[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100702790B1 - Fabricating method of semiconductor device - Google Patents

Fabricating method of semiconductor device Download PDF

Info

Publication number
KR100702790B1
KR100702790B1 KR1020050132298A KR20050132298A KR100702790B1 KR 100702790 B1 KR100702790 B1 KR 100702790B1 KR 1020050132298 A KR1020050132298 A KR 1020050132298A KR 20050132298 A KR20050132298 A KR 20050132298A KR 100702790 B1 KR100702790 B1 KR 100702790B1
Authority
KR
South Korea
Prior art keywords
gas
forming
trench
semiconductor device
via hole
Prior art date
Application number
KR1020050132298A
Other languages
Korean (ko)
Inventor
정성희
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050132298A priority Critical patent/KR100702790B1/en
Application granted granted Critical
Publication of KR100702790B1 publication Critical patent/KR100702790B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/7681Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving one or more buried masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명에 따른 반도체 소자 제조방법은, 비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정을 이용한 반도체 소자 제조방법에 있어서, 층간 절연막에 상기 비아홀을 형성하는 단계; 상기 비아홀 위에 상기 트렌치 형성을 위한 포토레지스트 패턴을 형성하는 단계; Xe 가스를 포함하는 플라즈마를 이용하여 RIE(Reactive Ion Etching) 공정을 수행하고 상기 트렌치를 형성하는 단계; 를 포함한다.In the method of manufacturing a semiconductor device according to the present invention, in the method of manufacturing a semiconductor device using a dual damascene process of forming a via hole first and then forming a trench, the via hole is formed in an interlayer insulating film. Forming; Forming a photoresist pattern for forming the trench on the via hole; Performing a reactive ion etching (RIE) process using a plasma containing Xe gas and forming the trenches; It includes.

또한 본 발명에 의하면, 상기 RIE 공정은 CF4 가스, Xe 가스, CHF3를 포함하여 수행되며, 상기 CF4 가스는 80sccm±20%, 상기 Xe 가스는 120sccm±20%, 상기 CHF3 가스는 15sccm±20%로 공급된다.In addition, according to the present invention, the RIE process is performed including CF 4 gas, Xe gas, CHF 3 , the CF 4 gas is 80sccm ± 20%, the Xe gas is 120sccm ± 20%, the CHF 3 gas is 15sccm Supplied at ± 20%.

또한 본 발명에 의하면, 상기 RIE 공정을 진행함에 있어, 소스 전력(source power)은 1200W±15%, 바이어스 전력(bias power)은 800W±15%를 인가하며, 압력은 180mT±15%를 인가한다.According to the present invention, in the RIE process, source power is applied at 1200W ± 15%, bias power is applied at 800W ± 15%, and pressure is applied at 180mT ± 15%. .

이와 같은 본 발명에 의하면, 비아홀을 먼저 형성한 후 트렌치를 형성하는 듀얼 다마신 공정에 있어서, 트렌치 프로파일(trench profile)을 개선하고 면 저항(sheet resistance)을 안정화시킬 수 있는 장점이 있다.According to the present invention, in the dual damascene process of forming the via hole first and then forming the trench, there is an advantage of improving the trench profile and stabilizing the sheet resistance.

Description

반도체 소자 제조방법{Fabricating method of semiconductor device}Fabrication method of semiconductor device

도 1은 종래 반도체 소자 제조방법에 의하여 제조된 반도체 소자의 문제점을 나타낸 사진.1 is a photograph showing a problem of a semiconductor device manufactured by a conventional semiconductor device manufacturing method.

도 2는 본 발명에 따른 반도체 소자 제조방법을 나타낸 순서도.2 is a flow chart showing a method of manufacturing a semiconductor device according to the present invention.

도 3은 본 발명에 따른 반도체 소자 제조방법을 설명하기 위한 도면.3 is a view for explaining a semiconductor device manufacturing method according to the present invention.

도 4는 본 발명에 따른 반도체 소자 제조방법에 의하여 제조된 반도체 소자의 단면을 개념적으로 나타낸 도면.4 is a view conceptually showing a cross section of a semiconductor device manufactured by the method of manufacturing a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

101...SiN 막 103... 제 1 모노실란(Monosilane:SiH4)101 ... SiN membrane 103 ... first monosilane (SiH 4 ) membrane

105... FSG 막 107... 제 2 모노실란(Monosilane:SiH4)105 ... FSG membrane 107 ... second monosilane (SiH 4 ) membrane

109... 노보락 수지막 111... BARC 막109 ... Novorak resin film 111 ... BARC film

113... 포토레지스트 패턴113 ... Photoresist Pattern

본 발명은 반도체 소자 제조방법에 관한 것이다.The present invention relates to a semiconductor device manufacturing method.

반도체 소자가 고집적화되어 감에 따라 금속 배선의 폭이 좁아짐과 동시에 다층 구조로 금속 배선이 형성되고, 다층의 금속 배선층을 전기적으로 연결시키기 위해 비아홀(via hole)이 형성된다. As semiconductor devices become highly integrated, metal wires become narrower, metal wires are formed in a multilayer structure, and via holes are formed to electrically connect the multilayer metal wire layers.

그러나, 금속 배선의 폭이 좁아짐에 따라 저항이 증가하기 때문에 저항을 감소시키기 위해 전기 전도도가 상대적으로 우수한 구리가 반도체 소자의 금속 배선에 사용되고 있다. However, since the resistance increases as the width of the metal wiring becomes narrower, copper having excellent electrical conductivity is used for the metal wiring of the semiconductor element in order to reduce the resistance.

구리는 기존의 알루미늄 배선에 비해 낮은 저항을 나타내고, 일렉트로마이그레이션(electromigration) 내성이 우수하나, 기존의 플라즈마 식각으로는 배선을 형성할 수 없기 때문에 다마신(Damascene) 공정으로 층간 절연막에 비아홀 또는 트렌치(trench)를 형성한 후, 전기도금법 등에 의하여 그 내부를 구리로 매립하고 있다. Copper exhibits lower resistance than conventional aluminum wiring and has excellent electromigration resistance. However, since the plasma cannot be formed using conventional plasma etching, copper has a via hole or a trench in the interlayer insulating film by a damascene process. After the trench is formed, the inside of the trench is embedded with copper by an electroplating method or the like.

층간 절연막에 비아홀 및 트렌치를 형성하는 듀얼 다마신 공정 기법은 크게 두 가지 방법으로 나뉘는데, 첫째는 금속 배선용 트렌치를 먼저 형성한 후 금속 배선 간의 전기적 접속을 위한 비아홀을 형성하는 방법이고, 둘째는 비아홀을 먼저 형성한 후 트렌치를 형성하는 방법이다.The dual damascene process for forming via holes and trenches in an interlayer insulating film is largely divided into two methods. First, a trench for metal wiring is formed first, and then a via hole for electrical connection between the metal wirings is formed. It is a method of forming a trench after forming it first.

일반적으로, 비아홀을 먼저 형성한 후에 트렌치를 형성하는 듀얼 다마신 공정에 있어서, RIE 방식을 이용하여 식각을 수행하고 트렌치를 형성한다.In general, in a dual damascene process in which a via hole is first formed and then a trench is formed, etching is performed using an RIE method to form a trench.

이때, RIE 공정을 진행함에 있어 CF4 가스, Ar 가스를 이용하여 160mT에서 공정을 진행한다. 그런데, 이와 같은 RIE 공정이 진행되는 경우에 트렌치 영역에 따라 식각 정도가 다르게 발생되고 있다. 즉 도 1에 나타낸 바와 같이, 두 개의 비아홀이 형성된 경우, 트렌치의 중심 부분은 식각이 상대적으로 적게 발생되고, 트렌치의 끝 영역(비아홀에 인접한 영역)은 식각이 상대적으로 많이 발생된 것을 볼 수 있다. 이에 따라 트렌치가 무덤 형상으로 형성되는 것을 볼 수 있다. 도 1은 종래 반도체 소자 제조방법에 의하여 제조된 반도체 소자의 문제점을 나타낸 사진이다. 이와 같이 트렌치가 무덤 형상으로 형성되는 경우에는 트렌치의 영역에 따라 면 저항(sheet resistance)이 달라지게 되어 안정화되지 못하는 문제점이 있다.At this time, in the RIE process, the process is performed at 160mT using CF 4 gas and Ar gas. However, when the RIE process is performed, the etching degree is different depending on the trench region. That is, as shown in FIG. 1, when two via holes are formed, the center portion of the trench is relatively less etched, and the end region of the trench (the region adjacent to the via hole) is relatively more etched. . Accordingly, it can be seen that the trench is formed in a tomb shape. 1 is a photograph showing a problem of a semiconductor device manufactured by a conventional semiconductor device manufacturing method. As such, when the trench is formed in a tomb shape, sheet resistance may vary depending on the region of the trench, and thus, the trench may not be stabilized.

이러한 원인은 압력이 제일 큰 요인인 것으로 분석되고 있다. 고 압력(예를 들어 대기에 가까운 압력)을 사용하는 경우에 이러한 현상은 개선되는 것으로 보고되고 있다. 하지만 플라즈마 RIE 챔버의 특성상 250mT 이상으로 압력을 제어하는 것은 어려우며, CD(Critical Dimension) 등의 문제로 인하여 압력을 무한정 높일 수도 없는 실정이다.This cause is analyzed to be the biggest factor. It is reported that this phenomenon is ameliorated when using high pressures (eg close to atmospheric pressure). However, it is difficult to control the pressure above 250mT due to the characteristics of the plasma RIE chamber, and due to problems such as CD (Critical Dimension), it is impossible to increase the pressure indefinitely.

본 발명은 비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정에 있어서, 트렌치 프로파일(trench profile)을 개선하고 면 저항(sheet resistance)을 안정화시킬 수 있는 반도체 소자 제조방법을 제공함에 그 목적이 있다.The present invention can improve the trench profile and stabilize the sheet resistance in a dual damascene process in which via holes are first formed and then trenches are formed. It is an object of the present invention to provide a method for manufacturing a semiconductor device.

상기 목적을 달성하기 위하여 본 발명에 따른 반도체 소자 제조방법은, 비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정을 이용한 반도체 소자 제조방법에 있어서, 층간 절연막에 상기 비아홀을 형성하는 단계; 상기 비아홀 위에 상기 트렌치 형성을 위한 포토레지스트 패턴을 형성하는 단계; Xe 가스를 포함하는 플라즈마를 이용하여 RIE(Reactive Ion Etching) 공정을 수행하고 상기 트렌치를 형성하는 단계; 를 포함한다.In the semiconductor device manufacturing method according to the present invention in order to achieve the above object, in the semiconductor device manufacturing method using a dual damascene process of forming a trench (via hole) first to form a trench (trench), Forming the via hole in an interlayer insulating film; Forming a photoresist pattern for forming the trench on the via hole; Performing a reactive ion etching (RIE) process using a plasma containing Xe gas and forming the trenches; It includes.

또한 본 발명에 의하면, 상기 RIE 공정은 CF4 가스, Xe 가스, CHF3를 포함하여 수행되며, 상기 CF4 가스는 80sccm±20%, 상기 Xe 가스는 120sccm±20%, 상기 CHF3 가스는 15sccm±20%로 공급된다.In addition, according to the present invention, the RIE process is performed including CF 4 gas, Xe gas, CHF 3 , the CF 4 gas is 80sccm ± 20%, the Xe gas is 120sccm ± 20%, the CHF 3 gas is 15sccm Supplied at ± 20%.

또한 본 발명에 의하면, 상기 RIE 공정을 진행함에 있어, 소스 전력(source power)은 1200W±15%, 바이어스 전력(bias power)은 800W±15%를 인가하며, 압력은 180mT±15%를 인가한다.According to the present invention, in the RIE process, source power is applied at 1200W ± 15%, bias power is applied at 800W ± 15%, and pressure is applied at 180mT ± 15%. .

이와 같은 본 발명에 의하면, 비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정에 있어서, 트렌치 프로파일(trench profile)을 개선하고 면 저항(sheet resistance)을 안정화시킬 수 있는 장점이 있다.According to the present invention, in the dual damascene process of forming a via hole first and then forming a trench, the trench profile is improved and sheet resistance is improved. There is an advantage that can be stabilized.

이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에서는 두 개의 비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정을 이용한 반도체 소자 제조방법에 있어서, 두 개의 비아홀 사이의 트렌치 영역을 평탄한 형상으로 균일하게 식각할 수 있는 방안을 제시하고자 한다. In the present invention, in the method of manufacturing a semiconductor device using a dual damascene process in which two via holes are first formed and then trenches are formed, the trench regions between the two via holes are formed in a flat shape. The purpose of this paper is to suggest a method for uniform etching.

도 2는 본 발명에 따른 반도체 소자 제조방법을 나타낸 순서도이다.2 is a flowchart illustrating a method of manufacturing a semiconductor device according to the present invention.

본 발명에 따른 반도체 소자 제조방법에 의하면, 도 2에 나타낸 바와 같이, 층간 절연막에 비아홀을 형성하고(단계 210), 상기 비아홀 위에 트렌치 형성을 위한 포토레지스트 패턴을 형성한다(단계 220). According to the method of manufacturing a semiconductor device according to the present invention, as shown in FIG. 2, via holes are formed in the interlayer insulating film (step 210), and photoresist patterns for trench formation are formed on the via holes (step 220).

이러한 공정의 하나의 예를 도 3을 참조하여 간략하게 설명하기로 한다. 도 3은 본 발명에 따른 반도체 소자 제조방법을 설명하기 위한 도면이다.One example of such a process will be briefly described with reference to FIG. 3. 3 is a view for explaining a method of manufacturing a semiconductor device according to the present invention.

먼저 SiN 막(101), 제 1 모노실란(Monosilane:SiH4) 막(103), FSG 막(105), 제 2 모노실란(Monosilane:SiH4) 막(107)을 적층 형성한다. 그리고, 상기 FSG 막(105)과 상기 제 2 모노실란(Monosilane:SiH4) 막(107)을 관통하는 비아홀을 형성한다. 이어서 상기 비아홀을 노보락(novolac) 수지막(109)으로 채우는 공정이 수행된다. First, a SiN film 101, a first monosilane (SiH 4 ) film 103, an FSG film 105, and a second monosilane (SiH 4 ) film 107 are formed by lamination. The via hole penetrates the FSG film 105 and the second monosilane (SiH 4 ) film 107. Subsequently, a process of filling the via hole with a novolac resin film 109 is performed.

상기 노보락 수지막(109)은 추후 진행될 트렌치 형성 공정에서 상기 SiN 막(101)이 손상되는 것을 방지하기 위하여 형성된 것이다. 상기 SiN 막(101)이 손상되는 경우에는 그 하부에 있는 금속층(예컨대 구리)이 노출될 수 있게 되며, 확산에 의한 각종 결함이 발생될 수 있기 때문이다.The novolak resin film 109 is formed to prevent the SiN film 101 from being damaged in a trench formation process to be performed later. This is because when the SiN film 101 is damaged, a metal layer (for example, copper) beneath it may be exposed, and various defects may occur due to diffusion.

상기 결과물 위에 BARC 막(111)을 형성하고, RIE(Reactive Ion Etching) 공정을 위한 포토레지스트 패턴(113)을 형성한다. A BARC film 111 is formed on the resultant, and a photoresist pattern 113 for a reactive ion etching (RIE) process is formed.

이어서 RIE(Reactive Ion Etching) 공정을 수행하고 트렌치를 형성한다(단계 230).A reactive ion etching (RIE) process is then performed and trenches are formed (step 230).

여기서 상기 RIE(Reactive Ion Etching) 공정은 Xe 가스를 포함하는 플라즈 마를 이용하여 수행하고 도 4에 나타낸 바와 같은 트렌치를 형성할 수 있게 된다. 도 4는 본 발명에 따른 반도체 소자 제조방법에 의하여 제조된 반도체 소자의 단면을 개념적으로 나타낸 도면이다.The reactive ion etching (RIE) process may be performed using a plasma including Xe gas and form a trench as shown in FIG. 4. 4 is a view conceptually showing a cross section of a semiconductor device manufactured by the method of manufacturing a semiconductor device according to the present invention.

본 발명에 따른 반도체 소자 제조방법에 의하면, 도 4에 나타낸 바와 같이, 트랜치(409)가 평탄한 형상으로 제조될 수 있으며, 균일한 면 저항(sheet resistance) 특성을 제공할 수 있게 된다. 도 4에 나타낸 반도체 소자는 하부 배선(401)과 상부 배선(403) 사이에 두 개의 비아홀(405)이 형성된 경우를 나타낸 것이다. 도면부호 407은 층간 절연층을 나타낸다.According to the semiconductor device manufacturing method according to the present invention, as shown in Figure 4, the trench 409 can be manufactured in a flat shape, it is possible to provide a uniform sheet resistance (sheet resistance) characteristics. 4 illustrates a case where two via holes 405 are formed between the lower wiring 401 and the upper wiring 403. Reference numeral 407 denotes an interlayer insulating layer.

본 발명에 의하면 종래의 Ar 가스 대신에 Xe 가스를 사용하여 RIE를 수행함으로써, 상기 트렌치(409) 영역의 프로파일을 평탄하게 개선할 수 있게 된다. 이는 Xe 가스가 Ar 가스보다 입자가 무거워서 평판 식각과 같은 경우 Ar 가스보다 Xe 가스가 훨씬 균일한 식각을 수행할 수 있기 때문이다.According to the present invention, by performing the RIE using Xe gas instead of the conventional Ar gas, the profile of the trench 409 region can be improved evenly. This is because the Xe gas is heavier than the Ar gas, and thus, in the case of plate etching, the Xe gas can perform etching more uniformly than the Ar gas.

본 발명에서는 RIE 공정을 수행함에 있어, CF4 가스, Xe 가스, CHF3를 포함하는 플라즈마를 이용하여 식각 공정을 수행하였다. 또한, RF 전력을 인가함에 있어, 포토레지스트 선택비를 위하여 소스 전력(source power)은 1200W±15%, 바이어스 전력(bias power)은 800W±15%를 인가하였으며, 압력은 180mT±15%를 인가하였다. In the present invention, in performing the RIE process, the etching process was performed using a plasma containing CF 4 gas, Xe gas, CHF 3 . In addition, in applying RF power, a source power of 1200W ± 15%, a bias power of 800W ± 15%, and a pressure of 180mT ± 15% were applied for the photoresist selection ratio. It was.

또한, RIE 공정을 수행함에 있어, CF4 가스는 80sccm으로 공급하였고, Xe 가스는 120sccm으로 공급하였다. 또한 포토레지스트의 특성을 좋게 하기 위하여 CHF3 를 15sccm 첨가하였다.In addition, in performing the RIE process, CF 4 gas was supplied at 80 sccm, and Xe gas was supplied at 120 sccm. In addition, 15 sccm of CHF 3 was added to improve the properties of the photoresist.

본 발명에서는 Ar 가스 대신에 Xe 가스를 사용하여 식각을 수행하였는데, 홀이 아닌 평판의 경우에는 훨씬 균일한 식각량이 발생되며, 이는 마이크로 트렌치 프로파일(micro trench profile)을 개선하는 중요한 요소가 된다. 이로 인하여 트렌치 형성 공정에 있어 과식각(over etch)량을 줄일 수 있게 된다.In the present invention, etching was performed using Xe gas instead of Ar gas, and in the case of a plate rather than a hole, a much more uniform etching amount is generated, which is an important factor for improving a micro trench profile. This may reduce the amount of overetch in the trench formation process.

또한 기존 트렌치 형성 공정 중에서, 가장 많은 부분을 차지하는 탑 로스(top loss)에 의한 브리지(bridge) 개선도 이룰 수 있게 되며, 안정적인 면 저항(sheet resistance)을 유지하여 소자의 특성도 향상시킬 수 있게 된다.In addition, it is possible to achieve bridge improvement due to the top loss, which occupies the largest portion of the existing trench forming process, and to improve the characteristics of the device by maintaining stable sheet resistance. .

이상의 설명에서와 같이 본 발명에 따른 반도체 소자 제조방법에 의하면, 비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정에 있어서, 트렌치 프로파일(trench profile)을 개선하고 면 저항(sheet resistance)을 안정화시킬 수 있는 장점이 있다.As described above, according to the method of manufacturing a semiconductor device according to the present invention, in a dual damascene process in which a via hole is first formed and then a trench is formed, a trench profile is formed. There is an advantage that can improve and stabilize the sheet resistance (sheet resistance).

Claims (5)

비아홀(via hole)을 먼저 형성한 후 트렌치(trench)를 형성하는 듀얼 다마신(dual damascene) 공정을 이용한 반도체 소자 제조방법에 있어서,In the semiconductor device manufacturing method using a dual damascene process of forming a via hole first and then forming a trench, 층간 절연막에 상기 비아홀을 형성하는 단계;Forming the via hole in an interlayer insulating film; 상기 비아홀 위에 상기 트렌치 형성을 위한 포토레지스트 패턴을 형성하는 단계;Forming a photoresist pattern for forming the trench on the via hole; Xe 가스를 포함하는 플라즈마를 이용하여 RIE(Reactive Ion Etching) 공정을 수행하고 상기 트렌치를 형성하는 단계; Performing a reactive ion etching (RIE) process using a plasma containing Xe gas and forming the trenches; 를 포함하는 것을 특징으로 하는 반도체 소자 제조방법.Semiconductor device manufacturing method comprising a. 제 1항에 있어서,The method of claim 1, 상기 RIE 공정은 CF4 가스, Xe 가스, CHF3를 포함하여 수행되는 것을 특징으로 하는 반도체 소자 제조방법.The RIE process is a semiconductor device manufacturing method characterized in that it is performed including CF 4 gas, Xe gas, CHF 3 . 제 1항에 있어서,The method of claim 1, 상기 RIE 공정을 진행함에 있어, 소스 전력(source power)은 1200W±15%, 바이어스 전력(bias power)은 800W±15%를 인가하는 것을 특징으로 하는 반도체 소자 제조방법.In the RIE process, source power is 1200W ± 15%, bias power (bias power) is a semiconductor device manufacturing method, characterized in that for applying 800W ± 15%. 제 1항에 있어서,The method of claim 1, 상기 RIE 공정을 진행함에 있어 압력은 180mT±15%를 인가하는 것을 특징으로 하는 반도체 소자 제조방법.In the RIE process, the pressure is 180mT ± 15% of the semiconductor device manufacturing method characterized in that applied. 제 2항에 있어서,The method of claim 2, 상기 CF4 가스는 80sccm±20%, 상기 Xe 가스는 120sccm±20%, 상기 CHF3 가스는 15sccm±20%로 공급되는 것을 특징으로 하는 반도체 소자 제조방법.The CF 4 gas is 80sccm ± 20%, the Xe gas is 120sccm ± 20%, the CHF 3 gas is 15sccm ± 20% is supplied.
KR1020050132298A 2005-12-28 2005-12-28 Fabricating method of semiconductor device KR100702790B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050132298A KR100702790B1 (en) 2005-12-28 2005-12-28 Fabricating method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050132298A KR100702790B1 (en) 2005-12-28 2005-12-28 Fabricating method of semiconductor device

Publications (1)

Publication Number Publication Date
KR100702790B1 true KR100702790B1 (en) 2007-04-03

Family

ID=38160685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050132298A KR100702790B1 (en) 2005-12-28 2005-12-28 Fabricating method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100702790B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050778A (en) * 2001-12-19 2003-06-25 주식회사 하이닉스반도체 Method of forming a dual damascene pattern in a semiconductor device
KR20050118469A (en) * 2004-06-14 2005-12-19 매그나칩 반도체 유한회사 A method for forming a dual damascene pattern in semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050778A (en) * 2001-12-19 2003-06-25 주식회사 하이닉스반도체 Method of forming a dual damascene pattern in a semiconductor device
KR20050118469A (en) * 2004-06-14 2005-12-19 매그나칩 반도체 유한회사 A method for forming a dual damascene pattern in semiconductor device

Similar Documents

Publication Publication Date Title
US6800550B2 (en) Method for forming t-shaped conductive wires of semiconductor device utilizing notching phenomenon
JP2009170901A (en) Protection of sidewall of trench by carbon-rich layer in semiconductor device
KR20030035877A (en) Semiconductor device fabrication method
JP4492949B2 (en) Manufacturing method of electronic device
KR100702790B1 (en) Fabricating method of semiconductor device
JP2004095902A (en) Method for manufacturing semiconductor device
JP4559973B2 (en) Manufacturing method of semiconductor device
KR100876532B1 (en) Manufacturing Method of Semiconductor Device
JP3924501B2 (en) Manufacturing method of integrated circuit device
KR100649972B1 (en) Method for manufacturing metal line in semiconductor device
KR101081851B1 (en) Method of forming a dual damascene pattern in a semiconductor device
KR100799068B1 (en) The fabricating method of semiconductor device
TW516180B (en) Manufacturing method for dual damascene structure of integrated circuit
KR100996160B1 (en) Method of manufacturing a capacitor in a semiconductor devices
KR100523656B1 (en) Method for forming metal line in a semiconductor device
KR100973130B1 (en) Method of forming a dual damascene pattern in a semiconductor device
KR20030002942A (en) Method for forming metal interconnection in semiconductor device
KR100470719B1 (en) Etching Method of Semiconductor Device
KR100831572B1 (en) Method of forming metal line for semiconductor device
TW413904B (en) Method for forming a dual damascene structure on the surface of a semiconductor chip
KR20050037712A (en) Method of manufacturing a semiconductor device
CN113314500A (en) Semiconductor structure and manufacturing method thereof
KR20050074759A (en) Method of forming ultra fine contact hole for semiconductor device
JP2006073907A (en) Semiconductor apparatus and its manufacturing method
KR20050009618A (en) Method of forming metal line in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100223

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee