 unit / mg) was dissolved. Heparin-immobilized biological tissue was washed several times with 0.01 M PBS and then reduced in 0.01 N NaBH 4 solution at 4 ° C. for 16 hours.

(비교예 1)(Comparative Example 1)

소에서 추출한 심막을 행크(Hanks') 용액 내에 보존하고 멸균실에서 심막에 부착된 두터운 지방층을 제거한 다음 암소에서 24시간 동안 유지하여 가용성 단백질을 제거하였다. 처리된 생체조직을 PBS 용액으로 세척한 후 0.4% 글루타르알데히드 용액 내에 10시간 동안 담가 놓은 다음, 2.5%의 저분자량 헤파린(미국 시그마사, 분자량 4,000, 활성도 100 unit/mg) 완충용액(pH 11.0)에서 4℃에서, 2일 동안 반응시켰다. 헤파린이 고정화처리된 생체조직을 PBS로 여러 번 수세한 후 0.01N NaBH4 용액에 4℃에서, 16 시간 넣어 환원시켰다.The pericardium extracted from cattle was preserved in Hanks' solution, the thick fat layer attached to the pericardium was removed from the sterilization chamber and maintained in the cow for 24 hours to remove soluble protein. The treated biological tissues were washed with PBS solution and soaked in 0.4% glutaraldehyde solution for 10 hours, followed by 2.5% low molecular weight heparin (Sigma, USA, molecular weight 4,000, activity 100 unit / mg) buffer solution (pH 11.0). Reaction at 4 ° C. for 2 days. The heparin immobilized biological tissue was washed several times with PBS, and then reduced in 0.01 N NaBH 4 solution at 4 ° C. for 16 hours.

(비교예 2)(Comparative Example 2)

소에서 추출한 심막을 행크용액에 보존하고 심막에 부착된 두터운 지방층을 제거한 다음 페닐메틸설포닐플루오라이드(Phenylmethyl-sulfonyl fluoride)를 포함한 저장 트리스 버퍼(Hypotonic tris buffer, pH 8.0) 용액에 24시간 동안 4℃에서 처리하여 세포를 용혈(lysis)시켰다. 다음 단계로 1% 옥틸페녹시폴리에톡시에탄올(octylphenoxypolyethoxyethanol, Triton X-100)을 함유한 단백질분해효소 억제제 포함하는 저장 용액에 4℃에서 24시간 처리하고 행크용액으로 세척하였다. 세 번째 단계로 리보뉴클리아제(ribonuclease) 용액 및 디옥시리보뉴클리아제(deoxyribonuclease) 혼합용액으로 시료를 37℃에서 3시간 처리하고, 1% 옥틸페녹시폴리에톡시에탄올(octylphenoxypolyethoxyethanol, Triton X-100)을 함유한 단백 질분해효소 억제제를 포함하는 저장 tris buffer 용액에 4℃에서 24시간 처리하였다. 마지막으로 행크용액에 세척하고 1% SDS 용액으로 처리한 후 행크용액에 보관하였다. 그 다음 처리된 심막 생체조직을 PBS로 여러 번 세척한 후 0.4% 글루타르알데히드 용액 내에 10시간 동안 처리하였다. 그 다음 2%의 아르기닌 용액(pH 11.0)에서 4 ℃에서, 2일 동안 반응시켰다. 아르기닌이 고정 처리된 심막 생체조직을 PBS로 여러 번 수세한 다음 0.01N 수소화붕소나트륨 용액에 4 ℃에서 16시간 넣어 환원시켰다. The pericardium extracted from cattle was preserved in Hank's solution, the thick fat layer attached to the pericardium was removed, and then stored in a solution of Hypotonic tris buffer (pH 8.0) containing phenylmethyl-sulfonyl fluoride for 24 hours. Cells were lysed by treatment at ° C. In the next step, the stock solution containing the protease inhibitor containing 1% octylphenoxypolyethoxyethanol (Triton X-100) was treated at 4 ° C. for 24 hours and washed with Hank solution. In the third step, the sample was treated with a ribonuclease solution and a deoxyribonuclease mixed solution at 37 ° C. for 3 hours, followed by 1% octylphenoxypolyethoxyethanol (Triton X-100). The storage tris buffer solution containing the protease inhibitor containing the was treated for 24 hours at 4 ℃. Finally it was washed in Hank solution, treated with 1% SDS solution and stored in Hank solution. The treated pericardial tissues were then washed several times with PBS and then treated for 10 hours in 0.4% glutaraldehyde solution. It was then reacted for 2 days at 4 ° C. in 2% arginine solution (pH 11.0). Arginine-fixed pericardial tissue was washed several times with PBS, and then reduced in 0.01 N sodium borohydride solution at 4 ° C. for 16 hours.

(물성 평가)(Property evaluation)

본 발명의 무세포성 생체조직 이식물의 물리적, 화학적 특성은 수축온도(shrinkage temperature), 기계적 인장강도와 연신도, 콜라젠 분해효소(Collagenase)를 이용한 분해성, 동물 피하근육 이식 실험에 의한 석회화 특성을 통하여 측정하였다. Physical and chemical properties of the acellular biological tissue grafts of the present invention were measured through shrinkage temperature, mechanical tensile strength and elongation, degradability using collagenase, and calcification by animal subcutaneous muscle transplantation experiments. It was.

수축온도는 시차주사식열량분석기(Differential Scanning Calorimeter, DSC, TA 인스트루먼트사, DSC 2010)로 2 ℃/분 승온시키며 측정하였는데, 수축온도가 높을수록 무세포성 생체조직의 안정성이 큰 것을 의미한다.Shrinkage temperature was measured by differential scanning calorimeter (DSC, DSC, TA Instruments, DSC 2010) at a temperature of 2 ℃ / min, the higher the shrinkage temperature means that the stability of the acellular biological tissue.

또한 인장강도는 인장시험기(인스트론사, 모델 8511), 로드 셀(load cell) 50㎏으로 측정하였다. 또한 콜라젠분해성은 조직 약 1㎎을 콜라젠 분해효소 (Clostridium histolyticum Type II, 활성도 357 unit/㎎, 미국 시그마사) 용액을 이용하여 37 ℃에서 36시간 분해시킨 후 잔량을 건조 정량하였다(박기동 등, Biomaterials, 18, 47, 1997).In addition, the tensile strength was measured by a tensile tester (Instron, Model 8511), 50 kg load cell (load cell). In addition, collagen degradability was about 1 mg of tissue was digested at 37 ℃ for 36 hours using a collagen degrading enzyme (Clostridium histolyticum Type II, activity 357 units / mg, Sigma, USA) solution and the remaining amount was dried and quantified (Bak Gi-dong, Biomaterials, etc.) , 18, 47, 1997).

또한 동물 피하근육 이식실험은 처리된 무세포성 생체조직 패치(크기 1㎝ㅧ 1.5㎝)를 쥐(Sprague-Dawley rat, 수놈 생후 5주, 체중 150~180g)의 등 부위 피부와 근육사이의 피하근육에 이식하고, 8주 후에 꺼내서 6N 염산 용액으로 가수분해한 시료를 유도 결합 플라즈마(Inductively coupled plasma, ICP, Jovin Yvon사, 138 Ultrace)를 이용한 칼슘 정량에 의하여 수행되었다. In addition, the animal subcutaneous muscle transplantation experiments were carried out a patch of acellular tissue tissue (size 1 cm ㅧ 1.5 cm) to the subcutaneous muscle between the back skin and muscles of the rat (Sprague-Dawley rat, 5 weeks old male, weight 150 ~ 180g) After 8 weeks, samples taken out and hydrolyzed with 6N hydrochloric acid solution were performed by calcium quantification using an inductively coupled plasma (ICP, Jovin Yvon, 138 Ultrace).

또한 침착된 칼슘의 양은 건조된 조직 중량(㎎)당 칼슘의 양(㎍)으로 표시하였다. 순환계 이식 석회화 실험은 개(한국산 잡견, 25~30㎏)를 이용하여 방추형으로 제작한 조직 패치를 대동맥 내부에 이식 8주 후에 꺼내어 침착된 칼슘의 양을 동일한 방법으로 측정하였다(박기동 등, Biomaterilas, 18, 47, 1997).The amount of calcium deposited was also expressed as the amount of calcium per microgram of dried tissue (mg). In the circulatory transplantation calcification experiment, dogs (Korean dogs, 25-30 kg) were used to extract the tissue patch prepared in the spindle form after 8 weeks of implantation into the aorta, and the amount of calcium deposited was measured by the same method (Pak Ki-dong et al., Biomaterilas, 18, 47, 1997).

하기 표 1에 상기 실시예 1 및 비교예 1~2에서 실험한 결과를 정리하였다.Table 1 summarizes the results of the experiment in Example 1 and Comparative Examples 1 and 2.

구분division 수축온도 (℃)Shrinkage Temperature (℃) 콜라젠 분해잔량(%)Collagen Residual Residue (%) 최대인장강도 (㎏/㎣)Tensile strength (㎏ / ㎣) 최대연신율 (%)Elongation at break (%) 침착 칼슘의 양 (㎍/㎎)Amount of calcium deposited (μg / mg) 실시예 1Example 1 9090 9292 1.961.96 4141 5.95.9 비교예 1Comparative Example 1 8686 9090 1.411.41 3434 6.56.5 비교예 2Comparative Example 2 8686 9191 1.521.52 3434 17.017.0

상기 표 1에서 보는 바와 같이, 인간 이외 동물의 생체조직을 무세포성 생체조직으로 처리한 후 헤파린을 결합시킨 생체조직 이식물(실시예 1)의 경우 무세포성 생체조직 처리를 하지 않은 생체조직 이식물(비교예 1) 및 무세포성 생체조직 처리 후 아르기닌을 결합시킨 생체조직 이식물(비교예 2)에 비하여 물성(수축온도, 콜라젠분해잔량, 최대인장강도, 최대연신율 및 침착칼슘의 양 )이 우수함을 알 수 있었다. 따라서 본 발명의 방법에 따라 제조된 무세포성 생체조직 처리 후 헤파린을 결합시킨 생체조직 이식물은 항석회화 기능, 생체 내 내구성, 혈액친화성(blood compatibility) 및 조직적합성(tissue compatibility)이 우수하여 인공심장판막, 조직혈관 및 순환계 수술용 패치(Patch), 조직재생막 및 조직충진제 등 무세포성 생체조직 이식물로 유용하게 사용될 수 있음을 알 수 있었다.As shown in Table 1, in the case of a biological tissue implant (Example 1) in which heparin-coupled biological tissues after treatment of non-human biological tissues with acellular biological tissues were not treated with acellular biological tissues, Compared with (Comparative Example 1) and a tissue-free tissue implant with arginine after treatment with acellular biological tissue (Comparative Example 2), physical properties (shrinkage temperature, collagen decomposition residue, maximum tensile strength, maximum elongation and amount of calcium deposited) are superior. And it was found. Therefore, the tissue-enhanced graft implanted with heparin after treatment of acellular tissue prepared according to the method of the present invention has excellent anti-calcification, durability in vivo, blood compatibility and tissue compatibility, Cardiac valves, tissue vessels and circulatory surgical patches (patches), tissue regeneration membranes and tissue fillers, such as a cell can be found to be useful for implantation.

본 발명의 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물은 항석회화 기능, 생체 내 내구성, 혈액친화성(blood compatibility) 및 조직적합성(tissue compatibility)이 우수하여 인공심장판막, 조직혈관 및 순환계 수술용 패치(Patch), 조직재생막 및 조직충진제 등 무세포성 생체조직 이식물로 유용하게 사용될 수 있다.Heparin-conjugated anticalcification-free acellular tissue implants of the present invention are excellent in anticalcification function, durability in vivo, blood compatibility and tissue compatibility (artificial heart valve, tissue vessels and circulatory system) Surgical patches, tissue rejuvenation membranes and tissue fillers, such as acellular implants can be usefully used.

Claims (14)

(a) 심장판막, 심막 또는 경막 중에서 선택되는 인간 이외 동물의 생체조직을 무세포성 생체조직으로 처리하는 단계;(a) treating a living tissue of a non-human animal selected from the heart valve, the pericardium, or the dura mater with acellular biological tissue; (b) 상기 무세포성 생체조직을 pH 7.0 내지 7.6, 0.05 ~ 1.5 볼륨%의 글루타르알데히드 용액으로 가교처리하는 단계; (b) crosslinking the acellular biological tissues with a glutaraldehyde solution at a pH of 7.0 to 7.6, 0.05 to 1.5 volume percent; (c) 상기 가교처리된 무세포성 생체조직에 헤파린을 결합시키는 단계; 및(c) binding heparin to the crosslinked acellular biological tissue; And (d) 상기 무세포성 생체조직에 헤파린을 결합시킨 후 0.01 내지 1 N의 수산화붕소나트륨(NaBH4)으로 쉬프염기를 환원시키는 단계(d) binding the heparin to the acellular biological tissue and then reducing the Schiff base with 0.01 to 1 N sodium borohydride (NaBH 4 ) 를 포함하는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법.Heparin-coupled anti-calcification acellular biological tissue comprising a manufacturing method comprising a. 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기 헤파린은 분자량이 2,000 내지 5,000으로 저분자 헤파린인 것을 특징으로 하는 항석회화성 무세포성 생체조직 이식물 제조방법.The heparin has a low molecular weight heparin molecular weight of 2,000 to 5,000, characterized in that the anticalcification acellular biological tissue implant manufacturing method. 제1항에 있어서,The method of claim 1, 상기 헤파린은 분자량이 7,000 내지 20,000으로 고분자 헤파린인 것을 특징으로 하는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법.The heparin has a molecular weight of 7,000 to 20,000 heparin-coupled, characterized in that the heparin-coupled anticalcification acellular biological tissue implant manufacturing method. 제1항에 있어서,The method of claim 1, 상기 헤파린은 부분적으로 산화된 것임을 특징으로 하는 헤파린이 결합된 항석회화성 무세포성 생체조직 이식물 제조방법.And wherein said heparin is partially oxidized. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020050034624A 2005-04-26 2005-04-26 Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof KR100739422B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050034624A KR100739422B1 (en) 2005-04-26 2005-04-26 Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050034624A KR100739422B1 (en) 2005-04-26 2005-04-26 Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20060112332A KR20060112332A (en) 2006-11-01
KR100739422B1 true KR100739422B1 (en) 2007-07-13

Family

ID=37620625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050034624A KR100739422B1 (en) 2005-04-26 2005-04-26 Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100739422B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075399B1 (en) 2008-12-31 2011-10-25 서울대학교산학협력단 Production method of heterograft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109260517B (en) * 2018-09-19 2020-10-30 杭州启明医疗器械股份有限公司 Prefillable dry biological heart valve and preparation method thereof
EP4046600A1 (en) * 2021-02-18 2022-08-24 P+F Products + Features GmbH Aortic stent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020008A1 (en) 1994-01-21 1995-07-27 The Board Of Regents Of The University Of Michigan Calcification-resistant biomaterials
US5862806A (en) * 1997-10-30 1999-01-26 Mitroflow International, Inc. Borohydride reduction of biological tissues
KR20010038098A (en) * 1999-10-22 2001-05-15 박호군 Calcification-resistant Heparinized Bioprosthetic Tissue Implants And Preparation Thereof
KR20040070988A (en) * 2003-02-05 2004-08-11 박기동 Calcification-resistant Bioprosthetic Tissue Implants Coupled Arginine and Method the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020008A1 (en) 1994-01-21 1995-07-27 The Board Of Regents Of The University Of Michigan Calcification-resistant biomaterials
US5862806A (en) * 1997-10-30 1999-01-26 Mitroflow International, Inc. Borohydride reduction of biological tissues
KR20010038098A (en) * 1999-10-22 2001-05-15 박호군 Calcification-resistant Heparinized Bioprosthetic Tissue Implants And Preparation Thereof
KR20040070988A (en) * 2003-02-05 2004-08-11 박기동 Calcification-resistant Bioprosthetic Tissue Implants Coupled Arginine and Method the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biomaterials, vol.21, p.2215

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075399B1 (en) 2008-12-31 2011-10-25 서울대학교산학협력단 Production method of heterograft

Also Published As

Publication number Publication date
KR20060112332A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US8415125B2 (en) Method for preparing biological scaffold material
US20230016722A1 (en) Natural tissue scaffolds as tissue fillers
EP1139911B1 (en) Method for tissue fixation using epoxides
US20190151507A1 (en) Method for enzymatic treatment of tissue products
KR20070106696A (en) An implantable biomaterial and a method of producing same
US11179505B2 (en) Methods for stabilizing collagen-containing tissue products against enzymatic degradation
JP2624553B2 (en) Preparation method of bovine pericardium material and its use
US20020111532A1 (en) Tris(hydroxymethyl)phosphino compounds as tissue crosslinking agents
Mendoza-Novelo et al. Decellularization, stabilization and functionalization of collagenous tissues used as cardiovascular biomaterials
EP3549616B1 (en) Method for enzymatic treatment of tissue products
KR100739422B1 (en) Calcification-resistant heparinized acellular bioprosthetic tissue implant and preparation method thereof
KR100524082B1 (en) Calcification-resistant Bioprosthetic Tissue Implants Coupled Arginine and Method the Same
KR20010038098A (en) Calcification-resistant Heparinized Bioprosthetic Tissue Implants And Preparation Thereof
CN111359020B (en) Soft tissue repair material and preparation method and application thereof
Singh et al. In vivo bio-compatibility determination of crosslinked as well as uncross linked native and acellular pericardium of buffalo
RU2796364C1 (en) Method of processing grafts for cardiovascular surgery using sub- and supercritical carbon dioxide
Vasudev et al. The anticalcification effect of polyethylene glycol–immobilized on hexamethylene diisocyanate treated pericardium
CN118271628A (en) Functional animal-derived biological material and preparation method thereof
US9555162B2 (en) Phospholipid reduction in biological tissue
Singh et al. Host tissue response to subcutaneously implanted native and acellular scaffold in a rabbit model

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160711

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180703

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190709

Year of fee payment: 13