JPWO2020059824A1 - A boron-containing conjugated polyene compound and a method for producing the same, and a method for producing the conjugated polyene compound. - Google Patents
A boron-containing conjugated polyene compound and a method for producing the same, and a method for producing the conjugated polyene compound. Download PDFInfo
- Publication number
- JPWO2020059824A1 JPWO2020059824A1 JP2020548619A JP2020548619A JPWO2020059824A1 JP WO2020059824 A1 JPWO2020059824 A1 JP WO2020059824A1 JP 2020548619 A JP2020548619 A JP 2020548619A JP 2020548619 A JP2020548619 A JP 2020548619A JP WO2020059824 A1 JPWO2020059824 A1 JP WO2020059824A1
- Authority
- JP
- Japan
- Prior art keywords
- boron
- compound
- group
- conjugated polyene
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 191
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 189
- -1 polyene compound Chemical class 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 150000001875 compounds Chemical class 0.000 claims abstract description 178
- 239000002994 raw material Substances 0.000 claims abstract description 77
- 239000003054 catalyst Substances 0.000 claims abstract description 56
- 150000004291 polyenes Polymers 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 15
- 150000001721 carbon Chemical group 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 83
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 49
- 125000001424 substituent group Chemical group 0.000 claims description 41
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 24
- 229910052707 ruthenium Inorganic materials 0.000 claims description 24
- 238000005859 coupling reaction Methods 0.000 claims description 19
- 239000010948 rhodium Substances 0.000 claims description 15
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 15
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052703 rhodium Inorganic materials 0.000 claims description 9
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 170
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 40
- 125000003118 aryl group Chemical group 0.000 description 26
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 24
- 125000000217 alkyl group Chemical group 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 238000005481 NMR spectroscopy Methods 0.000 description 21
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 13
- 238000004009 13C{1H}-NMR spectroscopy Methods 0.000 description 12
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 12
- 125000001626 borono group Chemical group [H]OB([*])O[H] 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000006880 cross-coupling reaction Methods 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 125000000962 organic group Chemical group 0.000 description 8
- 239000012327 Ruthenium complex Substances 0.000 description 7
- 150000001491 aromatic compounds Chemical class 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000035484 reaction time Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012776 electronic material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 150000001642 boronic acid derivatives Chemical group 0.000 description 5
- LJDLNNZTQJVBNJ-SNAWJCMRSA-N methyl (2e)-penta-2,4-dienoate Chemical compound COC(=O)\C=C\C=C LJDLNNZTQJVBNJ-SNAWJCMRSA-N 0.000 description 5
- 238000005580 one pot reaction Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 4
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 125000000707 boryl group Chemical group B* 0.000 description 4
- 125000001246 bromo group Chemical group Br* 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 238000005828 desilylation reaction Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- HUUYPRUYJXORBI-BQYQJAHWSA-N 2-[(1e)-buta-1,3-dienyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound CC1(C)OB(\C=C\C=C)OC1(C)C HUUYPRUYJXORBI-BQYQJAHWSA-N 0.000 description 3
- DQQNMIPXXNPGCV-UHFFFAOYSA-N 3-hexyne Chemical compound CCC#CCC DQQNMIPXXNPGCV-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- RXNSNUUTGWELNS-UHFFFAOYSA-N 4,4,5,5-tetramethyl-2-pent-1-ynyl-1,3,2-dioxaborolane Chemical compound CCCC#CB1OC(C)(C)C(C)(C)O1 RXNSNUUTGWELNS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 150000001638 boron Chemical class 0.000 description 2
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical group OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000004700 cobalt complex Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- MGGZXOCPWZUMAS-UHFFFAOYSA-N pent-1-ynyl-di(propan-2-yloxy)borane Chemical compound CCCC#CB(OC(C)C)OC(C)C MGGZXOCPWZUMAS-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 150000005672 tetraenes Chemical class 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 150000005671 trienes Chemical group 0.000 description 2
- UZIXCCMXZQWTPB-UHFFFAOYSA-N trimethyl(2-phenylethynyl)silane Chemical group C[Si](C)(C)C#CC1=CC=CC=C1 UZIXCCMXZQWTPB-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 1
- YFOOEYJGMMJJLS-UHFFFAOYSA-N 1,8-diaminonaphthalene Chemical compound C1=CC(N)=C2C(N)=CC=CC2=C1 YFOOEYJGMMJJLS-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- DFPSKSUPYBRMPF-UHFFFAOYSA-N 2-(hydroxymethyl)-2-methylpropane-1,3-diol Chemical compound OCC(C)(CO)CO.OCC(C)(CO)CO DFPSKSUPYBRMPF-UHFFFAOYSA-N 0.000 description 1
- XWSGEVNYFYKXCP-UHFFFAOYSA-N 2-[carboxymethyl(methyl)amino]acetic acid Chemical compound OC(=O)CN(C)CC(O)=O XWSGEVNYFYKXCP-UHFFFAOYSA-N 0.000 description 1
- VEIORNIWTVJLCN-UHFFFAOYSA-N 4,4,5,5-tetramethyl-2-(2-phenylethynyl)-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C#CC1=CC=CC=C1 VEIORNIWTVJLCN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OZDAKLMBSGIPOT-UHFFFAOYSA-N B(OC(C)(C)C)OC(C)(C)C Chemical group B(OC(C)(C)C)OC(C)(C)C OZDAKLMBSGIPOT-UHFFFAOYSA-N 0.000 description 1
- CHLMHRUYGDRPBB-UHFFFAOYSA-N C(C=C)(=O)O.B(F)(F)F Chemical group C(C=C)(=O)O.B(F)(F)F CHLMHRUYGDRPBB-UHFFFAOYSA-N 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000006161 Suzuki-Miyaura coupling reaction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- JRXXLCKWQFKACW-UHFFFAOYSA-N biphenylacetylene Chemical group C1=CC=CC=C1C#CC1=CC=CC=C1 JRXXLCKWQFKACW-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 125000005621 boronate group Chemical group 0.000 description 1
- 125000005620 boronic acid group Chemical group 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- MYOTXTWVFMNMHJ-UHFFFAOYSA-N di(propan-2-yloxy)borane Chemical group CC(C)OBOC(C)C MYOTXTWVFMNMHJ-UHFFFAOYSA-N 0.000 description 1
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 1
- OKIHHMUYDGEIDM-UHFFFAOYSA-N dimethoxy(2-phenylethynyl)borane Chemical compound C1(=CC=CC=C1)C#CB(OC)OC OKIHHMUYDGEIDM-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000003929 heteronuclear multiple quantum coherence Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000004698 iron complex Chemical class 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- URXNVXOMQQCBHS-UHFFFAOYSA-N naphthalene;sodium Chemical compound [Na].C1=CC=CC2=CC=CC=C21 URXNVXOMQQCBHS-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 238000005691 oxidative coupling reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- GHUURDQYRGVEHX-UHFFFAOYSA-N prop-1-ynylbenzene Chemical compound CC#CC1=CC=CC=C1 GHUURDQYRGVEHX-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000006894 reductive elimination reaction Methods 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 238000010507 β-hydride elimination reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/32—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/21—Alkatrienes; Alkatetraenes; Other alkapolyenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/40—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
- C07C15/42—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
- C07C15/44—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/333—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
- C07C67/343—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/612—Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
- C07C69/618—Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
炭素−炭素三重結合を有する第一の原料化合物と、1,3−ブタジエン−4,4−ジイル基を有し、当該基中の2つの炭素−炭素二重結合を含む共役ジ(又はポリ)エン骨格を有する第二の原料化合物とを、金属触媒の存在下で反応させて、3つ以上の炭素−炭素二重結合を含む共役ポリエン骨格を有する含ホウ素共役ポリエン化合物を得る工程を備え、第一の原料化合物及び第二の原料化合物のうち少なくとも一つが、三重結合又は共役ジ(又はポリ)エン骨格を構成する炭素原子に結合した含ホウ素基を有し、含ホウ素共役ポリエン化合物が、共役ポリエン骨格を構成する炭素原子に結合した含ホウ素基を有する、含ホウ素共役ポリエン化合物の製造方法。A conjugated di (or poly) having a first raw material compound having a carbon-carbon triple bond and a 1,3-butadiene-4,4-diyl group containing two carbon-carbon double bonds in the group. A step of reacting a second raw material compound having an en skeleton in the presence of a metal catalyst to obtain a boron-containing conjugated polyene compound having a conjugated polyene skeleton containing three or more carbon-carbon double bonds is provided. At least one of the first raw material compound and the second raw material compound has a boron-containing group bonded to a carbon atom constituting a triple bond or a conjugated di (or poly) ene skeleton, and the boron-containing conjugated polyene compound is a compound. A method for producing a boron-containing conjugated polyene compound having a boron-containing group bonded to a carbon atom constituting a conjugated polyene skeleton.
Description
本発明は、含ホウ素共役ポリエン化合物及びその製造方法、並びに、共役ポリエン化合物の製造方法に関する。 The present invention relates to a boron-containing conjugated polyene compound and a method for producing the same, and a method for producing the conjugated polyene compound.
炭素−炭素二重結合と単結合とが交互に繰り返される共役ポリエン骨格は、例えば抗真菌薬、ビタミン等の生理活性物質に多く見られる構造である。また、共役ポリエン骨格は、電子材料用途への適用も種々検討されている。このため、従来から、目的化合物に共役ポリエン骨格を導入する方法が検討されている。 A conjugated polyene skeleton in which carbon-carbon double bonds and single bonds are alternately repeated is a structure often found in physiologically active substances such as antifungal drugs and vitamins. In addition, various applications of conjugated polyene skeletons to electronic material applications have been studied. Therefore, a method of introducing a conjugated polyene skeleton into a target compound has been studied conventionally.
例えば、非特許文献1には、特定の保護基で保護されたハロアルケニルボロン酸を用いて、共役ポリエン骨格上にボロン酸基を有するポリエニルボロン酸を形成し、クロスカップリング反応によって当該ポリエニルボロン酸を生理活性物質の合成に利用する方法が開示されている。 For example, in Non-Patent Document 1, haloalkenylboronic acid protected by a specific protective group is used to form polyenylboronic acid having a boronic acid group on a conjugated polyene skeleton, and the polyenylboronic acid is formed by a cross-coupling reaction. A method of utilizing enylboronic acid for the synthesis of a physiologically active substance is disclosed.
本発明は、共役ポリエン骨格とそれに結合する含ホウ素基とを有し、生理活性物質、電子材料物質等の合成に有用な、新規の含ホウ素共役ポリエン化合物及びその製造方法を提供することを目的とする。また、本発明は、上記含ホウ素共役ポリエン化合物を用いた共役ポリエン化合物の製造方法を提供することを目的とする。 An object of the present invention is to provide a novel boron-containing conjugated polyene compound having a conjugated polyene skeleton and a boron-containing group bonded thereto and useful for synthesizing physiologically active substances, electronic material substances, etc., and a method for producing the same. And. Another object of the present invention is to provide a method for producing a conjugated polyene compound using the above-mentioned boron-containing conjugated polyene compound.
本発明の一側面は、含ホウ素共役ポリエン化合物の製造方法に関する。この製造方法は、炭素−炭素三重結合を有する第一の原料化合物と、1,3−ブタジエン−4,4−ジイル基を有し、当該基中の2つの炭素−炭素二重結合を含む共役ジ(又はポリ)エン骨格を有する第二の原料化合物とを、金属触媒の存在下で反応させて、3つ以上の炭素−炭素二重結合を含む共役ポリエン骨格を有する含ホウ素共役ポリエン化合物を得る工程を備える。また、この製造方法では、上記第一の原料化合物及び上記第二の原料化合物のうち少なくとも一つは、上記三重結合又は前記共役ジ(又はポリ)エン骨格を構成する炭素原子に結合した含ホウ素基を有している。これにより、上記含ホウ素共役ポリエン化合物は、上記共役ポリエン骨格を構成する炭素原子に結合した含ホウ素基を有するものとなる。 One aspect of the present invention relates to a method for producing a boron-containing conjugated polyene compound. This production method has a first raw material compound having a carbon-carbon triple bond, a 1,3-butadiene-4,4-diyl group, and a conjugate containing two carbon-carbon double bonds in the group. A second raw material compound having a di (or poly) ene skeleton is reacted in the presence of a metal catalyst to obtain a boron-containing conjugated polyene compound having a conjugated polyene skeleton containing three or more carbon-carbon double bonds. Provide a step to obtain. Further, in this production method, at least one of the first raw material compound and the second raw material compound is a boron-containing bond bonded to a carbon atom constituting the triple bond or the conjugated di (or poly) ene skeleton. Has a group. As a result, the boron-containing conjugated polyene compound has a boron-containing group bonded to a carbon atom constituting the conjugated polyene skeleton.
上記製造方法によれば、共役ポリエン骨格と、当該共役ポリエン骨格に結合した含ホウ素基と、を有する含ホウ素共役ポリエン化合物を容易に得ることができる。上記含ホウ素共役ポリエン化合物によれば、含ホウ素基を起点とする反応(例えば、クロスカップリング反応)によって、共役ポリエン骨格を容易に目的化合物に導入することができる。また、上記含ホウ素共役ポリエン化合物は、含ホウ素基を有するπ共役化合物として電子材料等の用途に適用することもできる。 According to the above production method, a boron-containing conjugated polyene compound having a conjugated polyene skeleton and a boron-containing group bonded to the conjugated polyene skeleton can be easily obtained. According to the above-mentioned boron-containing conjugated polyene compound, the conjugated polyene skeleton can be easily introduced into the target compound by a reaction starting from a boron-containing group (for example, a cross-coupling reaction). Further, the boron-containing conjugated polyene compound can also be applied to applications such as electronic materials as a π-conjugated compound having a boron-containing group.
一態様において、上記第一の原料化合物は、下記式(1−1)で表される化合物であってよく、上記第二の原料化合物は、下記式(1−2−1)で表される化合物であってよく、上記含ホウ素共役ポリエン化合物は、下記式(1−3−1)で表される化合物であってよい。
上記態様において、上記式(1−2−1)中の上記R3のうち少なくとも一つが含ホウ素基であってよい。この場合、共役ポリエン骨格の両端に含ホウ素基を有する含ホウ素共役ポリエン化合物が得られる。この含ホウ素共役ポリエン化合物は、上述の用途以外に、クロスカップリング重合による高分子化合物の製造等に好適に利用することができる。In the above embodiment, at least one of the R 3 in the above formula (1-2-1) may be a boron-containing group. In this case, a boron-containing conjugated polyene compound having boron-containing groups at both ends of the conjugated polyene skeleton can be obtained. This boron-containing conjugated polyene compound can be suitably used for the production of polymer compounds by cross-coupling polymerization, etc., in addition to the above-mentioned uses.
他の一態様において、上記第一の原料化合物は、下記式(1−1)で表される化合物であってよく、上記第二の原料化合物は、下記式(1−2−2)で表される化合物であってよく、上記含ホウ素共役ポリエン化合物は、下記式(1−3−2)で表される化合物であってよい。この場合、共役ポリエン骨格の両端に含ホウ素基を有する含ホウ素共役ポリエン化合物が得られる。この含ホウ素共役ポリエン化合物は、上述の用途以外に、クロスカップリング重合による高分子化合物の製造等に好適に利用することができる。
上記の各態様において、上記R1はシリル基であってよく、このとき、上記製造方法は、上記含ホウ素共役ポリエン化合物における上記R1を水素原子に置換して、第二の含ホウ素共役ポリエン化合物を得る工程を更に備えていてよい。これにより、R1の置換位置に置換基を有しない含ホウ素共役ポリエン化合物(すなわち、R1が水素原子となった含ホウ素共役ポリエン化合物)を容易に得ることができる。In each of the above embodiments, the R 1 may be a silyl group, in which case the production method replaces the R 1 in the boron-containing conjugated polyene compound with a hydrogen atom to form a second boron-containing conjugated polyene. A step of obtaining a compound may be further provided. Thus, no boron-containing conjugated polyene compound substituent (s) at substitutable position of R 1 (i.e., boron-containing conjugated polyene compound R 1 is a hydrogen atom) can be easily obtained.
更に他の一態様において、上記第一の原料化合物は、下記式(2−1)で表される化合物であってよく、上記第二の原料化合物は、下記式(2−2)で表される化合物であってよく、上記含ホウ素共役ポリエン化合物は、下記式(2−3)で表される化合物であってよい。
上記態様において、上記R4のHammettの置換基定数σpの値は、上記R5のHammettの置換基定数σpの値より大きい値であってよい。In the above embodiment, the value of the substituent constant σ p of Hammett of R 4 may be larger than the value of the substituent constant σ p of Hammett of R 5.
また、上記態様において、上記R5はシリル基であってよく、このとき、上記製造方法は、上記含ホウ素共役ポリエン化合物における上記R5を水素原子に置換して、第二の含ホウ素共役ポリエン化合物を得る工程を更に備えていてよい。これにより、R5の置換位置に置換基を有しない含ホウ素共役ポリエン化合物(すなわち、R5が水素原子となった含ホウ素共役ポリエン化合物)を容易に得ることができる。Further, in the above embodiment, the above R 5 may be a silyl group, and at this time, in the above production method, the above R 5 in the above boron-containing conjugated polyene compound is replaced with a hydrogen atom, and the second boron-containing conjugated polyene is used. A step of obtaining a compound may be further provided. Thus, no boron-containing conjugated polyene compound substituent (s) at substitutable position of R 5 (i.e., boron-containing conjugated polyene compounds R 5 is a hydrogen atom) can be easily obtained.
上記の各態様において、上記金属触媒は、ルテニウム(Ru)、ロジウム(Rh)、コバルト(Co)及びニッケル(Ni)からなる群より選択される少なくとも一種を含むものであってよい。 In each of the above embodiments, the metal catalyst may comprise at least one selected from the group consisting of ruthenium (Ru), rhodium (Rh), cobalt (Co) and nickel (Ni).
上記の各態様において、上記金属触媒は、ルテニウム触媒であってよい。 In each of the above embodiments, the metal catalyst may be a ruthenium catalyst.
上記の各態様において、上記ルテニウム触媒は、反応系中で0価のルテニウムを形成していてよい。 In each of the above embodiments, the ruthenium catalyst may form zero-valent ruthenium in the reaction system.
本発明の他の一側面は、下記式(1−3−1A)、下記式(1−3−2A)又は下記式(2−3A)で表される、含ホウ素共役ポリエン化合物に関する。
本発明の更に他の一側面は、上記含ホウ素共役ポリエン化合物の製造方法によって、上記含ホウ素共役ポリエン化合物を含有する反応液を得る第一工程と、上記反応液に、カップリング反応触媒と、上記含ホウ素基とのカップリング反応が可能な反応性基を有する第三の原料化合物と、を添加してカップリング反応を行う第二工程と、を備える、共役ポリエン化合物の製造方法に関する。 Yet another aspect of the present invention is a first step of obtaining a reaction solution containing the boron-containing conjugated polyene compound by the method for producing the boron-containing conjugated polyene compound, and a coupling reaction catalyst in the reaction solution. The present invention relates to a method for producing a conjugated polyene compound, which comprises a third raw material compound having a reactive group capable of a coupling reaction with the boron-containing group, and a second step of adding and carrying out a coupling reaction.
一態様において、上記反応性基はハロゲノ基であってよい。 In one embodiment, the reactive group may be a halogeno group.
一態様において、上記第一工程は、上記金属触媒の存在下での反応の反応系中に、上記含ホウ素共役ポリエン化合物を生成させる工程であってよく、上記第二工程は、上記反応系中に、上記カップリング反応触媒と上記第三の原料化合物とを添加する工程であってよい。 In one embodiment, the first step may be a step of producing the boron-containing conjugated polyene compound in the reaction system of the reaction in the presence of the metal catalyst, and the second step may be in the reaction system. It may be a step of adding the coupling reaction catalyst and the third raw material compound to the above.
本発明によれば、共役ポリエン骨格とそれに結合する含ホウ素基とを有し、生理活性物質、電子材料物質等の合成に有用な、新規の含ホウ素共役ポリエン化合物及びその製造方法が提供される。また、本発明によれば、上記含ホウ素共役ポリエン化合物を用いた共役ポリエン化合物の製造方法が提供される。 According to the present invention, a novel boron-containing conjugated polyene compound having a conjugated polyene skeleton and a boron-containing group bonded thereto and useful for synthesizing a physiologically active substance, an electronic material substance, or the like and a method for producing the same are provided. .. Further, according to the present invention, there is provided a method for producing a conjugated polyene compound using the above-mentioned boron-containing conjugated polyene compound.
以下、本発明の好適な実施形態について説明するが、本発明は下記の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
<含ホウ素共役ポリエン化合物の製造方法>
本実施形態に係る含ホウ素共役ポリエン化合物の製造方法は、炭素−炭素三重結合を有する第一の原料化合物と、1,3−ブタジエン−4,4−ジイル基を有し、当該基中の2つの炭素−炭素二重結合を含む共役ジ(又はポリ)エン骨格を有する第二の原料化合物とを、金属触媒の存在下で反応させて、3つ以上の炭素−炭素二重結合を含む共役ポリエン骨格を有する含ホウ素共役ポリエン化合物を得るポリエン形成工程を備える。ここで、第一の原料化合物及び第二の原料化合物のうち少なくとも一つは、三重結合又は共役ジ(又はポリ)エン骨格を構成する炭素原子に結合した含ホウ素基を有しており、これにより、含ホウ素共役ポリエン化合物は、共役ポリエン骨格を構成する炭素原子に結合した含ホウ素基を有するものとなる。<Method for producing boron-containing conjugated polyene compound>
The method for producing a boron-containing conjugated polyene compound according to the present embodiment has a first raw material compound having a carbon-carbon triple bond and a 1,3-butadiene-4,4-diyl group, and 2 in the group. A second raw material compound having a conjugated di (or poly) ene skeleton containing one carbon-carbon double bond is reacted in the presence of a metal catalyst to form a conjugate containing three or more carbon-carbon double bonds. The present invention comprises a polyene forming step of obtaining a boron-containing conjugated polyene compound having a polyene skeleton. Here, at least one of the first raw material compound and the second raw material compound has a boron-containing group bonded to a carbon atom constituting a triple bond or a conjugated di (or poly) ene skeleton. As a result, the boron-containing conjugated polyene compound has a boron-containing group bonded to a carbon atom constituting the conjugated polyene skeleton.
本実施形態に係る製造方法によれば、共役ポリエン骨格と、当該共役ポリエン骨格に結合した含ホウ素基と、を有する含ホウ素共役ポリエン化合物を容易に得ることができる。このような含ホウ素共役ポリエン化合物によれば、含ホウ素基を起点とする反応(例えば、クロスカップリング反応)によって、共役ポリエン骨格を容易に目的化合物に導入することができる。また、含ホウ素共役ポリエン化合物は、含ホウ素基を有するπ共役化合物として電子材料等の用途に適用することもできる。 According to the production method according to the present embodiment, a boron-containing conjugated polyene compound having a conjugated polyene skeleton and a boron-containing group bonded to the conjugated polyene skeleton can be easily obtained. According to such a boron-containing conjugated polyene compound, the conjugated polyene skeleton can be easily introduced into the target compound by a reaction starting from a boron-containing group (for example, a cross-coupling reaction). Further, the boron-containing conjugated polyene compound can also be applied to applications such as electronic materials as a π-conjugated compound having a boron-containing group.
本明細書中、含ホウ素基は、ホウ素化合物におけるホウ素原子上の官能基を1つ除去した残りの原子団であってよい。すなわち、含ホウ素基は、結合対象に対して、ホウ素原子を介して結合する一価の基であってよい。 In the present specification, the boron-containing group may be the remaining atomic group from which one functional group on the boron atom in the boron compound has been removed. That is, the boron-containing group may be a monovalent group that is bonded to the bonding target via a boron atom.
含ホウ素基は特に限定されず、第一の原料化合物と第二の原料化合物との反応が進行する範囲で適宜選択できる。含ホウ素基としては、例えば、ボリル基、ボロノ基、ボラート基、及び、これらの誘導体基が挙げられる。 The boron-containing group is not particularly limited, and can be appropriately selected as long as the reaction between the first raw material compound and the second raw material compound proceeds. Examples of the boron-containing group include a boryl group, a borono group, a borate group, and a derivative group thereof.
ボリル基は、−BH2で表される基を示す。ボリル基の誘導体基としては、例えば、ジオルガノボリル基が挙げられる。The boryl group represents a group represented by -BH 2. Examples of the derivative group of the boryl group include a diorganovoryl group.
ジオルガノボリル基は、例えば、−B(R21)2で表される基であってよい。R21は一価の基を示す。2つのR21は同一でも異なっていてもよく、互いに連結してホウ素原子と共に環を形成していてもよい。R21は、例えば、一価の有機基であってよく、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であってもよい。The diorganovoril group may be, for example, a group represented by −B (R 21 ) 2. R 21 represents a monovalent group. The two R 21s may be the same or different, and may be linked to each other to form a ring with a boron atom. R 21 may be, for example, a monovalent organic group, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
R21におけるアルキル基は、直鎖状、分岐状及び環状のいずれであってもよい。R21におけるアルキル基の炭素数は特に限定されず、例えば1〜8であってよい。The alkyl group in R 21 may be linear, branched or cyclic. The number of carbon atoms of the alkyl group in R 21 is not particularly limited, and may be, for example, 1 to 8.
R21におけるアリール基は、芳香族化合物から芳香環上の水素原子を一つ除去した残りの原子団を示す。芳香族化合物が有する芳香環は、単環であっても縮合環であってもよく、複素環であってもよい。芳香族化合物としては、例えば、ベンゼン、ナフタレン、フラン、ピロール、チオフェン、ピリジン等が挙げられる。The aryl group in R 21 represents the remaining atomic group obtained by removing one hydrogen atom on the aromatic ring from the aromatic compound. The aromatic ring contained in the aromatic compound may be a monocyclic ring, a condensed ring, or a heterocyclic ring. Examples of the aromatic compound include benzene, naphthalene, furan, pyrrole, thiophene, pyridine and the like.
R21におけるアルキル基及びアリール基が有していてもよい置換基は、第一の原料化合物と第二の原料化合物との反応が進行する範囲であれば特に限定されない。当該置換基としては、例えば、ヒドロキシ基、カルボニル基、ホルミル基、ヒドロキシカルボニル基、エステル基、アミノ基、チオール基等が挙げられる。The substituents that the alkyl group and the aryl group in R 21 may have are not particularly limited as long as the reaction between the first raw material compound and the second raw material compound proceeds. Examples of the substituent include a hydroxy group, a carbonyl group, a formyl group, a hydroxycarbonyl group, an ester group, an amino group, a thiol group and the like.
ジオルガノボリル基の具体例としては、例えば、ジフェニルボリル基、ジシクロへキシル基、ビシクロ[3.3.1]ノナン−1,5−ジイル基、ジシアミル基等が挙げられる。 Specific examples of the diorganovoryl group include a diphenylboryl group, a dicyclohexyl group, a bicyclo [3.3.1] nonane-1,5-diyl group, a disiamil group and the like.
ボロノ基は、−B(OH)2で表される基を示す。ボロノ基の誘導体基としては、例えば、例えば、ボロナト基、保護されたボロノ基等が挙げられる。The borono group represents a group represented by −B (OH) 2. Examples of the derivative group of the borono group include, for example, a boronat group, a protected borono group and the like.
ボロナト基は、例えば、−B(OR22)2で表される基であってよい。R22は一価の基を示す。2つのR22は同一でも異なっていてもよく、互いに連結してホウ素原子及び酸素原子と共に環を形成していてもよい。R22は、例えば、一価の有機基であってよく、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であってもよい。R22におけるアルキル基、アリール基及びこれらが有していてよい置換基としては、R21におけるアルキル基、アリール基及びこれらが有していてよい置換基と同じものが例示できる。The boronato group may be, for example, a group represented by −B (OR 22 ) 2. R 22 represents a monovalent group. The two R 22s may be the same or different, and may be linked to each other to form a ring with a boron atom and an oxygen atom. R 22 may be, for example, a monovalent organic group, an alkyl group which may have a substituent, or an aryl group which may have a substituent. Examples of the alkyl group, the aryl group and the substituent which they may have in R 22 include the same alkyl group, the aryl group and the substituent which they may have in R 21 .
ボロナト基の具体例としては、例えば、ジイソプロピルボロナト基、ジtert−ブチルボロナト基等が挙げられる。 Specific examples of the boronat group include a diisopropyl boronat group, a ditert-butyl boronat group and the like.
保護されたボロノ基は特に限定されず、例えば、ボロノ基の保護として公知の方法により保護された基であってよい。 The protected borono group is not particularly limited, and may be, for example, a group protected by a method known as protection of a borono group.
保護されたボロノ基としては、例えば、ジオール、ジアミン、ジカルボン酸等の2官能化合物とボロノ基との反応により形成される基が挙げられる。ジオールとしては、例えば、ピナコール、ネオペンチルグリコール、カテコール、ピナンジオール、1、2―ジシクロへキシルジオール等が挙げられる。ジアミンとしては、例えば、1,8−ジアミノナフタレン等が挙げられる。ジカルボン酸としては、例えば、N−メチルイミノ二酢酸等が挙げられる。 Examples of the protected borono group include a group formed by the reaction of a bifunctional compound such as a diol, diamine or dicarboxylic acid with a borono group. Examples of the diol include pinacol, neopentyl glycol, catechol, pinandiol, 1,2-dicyclohexyldiol and the like. Examples of the diamine include 1,8-diaminonaphthalene and the like. Examples of the dicarboxylic acid include N-methyliminodiacetic acid and the like.
また、保護されたボロノ基としては、トリオールボラート基等のボラート基も例示できる。トリオールボラート基は、トリオールとボロノ基との反応により形成される。トリオールとしては、例えば、トリメチロールエタン(1,1,1−トリス(ヒドロキシメチル)エタン)等が挙げられる。ボラート基の対カチオンは特に限定されず、例えば、ナトリウムイオン(Na+)、カリウムイオン(K+)、オルガノホスフォニウムイオン(PR4 +)等であってよい。Further, as the protected borono group, a borate group such as a triol borate group can also be exemplified. The triol boronate group is formed by the reaction of triol with a borono group. Examples of the triol include trimethylolethane (1,1,1-tris (hydroxymethyl) ethane) and the like. The counter cation of the borate group is not particularly limited, and may be, for example, sodium ion (Na + ), potassium ion (K + ), organophosphonium ion (PR 4 + ), or the like.
ボラート基としては、上述のトリオールボラート基に加え、トリフルオロボラート基(−BF3 −)等が例示できる。ボラート基の対カチオンは特に限定されず、例えば、ナトリウムイオン(Na+)、カリウムイオン(K+)、オルガノホスフォニウムイオン(PR4 +)等であってよい。The borate group, in addition to the triol borate group as described above, trifluoroborate acrylate group (-BF 3 -) and the like. The counter cation of the borate group is not particularly limited, and may be, for example, sodium ion (Na + ), potassium ion (K + ), organophosphonium ion (PR 4 + ), or the like.
金属触媒は、第一の原料化合物と第二の原料化合物との反応によって含ホウ素共役ポリエン化合物を形成できる触媒、すなわち、炭素−炭素三重結合と1,3−ブタジエン−4,4−ジイル基との反応によって共役トリエン骨格を形成できる触媒であればよい。 The metal catalyst is a catalyst capable of forming a boron-containing conjugated polyene compound by the reaction of the first raw material compound and the second raw material compound, that is, a carbon-carbon triple bond and a 1,3-butadiene-4,4-diyl group. Any catalyst can be used as long as it can form a conjugated triene skeleton by the reaction of.
金属触媒としては、ルテニウム(Ru)、ロジウム(Rh)、コバルト(Co)及びニッケル(Ni)からなる群より選択される少なくとも一種を含む触媒が好ましく、ルテニウム触媒がより好ましい。 As the metal catalyst, a catalyst containing at least one selected from the group consisting of ruthenium (Ru), rhodium (Rh), cobalt (Co) and nickel (Ni) is preferable, and a ruthenium catalyst is more preferable.
ルテニウム触媒は、後述する反応機構によって第一の原料化合物と第二の原料化合物とを効率良く反応させることができる観点から、反応系中で0価のルテニウム(Ru(0))を形成可能な触媒であることが好ましい。すなわち、上記ポリエン形成工程は、第一の原料化合物と第二の原料化合物とをRu(0)の存在下で反応させる工程であってよい。 The ruthenium catalyst can form 0-valent ruthenium (Ru (0)) in the reaction system from the viewpoint that the first raw material compound and the second raw material compound can be efficiently reacted by the reaction mechanism described later. It is preferably a catalyst. That is, the polyene forming step may be a step of reacting the first raw material compound and the second raw material compound in the presence of Ru (0).
ポリエン形成工程の反応機構の一例について以下に説明する。なお、以下の例では、第一の原料化合物として後述の式(1−1)で表される化合物、第二の原料化合物としてブタジエン、金属触媒として[(ナフタレン)(1,5−シクロオクタジエン)ルテニウム(0)]を用いて反応機構を説明しているが、本発明はこれらに限定されない。また、ポリエン形成工程の反応機構は、以下の例に限定されない。 An example of the reaction mechanism of the polyene forming step will be described below. In the following examples, the first raw material compound is a compound represented by the formula (1-1) described later, the second raw material compound is butadiene, and the metal catalyst is [(naphthalene) (1,5-cyclooctadiene). ) Ruthenium (0)] is used to describe the reaction mechanism, but the present invention is not limited thereto. Further, the reaction mechanism of the polyene forming step is not limited to the following examples.
上記反応機構では、まず、ルテニウム錯体からナフタレンが解離し、第一の原料化合物及び第二の原料化合物がそれぞれルテニウム(0)上に配位する(上記A)。次いで、酸化的カップリング反応によって上記Bが形成され、βヒドリド脱離により上記Cが形成される。更に、還元的脱離によって、ルテニウム上に共役トリエンが配位した上記Dが形成される。上記の例では、ブタジエンが反応点を2つ有しているため、同様の機構でもう1分子の第一の原料化合物が反応して、共役テトラエンが配位した上記Eが形成される。最後に、共役テトラエンがルテニウム上から解離することで、含ホウ素共役ポリエン化合物が得られる。なお、第二の原料化合物が、反応点を1つしか有しない場合は、上記Dの段階でルテニウム上から含ホウ素共役ポリエン化合物が解離する。 In the above reaction mechanism, first, naphthalene is dissociated from the ruthenium complex, and the first raw material compound and the second raw material compound are coordinated on ruthenium (0), respectively (A above). Then, the oxidative coupling reaction forms the B, and the β-hydride elimination forms the C. Further, reductive elimination forms the D with a conjugated triene coordinated on ruthenium. In the above example, since butadiene has two reaction points, another molecule of the first raw material compound reacts by the same mechanism to form the above-mentioned E in which the conjugated tetraene is coordinated. Finally, the conjugated tetraene dissociates from the ruthenium to obtain a boron-containing conjugated polyene compound. When the second raw material compound has only one reaction point, the boron-containing conjugated polyene compound is dissociated from the ruthenium at the stage D.
反応系中でRu(0)を形成可能な触媒としては、例えば、Ru(0)を有する0価ルテニウム錯体、Ru(II)を有する2価ルテニウム錯体等が挙げられる。 Examples of the catalyst capable of forming Ru (0) in the reaction system include a zero-valent ruthenium complex having Ru (0) and a divalent ruthenium complex having Ru (II).
0価ルテニウム錯体としては、例えば、[(ナフタレン)(1,5−シクロオクタジエン)ルテニウム(0)]、[(ブタジエン)(1,5―シクロオクタジエン)(アセトニトリル)ルテニウム(0)]等が挙げられる。 Examples of the zero-valent ruthenium complex include [(naphthalene) (1,5-cyclooctadiene) ruthenium (0)], [(butadiene) (1,5-cyclooctadiene) (acetonitrile) ruthenium (0)] and the like. Can be mentioned.
2価ルテニウム錯体としては、例えば、[ビス(アセチルアセトナト)(1,5−シクロオクタジエン)ルテニウム(II)]、[テトラクロロジ(アニソール)二ルテニウム]等が挙げられる。2価ルテニウム錯体は、反応系中で還元されてRu(0)を形成してよい。2価ルテニウム錯体は、反応基質(第一の原料化合物及び/又は第二の原料化合物)との反応によって還元されてよく、ルテニウム錯体同士の反応によって還元されてよく、別途添加された還元剤との反応によって還元されてもよい。還元剤としては、例えば、ブチルリチウム、水素化アルミニウムリチウム、ナトリウムナフタレン、炭酸ナトリウムとイソプロピルアルコールの組み合わせ等が挙げられる。 Examples of the divalent ruthenium complex include [bis (acetylacetonato) (1,5-cyclooctadiene) ruthenium (II)] and [tetrachlorodi (anisole) diruthenium]. The divalent ruthenium complex may be reduced in the reaction system to form Ru (0). The divalent ruthenium complex may be reduced by a reaction with a reaction substrate (a first raw material compound and / or a second raw material compound), may be reduced by a reaction between ruthenium complexes, and may be reduced with a separately added reducing agent. It may be reduced by the reaction of. Examples of the reducing agent include butyllithium, lithium aluminum hydride, sodium naphthalene, and a combination of sodium carbonate and isopropyl alcohol.
なお、ルテニウム触媒の種類は上記のものに限定されず、メタラサイクルを形成可能な触媒であればよい。例えば、ルテニウム触媒は、メタラサイクル形成時に4価のルテニウム(Ru(IV))を形成する触媒であってもよい。すなわち、ルテニウム触媒は、反応系中で4価のルテニウム(Ru(IV))を含むメタラサイクルを形成可能な触媒であってもよい。 The type of ruthenium catalyst is not limited to the above, and any catalyst that can form a metallacycle may be used. For example, the ruthenium catalyst may be a catalyst that forms tetravalent ruthenium (Ru (IV)) during metallacycle formation. That is, the ruthenium catalyst may be a catalyst capable of forming a metallacycle containing tetravalent ruthenium (Ru (IV)) in the reaction system.
また、金属属触媒としては、ロジウム触媒、コバルト触媒、ニッケル触媒等を使用することもできる。 Further, as the metal genus catalyst, a rhodium catalyst, a cobalt catalyst, a nickel catalyst and the like can also be used.
ロジウム触媒としては、反応系中で1価のロジウム(Rh(I))を形成可能な触媒が好ましい。このような触媒としては、例えば、Rh(I)を有する1価ロジウム錯体、Rh(III)を有する3価ロジウム錯体等が挙げられる。3価ロジウム錯体は、還元剤と併用されてよい。還元剤としては、上記と同様のものが例示できる。 As the rhodium catalyst, a catalyst capable of forming monovalent rhodium (Rh (I)) in the reaction system is preferable. Examples of such a catalyst include a monovalent rhodium complex having Rh (I), a trivalent rhodium complex having Rh (III), and the like. The trivalent rhodium complex may be used in combination with a reducing agent. Examples of the reducing agent include the same as above.
コバルト触媒としては、反応系中で1価のコバルト(Co(I))又は0価のコバルト(Co(0))を形成可能な触媒が好ましい。このような触媒としては、例えば、Co(II)を有する2価コバルト錯体等が挙げられる。2価コバルト錯体は、還元剤と併用されてよい。還元剤としては、上記と同様のものが例示できる。 As the cobalt catalyst, a catalyst capable of forming monovalent cobalt (Co (I)) or 0-valent cobalt (Co (0)) in the reaction system is preferable. Examples of such a catalyst include a divalent cobalt complex having Co (II) and the like. The divalent cobalt complex may be used in combination with a reducing agent. Examples of the reducing agent include the same as above.
ニッケル触媒としては、反応系中で0価のニッケル(Ni(0))を形成可能な触媒が好ましい。このような触媒としては、例えば、Ni(0)を有する0価ニッケル錯体、Ni(II)を有する2価ニッケル錯体等が挙げられる。2価ニッケル錯体は、還元剤と併用されてよい。還元剤としては、上記と同様のものが例示できる。また、還元剤としては、亜鉛等も好適に用いることができる。 As the nickel catalyst, a catalyst capable of forming zero-valent nickel (Ni (0)) in the reaction system is preferable. Examples of such a catalyst include a zero-valent nickel complex having Ni (0), a divalent nickel complex having Ni (II), and the like. The divalent nickel complex may be used in combination with a reducing agent. Examples of the reducing agent include the same as above. Further, as the reducing agent, zinc or the like can also be preferably used.
金属触媒の量は特に限定されず、第一の原料化合物に対して、例えば0.1mol%以上であってよく、好ましくは1mol%以上、より好ましくは5mol%以上である。また、金属触媒の量は、第一の原料化合物に対して、例えば30mol%以下であってよく、好ましくは20mol%以下、より好ましくは15mol%以下である。 The amount of the metal catalyst is not particularly limited, and may be, for example, 0.1 mol% or more, preferably 1 mol% or more, and more preferably 5 mol% or more with respect to the first raw material compound. The amount of the metal catalyst may be, for example, 30 mol% or less, preferably 20 mol% or less, and more preferably 15 mol% or less with respect to the first raw material compound.
ポリエン形成工程において、第一の原料化合物と第二の原料化合物との反応は、無溶媒で行ってよく、有機溶媒中で行ってもよい。有機溶媒の種類は特に限定されず、第一の原料化合物及び第二の原料化合物を溶解可能な溶媒であればよい。有機溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、アセトン、ヘキサン、ベンゼン、トルエン、ジクロロメタン、ジメチルスルホキシド等が挙げられ、第一の原料化合物と第二の原料化合物との反応を阻害し難い観点からはテトラヒドロフラン、ベンゼン、トルエン等が好ましい。 In the polyene forming step, the reaction between the first raw material compound and the second raw material compound may be carried out without a solvent or in an organic solvent. The type of the organic solvent is not particularly limited, and any solvent may be used as long as it can dissolve the first raw material compound and the second raw material compound. Examples of the organic solvent include diethyl ether, tetrahydrofuran, acetone, hexane, benzene, toluene, dichloromethane, dimethyl sulfoxide and the like, and from the viewpoint of not easily inhibiting the reaction between the first raw material compound and the second raw material compound. Tetrahydrofuran, benzene, toluene and the like are preferable.
有機溶媒の量は特に限定されず、第一の原料化合物及び第二の原料化合物の合計100質量部に対して、例えば100質量部以上であってよく、好ましくは1000質量部以上であり、例えば100000質量部以下であってよく、好ましくは10000質量部以下である。 The amount of the organic solvent is not particularly limited, and may be, for example, 100 parts by mass or more, preferably 1000 parts by mass or more, for example, with respect to 100 parts by mass of the total of the first raw material compound and the second raw material compound. It may be 100,000 parts by mass or less, preferably 10,000 parts by mass or less.
ポリエン形成工程において、反応温度は特に限定されず、例えば0〜100℃であってよく、室温であってもよい。また、反応時間は特に限定されず、反応基質及び触媒の種類、所望の収量等に応じて適宜調整してよい。反応時間は、例えば0.1〜72時間であってよく、好ましくは1〜24時間である。 In the polyene forming step, the reaction temperature is not particularly limited, and may be, for example, 0 to 100 ° C. or room temperature. The reaction time is not particularly limited, and may be appropriately adjusted according to the type of reaction substrate and catalyst, desired yield, and the like. The reaction time may be, for example, 0.1 to 72 hours, preferably 1 to 24 hours.
以下、本実施形態に係る製造方法の好適な態様について説明する。 Hereinafter, a preferred embodiment of the manufacturing method according to the present embodiment will be described.
(第一の態様)
第一の態様において、第一の原料化合物は、下記式(1−1)で表される化合物(以下、化合物(1−1)ともいう。)であり、第二の原料化合物は、下記式(1−2−1)で表される化合物(以下、化合物(1−2−1)ともいう。)である。第一の態様では、このような第一の原料化合物及び第二の原料化合物を用いることで、下記式(1−3−1)で表される化合物(以下、化合物(1−3−1)ともいう。)を得ることができる。(First aspect)
In the first aspect, the first raw material compound is a compound represented by the following formula (1-1) (hereinafter, also referred to as compound (1-1)), and the second raw material compound is the following formula. It is a compound represented by (1-2-1) (hereinafter, also referred to as a compound (1-2-1)). In the first aspect, by using such a first raw material compound and a second raw material compound, a compound represented by the following formula (1-3-1) (hereinafter, compound (1-3-1)). Also called.) Can be obtained.
式(1−1)中、B1は含ホウ素基を示し、R1は一価の基を示す。In formula (1-1), B 1 represents a boron-containing group and R 1 represents a monovalent group.
式(1−2−1)中、nは0以上の整数を示し、R2及びR3はそれぞれ独立に水素原子又は一価の基を示す。nが1以上のとき、複数のR2は互いに同一でも異なっていてもよい。また、複数のR3は互いに同一でも異なっていてもよい。R2同士、R3同士、並びに、R2及びR3は、互いに結合して環を形成していてもよい。In the formula (1-2-1), n represents an integer of 0 or more, and R 2 and R 3 independently represent a hydrogen atom or a monovalent group. When n is 1 or more, the plurality of R 2s may be the same or different from each other. Further, the plurality of R 3s may be the same or different from each other. R 2 to each other, R 3 to each other, and R 2 and R 3 may be connected to each other to form a ring.
式(1−3−1)中、B1、R1、n、R2及びR3はそれぞれ上記と同義である。なお、式中の波線は、波線に結合する二重結合がシス及びトランスのいずれであってもよいことを示す。すなわち、式(1−3−1)で表される化合物は、下記式(1−3−1a)で表される化合物、下記式(1−3−1b)で表される化合物、又は、これらの混合物であってよい。第一の態様では、下記の化合物のうち、式(1−3−1a)で表される化合物が多く得られる傾向がある。In formula (1-3-1), B 1 , R 1 , n, R 2 and R 3 have the same meanings as described above. The wavy line in the equation indicates that the double bond bonded to the wavy line may be either cis or trans. That is, the compound represented by the formula (1-3-1) is a compound represented by the following formula (1-3-1a), a compound represented by the following formula (1-3-1b), or these. Can be a mixture of. In the first aspect, among the following compounds, many compounds represented by the formula (1-3-1a) tend to be obtained.
R1における一価の基は特に限定されず、化合物(1−1)と化合物(1−2−1)との反応が進行する範囲で適宜選択できる。R1における一価の基は、例えば、一価の有機基であってよい。The monovalent group in R 1 is not particularly limited, and can be appropriately selected as long as the reaction between the compound (1-1) and the compound (1-2-1) proceeds. The monovalent group in R 1 may be, for example, a monovalent organic group.
R1は、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、含ホウ素基、シリル基等であってよい。R 1 may be, for example, an alkyl group which may have a substituent, an aryl group which may have a substituent, a boron-containing group, a silyl group and the like.
R1におけるアルキル基は、直鎖状、分岐状及び環状のいずれであってもよい。R1におけるアルキル基の炭素数は特に限定されず、例えば1〜8であってよい。The alkyl group in R 1 may be linear, branched or cyclic. The number of carbon atoms of the alkyl group in R 1 is not particularly limited, and may be, for example, 1 to 8.
R1におけるアリール基は、芳香族化合物から芳香環上の水素原子を一つ除去した残りの原子団を示す。芳香族化合物が有する芳香環は、単環であっても縮合環であってもよく、複素環であってもよい。芳香族化合物としては、ベンゼン、ナフタレン、チオフェン等が挙げられる。The aryl group in R 1 represents the remaining atomic group obtained by removing one hydrogen atom on the aromatic ring from the aromatic compound. The aromatic ring contained in the aromatic compound may be a monocyclic ring, a condensed ring, or a heterocyclic ring. Examples of the aromatic compound include benzene, naphthalene, thiophene and the like.
R1におけるアルキル基及びアリール基が有していてもよい置換基は、第一の原料化合物と第二の原料化合物との反応が進行する範囲であれば特に限定されない。当該置換基としては、例えば、アリール基、アルキルオキシ基、アリールオキシ基、ヒドロキシル基、ホルミル基、カルボニル基、アミノ基、ハロゲノ基等が挙げられる。The substituents that the alkyl group and the aryl group in R 1 may have are not particularly limited as long as the reaction between the first raw material compound and the second raw material compound proceeds. Examples of the substituent include an aryl group, an alkyloxy group, an aryloxy group, a hydroxyl group, a formyl group, a carbonyl group, an amino group, a halogeno group and the like.
R1におけるシリル基は、−Si(R31)3で表される基であってよい。R31は、一価の基を示す。3つのR31は互いに同一でも異なっていてもよく、互いに連結してケイ素原子と共に環を形成していてもよい。R31は、例えば、一価の有機基であってよく、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であってもよい。R31におけるアルキル基、アリール基及びこれらが有していてよい置換基としては、上述のR21におけるアルキル基、アリール基及びこれらが有していてよい置換基と同じものが例示できる。The silyl group in R 1 may be the group represented by −Si (R 31 ) 3. R 31 represents a monovalent group. The three R 31s may be the same or different from each other and may be linked to each other to form a ring with a silicon atom. R 31 may be, for example, a monovalent organic group, an alkyl group which may have a substituent, or an aryl group which may have a substituent. Examples of the alkyl group, the aryl group and the substituent which they may have in R 31 include the same alkyl group, the aryl group and the substituent which they may have in R 21 described above.
R1が含ホウ素基である場合、共役ポリエン骨格を構成する炭素原子に結合する含ホウ素基を複数有する含ホウ素共役ポリエン化合物を得ることができる。When R 1 is a boron-containing group, a boron-containing conjugated polyene compound having a plurality of boron-containing groups bonded to carbon atoms constituting the conjugated polyene skeleton can be obtained.
第一の態様において、R1が水素原子であると、化合物(1−1)と化合物(1−2−1)との反応が進行し難い。一方、R1がシリル基である場合、化合物(1−1)と化合物(1−2−1)との反応性は良好であり、位置選択的に化合物(1−3−1)が得られる。そして、脱シリル化反応によって、化合物(1−3−1)中のR1が水素原子に置換された含ホウ素共役ポリエン化合物を得ることができる。なお、このとき、R2が水素原子であると、側鎖に置換基を有しない共役ポリエン骨格を形成することができる。In the first aspect, when R 1 is a hydrogen atom, the reaction between the compound (1-1) and the compound (1-2-1) is difficult to proceed. On the other hand, when R 1 is a silyl group, the reactivity between the compound (1-1) and the compound (1-2-1) is good, and the compound (1-3-1) can be obtained regioselectively. .. Then, by the desilylation reaction, a boron-containing conjugated polyene compound in which R 1 in the compound (1-3-1) is replaced with a hydrogen atom can be obtained. At this time, if R 2 is a hydrogen atom, a conjugated polyene skeleton having no substituent in the side chain can be formed.
脱シリル化反応は特に限定されず、公知の方法を適用してよい。例えば、脱シリル化反応は、フッ化テトラn−ブチルアンモニム(TBAF)を反応剤として用いて行うことができる。なお、反応が進行し難い場合は、触媒量のヨウ化銅(I)を添加してもよい。 The desilylation reaction is not particularly limited, and a known method may be applied. For example, the desilylation reaction can be carried out using tetra-n-butylammonium fluoride (TBAF) as a reactant. If the reaction is difficult to proceed, a catalytic amount of copper (I) iodide may be added.
R1は、Hammettの置換基定数σpの値が、B1のHammettの置換基定数σpの値より小さい基であってよい。第一の態様では、置換基定数σpの値がより大きい置換基(B1)が、共役ポリエン骨格の末端に位置するように反応が進行しやすい傾向がある。R 1, the value of the substituent constant sigma p of Hammett may be a smaller group than the value of the substituent constant sigma p of Hammett of B 1. In the first aspect, the reaction tends to proceed so that the substituent (B 1 ) having a larger value of the substituent constant σ p is located at the end of the conjugated polyene skeleton.
nは0以上の整数であり、その上限は特に限定されない。nは、例えば0〜8であってよく、好ましくは0〜2である。 n is an integer of 0 or more, and its upper limit is not particularly limited. n may be, for example, 0 to 8, preferably 0 to 2.
R2における一価の基は、特に限定されず、化合物(1−1)と化合物(1−2−1)との反応が進行する範囲で適宜選択できる。R2における一価の基は、例えば、一価の有機基又はハロゲノ基であってよい。Monovalent radicals in R 2 is not particularly limited, can be appropriately selected within a range that the reaction proceeds with a compound (1-1) and the compound (1-2-1). Monovalent group in R 2 may be, for example, monovalent organic group or a halogeno group.
R2は、例えば、水素原子、ハロゲノ基、アルキル基、アリール基、−C(=O)R41で表される基、−C(=O)OR42で表される基、含ホウ素基、シリル基等であってよく、これらの基は置換基を有していてもよい。R 2 is, for example, a hydrogen atom, a halogeno group, an alkyl group, an aryl group, -C (= O) groups represented by R 41, -C (= O) group represented by OR 42, boron-containing group, It may be a silyl group or the like, and these groups may have a substituent.
R2におけるハロゲノ基は、フルオロ基(−F)、クロロ基(−Cl)、ブロモ基(−Br)又はヨード基(−I)であってよく、好ましくはフルオロ基(−F)、クロロ基(−Cl)又はブロモ基(−Br)である。Halogeno group in R 2 is a fluoro group (-F), chloro group (-Cl), it can be a bromo group (-Br), or iodine radical (-I), preferably fluoro group (-F), chloro group It is (-Cl) or a bromo group (-Br).
R2におけるアルキル基、アリール基は、及び、これらが有していてよい置換基としては、上述のR21におけるアルキル基、アリール基及びこれらが有していてよい置換基と同じものが例示できる。Examples of the alkyl group and aryl group in R 2 and the substituents they may have include the same alkyl group and aryl group in R 21 and the substituents they may have. ..
R41は水素原子又は一価の基を示す。R41は、例えば、水素原子又は一価の有機基であってよく、水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であってよい。R 41 represents a hydrogen atom or a monovalent group. R 41 may be, for example, a hydrogen atom or a monovalent organic group, and may be a hydrogen atom, an alkyl group which may have a substituent or an aryl group which may have a substituent.
R42は水素原子又は一価の基を示す。R42は、例えば、水素原子又は一価の有機基であってよく、水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であってよく、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であってよい。R 42 represents a hydrogen atom or a monovalent group. R 42 may be, for example, a hydrogen atom or a monovalent organic group, and may be a hydrogen atom, an alkyl group which may have a substituent or an aryl group which may have a substituent. It may be an alkyl group which may have a substituent or an aryl group which may have a substituent.
R41及びR42おけるアルキル基、アリール基及びこれらが有していてよい置換基としては、上述のR21におけるアルキル基、アリール基及びこれらが有していてよい置換基と同じものが例示できる。Examples of the alkyl group, aryl group and substituents they may have in R 41 and R 42 include the same alkyl group, aryl group and substituents they may have in R 21 described above. ..
R3における一価の基は、特に限定されず、化合物(1−1)と化合物(1−2−1)との反応が進行する範囲で適宜選択できる。R3における一価の基は、例えば、一価の有機基又はハロゲノ基であってよい。The monovalent group in R 3 is not particularly limited, and can be appropriately selected as long as the reaction between the compound (1-1) and the compound (1-2-1) proceeds. The monovalent group in R 3 may be, for example, a monovalent organic group or a halogeno group.
R3は、例えば、水素原子、ハロゲノ基、アルキル基、アリール基、−C(=O)R41で表される基、−C(=O)OR42で表される基、含ホウ素基、シリル基等であってよく、これらの基は置換基を有していてもよい。R3における各基としては、上述のR2における各基と同じものが例示できる。R 3 is, for example, a hydrogen atom, a halogeno group, an alkyl group, an aryl group, a group represented by −C (= O) R 41 , a group represented by −C (= O) OR 42 , a boron-containing group, and the like. It may be a silyl group or the like, and these groups may have a substituent. As each group in R 3 , the same group as each group in R 2 described above can be exemplified.
R2及びR3のうち少なくとも一つが含ホウ素基である場合、共役ポリエン骨格を構成する炭素原子に結合する含ホウ素基を複数有する含ホウ素共役ポリエン化合物を得ることができる。When at least one of R 2 and R 3 is a boron-containing group, a boron-containing conjugated polyene compound having a plurality of boron-containing groups bonded to carbon atoms constituting the conjugated polyene skeleton can be obtained.
R3のうち少なくとも一つが含ホウ素基である場合、共役ポリエン骨格の両端に含ホウ素基を有する含ホウ素共役ポリエン化合物を得ることができる。このような含ホウ素共役ポリエン化合物は、クロスカップリング重合による高分子化合物の製造等に好適に利用することができる。When at least one of R 3 is a boron-containing group, a boron-containing conjugated polyene compound having boron-containing groups at both ends of the conjugated polyene skeleton can be obtained. Such a boron-containing conjugated polyene compound can be suitably used for producing a polymer compound by cross-coupling polymerization or the like.
(第二の態様)
第二の態様において、第一の原料化合物は、式(1−1)で表される化合物(化合物(1−1))であり、第二の原料化合物は、下記式(1−2−2)で表される化合物(以下、化合物(1−2−2)ともいう。)である。第二の態様では、化合物(1−2−2)が、化合物(1−1)との反応点を2箇所有している。このため、第二の態様では、化合物(1−1)由来の含ホウ素基を少なくとも2つ有する、下記式(1−3−2)で表される化合物(以下、化合物(1−3−2)ともいう。)を得ることができる。(Second aspect)
In the second aspect, the first raw material compound is a compound represented by the formula (1-1) (compound (1-1)), and the second raw material compound is the following formula (1-2-2). ) (Hereinafter, also referred to as compound (1-2-2)). In the second aspect, compound (1-2-2) has two reaction points with compound (1-1). Therefore, in the second aspect, the compound represented by the following formula (1-3-2) having at least two boron-containing groups derived from the compound (1-1) (hereinafter, the compound (1-3-2)). ) Can also be obtained.
式(1−1)中、B1は含ホウ素基を示し、R1は一価の基を示す。In formula (1-1), B 1 represents a boron-containing group and R 1 represents a monovalent group.
式(1−2−2)中、n1は0以上の整数を示し、n2は0又は1を示し、R2は水素原子又は一価の基を示す。n1が1以上のとき、複数のR2は互いに同一でも異なっていてもよい。但し、n1が1以上のとき、n2は1である。R2同士は、互いに結合して環を形成していてもよい。In formula (1-2-2), n 1 represents an integer greater than or equal to 0, n 2 represents 0 or 1, and R 2 represents a hydrogen atom or a monovalent group. When n 1 is 1 or more, the plurality of R 2s may be the same or different from each other. However, when n 1 is 1 or more, n 2 is 1. R 2 to each other may be bonded to each other to form a ring.
式(1−3−2)中、B1、R1、n1、n2及びR2はそれぞれ上記と同義である。2つのB1は互いに同一でも異なっていてもよい。また、2のR1は互いに同一でも異なっていてもよい。なお、波線は、波線に結合する二重結合がシス及びトランスのいずれであってもよいことを示す。すなわち、式(1−3−2)で表される化合物は、下記式(1−3−2a)で表される化合物、下記式(1−3−2b)で表される化合物、下記式(1−3−2c)で表される化合物、下記式(1−3−2d)で表される化合物、又は、これらの混合物であってよい。第二の態様では、下記の化合物のうち、式(1−3−2a)で表される化合物が最も多く得られる傾向がある。In formula (1-3-2), B 1 , R 1 , n 1 , n 2 and R 2 have the same meanings as described above. Two B 1 represents may be the same or different from each other. Further, R 1 of 2 may be the same as or different from each other. The wavy line indicates that the double bond bonded to the wavy line may be either cis or trans. That is, the compound represented by the formula (1-3-2) is a compound represented by the following formula (1-3-2a), a compound represented by the following formula (1-3-2b), and a compound represented by the following formula (1-3-2b). It may be a compound represented by 1-3-2c), a compound represented by the following formula (1-3-2d), or a mixture thereof. In the second aspect, among the following compounds, the compound represented by the formula (1-3-2a) tends to be obtained most.
式(1−1)中のR1は、第一の態様における式(1−1)中のR1と同様であってよい。R 1 in the formula (1-1) may be the same as R 1 in the formula (1-1) in the first aspect.
式(1−2−2)中のR2は、第一の態様における式(1−2−1)中のR2と同様であってよい。 R 2 in the formula (1-2-2) may be the same as R 2 in the formula (1-2-1) in the first aspect.
n1は0以上の整数であり、その上限は特に限定されない。n1は、例えば0〜8であってよく、好ましくは0〜1である。n 1 is an integer of 0 or more, and its upper limit is not particularly limited. n 1 may be, for example, 0 to 8, preferably 0 to 1.
n1が0のとき、n2は0又は1であり、nが1以上のとき、n2は1である。When n 1 is 0, n 2 is 0 or 1, and when n is 1 or more, n 2 is 1.
(第三の態様)
第三の態様において、第一の原料化合物は、下記式(2−1)で表される化合物であり、第二の原料化合物は、下記式(2−2)で表される化合物である。第三の態様では、このような第一の原料化合物及び第二の原料化合物を用いることで、下記式(2−3)で表される化合物(以下、化合物(2−3)ともいう。)を得ることができる。(Third aspect)
In the third aspect, the first raw material compound is a compound represented by the following formula (2-1), and the second raw material compound is a compound represented by the following formula (2-2). In the third aspect, by using such a first raw material compound and a second raw material compound, a compound represented by the following formula (2-3) (hereinafter, also referred to as compound (2-3)). Can be obtained.
式(2−1)中、R4及びR5はそれぞれ独立に一価の基を示す。In formula (2-1), R 4 and R 5 each independently represent a monovalent group.
式(2−2)中、mは0以上の整数を示し、R6及びR7はそれぞれ独立に水素原子又は一価の基を示す。但し、2つのR7のうち少なくとも一つは含ホウ素基である。mが1以上のとき、複数のR6は互いに同一でも異なっていてもよい。また、2つのR7は互いに同一でも異なっていてもよい。R6同士、R7同士、並びに、R6及びR7は、互いに結合して環を形成していてもよい。In formula (2-2), m represents an integer of 0 or more, and R 6 and R 7 each independently represent a hydrogen atom or a monovalent group. Provided that at least one of the two R 7 are boron-containing groups. When m is 1 or more, the plurality of R 6s may be the same or different from each other. Further, two R 7 may be the same or different from each other. R 6 to each other, R 7 together, and, R 6 and R 7 may be bonded to each other to form a ring.
式(2−3)中、R4、R5、m、R6及びR7はそれぞれ上記と同義である。なお、波線は、波線に結合する二重結合がシス及びトランスのいずれであってもよいことを示す。すなわち、式(2−3)で表される化合物は、下記式(2−3a)で表される化合物、下記式(2−3b)で表される化合物、又は、これらの混合物であってよい。第三の態様では、下記の化合物のうち、式(2−3a)で表される化合物が多く得られる傾向がある。In formula (2-3), R 4 , R 5 , m, R 6 and R 7 have the same meanings as above. The wavy line indicates that the double bond bonded to the wavy line may be either cis or trans. That is, the compound represented by the formula (2-3) may be a compound represented by the following formula (2-3a), a compound represented by the following formula (2-3b), or a mixture thereof. .. In the third aspect, among the following compounds, many compounds represented by the formula (2-3a) tend to be obtained.
R4及びR5における一価の基は特に限定されず、化合物(2−1)と化合物(2−2)との反応が進行する範囲で適宜選択できる。R4及びR5における一価の基としては、上述のR1と同じ基が例示できる。The monovalent group in R 4 and R 5 is not particularly limited, and can be appropriately selected as long as the reaction between compound (2-1) and compound (2-2) proceeds. As the monovalent group in R 4 and R 5 , the same group as R 1 described above can be exemplified.
第三の態様において、R4のHammettの置換基定数σpの値は、R5のHammettの置換基定数σpの値より大きい。第3の態様では、置換基定数σpの値がより大きい置換基(R4)が、共役ポリエン骨格の末端に位置するように反応が進行しやすい傾向がある。In the third aspect, the value of the substituent constant σ p of Hammett of R 4 is larger than the value of the substituent constant σ p of Hammett of R 5. In the third aspect, the reaction tends to proceed so that the substituent (R 4 ) having a larger value of the substituent constant σ p is located at the end of the conjugated polyene skeleton.
mは0以上の整数であり、その上限は特に限定されない。mは、例えば0〜8であってよく、好ましくは0〜2である。 m is an integer of 0 or more, and its upper limit is not particularly limited. m may be, for example, 0 to 8, preferably 0 to 2.
R6における一価の基は、特に限定されず、化合物(2−1)と化合物(2−2)との反応が進行する範囲で適宜選択できる。R6としては、上述のR2と同じ基が例示できる。The monovalent group in R 6 is not particularly limited, and can be appropriately selected as long as the reaction between the compound (2-1) and the compound (2-2) proceeds. As R 6 , the same group as R 2 described above can be exemplified.
R7における一価の基は、特に限定されず、化合物(2−1)と化合物(2−2)との反応が進行する範囲で適宜選択できる。R7としては、上述のR3と同じ基が例示できる。但し、2つのR7のうち少なくとも一つは含ホウ素基である。The monovalent group in R 7 is not particularly limited, and can be appropriately selected as long as the reaction between the compound (2-1) and the compound (2-2) proceeds. As R 7 , the same group as R 3 described above can be exemplified. Provided that at least one of the two R 7 are boron-containing groups.
<含ホウ素共役ポリエン化合物>
本実施形態に係る含ホウ素共役ポリエン化合物は、上述の製造方法により製造される化合物であり、3つ以上の炭素−炭素二重結合を含む共役ポリエン骨格と、当該共役ポリエン骨格を構成する炭素原子に結合した含ホウ素基と、を有する。<Boron-containing conjugated polyene compound>
The boron-containing conjugated polyene compound according to the present embodiment is a compound produced by the above-mentioned production method, and comprises a conjugated polyene skeleton containing three or more carbon-carbon double bonds and a carbon atom constituting the conjugated polyene skeleton. It has a boron-containing group bonded to.
本実施形態に係る含ホウ素共役ポリエン化合物の好適な態様について以下に説明する。 A preferred embodiment of the boron-containing conjugated polyene compound according to the present embodiment will be described below.
(第一の態様)
第一の態様に係る含ホウ素共役ポリエン化合物は、下記式(1−3−1A)で表される化合物である。(First aspect)
The boron-containing conjugated polyene compound according to the first aspect is a compound represented by the following formula (1-3-1A).
式(1−3−1A)中、B1、n、R2及びR3は、上述の式(1−3−1)におけるB1、n、R2及びR3と同義である。また、R11は、水素原子又は一価の基を示し、R11における一価の基としては、上述のR1と同じ基が例示できる。Wherein (1-3-1A), B 1, n , R 2 and R 3 have the same meaning as B 1, n, R 2 and R 3 in the above formula (1-3-1). Further, R 11 represents a hydrogen atom or a monovalent group, and as the monovalent group in R 11 , the same group as R 1 described above can be exemplified.
R11が水素原子である化合物は、例えば、R1がシリル基である化合物(1−1)と化合物(1−2−1)とを反応させた後、R1のシリル基を脱シリル化反応によって水素原子に置換することで製造することができる。For a compound in which R 11 is a hydrogen atom, for example, a compound (1-1) in which R 1 is a silyl group is reacted with a compound (1-2-1), and then the silyl group of R 1 is desilylated. It can be produced by substituting a hydrogen atom with a reaction.
(第二の態様)
第二の態様に係る含ホウ素共役ポリエン化合物は、下記式(1−3−2A)で表される化合物である。(Second aspect)
The boron-containing conjugated polyene compound according to the second aspect is a compound represented by the following formula (1-3-2A).
式(1−3−2A)中、B1、n1、n2及びR2は、上述の式(1−3−2)におけるB1、n1、n2及びR2と同義である。また、R11は、水素原子又は一価の基を示し、R11における一価の基としては、上述のR1と同じ基が例示できる。Wherein (1-3-2A), B 1, n 1, n 2 and R 2 have the same meanings as B 1, n 1, n 2 and R 2 in the above formula (1-3-2). Further, R 11 represents a hydrogen atom or a monovalent group, and as the monovalent group in R 11 , the same group as R 1 described above can be exemplified.
R11が水素原子である化合物は、例えば、R1がシリル基である化合物(1−1)と化合物(1−2−2)とを反応させた後、R1のシリル基を脱シリル化反応によって水素原子に置換することで製造することができる。For a compound in which R 11 is a hydrogen atom, for example, a compound (1-1) in which R 1 is a silyl group is reacted with a compound (1-2-2), and then the silyl group of R 1 is desilylated. It can be produced by substituting a hydrogen atom with a reaction.
(第三の態様)
第三の態様に係る含ホウ素共役ポリエン化合物は、下記式(2−3A)で表される化合物である。(Third aspect)
The boron-containing conjugated polyene compound according to the third aspect is a compound represented by the following formula (2-3A).
式(2−3A)中、R4、m、R6及びR7は、上述の式(2−3)におけるR4、m、R6及びR7と同義である。また、R15は、水素原子又は一価の基を示し、R15における一価の基としては、上述のR5と同じ基が例示できる。Wherein (2-3A), R 4, m , R 6 and R 7 have the same meanings as R 4, m, R 6 and R 7 in the above formula (2-3). Further, R 15 represents a hydrogen atom or a monovalent group, and as the monovalent group in R 15 , the same group as R 5 described above can be exemplified.
R15が水素原子である化合物は、例えば、R5がシリル基である化合物(2−1)と化合物(2−2)とを反応させた後、R5のシリル基を脱シリル化反応によって水素原子に置換することで製造することができる。For a compound in which R 15 is a hydrogen atom, for example, a compound (2-1) in which R 5 is a silyl group is reacted with a compound (2-2), and then the silyl group of R 5 is desilylated by a desilylation reaction. It can be produced by substituting with a hydrogen atom.
本実施形態に係る含ホウ素共役ポリエン化合物は、共役ポリエン骨格と、当該共役ポリエン骨格に結合した含ホウ素基と、を有している。このため、本実施形態に係る含ホウ素共役ポリエン化合物によれば、含ホウ素基を起点とする反応(例えば、クロスカップリング反応)によって、共役ポリエン骨格を容易に目的化合物に導入することができる。この用途において、含ホウ素基は、ボロノ基又はその誘導体基が好ましい。 The boron-containing conjugated polyene compound according to the present embodiment has a conjugated polyene skeleton and a boron-containing group bonded to the conjugated polyene skeleton. Therefore, according to the boron-containing conjugated polyene compound according to the present embodiment, the conjugated polyene skeleton can be easily introduced into the target compound by a reaction starting from a boron-containing group (for example, a cross-coupling reaction). In this application, the boron-containing group is preferably a borono group or a derivative group thereof.
また、本実施形態に係る含ホウ素共役ポリエン化合物は、含ホウ素基を有するπ共役化合物として電子材料等の用途に適用することもできる。この用途において、含ホウ素基は、ボリル基又はその誘導体基が好ましい。 Further, the boron-containing conjugated polyene compound according to the present embodiment can also be applied to applications such as electronic materials as a π-conjugated compound having a boron-containing group. In this application, the boron-containing group is preferably a boryl group or a derivative group thereof.
また、本実施形態に係る含ホウ素共役ポリエン化合物は、含ホウ素基を2つ以上有することができ、この場合は、クロスカップリング重合(例えば、ジハロゲン化芳香族化合物との重合)による高分子化合物の製造等に好適に利用することができる。この用途において、含ホウ素基は、ボロノ基又はその誘導体基が好ましい。 Further, the boron-containing conjugated polyene compound according to the present embodiment can have two or more boron-containing groups, and in this case, a polymer compound by cross-coupling polymerization (for example, polymerization with a dihalogenated aromatic compound). Can be suitably used for the production of In this application, the boron-containing group is preferably a borono group or a derivative group thereof.
以上、本実施形態に係る含ホウ素共役ポリエン化合物及びその製造方法について記載したが、本発明はこれらに限定されない。 The boron-containing conjugated polyene compound according to the present embodiment and the method for producing the same have been described above, but the present invention is not limited thereto.
例えば、本発明の一側面は、上述の含ホウ素共役ポリエン化合物を用いた、共役ポリエン化合物の製造方法に関する。 For example, one aspect of the present invention relates to a method for producing a conjugated polyene compound using the above-mentioned boron-containing conjugated polyene compound.
一実施形態に係る共役ポリエンの製造方法は、上述の含ホウ素共役ポリエン化合物の製造方法によって、含ホウ素共役ポリエン化合物を含有する反応液を得る第一工程と、上記反応液に、カップリング反応触媒と、上記含ホウ素基とのカップリング反応が可能な反応性基を有する第三の原料化合物と、を添加してカップリング反応を行う第二工程と、を備える。 The method for producing a conjugated polyene according to one embodiment includes a first step of obtaining a reaction solution containing a boron-containing conjugated polyene compound by the above-mentioned method for producing a boron-containing conjugated polyene compound, and a coupling reaction catalyst for the reaction solution. A second step of adding the above-mentioned third raw material compound having a reactive group capable of coupling reaction with the boron-containing group and carrying out the coupling reaction is provided.
第一工程は、例えば、第一の原料化合物及び第二の原料化合物の金属触媒存在下での反応によって、反応系中に、上記含ホウ素共役ポリエン化合物を生成させる工程であってよい。そして、第二工程は、当該反応系中に、カップリング反応触媒と第三の原料化合物とを添加する工程であってよい。このようなワンポット反応によれば、目的の共役ポリエン化合物を効率良く製造することができる。 The first step may be, for example, a step of producing the above-mentioned boron-containing conjugated polyene compound in the reaction system by reacting the first raw material compound and the second raw material compound in the presence of a metal catalyst. The second step may be a step of adding the coupling reaction catalyst and the third raw material compound to the reaction system. According to such a one-pot reaction, the desired conjugated polyene compound can be efficiently produced.
このように、上述の含ホウ素共役ポリエン化合物の製造方法では、反応後の反応系中から含ホウ素共役ポリエン化合物を回収することなく、ワンポットで続くカップリング反応を実施することができる。この点は、上述の含ホウ素共役ポリエン化合物の製造方法の大きな利点と言える。 As described above, in the above-mentioned method for producing a boron-containing conjugated polyene compound, the subsequent coupling reaction can be carried out in one pot without recovering the boron-containing conjugated polyene compound from the reaction system after the reaction. This point can be said to be a great advantage of the above-mentioned method for producing a boron-containing conjugated polyene compound.
カップリング反応触媒は特に限定されず、公知のカップリング反応触媒から適宜選択して使用することができる。カップリング反応触媒の具体例としては、例えば、[Pd(PPh3)4]等の鈴木−宮浦カップリング反応に使用される公知の触媒(例えば、パラジウム触媒、ニッケル触媒、鉄錯体触媒等)、固定化触媒(例えば、固定化パラジウム触媒、固定化ニッケル触媒、固定化鉄触媒等)、金属微粒子触媒(例えば、パラジウム微粒子触媒、ニッケル微粒子触媒、鉄微粒子触媒等)などが挙げられる。The coupling reaction catalyst is not particularly limited, and can be appropriately selected and used from known coupling reaction catalysts. Specific examples of the coupling reaction catalyst include known catalysts used in the Suzuki-Miyaura coupling reaction such as [Pd (PPh 3 ) 4 ] (for example, palladium catalyst, nickel catalyst, iron complex catalyst, etc.). Immobilization catalysts (for example, immobilized palladium catalysts, immobilized nickel catalysts, immobilized iron catalysts, etc.), metal fine particle catalysts (for example, palladium fine particle catalysts, nickel fine particle catalysts, iron fine particle catalysts, etc.) and the like can be mentioned.
第三の原料化合物が有する反応性基は、含ホウ素基とのカップリング反応可能な官能基であれば特に制限されないが、基質の選択性及び反応性に優れる観点からは、ハロゲノ基であることが好ましい。 The reactive group of the third raw material compound is not particularly limited as long as it is a functional group capable of coupling reaction with a boron-containing group, but it is a halogeno group from the viewpoint of excellent substrate selectivity and reactivity. Is preferable.
カップリング反応の反応条件は特に限定されず、公知のカップリング反応の反応条件から適宜選択できる。 The reaction conditions of the coupling reaction are not particularly limited, and can be appropriately selected from known reaction conditions of the coupling reaction.
(実施例1−1)
下記方法により、含ホウ素共役ポリエン化合物(A−1)の合成を行った。
A boron-containing conjugated polyene compound (A-1) was synthesized by the following method.
具体的には、1−ペンチニルボロン酸ジイソプロピル(20.3μL,0.0884mmol)及び(E)−2,4−ペンタジエン酸メチル(10.3μL,0.0881mmol)をベンゼン−d6(0.6mL)に溶解し、[Ru(naphthalene)(cod)](2.99mg,0.00886mmol)を更に加えた。室温で反応させたところ、含ホウ素共役ポリエン化合物(A−1)が、反応時間4時間において収率54%で生成し、24時間後には収率89%で生成していた。なお、含ホウ素共役ポリエン化合物の生成は、1H−NMR測定により確認した。測定結果は以下のとおりであった。
1H NMR(400MHz,C6D6,r.t.):δ 0.98(t,J=7.4 Hz,3H),1.13(d,J=6.2 Hz,12H),1.55(sext,J=7.7 Hz,2H),2.59(t,J=7.7 Hz,2H),3.45(s,3H),4.43(sept,J=6.2 Hz,2H),5.54(s,1H),5.91(d,J=15.6 Hz,1H),6.28(d,J=15.1 Hz,1H),6.29(dd,J=15.1,11.0 Hz,1H),7.52(dd,J=15.6,11.0 Hz,1H).Specifically, benzene-d 6 (0. It was dissolved in 6 mL), and [Ru (naphthalene) (cod)] (2.99 mg, 0.00886 mmol) was further added. When the reaction was carried out at room temperature, the boron-containing conjugated polyene compound (A-1) was produced in a yield of 54% at a reaction time of 4 hours and in a yield of 89% after 24 hours. The formation of the boron-containing conjugated polyene compound was confirmed by 1 H-NMR measurement. The measurement results were as follows.
1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.98 (t, J = 7.4 Hz, 3H), 1.13 (d, J = 6.2 Hz, 12H), 1.55 (sext, J = 7.7 Hz, 2H), 2.59 (t, J = 7.7 Hz, 2H), 3.45 (s, 3H), 4.43 (sept, J = 6) .2 Hz, 2H), 5.54 (s, 1H), 5.91 (d, J = 15.6 Hz, 1H), 6.28 (d, J = 15.1 Hz, 1H), 6. 29 (dd, J = 15.1, 11.0 Hz, 1H), 7.52 (dd, J = 15.6, 11.0 Hz, 1H).
(実施例1−2)
下記方法により、含ホウ素共役ポリエン化合物(A−1)の合成を行った。
A boron-containing conjugated polyene compound (A-1) was synthesized by the following method.
具体的には、1−ペンチニルボロン酸ジイソプロピル(20.5μL,0.0894mmol)及び(E)−2,4−ペンタジエン酸メチル(10.4μL,0.0895mmol)を塩化メチレン−d2(0.6mL)に溶解し、[Ru(naphthalene)(cod)](2.94mg,0.00873mmol)を更に加えた。室温で反応させたところ、含ホウ素共役ポリエン化合物(A−1)が、反応時間7時間において収率50%で生成した。Specifically, diisopropyl 1-pentynylboronic acid (20.5 μL, 0.0894 mmol) and methyl (E) -2,4-pentadienoate (10.4 μL, 0.0895 mmol) were added to methylene chloride-d 2 (0). It was dissolved in (0.6 mL), and [Ru (naphthalene) (cod)] (2.94 mg, 0.00873 mmol) was further added. When the reaction was carried out at room temperature, a boron-containing conjugated polyene compound (A-1) was produced in a yield of 50% with a reaction time of 7 hours.
(実施例2)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、1−ペンチニルボロン酸ジイソプロピル(20.5μL,0.0895mmol)及び1,3−ペンタジエン(9.0μL,0.089mmol)をベンゼン−d6(0.6mL)に溶解し、[Ru(naphthalene)(cod)](6.07mg,0.00180mmol)を更に加えた。70℃において1時間反応を行ったところ、含ホウ素共役ポリエン化合物(A−2)が収率27%で得られた。なお、同様の反応を室温で行ったところ、28時間後に収率36%で目的物が得られた。
1H NMR(400MHz,C6D6,r.t.):δ 0.94(d,J=6.0 Hz,3H),1.15(t,J=6.4 Hz,3H),1.17(d,J=6.2 Hz,12H),1.55(m,2H),2.80(t,J=7.7 Hz,2H),4.45(sept,J=6.0 Hz,2H),5.58(s,1H),5.60(dqd,J=15.8,6.0,4.4 Hz,1H),5.99(dd,J=15.2,10.4 Hz,1H),6.28(d,J=14.7 Hz,1H),6.48(ddd,J=14.7,10.6,4.4 Hz,1H).Specifically, diisopropyl 1-pentynylboronic acid (20.5 μL, 0.0895 mmol) and 1,3-pentadiene (9.0 μL, 0.089 mmol) were dissolved in benzene-d 6 (0.6 mL). [Ru (naphylene) (cod)] (6.07 mg, 0.00180 mmol) was further added. When the reaction was carried out at 70 ° C. for 1 hour, a boron-containing conjugated polyene compound (A-2) was obtained in a yield of 27%. When the same reaction was carried out at room temperature, the desired product was obtained in a yield of 36% after 28 hours.
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.94 (d, J = 6.0 Hz, 3H), 1.15 (t, J = 6.4 Hz, 3H), 1.17 (d, J = 6.2 Hz, 12H), 1.55 (m, 2H), 2.80 (t, J = 7.7 Hz, 2H), 4.45 (sept, J = 6) .0 Hz, 2H), 5.58 (s, 1H), 5.60 (dqd, J = 15.8, 6.0, 4.4 Hz, 1H), 5.99 (dd, J = 15. 2,10.4 Hz, 1H), 6.28 (d, J = 14.7 Hz, 1H), 6.48 (ddd, J = 14.7, 10.6, 4.4 Hz, 1H).
(実施例3)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、3−ヘキシン(6.5μL,0.057mmol)と2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(11.5μL,0.0575mmol)をベンゼン−d6(0.6mL)に溶解し、ここに[Ru(naphthalene)(cod)](1.93mg,0.00572mmol)を更に加えた。室温で25分後には、含ホウ素共役ポリエン化合物(A−3)が収率89%で生成した。
1H NMR(400MHz,C6D6,r.t.):δ 0.81(t,J=7.4 Hz,3H),0.89(t,J=7.4 Hz,3H),1.11(s,12H),1.90(quint,J=7.4 Hz,2H),2.06(q,J=7.4 Hz,2H),5.28(t,J=7.4 Hz,1H),5.93(d,J=17.8 Hz,1H),6.24(d,J=15.5 Hz,1H),6.35(dd,J=15.5,9.8 Hz,1H),7.53(dd,J=17.5,9.7 Hz,1H).
13C{1H} NMR(100MHz,[D6]benzene,r.t.):δ 13.84(s),14.14(s),21.69(s),19.94(s),24.92(s),82.99(s),120(br),127−128(obscured by overlapping with C6D6),126.01(s),137.01(s),140.64(s),151.49(s).
HRMS(APCI):m/z calcd for C16H28BO2+H+:263.2180[M+H]+;found:263.2177.Specifically, 3-hexyne (6.5 μL, 0.057 mmol) and 2-{(E) -1,3-butadienyl} -4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( 11.5 μL, 0.0575 mmol) was dissolved in benzene-d 6 (0.6 mL), to which [Ru (naphthalene) (cod)] (1.93 mg, 0.00572 mmol) was further added. After 25 minutes at room temperature, a boron-containing conjugated polyene compound (A-3) was produced in a yield of 89%.
1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.81 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H), 1.11 (s, 12H), 1.90 (quint, J = 7.4 Hz, 2H), 2.06 (q, J = 7.4 Hz, 2H), 5.28 (t, J = 7) .4 Hz, 1H), 5.93 (d, J = 17.8 Hz, 1H), 6.24 (d, J = 15.5 Hz, 1H), 6.35 (dd, J = 15.5) , 9.8 Hz, 1H), 7.53 (dd, J = 17.5, 9.7 Hz, 1H).
13 C { 1 H} NMR (100 MHz, [D 6 ] benzene, rt.): δ 13.84 (s), 14.14 (s), 21.69 (s), 19.94 (s) , 24.92 (s), 82.99 (s), 120 (br), 127-128 (obcured by overwrapping with C 6 D 6 ), 126.01 (s), 137.01 (s), 140. 64 (s), 151.49 (s).
HRMS (APCI): m / z calcd for C 16 H 28 BO 2 + H + : 263.2180 [M + H] + ; found: 263.2177.
(実施例4)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、ジフェニルアセチレン(32.09mg,0.180mmol)をベンゼン−d6(0.6mL)に溶解し、ここに2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(36.0μL,0.180mmol)を加え、次いで[Ru(naphthalene)(cod)](6.07mg,0.0180mmol)を更に加えた。室温で5分後には反応が完了し、含ホウ素共役ポリエン化合物(A−4)が収率63%で得られた。
1H NMR(400MHz,C6D6,r.t.):δ 1.07(s,12H),5.65(d,J=17.2 Hz,1H),6.16(dd,J=14.9,10.9 Hz,1H),6.47(s,1H),6.61(d,J=14.9 Hz,1H),7.00−7.02(m,5H),7.04−7.10(m,5H)7.50(dd,J=17,10 Hz,1H,partly obscured by overlap).
13C{1H}NMR(100MHz,C6D6,r.t.):δ 24.55(s),24.86(s),77.61(s),82.02(s),122(br),127.40(s),128(obscured by overlapping with C6D6),129.17(s),129.70(s),129.91(s),133.67(s),133.89(s),137.08(s),138.45(s),141.85(s),141.98(s,3CH),150.41(s,5−CH).
MS(EI):m/z=358(M+).
HRMS(APCI):m/z calcd for C24H27BO2+H+:359.2181[M+H]+;found:359.2183.Specifically, diphenylacetylene (32.09 mg, 0.180 mmol ) was dissolved in benzene-d 6 (0.6 mL), and 2-{(E) -1,3-butadienyl} -4,4 5,5-tetramethyl-1,3,2-dioxaborolane (36.0 μL, 0.180 mmol) was added, followed by the addition of [Ru (naphthalene) (cod)] (6.07 mg, 0.0180 mmol). The reaction was completed after 5 minutes at room temperature, and a boron-containing conjugated polyene compound (A-4) was obtained in a yield of 63%.
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 1.07 (s, 12H), 5.65 (d, J = 17.2 Hz, 1H), 6.16 (dd, J) = 14.9, 10.9 Hz, 1H), 6.47 (s, 1H), 6.61 (d, J = 14.9 Hz, 1H), 7.00-7.02 (m, 5H) , 7.04-7.10 (m, 5H) 7.50 (dd, J = 17, 10 Hz, 1H, partly obscured by overlap).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 24.55 (s), 24.86 (s), 77.61 (s), 82.02 (s), 122 (br), 127.40 (s), 128 (obcured by overlapping with C 6 D 6 ), 129.17 (s), 129.70 (s), 129.91 (s), 133.67 (s). ), 133.89 (s), 137.08 (s), 138.45 (s), 141.85 (s), 141.98 (s, 3CH), 150.41 (s, 5-CH).
MS (EI): m / z = 358 (M +).
HRMS (APCI): m / z calcd for C 24 H 27 BO 2 + H + : 359.2181 [M + H] + ; found: 359.2183.
(実施例5)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(40.4μL,0.2244mmol)をベンゼン−d6(0.6mL)に溶解し、ここに1−ペンチニルボロン酸ジイソプロピル(51.0μL,0.222mmol)を加え、次いで[Ru(naphthalene)(cod)](7.59mg,0.0225mmol)を更に加えた。室温で3時間反応させたところ、含ホウ素共役ポリエン化合物(A−5)が収率38%で得られた。
1H NMR(400MHz,C6D6,r.t.):δ 0.96(t,J=8 Hz,3H),1.10(s,12H),1.16(d,J=7 Hz,12H),1.56−1.61(m,2H),2.60−2.64(m,2H),4.42(sept,J=7 Hz,2H),5.51(s,1H),5.92(d,J=17 Hz,1H),6.34(d,J=15 Hz,1H),6.52(dd,J=15,11 Hz,1H),7.45(dd,J=17,11 Hz,1H).
13C{1H}NMR(100MHz,C6D6,r.t.):δ 14.46(s),23.87(s),24.86(s),24.91(s),32.78(s),65.56(s),83.05(s),122(br),126.01(s),131.45(s),142.42(s),150.92(s),156.18(s).Specifically, 2-{(E) -1,3-butadieneyl} -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (40.4 μL, 0.2244 mmol) was added to benzene-d 6 Dissolve in (0.6 mL), add diisopropyl 1-pentynylboronic acid (51.0 μL, 0.222 mmol), and then add [Ru (naphthalene) (cod)] (7.59 mg, 0.0225 mmol). Further added. When the reaction was carried out at room temperature for 3 hours, a boron-containing conjugated polyene compound (A-5) was obtained in a yield of 38%.
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.96 (t, J = 8 Hz, 3H), 1.10 (s, 12H), 1.16 (d, J = 7) Hz, 12H), 1.56-1.61 (m, 2H), 2.60-2.64 (m, 2H), 4.42 (sept, J = 7 Hz, 2H), 5.51 (s) , 1H), 5.92 (d, J = 17 Hz, 1H), 6.34 (d, J = 15 Hz, 1H), 6.52 (dd, J = 15, 11 Hz, 1H), 7. 45 (dd, J = 17, 11 Hz, 1H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 14.46 (s), 23.87 (s), 24.86 (s), 24.91 (s), 32.78 (s), 65.56 (s), 83.05 (s), 122 (br), 126.01 (s), 131.45 (s), 142.42 (s), 150.92 (S), 156.18 (s).
(実施例6)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、1−フェニル−1−プロピン(22.5μL,182μmol)及び2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(36.0μL,180μmol)をベンゼン−d6(0.6mL)に溶解し、ここに[Ru(naphthalene)(cod)](6.07mg,18.0μmol)を更に加えた。室温で1時間反応させたところ、含ホウ素共役ポリエン化合物(A−6)が収率61%で得られた。
1H NMR(400MHz,C6D6,r.t.):δ 1.12(s,12H),1.75(d,J=1.16 Hz,3H),5.96(d,J=17.7 Hz,1H),6.35−6.44(m,2H),6.41(s,1H),6.97−7.02(m,2H),7.10−7.15(m,3H),7.53(ddd,J=17.6,8.3,1.5 Hz,1H).
13C{1H}NMR(100MHz,C6D6,r.t.):δ 13.78(s),24.94(s),83.08(s),121(br),127.00(s),129.60(s),130.68(s),134.09(s),136.01(s),138.00(s),142.08(s,4−CH),150.96(s,5−CH).6−CH was not observed by HMQC probably due to broadening.
HRMS(APCI):m/z calcd for C19H25BO2+H+:297.2024[M+H]+;found:297.2010.Specifically, 1-phenyl-1-propine (22.5 μL, 182 μmol) and 2-{(E) -1,3-butadieneyl} -4,4,5,5-tetramethyl-1,3,2- Dioxabololane (36.0 μL, 180 μmol) was dissolved in benzene-d 6 (0.6 mL), to which [Ru (naphthalene) (cod)] (6.07 mg, 18.0 μmol) was further added. When the reaction was carried out at room temperature for 1 hour, a boron-containing conjugated polyene compound (A-6) was obtained in a yield of 61%.
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 1.12 (s, 12H), 1.75 (d, J = 1.16 Hz, 3H), 5.96 (d, J) = 17.7 Hz, 1H), 6.35-6.44 (m, 2H), 6.41 (s, 1H), 6.97-7.02 (m, 2H), 7.10-7. 15 (m, 3H), 7.53 (ddd, J = 17.6, 8.3, 1.5 Hz, 1H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 13.78 (s), 24.94 (s), 83.08 (s), 121 (br), 127. 00 (s), 129.60 (s), 130.68 (s), 134.09 (s), 136.01 (s), 138.00 (s), 142.08 (s, 4-CH) , 150.96 (s, 5-CH). 6-CH was not observed by HMQC probable due to bordering.
HRMS (APCI): m / z calcd for C 19 H 25 BO 2 + H + : 297.2020 [M + H] + ; found: 297.2010.
(実施例7)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、1−フェニル−2−トリメチルシリル−アセチレン(34.0μL,176μmol)及び2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(19.0μL,95.0μmol)をベンゼン−d6(0.6mL)に溶解し、ここに[Ru(naphthalene)(cod)](3.20mg,9.48μmol)を更に加えた。室温で30分間反応させたところ、含ホウ素共役ポリエン化合物(A−7)が収率41%で得られた。なお、この反応では、1−フェニル−2−トリメチルシリル−アセチレンは位置選択的に反応して、初期生成物として末端のフェニル基の立体選択性がZ体の生成物が得られた。しかし、その後室温において溶液中で放置することで異性化が進行し、フェニル基の立体選択性がE体の生成物が得られた。
トリメチル((1Z,3E,5E)−1−フェニル−6−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ヘキサ−1,3,5−トリエン−2−イル)シラン
1H NMR(400MHz,C6D6,r.t.):δ 0.20(s,9H),1.08(s,12H),5.91(d,J=17 Hz,1H),6.54(d,J=16 Hz,1H),6.66(dd,J=16,10 Hz,1H),6.9(s,1H,obscured by overlap),7.0−7.1(m,3H),7.2(d,J=7 Hz,12H)7.44(dd,J=17.2,10.3 Hz,1H).
13C{1H}NMR(100MHz,C6D6,r.t.):δ 0.45(s),24.88(s),83.02(s),120.92(br),128(overlapped with C6D6),129.93(s),134.85(s),137.70(s),138.14(s),140.84(s),141.78(s),142.91(s),151.33(s).
HRMS(APCI):m/z calcd for C21H31BO2Si+H+:355.2263[M+H]+;found:355.2263.
トリメチル((1E,3E,5E)−1−フェニル−6−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ヘキサ−1,3,5−トリエン−2−イル)シラン
1H NMR(400MHz,C6D6,r.t.):δ 0.21(s,9H),1.08(s,12H),5.91(d,J=18 Hz,1H),6.66(dd,J=15,10 Hz,1H),6.9(1H,obscured by overlap),7.0−7.1(m,3H),7.05(d,J=15 Hz,1H),7.44(dd,J=18,10 Hz,1H,partly obscured by overlap).Specifically, 1-phenyl-2-trimethylsilyl-acetylene (34.0 μL, 176 μmol) and 2-{(E) -1,3-butadienyl} -4,4,5,5-tetramethyl-1,3, 2-dioxabololane (19.0 μL, 95.0 μmol) was dissolved in benzene-d 6 (0.6 mL), to which [Ru (naphthalene) (cod)] (3.20 mg, 9.48 μmol) was further added. .. When the reaction was carried out at room temperature for 30 minutes, a boron-containing conjugated polyene compound (A-7) was obtained in a yield of 41%. In this reaction, 1-phenyl-2-trimethylsilyl-acetylene reacted regioselectively to obtain a Z-form product having a stereoselectivity of the terminal phenyl group as an initial product. However, after that, isomerization proceeded by leaving it in a solution at room temperature, and an E-form product having a stereoselectivity of a phenyl group was obtained.
Trimethyl ((1Z, 3E, 5E) -1-phenyl-6- (4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) hexa-1,3,5-triene- 2-Il) Silane
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.20 (s, 9H), 1.08 (s, 12H), 5.91 (d, J = 17 Hz, 1H), 6.54 (d, J = 16 Hz, 1H), 6.66 (dd, J = 16, 10 Hz, 1H), 6.9 (s, 1H, obscured by overlap), 7.0-7.1 (M, 3H), 7.2 (d, J = 7 Hz, 12H) 7.44 (dd, J = 17.2, 10.3 Hz, 1H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 0.45 (s), 24.88 (s), 83.02 (s), 120.92 (br), 128 (overlapped with C 6 D 6 ), 129.93 (s), 134.85 (s), 137.70 (s), 138.14 (s), 140.84 (s), 141.78 (s ), 142.91 (s), 151.33 (s).
HRMS (APCI): m / z calcd for C 21 H 31 BO 2 Si + H + : 355.2263 [M + H] + ; found: 355.2263.
Trimethyl ((1E, 3E, 5E) -1-phenyl-6- (4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) hexa-1,3,5-triene- 2-Il) Silane
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.21 (s, 9H), 1.08 (s, 12H), 5.91 (d, J = 18 Hz, 1H), 6.66 (dd, J = 15, 10 Hz, 1H), 6.9 (1H, obscured by overlap), 7.0-7.1 (m, 3H), 7.05 (d, J = 15 Hz) , 1H), 7.44 (dd, J = 18,10 Hz, 1H, partly obscured by overlap).
(実施例8)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、2−フェニルエチニルボロン酸ジイソプロピル(24.5μL,0.101mmol)及び(E)−2,4−ペンタジエン酸メチル(11.5μL,0.0987mmol)をベンゼン−d6(0.5mL)に溶解し、[Ru(naphthalene)(cod)](3.43mg,0.0102mmol)を更に加えた。30℃で反応させたところ、含ホウ素共役ポリエン化合物(A−101)及び(A−102)が、反応時間2時間において収率52%(生成比37/67)で生成した。なお、含ホウ素共役ポリエン化合物の生成は、1H−NMR測定により確認した。測定結果は以下のとおりであった。
(A−101)
1H NMR(400MHz,C6D6,r.t.):δ 0.95(d,3JH,H=6.3Hz,12H),3.36(s,3H),4.37(sept,3JH,H=5.8Hz,2H),5.59(d,3JH,H=15.5Hz,1H),5.82(s,1H,obscured by overlapping with reactant),6.09(dd,3JH,H=15.5,11.5Hz,1H),6.43−6.54(m),7.18−7.28(m),7.50(dd,3JH,H=15.5,10.9Hz,1H).
(A−102)
1H NMR(400MHz,C6D6,r.t.):δ 1.04(d,3JH,H=5.7Hz,12H),3.45(s,3H),4.37(sept,3JH,H=5.8Hz,2H),5.96(d,3JH,H=15.5Hz,1H),6.43−6.54(m,2H),6.68(s,1H),7.02(t,3JH,H=6.9Hz,1H),7.18−7.28(m),7.58(dd,3JH,H=15.5,10.9Hz,1H).Specifically, benzene-d 6 (0. It was dissolved in 5 mL), and [Ru (naphthalene) (cod)] (3.43 mg, 0.0102 mmol) was further added. When the reaction was carried out at 30 ° C., boron-containing conjugated polyene compounds (A-101) and (A-102) were produced in a yield of 52% (production ratio 37/67) at a reaction time of 2 hours. The formation of the boron-containing conjugated polyene compound was confirmed by 1 H-NMR measurement. The measurement results were as follows.
(A-101)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.95 (d, 3 J H, H = 6.3 Hz, 12 H), 3.36 (s, 3 H), 4.37 ( sept, 3 J H, H = 5.8Hz, 2H), 5.59 (d, 3 J H, H = 15.5Hz, 1H), 5.82 (s, 1H, obscured by overlapping with reactant), 6 .09 (dd, 3 JH, H = 15.5, 11.5 Hz, 1H), 6.43-6.54 (m), 7.18-7.28 (m), 7.50 (dd, 3 J H, H = 15.5, 10.9 Hz, 1 H).
(A-102)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 1.04 (d, 3 J H, H = 5.7 Hz, 12 H), 3.45 (s, 3 H), 4.37 ( sept, 3 J H, H = 5.8Hz, 2H), 5.96 (d, 3 J H, H = 15.5Hz, 1H), 6.43-6.54 (m, 2H), 6.68 (S, 1H), 7.02 (t, 3 J H, H = 6.9 Hz, 1 H), 7.18-7.28 (m), 7.58 (dd, 3 J H, H = 15. 5,10.9Hz, 1H).
(実施例9)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、2−フェニルエチニルボロン酸ジメチル(24.5μL,0.101mmol)及び(E)−2,4−ペンタジエン酸メチル(11.5μL,0.0987mmol)をベンゼン−d6(0.5mL)に溶解し、[Ru(naphthalene)(cod)](3.43mg,0.0102mmol)を更に加えた。30℃で1時間、さらに50℃で2時間反応させたところ、含ホウ素共役ポリエン化合物(A−103)及び(A−104)が、収率68%(生成比19/81)で生成した。なお、含ホウ素共役ポリエン化合物の生成は、1H−NMR測定により確認した。測定結果は以下のとおりであった。
(A−103)
1H NMR(400MHz,C6D6,r.t.):δ 3.22(s,3H),3.35(s,6H),5.62(d,3JH,H=15.5Hz,1H),5.70(s,1H),6.12(dd,3JH,H=15.5,11.0Hz,1H),6.45(d,3JH,H=15.5Hz,1H),7.28−7.30(m),7.49(dd,3JH,H=15.5,11.0Hz,1H).
(A−104)
1H NMR(400MHz,C6D6,r.t.):δ 3.23(s,3H),3.32(s,6H),5.82(d,3JH,H=15.5Hz,1H),6.28(dd,3JH,H=15.5,10.9Hz,1H),6.46(d,3JH,H=15.5Hz,1H),6.70(s,1H),7.28−7.30(m),7.55(dd,3JH,H=15.5,10.9Hz,1H).Specifically, dimethyl 2-phenylethynylboronic acid (24.5 μL, 0.101 mmol) and methyl (E) -2,4-pentadienoate (11.5 μL, 0.0987 mmol) were added to benzene-d 6 (0. It was dissolved in 5 mL), and [Ru (naphthalene) (cod)] (3.43 mg, 0.0102 mmol) was further added. When the reaction was carried out at 30 ° C. for 1 hour and further at 50 ° C. for 2 hours, boron-containing conjugated polyene compounds (A-103) and (A-104) were produced in a yield of 68% (production ratio 19/81). The formation of the boron-containing conjugated polyene compound was confirmed by 1 H-NMR measurement. The measurement results were as follows.
(A-103)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 3.22 (s, 3H), 3.35 (s, 6H), 5.62 (d, 3 JH, H = 15. 5Hz, 1H), 5.70 (s , 1H), 6.12 (dd, 3 J H, H = 15.5,11.0Hz, 1H), 6.45 (d, 3 J H, H = 15 .5Hz, 1H), 7.28-7.30 (m ), 7.49 (dd, 3 J H, H = 15.5,11.0Hz, 1H).
(A-104)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 3.23 (s, 3H), 3.32 (s, 6H), 5.82 (d, 3 JH, H = 15. 5Hz, 1H), 6.28 (dd , 3 J H, H = 15.5,10.9Hz, 1H), 6.46 (d, 3 J H, H = 15.5Hz, 1H), 6.70 (S, 1H), 7.28-7.30 (m), 7.55 (dd, 3 JH, H = 15.5, 10.9 Hz, 1 H).
(実施例10)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、2−フェニルエチニルボロン酸ピナコールエステル(40.62μL,0.1781mmol)及び(E)−2,4−ペンタジエン酸メチル(21.0μL,0.180mmol)をベンゼン−d6(0.6mL)に溶解し、[Ru(naphthalene)(cod)](7.12mg,0.0211mmol)を更に加えた。30℃で反応させたところ、含ホウ素共役ポリエン化合物(A−105)が、反応時間2時間において収率47%で生成した。
1H NMR(400MHz,C6D6,r.t.):δ 1.02(s,12H),3.45(s,3H),6.07(d,3JH,H=14.9Hz,1H),6.55(d,3JH,H=15.5Hz,1H),6.80(dd,3JH,H=15.2,10.9Hz,1H),6.80(s,1H),7.00−7.13(m,3H),7.39−7.40(m,1H),7.61(dd,3JH,H=15.2,10.9Hz,1H).
13C{1H} NMR(100MHz,C6D6,r.t.):δ 24.9(s),51.0(s),83.9(s),120.5(s),128.9(s),129.1(s),138.7(s),145.7(s),147.1(s),147.3(s),167.1(s).
HRMS(APCI):m/z calcd for C20H25BO4+H+:341.1922[M+H]+;found:341.1914.Specifically, 2-phenylethynylboronic acid pinacol ester (40.62 μL, 0.1781 mmol) and methyl (E) -2,4-pentadienoate (21.0 μL, 0.180 mmol) were added to benzene-d 6 (0). It was dissolved in (0.6 mL), and [Ru (naphthalene) (cod)] (7.12 mg, 0.0211 mmol) was further added. When the reaction was carried out at 30 ° C., a boron-containing conjugated polyene compound (A-105) was produced in a yield of 47% with a reaction time of 2 hours.
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 1.02 (s, 12H), 3.45 (s, 3H), 6.07 (d, 3 JH, H = 14. 9Hz, 1H), 6.55 (d , 3 J H, H = 15.5Hz, 1H), 6.80 (dd, 3 J H, H = 15.2,10.9Hz, 1H), 6.80 (S, 1H), 7.00-7.13 (m, 3H), 7.39-7.40 (m, 1H), 7.61 (dd, 3 JH, H = 15.2, 10. 9Hz, 1H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 24.9 (s), 51.0 (s), 83.9 (s), 120.5 (s), 128.9 (s), 129.1 (s), 138.7 (s), 145.7 (s), 147.1 (s), 147.3 (s), 167.1 (s).
HRMS (APCI): m / z calcd for C 20 H 25 BO 4 + H + : 341.1922 [M + H] + ; found: 341.1914.
(実施例11)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、1−ペンチニルボロン酸ピナコールエステル(38.5μL,0.180mmol)及び(E)−2,4−ペンタジエン酸メチル(21.0μL,0.180mmol)をベンゼン−d6(0.6mL)に溶解し、[Ru(naphthalene)(cod)](6.04mg,0.0179mmol)を更に加えた。30℃で26時間、50℃で2時間反応させたところ、含ホウ素共役ポリエン化合物(A−106)及び(A−107)が、収率42%(生成比42/58)で生成した。
(A−106)
1H NMR(400MHz,C6D6,r.t.):δ 1.01(t,3JH,H=7.44Hz,3H),1.06(s,12H),1.51(sext,3JH,H=7.44Hz,2H),2.71(t,3JH,H=7.44Hz,2H),3.43(s,3H),5.71(s,3H),5.87(d,3JH,H=15.5Hz,1H),6.15−6.25(m,2H),7.38(dd,3JH,H=15.2,9.76Hz,1H).
13C{1H} NMR(100MHz,C6D6,r.t.):δ 14.13(s),23.81(s),24.81(s),32.19(s),51.04(s),83.24(s),122.04(s),124(br,coalesced with base line),127−129(3−CH,obscured by overlapping with C6D6),145.02(s),145.37(s),159.11(s),166.95(s).
(A−107)
1H NMR(400MHz,C6D6,r.t.):δ 0.88(t,3JH,H=7.48Hz,3H),1.01(s,12H),1.36(sext,3JH,H=7.44Hz,2H),2.46(q,3JH,H=7.44Hz,2H),3.43(s,3H),6.06(d,3JH,H=14.7Hz,1H),6.20(t,3JH,H=7.44Hz,1H),6.49(d,3JH,H=15.4Hz,1H),6.97(dd,3JH,H=15.2,11.4Hz,1H),7.64(dd,3JH,H=15.5,11.4Hz,1H).
13C{1H} NMR(100MHz,C6D6,r.t.):δ 13.95(s),23.11(s),24.74(s),34.06(s),50.91(s),82.91(s),119.75(s),127−129(4−CH obscured by overlapping with C6D6),146.56(s),147.25(s),154.90(s),167.27(s),6−CB(pin) was not observed.
HRMS(APCI):m/z calcd for C17H25BO4+H+:307.2078[M+H]+;found:307.2082.Specifically, 1-pentynylboronic acid pinacol ester (38.5 μL, 0.180 mmol) and methyl (E) -2,4-pentadienoate (21.0 μL, 0.180 mmol) were added to benzene-d 6 (0). It was dissolved in (0.6 mL), and [Ru (naphthalene) (cod)] (6.04 mg, 0.0179 mmol) was further added. When the reaction was carried out at 30 ° C. for 26 hours and at 50 ° C. for 2 hours, boron-containing conjugated polyene compounds (A-106) and (A-107) were produced in a yield of 42% (production ratio 42/58).
(A-106)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 1.01 (t, 3 J H, H = 7.44 Hz, 3 H), 1.06 (s, 12 H), 1.51 ( sext, 3 J H, H = 7.44Hz, 2H), 2.71 (t, 3 J H, H = 7.44Hz, 2H), 3.43 (s, 3H), 5.71 (s, 3H ), 5.87 (d, 3 J H, H = 15.5Hz, 1H), 6.15-6.25 (m, 2H), 7.38 (dd, 3 J H, H = 15.2, 9.76Hz, 1H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 14.13 (s), 23.81 (s), 24.81 (s), 32.19 (s), 51.04 (s), 83.24 (s), 122.04 (s), 124 (br, coalesce with with base line), 127-129 (3-CH, obscured by overwrapping with C 6 D 6 ), 145 .02 (s), 145.37 (s), 159.11 (s), 166.95 (s).
(A-107)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.88 (t, 3 J H, H = 7.48 Hz, 3 H), 1.01 (s, 12 H), 1.36 ( sext, 3 J H, H = 7.44Hz, 2H), 2.46 (q, 3 J H, H = 7.44Hz, 2H), 3.43 (s, 3H), 6.06 (d, 3 J H, H = 14.7 Hz, 1 H), 6.20 (t, 3 J H, H = 7.44 Hz, 1 H), 6.49 (d, 3 J H, H = 15.4 Hz, 1 H), 6.97 (dd, 3 JH, H = 15.2, 11.4 Hz, 1 H), 7.64 (dd, 3 J H, H = 15.5, 11.4 Hz, 1 H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 13.95 (s), 23.11 (s), 24.74 (s), 34.06 (s), 50.91 (s), 82.91 (s ), 119.75 (s), 127-129 (4-CH obscured by overlapping with C 6 D 6), 146.56 (s), 147.25 (s ), 154.90 (s), 167.27 (s), 6-CB (pin) was not observed.
HRMS (APCI): m / z calcd for C 17 H 25 BO 4 + H + : 307.2078 [M + H] + ; found: 307.2082.
(実施例12)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、1−ペンチニルボロン酸ピナコールエステル(51.0μL,0.222mmol)及び2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(40.4μL,0.224mmol)をベンゼン−d6(0.6mL)に溶解し、[Ru(naphthalene)(cod)](7.59mg,0.0225mmol)を更に加えた。室温で反応させたところ、含ホウ素共役ポリエン化合物(A−108)及び(A−109)が、反応時間3時間において収率34%(生成比25/75)で生成した。
(A−108)
1H NMR(400MHz,C6D6,r.t.):δ 0.97(t,3JH,H=7.4Hz,3H),1.05(s,12H),1.09(obscured by overlapping with A−109),1.55(sext,3JH,H=7.4Hz,2H),2.75(t,3JH,H=7.4Hz,2H),5.70(s,1H),5.92(d,3JH,H=17.2Hz,1H),6.27(d,3JH,H=15.5Hz,1H),6.50(dd,3JH,H=15.5,10.3Hz,1H),7.36(dd,3JH,H=17.2,11.5Hz,1H).
13C{1H} NMR(100MHz,C6D6,r.t.):δ 14.14(s),23.91(s),24.82(s),32.28(s),82.72(s),83.05(s),122 (br),132.64(s),141.59(s),150.82(s),159.97(s),some resonances were obscured by overlapping with the resonances of A−108 and solvent.
(A−109)
1H NMR(400MHz,C6D6,r.t.):δ 0.88(t,3JH,H=7.4Hz,3H),1.01(s,12H),1.09(s,12H),1.36(sext,3JH,H=6.9Hz,2H),2.44(q,3JH,H=7.4Hz,2H),6.02(dd,3JH,H=17.2Hz,4JH,H=1.7Hz,1H),6.13−6.20(obscured by overlapping with an impurity,1H),6.55(d,3JH,H=15.5Hz,1H),7.07(dd,3JH,H=15.5,10.9Hz,1H),7.56(ddd,3JH,H=17.2,10.3Hz,4JH,H=2.3Hz,1H).
13C{1H} NMR(100MHz,C6D6,r.t.):δ 13.99(s),23.22(s),24.61(s),24.90(s),34.09(s),82.89(s),83.14(s),120(br),132.23(s),142.84(s),151.8(s),151.9(s).
HRMS(APCI):m/z calcd for C21H36B2O4+H+:375.2880[M+H]+;found:365.2881.Specifically, 1-pentynylboronic acid pinacol ester (51.0 μL, 0.222 mmol) and 2-{(E) -1,3-butadienyl} -4,4,5,5-tetramethyl-1,3 , 2-dioxaborolane (40.4 μL, 0.224 mmol) was dissolved in benzene-d 6 (0.6 mL) and [Ru (naphthalene) (cod)] (7.59 mg, 0.0225 mmol) was further added. When the reaction was carried out at room temperature, boron-containing conjugated polyene compounds (A-108) and (A-109) were produced in a yield of 34% (production ratio 25/75) at a reaction time of 3 hours.
(A-108)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.97 (t, 3 J H, H = 7.4 Hz, 3 H), 1.05 (s, 12 H), 1.09 ( obscured by overlapping with A-109) , 1.55 (sext, 3 J H, H = 7.4Hz, 2H), 2.75 (t, 3 J H, H = 7.4Hz, 2H), 5.70 (s, 1H), 5.92 ( d, 3 J H, H = 17.2Hz, 1H), 6.27 (d, 3 J H, H = 15.5Hz, 1H), 6.50 (dd, 3 J H, H = 15.5, 10.3 Hz, 1 H), 7.36 (dd, 3 J H, H = 17.2, 11.5 Hz, 1 H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 14.14 (s), 23.91 (s), 24.82 (s), 32.28 (s), 82.72 (s), 83.05 (s), 122 (br), 132.64 (s), 141.59 (s), 150.82 (s), 159.97 (s), some resonance solvent were obcured by overwrapping with the resonances of A-108 and solvent.
(A-109)
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.88 (t, 3 J H, H = 7.4 Hz, 3 H), 1.01 (s, 12 H), 1.09 ( s, 12H), 1.36 (sext , 3 J H, H = 6.9Hz, 2H), 2.44 (q, 3 J H, H = 7.4Hz, 2H), 6.02 (dd, 3 J H, H = 17.2 Hz, 4 J H, H = 1.7 Hz, 1 H), 6.13-6.20 (obcured by overwrapping with an impedance, 1 H), 6.55 (d, 3 J H, H = 15.5Hz, 1H), 7.07 (dd, 3 J H, H = 15.5,10.9Hz, 1H), 7.56 (ddd, 3 J H, H = 17.2,10. 3Hz, 4 J H, H = 2.3Hz, 1H).
13 C { 1 H} NMR (100 MHz, C 6 D 6 , rt.): δ 13.99 (s), 23.22 (s), 24.61 (s), 24.90 (s), 34.09 (s), 82.89 (s), 83.14 (s), 120 (br), 132.23 (s), 142.84 (s), 151.8 (s), 151.9 (S).
HRMS (APCI): m / z calcd for C 21 H 36 B 2 O 4 + H + : 375.2880 [M + H] + ; found: 365.2881.
(実施例13)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、25mLシュレンクに[Ru(acac)2(1,5−cod)](4.30mg,0.0106mmol)を量り入れ、窒素置換した。ヘキサン(600μL)、BuLi(6.2μL,0.0099mmol)、3−hexyne(11.5μL,0.101mmol)、(E)−1−(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)butadiene(20.0μL,0.100mmol)を順に加え室温で7時間撹拌した。その後、反応液をGC−MSで測定したところ、目的物の生成が確認された。溶媒留去をし、全量benzene−d6に溶解させ、dibenzyl(1.94mg,10.6μmol)を加えた。1H NMRより目的物の収率を求めた。収率は83%であった。Specifically, [Ru (acac) 2 (1,5-cod)] (4.30 mg, 0.0106 mmol) was weighed into 25 mL Schlenk and replaced with nitrogen. Hexane (600 μL), Butadiene (6.2 μL, 0.0099 mmol), 3-hexyne (11.5 μL, 0.101 mmol), (E) -1- (4,5,5-tetramethyl-1,3,3) 2-dioxabolone-2-yl) butadiene (20.0 μL, 0.100 mmol) was added in that order, and the mixture was stirred at room temperature for 7 hours. Then, when the reaction solution was measured by GC-MS, the formation of the target product was confirmed. It was evaporated, dissolved in the total amount benzene-d 6, was added dibenzyl (1.94mg, 10.6μmol). 1 The yield of the target product was determined by 1 H NMR. The yield was 83%.
(実施例14)
下記方法により、含ホウ素共役ポリエン化合物の合成を行った。
A boron-containing conjugated polyene compound was synthesized by the following method.
具体的には、25mLシュレンクにCoBr2(PPh3)2(8.5mg,0.011mmol),PPh3(9.6mg,0.037mmol),Zn(53.5mg,0.820mmol)を量りとり、窒素置換をしたのち、CH3CN(500μL)を加え、10分間攪拌した。その後、3−hexyne(12.0μL,0.107mmol),(E)−2−(buta−1,3−dienyl)−4,4,5,5−tetoramethyl−1,3,2−dioxaborolane(20.0μL,0.0990mmol)及びH2O(70.0μL)を加え、室温下で攪拌した。24時間反応させた後、反応液をGC−MSで測定したところ、目的物の生成が確認された。収率は約4%であった。 Specifically, weigh CoBr 2 (PPh 3 ) 2 (8.5 mg, 0.011 mmol), PPh 3 (9.6 mg, 0.037 mmol), and Zn (53.5 mg, 0.820 mmol) into 25 mL Schlenk. After substitution with nitrogen, CH 3 CN (500 μL) was added, and the mixture was stirred for 10 minutes. After that, 3-hexyne (12.0 μL, 0.107 mmol), (E) -2- (buta-1,3-dienyl) -4,4,5,5-tetramethyl-1,3,2-dioxabolorane (20). 0.0 μL, 0.0990 mmol) and H 2 O (70.0 μL) were added, and the mixture was stirred at room temperature. After reacting for 24 hours, the reaction solution was measured by GC-MS, and the formation of the target product was confirmed. The yield was about 4%.
(実施例15)
下記方法により、ワンポットで、含ホウ素共役ポリエン化合物の合成とそれに続くクロスカップリング反応とを行い、共役ポリエン化合物を合成した。
By the following method, a boron-containing conjugated polyene compound was synthesized and a subsequent cross-coupling reaction was carried out in one pot to synthesize a conjugated polyene compound.
具体的には、1−ペンチニルボロン酸ジイソプロピルエステル(22.5μL,0.0982mmol)及び(E)−2,4−ペンタジエン酸メチル(11.5μL,0.0987mmol)をベンゼン中(500μL)で[Ru(naphthalene)(cod)](3.35mg,0.00993mmol)の存在下、室温で24時間反応させた。引き続き同じ溶液中にヨウ化フェニル(11.0μL,0.0987mmol),ナトリウムメトキシドのメタノール溶液(120μL in methanol,0.120mmol)、及び[Pd(PPh3)4](9.28mg,0.00803mmol)をこの順番で加え、50℃で15分間反応させた。生成物はリサイクルHPLCにより精製した。収率は79%((A−110)/(A−111)=5/1)であった。
(A−110)
1H NMR(400MHz,CDCl3,r.t.):δ 0.99(t,3JH,H=7.4Hz,3H),1.56(sext,3JH,H=7.4Hz,2H),2.43(m,2H),3.74(s,3H),5.91(d,3JH,H=15.5Hz,1H),6.40(dd,3JH,H=15.4,10.9Hz,1H),6.62(s,1H),6.64(d,3JH,H=15Hz,1H),7.26−7.35(m,5H),7.38(dd,3JH,H=15.5,10.9Hz,1H).
13C{1H} NMR(100MHz,CDCl3,r.t.):δ 14.36(s),22.44(s),29.38(s),51.53(s),119.81(s),125.45(s),127.33(s),128.40(s),128.91(s),135.64(s),137.03(s),140.18(s),145.42(s),145.67(s),167.68(s).
HRMS(APCI):m/z calcd for C17H20O2+H+:257.1536[M+H]+;found:257.1528.Specifically, 1-pentynylboronic acid diisopropyl ester (22.5 μL, 0.0982 mmol) and methyl (E) -2,4-pentadienoate (11.5 μL, 0.0987 mmol) in benzene (500 μL). The reaction was carried out at room temperature for 24 hours in the presence of [Ru (naphthalene) (cod)] (3.35 mg, 0.00993 mmol). Subsequently, in the same solution, phenyl iodide (11.0 μL, 0.0987 mmol), a methanol solution of sodium methoxide (120 μL in methyl, 0.120 mmol), and [Pd (PPh 3 ) 4 ] (9.28 mg, 0. 00803 mmol) was added in this order and reacted at 50 ° C. for 15 minutes. The product was purified by recycling HPLC. The yield was 79% ((A-110) / (A-111) = 5/1).
(A-110)
1 1 H NMR (400 MHz, CDCl 3 , rt.): δ 0.99 (t, 3 J H, H = 7.4 Hz, 3 H), 1.56 (sext, 3 J H, H = 7.4 Hz) , 2H), 2.43 (m, 2H), 3.74 (s, 3H), 5.91 (d, 3 J H, H = 15.5Hz, 1H), 6.40 (dd, 3 J H , H = 15.4,10.9Hz, 1H), 6.62 (s, 1H), 6.64 (d, 3 J H, H = 15Hz, 1H), 7.26-7.35 (m, 5H), 7.38 (dd, 3 J H, H = 15.5,10.9Hz, 1H).
13 C { 1 H} NMR (100 MHz, CDCl 3 , r.t.): δ 14.36 (s), 22.44 (s), 29.38 (s), 51.53 (s), 119. 81 (s), 125.45 (s), 127.33 (s), 128.40 (s), 128.91 (s), 135.64 (s), 137.03 (s), 140.18 (S), 145.42 (s), 145.67 (s), 167.68 (s).
HRMS (APCI): m / z calcd for C 17 H 20 O 2 + H + : 257.1536 [M + H] + ; found: 257.1528.
(実施例16)
下記方法により、ワンポットで、含ホウ素共役ポリエン化合物の合成とそれに続くクロスカップリング反応とを行い、共役ポリエン化合物を合成した。
By the following method, a boron-containing conjugated polyene compound was synthesized and a subsequent cross-coupling reaction was carried out in one pot to synthesize a conjugated polyene compound.
3−へキシン(20.0μL,0.175mmol)及び2−{(E)−1,3−butadienyl}−4,4,5,5−tetramethyl−1,3,2−dioxaborolane(36.0μL,0.180mmol)をベンゼン中(500μL)で[Ru(naphthalene)(cod)](6.03mg,0.0178mmol)の存在下、室温で5分間反応させた。引き続き、同じ溶液中にヨウ化フェニル(20.0μL,0.179mmol)、ナトリウムメトキシドのメタノール溶液(180.0μL in methanol,0.180mmol)、及び[Pd(PPh3)4](16.51mg,0.01429mmol)をこの順番で加え、50℃で2時間反応させた。生成物はリサイクルHPLCにより精製した。収率は62%であった。
1H NMR(400MHz,C6D6,r.t.):δ 0.91(t,3JH,H=7.44Hz,3H),1.05(t,3JH,H=7.48Hz,3H;10−Me),2.03(quint,3JH,H=7.44Hz,2H),2.24(q,3JH,H=7.44Hz,2H),5.45(t,3JH,H=7.44Hz,1H),6.27(d,3JH,H=15.5Hz,1H),6.39(dd,3JH,H=15.5,10.3Hz,1H),6.44(d,3JH,H=15.5Hz,1H),6.85(dd,3JH,H=15.5,10.3Hz,1H),7.05(t,1H),7.1−7.2(overlapped with solvent),7.30(d,3JH,H=7.5Hz,2H).3-Hexin (20.0 μL, 0.175 mmol) and 2-{(E) -1,3-butadieneyl} -4,4,5-tetramethyl-1,3,2-dioxaborolane (36.0 μL,) 0.180 mmol) was reacted in benzene (500 μL) at room temperature for 5 minutes in the presence of [Ru (naphthalene) (cod)] (6.03 mg, 0.0178 mmol). Subsequently, in the same solution, phenyl iodide (20.0 μL, 0.179 mmol), a methanol solution of sodium methoxide (180.0 μL in methyl, 0.180 mmol), and [Pd (PPh 3 ) 4 ] (16.51 mg). , 0.01429 mmol) was added in this order, and the mixture was reacted at 50 ° C. for 2 hours. The product was purified by recycling HPLC. The yield was 62%.
1 1 H NMR (400 MHz, C 6 D 6 , rt.): δ 0.91 (t, 3 J H, H = 7.44 Hz, 3 H), 1.05 (t, 3 J H, H = 7) .48Hz, 3H; 10-Me) , 2.03 (quint, 3 J H, H = 7.44Hz, 2H), 2.24 (q, 3 J H, H = 7.44Hz, 2H), 5. 45 (t, 3 J H, H = 7.44 Hz, 1 H), 6.27 (d, 3 J H, H = 15.5 Hz, 1 H), 6.39 (dd, 3 J H, H = 15. 5,10.3Hz, 1H), 6.44 (d , 3 J H, H = 15.5Hz, 1H), 6.85 (dd, 3 J H, H = 15.5,10.3Hz, 1H) , 7.05 (t, 1H), 7.1-7.2 (overlapped with solvent), 7.30 (d, 3 J H, H = 7.5Hz, 2H).
(実施例17)
下記方法により、ワンポットで、含ホウ素共役ポリエン化合物の合成とそれに続くクロスカップリング反応とを行い、共役ポリエン化合物を合成した。
By the following method, a boron-containing conjugated polyene compound was synthesized and a subsequent cross-coupling reaction was carried out in one pot to synthesize a conjugated polyene compound.
具体的には、1−ペンチニルボロン酸ジイソプロピルエステル(22.5μL,0.0982mmol)及び(E)−1−(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)butadiene(22.0μL,0.110mmol)、[Ru(naphthalene)(1,5−cod)](3.34mg,0.00990mmol)をベンゼン中50℃で3時間反応させた。臭化ビニル(15.0μL,0.212mmol)、ナトリウムエトキシドのエタノール溶液(240μL in EtOH,0.240mmol)及び[Pd(PPh3)4](18.46mg,0.01597mmol)を加えて50℃で5時間反応させた。その結果、化合物(A−113)が収率46%で生成した。
1H NMR(400MHz,CDCl3,r.t.):δ 0.92(t,3JH,H=7.4Hz,3H),1.46(sext,3JH,H=7.4Hz,2H),2.33(t,3JH,H=7.4Hz,2H),5.09(ddd,3JH,H=10.3Hz,2JH,H=−1.0Hz,4JH,H=−0.9Hz,1H),5.12(ddd,3JH,H=10.3Hz,2JH,H=−3.0Hz,4JH,H=−0.5Hz,1H),5.19(dt,3JH,H=17.8,2JH,H=2.5Hz,4JH,H=2.5Hz,1H),5.23(ddd,3JH,H=17.8,2JH,H=−3.0,4JH,H=−0.5Hz,1H),6.08(ddt,3JH,H=10.5,4JH,H=−2.5,4JH,H=−1.0Hz,1H),6.19(dd,3JH,H=17.5Hz,4JH,H=−1.0Hz,1H),6.28(ddd,3JH,H=17.5,10.5Hz,4JH,H=−1.0Hz,1H),6.30(ddd,3JH,H=16.0,10.5Hz,4JH,H=−1.0Hz,1H),6.32(dd,3JH,H=17.8,10.3Hz,1H),6.38(ddddd,3JH,H=16.0,11.8,10.3Hz,4JH,H=−1.0,−0.5Hz,1H),6.60(ddd,3JH,H=17.8,11.5,10.3Hz,1H).
13C{1H} NMR(100MHz,CDCl3,r.t.):δ 14.22(s),22.70(s),28.89(s),117.00(s),117.92(s),128.21(s),132.32(s),133.05(s),133.97(s),134.04(s),137.02(s),137.13(s),140.63(s).
HRMS(APCI):m/z calcd for C13H18+H+:175.1481[M+H]+;found:175.1474.Specifically, 1-pentynylboronic acid diisopropyl ester (22.5 μL, 0.0982 mmol) and (E) -1- (4,5,5-tetramethyl-1,3,2-dioxaborolane-2-) yl) Butadiene (22.0 μL, 0.110 mmol) and [Ru (naphthalene) (1,5-cod)] (3.34 mg, 0.00990 mmol) were reacted in benzene at 50 ° C. for 3 hours. Add vinyl bromide (15.0 μL, 0.212 mmol), ethanol solution of sodium ethoxide (240 μL in EtOH, 0.240 mmol) and [Pd (PPh 3 ) 4 ] (18.46 mg, 0.01597 mmol) to 50. The reaction was carried out at ° C. for 5 hours. As a result, compound (A-113) was produced in a yield of 46%.
1 1 H NMR (400 MHz, CDCl 3 , rt.): δ 0.92 (t, 3 J H, H = 7.4 Hz, 3 H), 1.46 (sext, 3 J H, H = 7.4 Hz) , 2H), 2.33 (t, 3 J H, H = 7.4Hz, 2H), 5.09 (ddd, 3 J H, H = 10.3Hz, 2 J H, H = -1.0Hz, 4 J H, H = -0.9 Hz, 1 H), 5.12 (ddd, 3 J H, H = 10.3 Hz, 2 J H, H = -3.0 Hz, 4 J H, H = -0. 5Hz, 1H), 5.19 (dt , 3 J H, H = 17.8, 2 J H, H = 2.5Hz, 4 J H, H = 2.5Hz, 1H), 5.23 (ddd, 3 J H, H = 17.8, 2 J H, H = -3.0, 4 J H, H = -0.5 Hz, 1 H), 6.08 (ddt, 3 J H, H = 10.5) , 4 J H, H = -2.5, 4 J H, H = -1.0 Hz, 1 H), 6.19 (dd, 3 J H, H = 17.5 Hz, 4 J H, H = -1 .0Hz, 1H), 6.28 (ddd , 3 J H, H = 17.5,10.5Hz, 4 J H, H = -1.0Hz, 1H), 6.30 (ddd, 3 J H, H = 16.0,10.5Hz, 4 J H, H = -1.0Hz, 1H), 6.32 (dd, 3 J H, H = 17.8,10.3Hz, 1H), 6.38 ( Ddddd, 3 JH, H = 16.0, 11.8, 10.3 Hz, 4 J H, H = -1.0, -0.5 Hz, 1 H), 6.60 (dddd, 3 J H, H = 17.8, 11.5, 10.3 Hz, 1 H).
13 C { 1 H} NMR (100 MHz, CDCl 3 , r.t.): δ 14.22 (s), 22.70 (s), 28.89 (s), 117.00 (s), 117. 92 (s), 128.21 (s), 132.32 (s), 133.05 (s), 133.97 (s), 134.04 (s), 137.02 (s), 137.13 (S), 140.63 (s).
HRMS (APCI): m / z calcd for C 13 H 18 + H + : 175.1481 [M + H] + ; found: 175.1474.
Claims (15)
前記第一の原料化合物及び前記第二の原料化合物のうち少なくとも一つが、前記三重結合又は前記共役ジ(又はポリ)エン骨格を構成する炭素原子に結合した含ホウ素基を有し、
前記含ホウ素共役ポリエン化合物が、前記共役ポリエン骨格を構成する炭素原子に結合した含ホウ素基を有する、含ホウ素共役ポリエン化合物の製造方法。A first raw material compound having a carbon-carbon triple bond and a conjugated di (or poly) having a 1,3-butadiene-4,4-diyl group and containing two carbon-carbon double bonds in the group. A step of reacting a second raw material compound having an en skeleton in the presence of a metal catalyst to obtain a boron-containing conjugated polyene compound having a conjugated polyene skeleton containing three or more carbon-carbon double bonds is provided.
At least one of the first raw material compound and the second raw material compound has a boron-containing group bonded to a carbon atom constituting the triple bond or the conjugated di (or poly) ene skeleton.
A method for producing a boron-containing conjugated polyene compound, wherein the boron-containing conjugated polyene compound has a boron-containing group bonded to a carbon atom constituting the conjugated polyene skeleton.
前記第二の原料化合物が、下記式(1−2−1)で表される化合物であり、
前記含ホウ素共役ポリエン化合物が、下記式(1−3−1)で表される化合物である、請求項1に記載の含ホウ素共役ポリエン化合物の製造方法。
The second raw material compound is a compound represented by the following formula (1-2-1).
The method for producing a boron-containing conjugated polyene compound according to claim 1, wherein the boron-containing conjugated polyene compound is a compound represented by the following formula (1-3-1).
前記第二の原料化合物が、下記式(1−2−2)で表される化合物であり、
前記含ホウ素共役ポリエン化合物が、下記式(1−3−2)で表される化合物である、請求項1に記載の含ホウ素共役ポリエン化合物の製造方法。
The second raw material compound is a compound represented by the following formula (1-2-2).
The method for producing a boron-containing conjugated polyene compound according to claim 1, wherein the boron-containing conjugated polyene compound is a compound represented by the following formula (1-3-2).
前記含ホウ素共役ポリエン化合物における前記R1を水素原子に置換して、第二の含ホウ素共役ポリエン化合物を得る工程を更に備える、請求項2〜4のいずれか一項に記載の含ホウ素共役ポリエン化合物の製造方法。The R 1 is a silyl group and
The boron-containing conjugated polyene according to any one of claims 2 to 4, further comprising a step of substituting the R 1 in the boron-containing conjugated polyene compound with a hydrogen atom to obtain a second boron-containing conjugated polyene compound. Method for producing a compound.
前記第二の原料化合物が、下記式(2−2)で表される化合物であり、
前記含ホウ素共役ポリエン化合物が、下記式(2−3)で表される化合物である、請求項1に記載の含ホウ素共役ポリエン化合物の製造方法。
The second raw material compound is a compound represented by the following formula (2-2).
The method for producing a boron-containing conjugated polyene compound according to claim 1, wherein the boron-containing conjugated polyene compound is a compound represented by the following formula (2-3).
前記含ホウ素共役ポリエン化合物における前記R5を水素原子に置換して、第二の含ホウ素共役ポリエン化合物を得る工程を更に備える、請求項6又は7に記載の含ホウ素共役ポリエン化合物の製造方法。The R 5 is a silyl group and
Said substituting R 5 a hydrogen atom in the boron-containing conjugated polyene compound, further comprising the step of obtaining a second boron-containing conjugated polyene compound, method for producing a boron-containing conjugated polyene compound according to claim 6 or 7.
前記反応液に、カップリング反応触媒と、前記含ホウ素基とのカップリング反応が可能な反応性基を有する第三の原料化合物と、を添加してカップリング反応を行う第二工程と、
を備える、共役ポリエン化合物の製造方法。The first step of obtaining a reaction solution containing the boron-containing conjugated polyene compound by the method for producing a boron-containing conjugated polyene compound according to any one of claims 1 to 11.
A second step of adding a coupling reaction catalyst and a third raw material compound having a reactive group capable of coupling reaction with the boron-containing group to the reaction solution to carry out the coupling reaction.
A method for producing a conjugated polyene compound.
前記第二工程が、前記反応系中に、前記カップリング反応触媒と前記第三の原料化合物とを添加する工程である、請求項13又は14に記載の共役ポリエン化合物の製造方法。The first step is a step of producing the boron-containing conjugated polyene compound in the reaction system of the reaction in the presence of the metal catalyst.
The method for producing a conjugated polyene compound according to claim 13 or 14, wherein the second step is a step of adding the coupling reaction catalyst and the third raw material compound to the reaction system.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018174979 | 2018-09-19 | ||
JP2018174979 | 2018-09-19 | ||
PCT/JP2019/036830 WO2020059824A1 (en) | 2018-09-19 | 2019-09-19 | Boron-containing conjugated polyene compound, method for producing same, and method for producing conjugated polyene compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020059824A1 true JPWO2020059824A1 (en) | 2021-11-04 |
JP7389490B2 JP7389490B2 (en) | 2023-11-30 |
Family
ID=69887162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020548619A Active JP7389490B2 (en) | 2018-09-19 | 2019-09-19 | Boron-containing conjugated polyene compound and method for producing the same, and method for producing the conjugated polyene compound |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7389490B2 (en) |
CN (1) | CN112714767A (en) |
WO (1) | WO2020059824A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010534240A (en) * | 2007-07-23 | 2010-11-04 | ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ | Control system for boronic acid reactivity |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9238597B2 (en) * | 2010-07-23 | 2016-01-19 | The Board Of Trustees Of The University Of Illinois | Apparatus and methods for the automated synthesis of small molecules |
-
2019
- 2019-09-19 CN CN201980061406.1A patent/CN112714767A/en active Pending
- 2019-09-19 JP JP2020548619A patent/JP7389490B2/en active Active
- 2019-09-19 WO PCT/JP2019/036830 patent/WO2020059824A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010534240A (en) * | 2007-07-23 | 2010-11-04 | ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ | Control system for boronic acid reactivity |
Non-Patent Citations (8)
Title |
---|
CHEMISTRY - A EUROPEAN JOURNAL, vol. 17, no. 49, JPN6023045722, 2011, pages 13670 - 13675, ISSN: 0005190621 * |
CHEMISTRY - A EUROPEAN JOURNAL, vol. 24, no. 40, JPN6023045721, 2018, pages 10044 - 10048, ISSN: 0005190620 * |
COOMBS, J. R. ET AL.: "Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron-Wittig Reaction", ORG. LETT., vol. 17, JPN6020024449, 2015, pages 1708 - 1711, ISSN: 0005098739 * |
CORNIL, J. ET AL.: "Heck Coupling Using a Vinyliodo-MIDA Boronate: An Efficient and Modular Access to Polyene Frameworks", ORGANIC LETTERS, vol. 17, JPN6019049525, 2015, pages 948 - 951, XP055694764, ISSN: 0005098736, DOI: 10.1021/acs.orglett.5b00042 * |
FANG, Z. ET AL.: "Synthesis and Biological Evaluation of Polyenylpyrrole Derivatives as Anticancer Agents Acting throu", J. MED. CHEM., vol. 53, JPN6020024446, 2010, pages 7967 - 7978, XP055749504, ISSN: 0005098737, DOI: 10.1021/jm100619x * |
HIRANO, M. ET AL.: "Catalytic cross-dimerisation giving reactive borylated polyenes toward cross-coupling", CHEMICAL COMMUNICATIONS, vol. 55, JPN7019004070, August 2019 (2019-08-01), pages 10527 - 10530, XP055694730, ISSN: 0005098735, DOI: 10.1039/C9CC05930J * |
PREINDL, J. ET AL.: "Polyunsaturated C-Glycosidic 4-Hydroxy-2-pyrone Derivatives: Total Synthesis Shows that Putative Ore", ANGEW. CHEM. INT. ED., vol. 56, JPN6020024448, 2017, pages 7525 - 7530, ISSN: 0005098738 * |
WOERLY, E. M. ET AL.: "Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling", NAT CHEM., vol. 6, no. 6, JPN7020001943, 2014, pages 484 - 491, ISSN: 0005098740 * |
Also Published As
Publication number | Publication date |
---|---|
CN112714767A (en) | 2021-04-27 |
JP7389490B2 (en) | 2023-11-30 |
WO2020059824A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7318871B2 (en) | Method for producing ammonia, molybdenum complex and benzimidazole compound | |
Obora et al. | Organolanthanide-catalyzed imine hydrogenation. Scope, selectivity, mechanistic observations, and unusual byproducts | |
Kisanga et al. | Synthesis of new proazaphosphatranes and their application in organic synthesis | |
Verlinden et al. | Converting a perimidine derivative to a cationic N-heterocyclic carbene | |
Wheaton et al. | Cationic organozinc complexes of a bis (phosphinimine) pincer ligand: synthesis, structural and polymerization studies | |
Takaya et al. | Reaction of bis (o-phosphinophenyl) silane with M (PPh 3) 4 (M= Ni, Pd, Pt): synthesis and structural analysis of η 2-(Si–H) metal (0) and pentacoordinate silyl metal (ii) hydride complexes of the Ni triad bearing a PSiP-pincer ligand | |
KR20150013833A (en) | Hydrosilylation catalysts | |
US20180280950A1 (en) | Precatalysts and process for the metal-free functionalization of sp2 carbons using the same | |
Lawal et al. | Click synthesis and characterization of 1, 2, 3-triazolium salts | |
US8513465B2 (en) | Potassium organotrifluoroborate derivative and a production method therefor | |
Oparina et al. | Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene | |
JP7389490B2 (en) | Boron-containing conjugated polyene compound and method for producing the same, and method for producing the conjugated polyene compound | |
Antonioli et al. | Interaction of copper (II) and palladium (II) with linked 2, 2′-dipyridylamine derivatives: Synthetic and structural studies | |
Kozlov et al. | 5, 6-Membered palladium pincer complexes of 1-thiophosphoryloxy-3-thiophosphorylbenzenes. Synthesis, X-ray structure, and catalytic activity | |
Chandrasekhar et al. | Multi-site coordination ligands assembled on organostannoxane supports | |
Muniyappan et al. | Synthesis, structure and characterization of picolyl and benzyl linked biphenyl nickel NHC complexes and their catalytic activity in Suzuki-Miyaura cross-coupling reactions | |
Liu et al. | Reactions of hydrogen with ruthenium and osmium complexes containing tridentate ligands Cy2PCH2CH (CH2) 2PCy2 and 2, 6-(Ph2PCH2) 2C6H3 | |
KR101614887B1 (en) | Method for preparation of amide and imide from alcohol and nitrogen Containing Compound | |
US10821429B2 (en) | Precatalysts and process for the metal-free functionalization of SP2 carbons using the same | |
JP2020007232A (en) | Novel triborylalkene, production method thereof, and production method of multisubstituted alkene | |
CN111217847B (en) | Thiosilane ligand, preparation method thereof and application thereof in aryl boronization catalytic reaction | |
Arnold et al. | Sterically demanding bi-and tridentate alkoxy-N-heterocyclic carbenes | |
Scharf et al. | Bis (phosphine) Pd (II) and Pt (II) ethylene glycol carboxylates: Synthesis, nanoparticle formation, catalysis | |
Simayi et al. | NNpyC-and ONpyC-Pincers as functional ligands for palladium (II) complexes and assemblies | |
Weisheit et al. | Photochemical behavior of (diphosphine)(η2-tolane) Pt0 complexes. Part A: Experimental considerations in solution and in the solid state |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20210302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210302 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7389490 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |