KR100662681B1 - 피이엠(pem) 연료전지용 개선된 멤브레인 전극 어셈블리 - Google Patents
피이엠(pem) 연료전지용 개선된 멤브레인 전극 어셈블리 Download PDFInfo
- Publication number
- KR100662681B1 KR100662681B1 KR1020017005470A KR20017005470A KR100662681B1 KR 100662681 B1 KR100662681 B1 KR 100662681B1 KR 1020017005470 A KR1020017005470 A KR 1020017005470A KR 20017005470 A KR20017005470 A KR 20017005470A KR 100662681 B1 KR100662681 B1 KR 100662681B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode assembly
- membrane electrode
- fuel cell
- water
- gas diffusion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
촉매층 (40, 44)을 갖는 PEM 전지용 개선된 멤브레인 전극 어셈블리 (10)가 각각 완전 평면형 PEM (48)의 양측에 배치되어 있다. 가스 확산층 (38, 50)은 각각 완전 평면형 PEM (48)과 연결되지 않고 촉매층 (40, 44)상에 배치되어 있다. 다공성 기판 (32, 34)는 각각 촉매층 (40, 44)와 연결되지 않고 가스 확산층 (38, 50)상에 배치되어 있다. 다공성 기판 (32, 34)는 다공성 기판 (32, 34)의 밀봉제 함침 구역 (36, 52)과 연결되어 있는 구역에서 그의 주변부에 밀봉제 (60, 62)가 함침되어 있다. 가스 확산층 (38, 50), 다공성 기판 (32, 34) 및 촉매층 (40, 44)는 PEM (48)과 동일한 면적을 갖고 있다.
Description
본 발명은 양자 교환 멤브레인(PEM) 연료전지, 및 연료전지용 멤브레인 전극 어셈블리에 관한 것이다. 보다 구체적으로는, 본 발명은 이러한 전지의 생산공정을 단순화시켜 생산 단가를 감소시킨 개선된 연료전지의 구조물에 관한 것이다.
고형 중합체 전해질 연료전지 발전장치는 선행 기술에 공지되어 있으며, 이의 기본형태가 캐나다 벤쿠버 소재 발라드 파워 시스템즈 인코포레이티드(Ballard Power Systems, Inc.; Vancouver, Canada)로부터 시판되고 있다. 이들 시스템이 유용하기는 하나, 비교적 복잡하다. 발라드 파워 시스템즈의 중합체 멤브레인 발전장치는 1994년 11월 1일자로 허여된 미국 특허 제5,360,679호에 예시되어 있다.
또한, 공지의 연료전지는 통상 음극판과 양극판 사이에 양자 교환 멤브레인이 배치되도록 구성되어 있다. 이러한 연료전지의 일반적인 구성 및 작동 원리는 본 명세서에서 구체적으로 논의할 필요가 없을 정도로 잘 알려져 있다. 일반적으로, 양자 교환 멤브레인(PEM) 연료전지의 작동은 가스상 연료 및 산화 가스를 각각 양극판과 음극판에 공급하고, 전형적으로는 그들 사이에 촉매층을 포함하는 각 전극판의 활성 표면, 또는 보다 구체적으로는, 양자 교환 멤브레인에 접해있는 전극 판 표면위에 가능한 한 균일하게 분포시키는 것을 포함한다. 음극판과 양극판 자체와 이들 사이에서 전기화학반응이 일어나서, 연료와 산소 사이에서 반응 생성물이 형성되면서, 열 에너지를 방출하고, 전극판 사이에 전위차를 발생시키며, 이렇게 생성된 전력이 통상적으로 연료전지의 유용한 출력을 구성한다.
고형 중합체 연료전지에서 발생하는 문제점 중 하나는 발전장치 전지내부의 냉각수 및 생성된 물을 처리하는 것과 관련되어 있다. 고형 중합체 멤브레인 연료전지 발전장치에 있어서, 생성된 물은 전지의 음극측에서의 전기화학반응에 의해, 특히 수소 이온, 전자 및 산소 분자가 결합되어 형성된다. 생성된 물은 연료의 음극측으로부터 배출되어야 하고, 보충수는 전극판 음극측의 양자 교환 멤브레인이 건조되는 것을 방지하나, 범람되는 것은 피할 정도의 양으로 전지의 양극측에 제공되어야 한다.
오스트리아 특허 제389,020호에는 미세 기공 수 냉각판 어셈블리를 이용하여 불활성 냉각제 및 물의 취급을 조절하는 수소 이온-교환 멤브레인 연료전지 스택이 기재되어 있다. 상기 오스트리아 특허의 시스템은 각각 전지들을 냉각하고 인접한 전지들 사이에서 반응물들이 교차되는 것을 방지하기 위하여 전지 하나의 음극측과 그에 인접한 전지의 양극측 사이에 수-포화된 미세 기공판 어셈블리를 이용한다. 또한, 미세 기공판 어셈블리는 생성된 물을 이온-교환 멤브레인의 음극측으로부터 냉각수 스트림으로 이동시키고, 냉각수를 이온-교환 멤브레인의 양극측으로 이동시켜 양극이 건조해지는 것을 방지하는데 이용된다. 생성된 물과 냉각수의 바람직한 방향성 이동은 수 냉각판 어셈블리를 두 개의 부분으로 형성시켜, 그중 하나가 음극측에서 생성된 물을 미세 기공판으로 흡수되어 모세관 현상에 의해 냉각판 어셈블리의 내부에 있는 수 냉각 통로 네트웍으로 이동하게 함으로써 달성된다. 또한, 냉각판 어셈블리는 제1 판보다 미세한 기공 구조를 갖고, 수 냉각 통로로부터 물을 흡수하고 이 물을 모세관 현상에 의해 양극으로 이동시키게 작동시킬 수 있는 제2 판을 포함한다. 각각의 어셈블리에 있어서, 미세 기공판과 그 보다 미세한 기공판은 홈이 파여져 냉각 통로 네트웍 및 반응물 통로 네트웍을 형성하고, 인접한 전지들 사이에서 마주보도록 정렬된다. 보다 미세한 기공판은 미세 기공판 보다 얇아서 수 냉각 통로를 음극 보다는 양극에 보다 아주 근접하게 위치시킨다. 이온-교환 멤브레인 연료전지 발전장치에서 수 처리 및 전지 냉각에 대한 상기와 같은 해결책은 미세 기공판과 그 보다 미세한 기공판의 품질 조절 필요성으로 인해 달성하기 어렵고, 또한 판 부품이 균일하게 생산되지 않기 때문에 고비용이 소요된다.
연료전지 기술에 있어서, 수전달판은 물로 채워진 다공성 구조물이다. 연료전지를 작동시키는 동안, 수전달판은 물을 국소적으로 공급하여 양자 교환 멤브레인(PEM)의 습도를 유지시키고, 음극에서 형성된 물을 제거하며, 순환 냉각수 스트림을 통해 부산물인 열을 제거하고, 전지에서 전지로 전기를 전도하며, 인접한 전지 사이에 가스 분리판을 제공하고, 전지를 통해 반응물의 이송을 위한 통로를 제공한다. 수전달판은 연료전지에 물을 공급하여 증발로부터 손실된 물을 재보충한다. 이 시스템 및 그의 작동 방법은 메이어(Meyer)의 미국 특허 제5,303,944호, 라이저(Reiser)의 미국 특허 제5,700,595호 및 라이저의 미국 특허 제4,769,297호 에 기재되어 있고, 이들은 본 명세서에 참고로 인용된다.
연료전지가 경제적으로 이용가능하기 위하여는, 탁월한 디자인을 갖고 목적하는 성능을 지녀야할 뿐만 아니라 대량 생산 또한 가능하여야 한다. 연료전지 부품의 대량 생산은 중대한 관심사가 되고 있는 몇 가지 문제점을 발생시킨다. 전지의 품질 및 효율은 손상시키지 않으면서 생산 비용은 가능한 한 낮게 유지하여야 한다. 연료전지 부품이 보다 복잡해지고 해당 연료전지에 보다 많은 부품이 필요해 짐에 따라, 이러한 전지의 가격은 현저하게 증가하게 된다.
복층, 촉매층, 기판 및 수전달판과 같은 연료전지 부품들은 정밀한 치수의 필요성으로 인해 더욱 복잡하게 된다. 특히, 종래 기술의 연료전지 부품은 상기의 부품들을 연결시키는데 있어서 부품들이 부스러지는 것을 피하고 효과적인 밀봉을 위해 제조 공정중에 정밀한 허용오차를 필요로 하는 단부 가스켓을 통상적으로 채용하고 있다. 공지된 연료전지 어셈블리내에 단부 가스켓의 채용과 관련된 본질적인 단계 불연속성으로 인하여 정밀한 하용오차를 유지하여야 할 필요성이 존재하고 있다.
또한, PEM 연료전지에 대한 주된 관심사는 전지내의 반응물 분포와 오염에 있다. 이는 전극 기판과 같은 다공성 부재를 사용하는 경우 특히 중요하다. 이러한 다공성은 양극 수전달판 및 음극 수전달판에 제공된 각각의 채널을 통해 촉매적으로 활성이고 양자 교환 멤브레인으로부터 이격되어 있는 각각의 전극판의 영역에 공급되는 각각의 가스상 매질의 각각의 활성 표면에 실질적으로 균일하게 분포되게 하는 것이 필요하다. 또한, 이들 다공성 기판은 활성 표면중 하나로부터 반응된 물을 제거하고, 다른 하나에 물을 공급하여 양자 교환 멤브레인이 건조해지는 것을 방지하는데 사용된다.
PEM 연료전지에 다공성 수전달판 및 다공성 전극 기판을 사용하는 경우, PEM 연료전지중의 생성된 물 또는 냉각수와 같은 임의의 액체, 또는 연료 또는 산화제 중 어떤 것도 각각의 다공성 수전달판 또는 전극 기판의 주변부 또는 단부로 흘러들거나 그로부터 흘러나오지 않도록 보장하는 것이 필요하다. 수전달판 또는 전극 기판의 주변부 또는 단부를 통한 반응물 가스의 누출은 각 매질의 손실을 가져와 연료전지 효율을 감소시키게 된다. 가장 중요하게는, 수전달판 또는 전극 기판의 주변부 또는 단부를 통한 매질의 누출을 방지하는 것이 좋지 않은 결과를 가져올 수도 있는 가스상 연료와 산화 가스 또는 주위 공기의 혼합을 방지하는데 있어 중요하다. 따라서, 제조 허용오차는 최소로 유지되어야 하고, 단계 불연속성을 제거하여 적절한 연료전지 작동을 실현하는데 효과적인 밀봉을 보장하여야 한다. 또한, 부품의 부식을 방지하기 위하여, 산소가 그에 상응하는 밀봉 영역에서 연료전지의 음극측에서 관련된 높은 전위 및 음극 촉매에 도달하는 것이 방지되어야 한다.
열악한 제조 허용오차 및 단계 불연속성의 효과를 최소화시키기 위한 PEM 연료전지의 밀봉 디자인을 제공하기 위하여 선행 기술에서는 다양한 시도가 행하여져왔다. 이 중 하나의 시도는 에프(Epp) 등에게 허여된 미국 특허 제5,176,966호에 기재되어 있으며, 이는 본 명세서에 참고로 인용된다. 예를 들어, 이 특허에는 두 개의 탄소 섬유 종이 지지층 사이에 배치된 고형 중합체 이온 교환 멤브레인이 개시되어 있다. 지지층과 교환 멤브레인 사이에는 촉매층이 배치되어 있다. 지지층은 실질적으로 교환 멤브레인의 전체 표면을 지지하고 있다. 그러나, 이러한 구조는 산소가 음극 촉매에 도달하는 것을 방지하기 위한 주변부 밀봉이 열악하기 때문에 부식되기 쉽다. 예를 들어, 미국 특허 제5,264,299호 또한 이러한 구조에 대해 교시하고 있고, 이는 본 명세서에 참고로 인용된다.
상기의 기술로부터, 개선된 연료전지는 저비용으로 대량 생산이 가능한 것이 바람직하다. 또한, 단계에 따른 구성을 없애서 단계 불연속성을 피한 멤브레인 전극 어셈블리를 포함하는 PEM 연료전지가 바람직하다. 멤브레인 전극 어셈블리가 연속적이고 제조 허용오차가 보다 손쉽게 유지되게 대량 생산할 수 있는 개선된 연료전지가 바람직하다.
본 발명은 선행 기술의 연료전지용 양자 교환 멤브레인의 이점을 보유한다. 이에 덧붙여, 본 발명은 지금까지 시판중인 연료전지에서 밝혀지지 않았던 새로운 이점을 제공하고, 이들의 많은 결점들을 극복하였다.
본 발명은 일반적으로 개선된 멤브레인 전극 어셈블리(MEA) 구조를 갖는 신규한 연료전지에 관한 것이다. 개선된 MEA는 전지의 표면이 전체 평면형에 걸쳐 촉매로 코팅되어 있는 양자 교환 멤브레인으로 구성된다. 양 촉매층에는 소위 당업계에 널리 알려져 있는 가스 확산 복층이 인접해 있다. 상기 복층은 다공성 흑연 기판에 지지되어 있고, 이 또한 당업계에 널리 알려져 있다. 상기 복층 및 기판 양자는 서로 동일한 면적을 가지며, 양자 교환 멤브레인 및 촉매층과도 동일한 면적을 갖는다. 기판의 주변부는 엘라스토머가 함침되어 반응물을 밀봉하고, 노출된 복층 표면 중 엘라스토머가 함침된 기판 영역에 대향한 주변부는 엘라스토머로 코팅되어 촉매층으로 반응물이 투과되는 것을 방지됨으로써 부식을 방지한다.
본 발명의 멤브레인 전극 어셈블리는 연속적인 형태로 제조되어 선행 기술의 멤브레인 전극 어셈블리와 관련된 문제점이 해결된다. 예를 들어, 본 발명의 어셈블리는 공지된 멤브레인 전극 어셈블리중 다수의 요소, 예를 들어, 개별적인 단부 밀봉제 및 가스켓을 제거하였다. 각 층들이 서로 동일한 면적인 양자 교환 멤브레인, 촉매층 및 복층의 연속적인 제조는 제조 공정을 크게 단순화시켜 전술한 바와 같은 단부 밀봉제 및 가스켓을 갖는 어셈블리와 관련된 단계 불연속성 및 정밀한 허용오차 필요성을 없앴다. 본 발명에 따르면, 멤브레인 전극 어셈블리를 제조하는 동안의 정밀한 허용오차가 요구되지 않아 선행 기술의 어셈블리를 제조하는 동안 파악할 수 있는 것 보다 파쇄 비율을 매우 작게 낮추었다.
따라서, 본 발명의 목적은 우수한 밀봉 특징을 갖고 제조에 저비용이 소요되는 멤브레인 전극 어셈블리를 포함하는 PEM 연로 전지 어셈블리를 제공하는 것이다.
또한, 본 발명의 목적은 단계 불연속성을 제거한 멤브레인 전극 어셈블리를 포함하는 PEM 연료 전지 어셈블리를 제공하는 것이다.
본 발명의 특징적인 구성이 청구항에 기재되어 있다. 그러나, 본 발명의 바람직한 실시 양태 및 추가의 목적 및 부수적인 이점은 첨부된 도면과 함께 하기의 상세한 설명을 참조하면 가장 잘 이해될 것이다.
도 1은 개선된 단부 밀봉 디자인을 갖는 본 발명의 PEM 전지의 투시도이다.
도 2는 도 1의 선 2-2를 따라 절단한 단면도이다.
도 3은 밀봉 물질로 주변부가 코팅된 본 발명의 복층의 평면도이다.
<바람직한 실시 양태의 상세한 설명>
도 1 및 도 2를 참조하면, 양자 교환 멤브레인(PEM) 연료전지 (10)은 당업계에 공지된 다양한 제조 방법에 따라 제조할 수 있는 음극 수전달판 (12) 및 양극 수전달판 (16)을 포함한다. 음극 수전달판 (12)는 음극 공기 유동 채널 (14)를 포함하고, 양극 수전달판 (16)은 양극 연료 유동 채널 (18)을 포함한다. 음극 수전달판 (12)는 냉각제 유동 채널 (26)을 포함한다.
상기에서 논의한 개선된 수전달판 (12) 및 (16)과 관련하여, 본 발명의 PEM 연료전지는 수전달판중에 습윤 단부 밀봉부 (22)을 이용하여 반응물 가스가 수 시스템으로 침투하거나 그 반대로 되는 것을 방지하고, 동일한 습윤 단부 밀봉을 이용하여 냉각제 및 생성된 물이 빠져나가는 것을 방지하는 개선된 단부 밀봉 디자인을 제공한다. 수전달판 (12) 및 (16)은 바람직하게는 흑연 분말, 셀룰로오스 섬유 및 강화 섬유를 모두 열가소성 수지로 결합하고 열처리하여 유기 물질을 탄소로 전환시킴으로써 형성된다.
다른 방법으로는, 본 발명에 의해 제공된 개선된 멤브레인 전극 어셈블리는 바람직하게 합해진 수전달판/반응물 유동 구역 대신에 비다공성 반응물 유동 구역을 이용할 수도 있다.
음극 수전달판 (12)와 양극 수전달판 (16) 사이에는 일반적으로 (20)으로 표시되는 멤브레인 전극 어셈블리(MEA)가 배치된다. 멤브레인 전극 어셈블리 (20)내에는, 그 위에 음극 복층(음극 가스 확산층)을 갖는 음극 기판 (32) 및 엘라스토머가 함침된 기판 밀봉부 (52)가 제공된다. 음극 복층 (50)은 실질적으로 음극 기판 (32)와 동일한 면적을 갖는다. 또한, 그 위에 양극 복층(양극 가스 확산층) (38)을 갖는 양극 기판 (34) 및 엘라스토머가 함침된 기판 밀봉부 (36)이 제공된다. 양극 복층 (38)은 실질적으로 양극 기판 (34)와 동일한 면적을 갖는다. 밀봉 함침 공정에 있어서, 음극측 밀봉 증강부 (62) 및 양극 측면 밀봉 증강부 (60)가 남아서 기판 (32) 및 (34)와 각각의 상응하는 수전달판 (12) 및 (16) 사이에서 계면 밀봉부로서의 역할을 한다.
양극 촉매층 (40) 및 음극 촉매층 (44)은 그 사이에 끼워진 양자 교환 멤브레인 (48)이 제공된다. 촉매층 (40) 및 (44)는 바람직하게는 양자 교환 멤브레인과 동일한 면적을 가지며, 백금 및 다른 적절한 촉매 물질일 수 있다. 또한, 촉매층 (40) 및 (44)는 멤브레인 (38) 보다 작은 평면형일 수 있다. 양극 복층 표면 밀봉부 (42)는 음극 복층 (38) 위에 제공되고, 음극 복층 표면 밀봉부 (46)은 음극 복층 (50) 위에 제공된다.
도 3에는 밀봉부(46)가 바람직하게는 음극 복층 (50)의 전체 주변 단부 (64) 주위에 배치된 음극 복층 (50)상의 음극 복층 표면 밀봉부 (46)의 평면도가 예시되어 있다. 중심부 (66)에는 밀봉부(46)가 없다. 양극 복층 표면 밀봉부 (42)의 평면도는 편의상 도시하지 않았으나, 이는 음극 표면 밀봉부 (46)을 역전시켜 놓은 것과 동일하다. 이는 복층 (38) 및 (50)상에서 엘라스토머 밀봉제 물질, 예를 들어 플루오로라스트의 라우린 디비전(Fluorolast, a Laureen Division)에서 제조한 플루오로라스트(FLUOROLAST) 등급 SB 또는 WB을 불활성 충전제, 예를 들어 탄화규소로 스크린 프린팅하는 것과 같은 공지된 방법에 의해 표면 밀봉부 (42) 및 (46)을 도포하여 달성된다. 다른 방법으로는, 다우 케미칼 코포레이션(Dow Chemical Corporation)에서 제조한 실가드(SYLGARD)를 엘라스토머 밀봉제 물질로서 사용할 수도 있다. 또한, 본 발명에 따라 플루오로라스트와 실가드의 조합물을 사용할 수도 있다. 다른 방법으로는, 불활성 충전제를 제거할 수도 있다.
특히, 양극 복층 (38) 및 음극 복층 (50)은 본 발명에 따른 단부 밀봉부를 함유하지 않는다. 복층 (38) 및 (50)의 기공 크기는 평면내 가스 투과성을 최소화하여 중합체가 함침된 단부 밀봉부 없이도 반응물 누출을 적게하기 위하여 매우 작은 단면적을 갖는 매우 소형으로 선택된다. 복층 (38) 및 (50)은 바람직하게는 반응물 누출을 추가로 감소시키기 위한 작은 두께의 카본 블랙이다.
제조 공정에 있어서, 음극 기판 (32) 및 양극 기판 (34)는 미국 캘리포니아주 엔시노 소재 토레이 마케팅 앤드 세일즈 인코포레이티드(Toray Marketing & Sales, Inc.; Encino, California)에서 입수한 등급 TGP-006의 다공성 카본지였다. 이들 기판은 미국 델라웨어주 윌밍톤 소재 이. 아이. 두폰 캄파니(E.I. DuPont Co.; Wilminton, Delaware)에서 입수한 등급 FEP-120의 테플론(Teflon)과 같은 플루오로중합체로 플루오로중합체 농도 10 내지 20 중량%까지 선택적으로 방수처리된다. 기판은 선택적으로 방수처리되어 중심 영역 (66)은 방수처리되나 주변 밀봉 영역 (46)은 방수처리 되지 않는다. 방수처리는 스크린 인쇄와 같은 당업계에 공지된 방법으로 적용할 수 있다. 복층 (50) 및 (38)은 각각 기판 (32) 및 (34)에 연결된다. 소위 가스 확산 복층은 전형적으로는 미국 메사추세츠주 빌레시아 소재 캐보트 캄파니(Cabot Co.; Billrecia, Massachusetts)에서 제조한 불칸(Vulcan) XC-72와 같은 고급 구조의 카본 블랙, 및 상기에 언급한 FEP-120 또는 등급 TFE-30 또는 등가물과 같은 35 내지 65 중량% 플루오로중합체로 형성된다. 복층은 통상적으로 소유된 미국 특허 제4,233,181호와 같은 선행 기술에 공지되어 있는 방법으로 적용한다. 복층은 전형적으로는 0.00508 내지 0.0127 cm(0.002 내지 0.005 inch) 두께이다.
MEA, 즉 복층 및 미세 기공층 부품의 제조에 대하여는 하기의 실시예를 참조하여 추가로 설명한다. 이 실시예는 본 발명에 따른 MEA의 복층 및 미세 기공층의 형성 방법을 예시하기 위한 것이다. 부품 시험을 수행하여 개선된 전지의 밀봉 특성을 확립하였다. 그러나, 실시예가 본 발명의 범위를 제한하는 것은 아니다.
토레이로부터 입수한 약 0.0178 cm(약 0.007 inch) 두께의 TGP-006 등급의 다공성 흑연 전극 기판을 미국 특허 제4,233,181호에 기재되어 있는 일반적인 방법을 이용하여 불칸 XC-72 및 50 중량% 테플론 FEP-120으로 이루어진 가스 확산 복층으로 코팅하였다. 복층의 두께는 약 0.0102 cm(약 0.004 inch)였다. 복층을 15 분 동안 약 349 ℃(약 660 ℉)까지 가열하였다. 복층/기판 조합의 7.62 cm × 7.62 cm(3-inch × 3-inch) 샘플의 주변을 둘러싼 0.635 cm × 1.9 cm(1/4-inch × 3/8-inch) 폭의 밴드를 브러쉬를 사용하여 플루오로라스트 등급 WB로 코팅하여 기판의 빈 공간을 채우고 복층의 표면을 코팅하였다. 이 샘플을 건조한 후, 66 ℃에서 30 분 동안 오븐 건조하였다. 플루오로라스트 처리된 복층/기판 조합을 인터내쇼날 퓨어 셀(International Fuel Cell)에서 제조한 기공 크기가 약 2.5 마이크론이고 약 35 % 다공성인 7.62 cm × 0.183 cm(3-inch × 0.072-inch) 다공성 흑연 수전달성 판에 연결시켰다. 연결 조건은 10 분 동안 약 363 kg(약 800 lb)의 하중에서 온도 약 177 ℃(약 350 ℉)였다. 연결된 어셈블리를 누출 시험을 위하여 물로 진공 충전하였다. 물이 충전된 어셈블리를 압력 시험 설비에 설치하고, 질소 가스를 이용하여 누출을 측정하였다. 68.9 mbar(1.0 psig)에서 상기 요건을 만족시키는 0.2 cm3/inch(밀봉 길이)의 누출률이 측정되었다.
본 발명의 PEM 연료전지는 다양한 이점이 있는 것으로 파악되었다. 연속 방식의 PEM을 포함하는 멤브레인 전극 어셈블리는 대량 생산을 매우 용이하게 하고, 고비용이 소요되는 높은 폐기율을 회피하였다. PEM 전지 제조에 있어서 단계의 불연속성을 제거함으로써 전지 제조에서의 폐쇄 허용도에 대한 필요성을 없앤 동시에 본 명세서에서 논의한 PEM 전지 제조의 전체 비용을 감소시켰다.
본 발명의 정신을 떠나지 않고도 예시한 실시 양태를 다양하게 변경 및 변형시킬 수 있다는 사실이 당업계의 숙련자들에게 자명할 것이다. 이러한 모든 변형 및 변경은 부가된 청구항에 의해 포괄되도록 의도되었다.
Claims (7)
- 멤브레인 전극 어셈블리이며,양측에 중심 영역을 갖는 완전 평면형 양자 교환 멤브레인과,상기 완전 평면형 양자 교환 멤브레인의 양측 각각과 연결되는 촉매층과,상기 촉매층의 양측 각각과는 연결되나 완전 평면형 양자 교환 멤브레인과는 연결되지 않은 가스 확산층과,상기 가스 확산층의 양측 각각과는 연결되나 촉매층과는 연결되지 않고, 그의 주변부에 밀봉제가 함침되어 있는 다공성 기판을 포함하고,상기 가스 확산층은 상기 다공성 기판의 밀봉제 함침 구역과 연결되는 구역에 있는 가스 확산층의 각 측면 위에 밀봉제가 코팅되어 있고, 상기 가스 확산층, 상기 다공성 기판 및 상기 촉매층이 상기 양자 교환 멤브레인과 동일한 면적을 갖는 멤브레인 전극 어셈블리.
- 제1항에 있어서, 상기 밀봉제 물질이 엘라스토머인 멤브레인 전극 어셈블리.
- 제2항에 있어서, 상기 엘라스토머가 플루오로라스트(FLUOROLAST)인 멤브레인 전극 어셈블리.
- 제2항에 있어서, 상기 엘라스토머가 실가드(SYLGARD)인 멤브레인 전극 어셈블리.
- 제2항에 있어서, 상기 엘라스토머가 플루오로라스트와 실가드의 조합물인 멤브레인 전극 어셈블리.
- 제1항에 있어서, 상기 완전 평면형 양자 교환 멤브레인, 촉매층, 가스 확산층 및 다공성 기판이 함께 연결되어 형성되는 멤브레인 전극 어셈블리.
- 제1항에 있어서, 상기 다공성 기판 각각이 중심부 및 주변부를 포함하고, 상기 주변부가 통합되어 중심부를 완전하게 둘러싸는 멤브레인 전극 어셈블리.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/182,959 US6020083A (en) | 1998-10-30 | 1998-10-30 | Membrane electrode assembly for PEM fuel cell |
US09/192,959 | 1998-10-30 | ||
US09/182,959 | 1998-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010104645A KR20010104645A (ko) | 2001-11-26 |
KR100662681B1 true KR100662681B1 (ko) | 2007-01-02 |
Family
ID=22670799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020017005470A KR100662681B1 (ko) | 1998-10-30 | 1999-10-27 | 피이엠(pem) 연료전지용 개선된 멤브레인 전극 어셈블리 |
Country Status (10)
Country | Link |
---|---|
US (1) | US6020083A (ko) |
EP (1) | EP1129497B1 (ko) |
JP (1) | JP4505144B2 (ko) |
KR (1) | KR100662681B1 (ko) |
CN (1) | CN1167147C (ko) |
AU (1) | AU1318100A (ko) |
BR (1) | BR9914923A (ko) |
DE (1) | DE69938557T2 (ko) |
ID (1) | ID29422A (ko) |
WO (1) | WO2000026975A1 (ko) |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6232010B1 (en) * | 1999-05-08 | 2001-05-15 | Lynn Tech Power Systems, Ltd. | Unitized barrier and flow control device for electrochemical reactors |
DE19840517A1 (de) * | 1998-09-04 | 2000-03-16 | Manhattan Scientifics Inc | Gasdiffusionsstruktur senkrecht zur Membran von Polymerelektrolyt-Membran Brennstoffzellen |
US6387557B1 (en) | 1998-10-21 | 2002-05-14 | Utc Fuel Cells, Llc | Bonded fuel cell stack assemblies |
US6159628A (en) * | 1998-10-21 | 2000-12-12 | International Fuel Cells Llc | Use of thermoplastic films to create seals and bond PEM cell components |
AU3342300A (en) * | 1998-12-11 | 2000-06-26 | International Fuel Cells, Llc | Proton exchange membrane fuel cell external manifold seal |
US6399234B2 (en) | 1998-12-23 | 2002-06-04 | Utc Fuel Cells, Llc | Fuel cell stack assembly with edge seal |
US6602631B1 (en) * | 1999-01-26 | 2003-08-05 | Lynntech Power Systems, Ltd. | Bonding electrochemical cell components |
US20020132152A1 (en) * | 1999-02-09 | 2002-09-19 | Kazuo Saito | Separator for fuel cell and solid polymer type fuel cell using said separator |
CA2312446C (en) * | 1999-06-21 | 2006-04-04 | Honda Giken Kogyo Kabushiki Kaisha (Also Trading As Honda Motor Co., Ltd .) | Active solid polymer electrolyte membrane in solid polymer type fuel cell and process for the production thereof |
CN1205685C (zh) | 1999-11-17 | 2005-06-08 | 尼电源系统公司 | 具有硅基片的燃料电池 |
CN100461518C (zh) * | 1999-12-17 | 2009-02-11 | Utc电力公司 | 燃料电池发电装置 |
US6399231B1 (en) | 2000-06-22 | 2002-06-04 | Utc Fuel Cells, Llc | Method and apparatus for regenerating the performance of a PEM fuel cell |
CN100487966C (zh) | 2000-06-29 | 2009-05-13 | Nok株式会社 | 燃料电池构成部件 |
US20020022170A1 (en) * | 2000-08-18 | 2002-02-21 | Franklin Jerrold E. | Integrated and modular BSP/MEA/manifold plates for fuel cells |
EP1415361A2 (en) * | 2000-08-18 | 2004-05-06 | Jerrold E. Franklin | Integrated and modular bsp/mea/manifold plates and compliant contacts for fuel cells |
US6531238B1 (en) | 2000-09-26 | 2003-03-11 | Reliant Energy Power Systems, Inc. | Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly |
US6630263B1 (en) | 2000-11-20 | 2003-10-07 | Plug Power Inc. | Fuel cell systems and methods |
US6521367B2 (en) * | 2000-12-06 | 2003-02-18 | Utc Fuel Cells, Llc | Fuel cell with an electrolyte dry-out barrier |
US6485857B2 (en) * | 2000-12-29 | 2002-11-26 | Utc Fuel Cells, Llc | Fuel cell hybrid flow field humidification zone |
US6730426B2 (en) * | 2001-01-12 | 2004-05-04 | Mosaic Energy, Llc | Integral sealing method for fuel cell separator plates |
JP3571696B2 (ja) * | 2001-01-30 | 2004-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
GB0112021D0 (en) * | 2001-05-17 | 2001-07-11 | Johnson Matthey Plc | Substrate |
US7018734B2 (en) * | 2001-07-27 | 2006-03-28 | Hewlett-Packard Development Company, L.P. | Multi-element thin-film fuel cell |
US6794077B2 (en) * | 2001-12-28 | 2004-09-21 | Utc Fuel Cells, Llc | Passive water management fuel cell |
US6998188B2 (en) * | 2002-02-19 | 2006-02-14 | Petillo Phillip J | Fuel cell components |
US6716547B2 (en) | 2002-03-18 | 2004-04-06 | Utc Fuel Cells, Llc | Air condition assisted water recovery device integrated with cell stack assembly |
US7785728B2 (en) * | 2002-04-04 | 2010-08-31 | The Board Of Trustees Of The University Of Illinois | Palladium-based electrocatalysts and fuel cells employing such electrocatalysts |
US7740974B2 (en) | 2002-04-04 | 2010-06-22 | The Board Of Trustees Of The University Of Illinois | Formic acid fuel cells and catalysts |
US7132188B2 (en) * | 2002-04-04 | 2006-11-07 | The Board Of Trustees Of The University Of Illinois | Fuel cells and fuel cell catalysts |
US7282282B2 (en) * | 2002-04-04 | 2007-10-16 | The Board Of Trustees Of The University Of Illinois | Organic fuel cells and fuel cell conducting sheets |
US20030219645A1 (en) * | 2002-04-22 | 2003-11-27 | Reichert David L. | Treated gas diffusion backings and their use in fuel cells |
AU2003238801A1 (en) * | 2002-05-31 | 2003-12-19 | Lynntech, Inc. | Electrochemical cell and bipolar assembly for an electrochemical cell |
US6861173B2 (en) * | 2002-10-08 | 2005-03-01 | Sompalli Bhaskar | Catalyst layer edge protection for enhanced MEA durability in PEM fuel cells |
US8007949B2 (en) * | 2002-10-08 | 2011-08-30 | Bhaskar Sompalli | Edge-protected catalyst-coated diffusion media and membrane electrode assemblies |
US7713644B2 (en) * | 2002-10-08 | 2010-05-11 | Gm Global Technology Operations, Inc. | Catalyst layer edge protection for enhanced MEA durability in PEM fuel cells |
US6989214B2 (en) * | 2002-11-15 | 2006-01-24 | 3M Innovative Properties Company | Unitized fuel cell assembly |
US7736783B2 (en) * | 2002-12-04 | 2010-06-15 | Lynntech, Inc. | Very thin, light bipolar plates |
WO2004054011A2 (en) * | 2002-12-06 | 2004-06-24 | Hydrogenics Corporation | Gas diffusion layer for an electrochemical cell |
WO2004079839A2 (en) * | 2003-02-03 | 2004-09-16 | Freudenberg-Nok General Partnership | Sealing of multi-height surfaces |
US7070876B2 (en) * | 2003-03-24 | 2006-07-04 | Ballard Power Systems, Inc. | Membrane electrode assembly with integrated seal |
NO320029B1 (no) * | 2003-07-07 | 2005-10-10 | Revolt Technology As | Fremgangsmate for fremstilling av gassdiffusjonselektroder |
JP4384485B2 (ja) * | 2003-07-09 | 2009-12-16 | 本田技研工業株式会社 | 燃料電池 |
WO2005006480A2 (de) * | 2003-07-14 | 2005-01-20 | Umicore Ag & Co. Kg | Membran-elektroden-einheit für die wasserelektrolyse |
US20050014056A1 (en) * | 2003-07-14 | 2005-01-20 | Umicore Ag & Co. Kg | Membrane electrode unit for electrochemical equipment |
US7670707B2 (en) * | 2003-07-30 | 2010-03-02 | Altergy Systems, Inc. | Electrical contacts for fuel cells |
GB0319780D0 (en) * | 2003-08-22 | 2003-09-24 | Johnson Matthey Plc | Membrane electrode assembly |
WO2005035247A2 (en) * | 2003-08-29 | 2005-04-21 | E.I. Dupont De Nemours And Company | Unitized membrane electrode assembly and process for its preparation |
US20050089746A1 (en) * | 2003-10-23 | 2005-04-28 | Ballard Power Systems Inc. | Prevention of membrane contamination in electrochemical fuel cells |
US7157178B2 (en) * | 2003-11-24 | 2007-01-02 | General Motors Corporation | Proton exchange membrane fuel cell |
US20050112436A1 (en) * | 2003-11-25 | 2005-05-26 | Carol Jeffcoate | Methods and devices for heating or cooling fuel cell systems |
JP4779345B2 (ja) * | 2003-12-26 | 2011-09-28 | トヨタ自動車株式会社 | 燃料電池分解方法 |
US20050233202A1 (en) * | 2004-04-20 | 2005-10-20 | Fay Matthew M | Thermoplastic-imbibed diffusion media to help eliminate MEA edge failure |
US20060073385A1 (en) * | 2004-05-28 | 2006-04-06 | Peter Andrin | Novel sealant material for electrochemical cell components |
US7597983B2 (en) * | 2004-08-25 | 2009-10-06 | Gm Global Technology Operations, Inc. | Edge stress relief in diffusion media |
US20060046131A1 (en) * | 2004-08-26 | 2006-03-02 | Hydrogenics Corporation | Fuel cell apparatus improvements |
US7323267B2 (en) * | 2004-10-07 | 2008-01-29 | Tekion, Inc. | Liquid feed fuel cell with nested sealing configuration |
CN100352091C (zh) * | 2004-11-03 | 2007-11-28 | 比亚迪股份有限公司 | 具有一体化结构的燃料电池膜电极的制备方法 |
KR100812630B1 (ko) | 2004-11-03 | 2008-03-13 | 비와이디 컴퍼니 리미티드 | 연료전지의 막 전극 접합체 제조 방법 |
US7816058B2 (en) * | 2004-11-05 | 2010-10-19 | Gm Global Technology Operations, Inc. | Split architectures for MEA durability |
NL1027443C2 (nl) * | 2004-11-08 | 2006-05-09 | Nedstack Holding B V | Methode voor het vervaardigen van membraanelektrode constructies voor polymeer Elektrolyt Brandstofcellen. |
JP2008525984A (ja) * | 2004-12-28 | 2008-07-17 | ユーティーシー パワー コーポレイション | 触媒化層含有meaシール構造 |
US7608334B2 (en) | 2005-03-29 | 2009-10-27 | 3M Innovative Properties Company | Oxidatively stable microlayers of gas diffusion layers |
US20070003821A1 (en) | 2005-06-30 | 2007-01-04 | Freudenberg-Nok General Partnership | Integrally molded gasket for a fuel cell assembly |
US7368200B2 (en) * | 2005-12-30 | 2008-05-06 | Tekion, Inc. | Composite polymer electrolyte membranes and electrode assemblies for reducing fuel crossover in direct liquid feed fuel cells |
JP5011729B2 (ja) * | 2006-01-16 | 2012-08-29 | トヨタ自動車株式会社 | 燃料電池構成部品、燃料電池構成部品の製造方法 |
US20070184329A1 (en) * | 2006-02-07 | 2007-08-09 | Hongsun Kim | Liquid feed fuel cell with orientation-independent fuel delivery capability |
JP5011764B2 (ja) * | 2006-03-14 | 2012-08-29 | トヨタ自動車株式会社 | シール一体型膜電極接合体製造技術 |
GB0606435D0 (en) * | 2006-03-31 | 2006-05-10 | Assembly for use in a fuel cell | |
US20080118802A1 (en) * | 2006-11-16 | 2008-05-22 | Peter Szrama | Fully Catalyzed Membrane Assembly With Attached Border |
SG144005A1 (en) * | 2007-01-03 | 2008-07-29 | Agni Inc Pte Ltd | Electro-deposition of catalyst on electrodes |
US20080188791A1 (en) * | 2007-02-02 | 2008-08-07 | Difiore Attilio E | Active iontophoresis delivery system |
US8197844B2 (en) * | 2007-06-08 | 2012-06-12 | Activatek, Inc. | Active electrode for transdermal medicament administration |
MX2010001991A (es) | 2007-08-20 | 2010-05-27 | Myfc Ab | Montaje de celda de combustible que tiene sensor de retroalimentacion. |
US8053035B2 (en) * | 2007-10-26 | 2011-11-08 | Fuelcell Energy, Inc. | Electrode assembly and method of making same |
US10004924B1 (en) | 2007-12-20 | 2018-06-26 | Paragon Space Development Corporation | Hazardous-environment diving systems |
US8555884B2 (en) * | 2007-12-20 | 2013-10-15 | Paragon Space Development Corporation | Hazardous-environmental diving systems |
US9614232B2 (en) * | 2007-12-28 | 2017-04-04 | Altergy Systems | Modular unit fuel cell assembly |
JP2011509506A (ja) * | 2008-01-03 | 2011-03-24 | ユーティーシー パワー コーポレイション | 固体高分子型燃料電池用の保護層および析出層 |
US8862223B2 (en) | 2008-01-18 | 2014-10-14 | Activatek, Inc. | Active transdermal medicament patch and circuit board for same |
KR20100132980A (ko) * | 2008-04-22 | 2010-12-20 | 유티씨 파워 코포레이션 | Pem 연료전지 촉매 층의 폴리머 코팅 |
KR20100004495A (ko) * | 2008-07-04 | 2010-01-13 | 현대자동차주식회사 | 연료전지 스택의 막-전극 접합체와 가스확산층간의 접합방법 |
US20110177423A1 (en) * | 2010-01-21 | 2011-07-21 | Anton Nachtmann | Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same |
EP2553751A4 (en) | 2010-04-01 | 2014-07-16 | Trenergi Corp | HIGH TEMPERATURE MEMBRANE ELECTRODE ASSEMBLY WITH HIGH POWER DENSITY AND METHOD FOR MANUFACTURING THE SAME |
GB201012980D0 (en) | 2010-08-03 | 2010-09-15 | Johnson Matthey Plc | Membrane |
CN103329326A (zh) | 2011-01-28 | 2013-09-25 | Utc电力公司 | 燃料电池密封件 |
US9825315B2 (en) | 2012-01-27 | 2017-11-21 | University Of Kansas | Hydrophobized gas diffusion layers and method of making the same |
US9107308B2 (en) * | 2012-02-27 | 2015-08-11 | Pen Inc. | Graphitic substrates with ceramic dielectric layers |
CN104641501B (zh) | 2012-07-10 | 2017-09-15 | 奥迪股份公司 | 燃料电池电极组件 |
CN104995776B (zh) * | 2012-11-30 | 2017-10-13 | 奥迪股份公司 | 将水运输板与弹性体密封物隔开 |
DE102014207616A1 (de) * | 2014-04-23 | 2015-10-29 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Abdichten einer elektrochemischen Zelle |
CN105714325B (zh) * | 2014-12-01 | 2018-01-09 | 中国科学院大连化学物理研究所 | 一种具有透水板的静态供水固体聚合物电解质水电解装置 |
US11271234B2 (en) | 2016-08-26 | 2022-03-08 | Ballard Power Systems Inc. | Fuel cell with improved durability |
KR102087475B1 (ko) * | 2016-09-30 | 2020-03-10 | 주식회사 엘지화학 | 고체 산화물 연료전지 |
CA3070363A1 (en) * | 2020-01-30 | 2021-07-30 | Avl List Gmbh | Membrane electrode and frame assembly for fuel cell stacks and method for making |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264299A (ja) * | 1992-03-21 | 1993-10-12 | Sadahiko Ito | 指針回転により昇降を示す温度計、計器 |
US5264299A (en) * | 1991-12-26 | 1993-11-23 | International Fuel Cells Corporation | Proton exchange membrane fuel cell support plate and an assembly including the same |
US5523175A (en) * | 1991-12-26 | 1996-06-04 | International Fuel Cells Corporation | Plate-shaped fuel cell component |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3867206A (en) * | 1973-12-21 | 1975-02-18 | United Aircraft Corp | Wet seal for liquid electrolyte fuel cells |
US4279970A (en) * | 1980-02-20 | 1981-07-21 | Electric Power Research Institute, Inc. | Electrochemical cell including ribbed electrode substrates |
US4664988A (en) * | 1984-04-06 | 1987-05-12 | Kureha Kagaku Kogyo Kabushiki Kaisha | Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof |
JPS61185869A (ja) * | 1985-02-14 | 1986-08-19 | Toshiba Corp | 燃料電池 |
US4729932A (en) * | 1986-10-08 | 1988-03-08 | United Technologies Corporation | Fuel cell with integrated cooling water/static water removal means |
US4756981A (en) * | 1986-12-29 | 1988-07-12 | International Fuel Cells | Seal structure for an electrochemical cell |
US4855194A (en) * | 1988-02-05 | 1989-08-08 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell having electrolyte inventory control volume |
US4769297A (en) * | 1987-11-16 | 1988-09-06 | International Fuel Cells Corporation | Solid polymer electrolyte fuel cell stack water management system |
US4913706A (en) * | 1988-09-19 | 1990-04-03 | International Fuel Cells Corporation | Method for making a seal structure for an electrochemical cell assembly |
US5176996A (en) * | 1988-12-20 | 1993-01-05 | Baylor College Of Medicine | Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use |
US5096786A (en) * | 1989-09-11 | 1992-03-17 | Westinghouse Electric Corp. | Integral edge seals for phosphoric acid fuel cells |
US5176966A (en) * | 1990-11-19 | 1993-01-05 | Ballard Power Systems Inc. | Fuel cell membrane electrode and seal assembly |
WO1992022096A2 (en) * | 1991-06-04 | 1992-12-10 | Ballard Power Systems Inc. | Gasketed membrane electrode assembly for electrochemical fuel cells |
US5344668A (en) * | 1991-12-26 | 1994-09-06 | International Fuel Cells Corporation | Applying dispersions to selected fuel cell electrode plate regions |
US5736269A (en) * | 1992-06-18 | 1998-04-07 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack and method of pressing together the same |
US5292600A (en) * | 1992-08-13 | 1994-03-08 | H-Power Corp. | Hydrogen power cell |
US5300124A (en) * | 1993-03-31 | 1994-04-05 | International Fuel Cells Corporation | Method for forming a laminated electrolyte reservoir plate |
US5360679A (en) * | 1993-08-20 | 1994-11-01 | Ballard Power Systems Inc. | Hydrocarbon fueled solid polymer fuel cell electric power generation system |
JPH07263013A (ja) * | 1994-03-23 | 1995-10-13 | Tanaka Kikinzoku Kogyo Kk | 燃料電池 |
JPH08148170A (ja) * | 1994-11-17 | 1996-06-07 | Tokyo Gas Co Ltd | 固体高分子型燃料電池のシ−ル方法 |
US5700595A (en) * | 1995-06-23 | 1997-12-23 | International Fuel Cells Corp. | Ion exchange membrane fuel cell power plant with water management pressure differentials |
US5503944A (en) * | 1995-06-30 | 1996-04-02 | International Fuel Cells Corp. | Water management system for solid polymer electrolyte fuel cell power plants |
JP3711545B2 (ja) * | 1996-03-29 | 2005-11-02 | マツダ株式会社 | 固体高分子型燃料電池 |
JPH09289029A (ja) * | 1996-04-24 | 1997-11-04 | Tanaka Kikinzoku Kogyo Kk | 固体高分子型燃料電池用ガスシール構造、冷却部構造及びスタック |
JPH10188702A (ja) * | 1996-11-07 | 1998-07-21 | Ngk Insulators Ltd | 内面汚損性能を向上させた碍管 |
US6171719B1 (en) * | 1996-11-26 | 2001-01-09 | United Technologies Corporation | Electrode plate structures for high-pressure electrochemical cell devices |
DE19709199A1 (de) * | 1997-03-06 | 1998-09-17 | Magnet Motor Gmbh | Gasdiffusionselektrode mit verringertem Diffusionsvermögen für Wasser und Verfahren zum Betreiben einer Polymerelektrolytmembran-Brennstoffzelle ohne Zuführung von Membranbefeuchtungswasser |
US5912088A (en) * | 1997-10-28 | 1999-06-15 | Plug Power, L.L.C. | Gradient isolator for flow field of fuel cell assembly |
GB9808524D0 (en) * | 1998-04-23 | 1998-06-17 | British Gas Plc | Fuel cell flow-field structure formed by layer deposition |
-
1998
- 1998-10-30 US US09/182,959 patent/US6020083A/en not_active Expired - Lifetime
-
1999
- 1999-10-27 EP EP99956610A patent/EP1129497B1/en not_active Expired - Lifetime
- 1999-10-27 BR BR9914923-0A patent/BR9914923A/pt not_active IP Right Cessation
- 1999-10-27 WO PCT/US1999/024487 patent/WO2000026975A1/en active IP Right Grant
- 1999-10-27 CN CNB998126314A patent/CN1167147C/zh not_active Expired - Fee Related
- 1999-10-27 ID IDW00200101107A patent/ID29422A/id unknown
- 1999-10-27 AU AU13181/00A patent/AU1318100A/en not_active Abandoned
- 1999-10-27 DE DE69938557T patent/DE69938557T2/de not_active Expired - Lifetime
- 1999-10-27 JP JP2000580254A patent/JP4505144B2/ja not_active Expired - Fee Related
- 1999-10-27 KR KR1020017005470A patent/KR100662681B1/ko not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264299A (en) * | 1991-12-26 | 1993-11-23 | International Fuel Cells Corporation | Proton exchange membrane fuel cell support plate and an assembly including the same |
US5523175A (en) * | 1991-12-26 | 1996-06-04 | International Fuel Cells Corporation | Plate-shaped fuel cell component |
JPH05264299A (ja) * | 1992-03-21 | 1993-10-12 | Sadahiko Ito | 指針回転により昇降を示す温度計、計器 |
Non-Patent Citations (1)
Title |
---|
1020017005470 - 658953 |
Also Published As
Publication number | Publication date |
---|---|
WO2000026975A1 (en) | 2000-05-11 |
EP1129497A4 (en) | 2006-03-01 |
EP1129497A1 (en) | 2001-09-05 |
EP1129497B1 (en) | 2008-04-16 |
JP4505144B2 (ja) | 2010-07-21 |
AU1318100A (en) | 2000-05-22 |
CN1324500A (zh) | 2001-11-28 |
US6020083A (en) | 2000-02-01 |
JP2002529890A (ja) | 2002-09-10 |
BR9914923A (pt) | 2001-07-10 |
KR20010104645A (ko) | 2001-11-26 |
CN1167147C (zh) | 2004-09-15 |
DE69938557D1 (de) | 2008-05-29 |
DE69938557T2 (de) | 2009-05-28 |
ID29422A (id) | 2001-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100662681B1 (ko) | 피이엠(pem) 연료전지용 개선된 멤브레인 전극 어셈블리 | |
US6159628A (en) | Use of thermoplastic films to create seals and bond PEM cell components | |
US5707755A (en) | PEM/SPE fuel cell | |
US6387557B1 (en) | Bonded fuel cell stack assemblies | |
US7335436B2 (en) | Proton exchange membrane fuel cell stack | |
KR100372926B1 (ko) | 고분자전해질형연료전지 및 그 제조방법 | |
US6399234B2 (en) | Fuel cell stack assembly with edge seal | |
EP1798794B1 (en) | Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell | |
US7396610B2 (en) | Substrate | |
EP1229600A1 (en) | Polymer electrolyte type fuel cell | |
US8192893B2 (en) | Membrane-membrane reinforcing membrane assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell | |
GB2339059A (en) | Electrochemical fuel cell having a membrane electrode assembly formed in situ and methods for forming same | |
KR20010071677A (ko) | 양극판 및 폴리머 전해질막연료전지의 막전극유니트로구성된 가스밀봉체 | |
US8431284B2 (en) | Low electrical resistance bipolar plate-diffusion media assembly | |
US8192895B2 (en) | Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell | |
JPH0349184B2 (ko) | ||
KR101417107B1 (ko) | 연료전지 스택용 분리판 | |
JP5849418B2 (ja) | 膜電極接合体の製造方法 | |
JP2003123801A (ja) | 高分子電解質型積層燃料電池 | |
JP3838403B2 (ja) | リン酸型燃料電池 | |
JP2009129650A (ja) | 燃料電池 | |
JP2004207082A (ja) | 燃料電池および燃料電池用セパレータ | |
JP7582216B2 (ja) | シール部材、発電単位セル、燃料電池の製造方法 | |
US20080090126A1 (en) | Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field | |
JP2003109603A (ja) | 高分子電解質型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101208 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |