[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2020027312A1 - Method of dehydrating polymer flocculants and sludge - Google Patents

Method of dehydrating polymer flocculants and sludge Download PDF

Info

Publication number
JPWO2020027312A1
JPWO2020027312A1 JP2020534764A JP2020534764A JPWO2020027312A1 JP WO2020027312 A1 JPWO2020027312 A1 JP WO2020027312A1 JP 2020534764 A JP2020534764 A JP 2020534764A JP 2020534764 A JP2020534764 A JP 2020534764A JP WO2020027312 A1 JPWO2020027312 A1 JP WO2020027312A1
Authority
JP
Japan
Prior art keywords
water
polymer
soluble polymer
sludge
powdery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020534764A
Other languages
Japanese (ja)
Other versions
JP7362620B2 (en
Inventor
伊藤 賢司
賢司 伊藤
剛 鶴岡
剛 鶴岡
渡辺 浩史
浩史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT AquaPolymer Inc
Original Assignee
MT AquaPolymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MT AquaPolymer Inc filed Critical MT AquaPolymer Inc
Publication of JPWO2020027312A1 publication Critical patent/JPWO2020027312A1/en
Application granted granted Critical
Publication of JP7362620B2 publication Critical patent/JP7362620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

難脱水汚泥に対しても優れた脱水性能を示し、輸送コストの欠点を解消し、従来から広く使用されている汎用の粉末用の自動溶解装置等の既存設備で使用できる高性能な粉末状の高分子凝集剤を提供することである。特に、難脱水汚泥に対して優れた脱水性能を発揮することに加え、少ない添加量で脱水処理できる優れた高分子凝集剤を提供することである。特定の溶液物性を示す水溶性重合体(A)と、それとは異なる溶液物性を示す水溶性重合体(B)とを含む粉末状の高分子凝集剤により、上記課題をすべて解決できる。つまり、本発明の粉末状の高分子凝集剤は、優れた脱水性能を発揮し、輸送コストの欠点を解消し、従来から広く使用されている汎用の粉末品の自動溶解装置等の既存設備で使用できる。It shows excellent dewatering performance even for difficult-to-dehydrate sludge, eliminates the drawbacks of transportation costs, and is a high-performance powder that can be used in existing equipment such as a general-purpose automatic melting device for powder that has been widely used in the past. It is to provide a polymer flocculant. In particular, it is an object of the present invention to provide an excellent polymer flocculant that can be dehydrated with a small amount of addition in addition to exhibiting excellent dehydration performance for difficult-to-dehydrate sludge. All of the above problems can be solved by a powdery polymer flocculant containing a water-soluble polymer (A) exhibiting specific solution physical characteristics and a water-soluble polymer (B) exhibiting different solution physical characteristics. That is, the powdered polymer flocculant of the present invention exhibits excellent dehydration performance, eliminates the drawbacks of transportation costs, and is used in existing equipment such as a general-purpose automatic melting device for powdered products that has been widely used in the past. Can be used.

Description

本発明は、高分子凝集剤および汚泥の脱水方法に関する。さらに詳しくは、本発明は、難脱水性汚泥を効果的に脱水することができ、含水率の低い脱水ケーキを得ることができる高性能な粉末状の高分子凝集剤およびそれを用いる汚泥の脱水方法に関する。 The present invention relates to a polymer flocculant and a method for dehydrating sludge. More specifically, the present invention provides a high-performance powdery polymer flocculant capable of effectively dehydrating refractory sludge and a dehydrated cake having a low water content, and dehydration of sludge using the same. Regarding the method.

高分子凝集剤は生活排水、産業排水等に含まれる懸濁物を凝集・沈降・分離させることを目的として、また、製紙産業における歩留向上剤や土木建築における混和剤や加泥剤などとして用いられている。高分子凝集剤はノニオン、アニオン、カチオン、両性の各イオン性を有しているが、どのイオン性の剤を使うかは被処理水の性状、処理方法によって異なる。 Polymer coagulants are used for the purpose of coagulating, sedimenting, and separating suspensions contained in domestic wastewater, industrial wastewater, etc., as yield improvers in the papermaking industry, admixtures and mudicides in civil engineering and construction, etc. It is used. The polymer flocculant has nonionic, anionic, cation, and amphoteric ionic properties, but which ionic agent is used depends on the properties of the water to be treated and the treatment method.

これらのうち、カチオン性を有する高分子凝集剤は、産業および生活排水を活性汚泥処理した後の余剰汚泥をフロック化して脱水する用途に用いられたり、製紙産業における歩留向上剤として用いられることが多い。前者では脱水が難しい汚泥に関しては分岐や架橋を有するポリマーが用いられる。また、両性の高分子凝集剤は凝結剤で荷電中和された懸濁粒子を粗大フロック化するのに用いられ、脱水や凝集が難しい汚泥に用いられる。 Of these, cationic polymer flocculants are used for the purpose of flocculating and dehydrating excess sludge after treated with activated sludge in industrial and domestic wastewater, or as a yield improver in the paper industry. There are many. For sludge that is difficult to dehydrate in the former, a polymer having branching or cross-linking is used. In addition, the amphoteric polymer flocculant is used to coarsely floculate suspended particles charged and neutralized with a coagulant, and is used for sludge that is difficult to dehydrate or aggregate.

一方、高分子凝集剤には、従来から粉末や油中水型エマルション等の製品形態がある。そのうち、油中水型エマルションは溶解性に優れ、短時間で均一に溶解できるという利点がある反面、粉末よりも製造コストが高いことや高分子凝集剤の有効成分の含有率が低いことから輸送コストが割高になるという欠点があった。 On the other hand, polymer flocculants have conventionally been in product forms such as powders and water-in-oil emulsions. Of these, the water-in-oil emulsion has the advantages of excellent solubility and uniform dissolution in a short time, but it is transported because it is more expensive to manufacture than powder and the content of the active ingredient of the polymer flocculant is low. There was a drawback that the cost was high.

このような状況下、最近では、分岐や架橋を有するカチオン性または両性の油中水型エマルションポリマーを乾燥して粉末品にした、難脱水汚泥に対しても優れた脱水性能を示し、輸送コストの欠点を解消し、従来から広く使用されている汎用の粉末用の自動溶解装置等の既存設備にて使用できる高性能な粉末状の高分子凝集剤の開発が行われている。 Under such circumstances, recently, a cationic or amphoteric water-in-oil emulsion polymer having branching or cross-linking has been dried into a powder product, which exhibits excellent dehydration performance even for difficult-to-dehydrate sludge, and transportation cost. A high-performance powdery polymer flocculant that can be used in existing equipment such as a general-purpose automatic dissolving device for powder, which has been widely used in the past, has been developed.

例えば、特許文献1には、カチオン性モノマーおよび5〜2000ppmの架橋剤を含む水溶性のモノマー混合物を非水性液体中で逆相重合により、少なくとも90重量%が10μm以下の粒径を持つ第1次ポリマー粒子の逆相エマルションを作成し、次いで、該逆相エマルションをスプレー乾燥して、少なくとも90重量%が20μm以上の粒径のスプレー乾燥顆粒を作成するスプレー乾燥顆粒の製造方法および得られる粉末品の高分子凝集剤としての用途が開示されている。 For example, Patent Document 1 states that at least 90% by weight has a particle size of 10 μm or less by reverse-phase polymerization of a water-soluble monomer mixture containing a cationic monomer and 5 to 2000 ppm of a cross-linking agent in a non-aqueous liquid. A method for producing spray-dried granules and a powder obtained. The use of the product as a polymer flocculant is disclosed.

しかし、特許文献1に記載される架橋ポリマーのスプレー乾燥顆粒は、直鎖状ポリマーに比べて最適添加量における濾液体積(ろ過性)が向上してより良い性能を示すものの、高いポリマー投与量(添加量)を必要とする。添加量を下げるための方策については、記載されていない。 However, the spray-dried granules of the crosslinked polymer described in Patent Document 1 show better performance by improving the filtrate volume (filterability) at the optimum addition amount as compared with the linear polymer, but have a high polymer dose ( Addition amount) is required. There is no description of measures to reduce the amount added.

特許文献2には、汚泥中の全懸濁粒子に対する該汚泥中の200メッシュオン粒子の質量%に対応し、電荷内包率20%以上のビニル重合系架橋性水溶性イオン性高分子(A)と、電荷内包率5%以上、20%未満のビニル重合系直鎖性水溶性イオン性高分子(B)の配合を変化させたことを特徴とする凝集剤組成物が開示されている。 Patent Document 2 describes a vinyl polymerization-based crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 20% or more, which corresponds to the mass% of 200 mesh-on particles in the sludge with respect to the total suspended particles in the sludge. And, a flocculant composition characterized by changing the composition of the vinyl polymerization type linear water-soluble ionic polymer (B) having a charge inclusion rate of 5% or more and less than 20% is disclosed.

しかし、特許文献2は、溶液中でのポリマー粒子の表面電荷の異なる組み合わせを利用することで、優れた脱水性能とポリマー添加量の削減について、ある程度の効果は見られるものの十分に満足できるものではなかった。特に使用するカチオン性モノマーの種類や組成比率によって表面電荷の状態が異なるので、必ずしも好ましいポリマー物性の組み合わせにならず、難脱水汚泥に対して優れた脱水性能を示すことが不十分であった。また、特許文献2には、製品形態として油中水型エマルションと塩水中分散液しか記載されておらず、実質的に粉末品は対象となっておらず、輸送コストの欠点の解消にも言及されていない。 However, Patent Document 2 is not sufficiently satisfactory in terms of excellent dehydration performance and reduction of the amount of polymer added by utilizing different combinations of surface charges of polymer particles in a solution, although some effects can be seen. There wasn't. In particular, since the state of surface charge differs depending on the type and composition ratio of the cationic monomer used, it is not always a preferable combination of polymer physical properties, and it is insufficient to exhibit excellent dehydration performance for difficult-to-dehydrate sludge. Further, Patent Document 2 describes only a water-in-oil emulsion and a dispersion in salt water as product forms, and does not substantially cover powdered products, and mentions elimination of the drawback of transportation cost. It has not been.

本出願人は、これまで、特定の溶液粘度を有するカチオン性高分子と特定の両性高分子の混合物からなる汚泥脱水剤を開発している(特許文献3)。この本発明の汚泥脱水剤を用いると、難脱水性汚泥や難脱水条件に対しても、より少ない添加量において、より大きな汚泥凝集フロックと高い濾水量が得られ、得られるケーキ含水率も著しく低下し、良好な処理が可能となる。この汚泥脱水剤は優れた脱水性能を示している。この技術においても、粉末品の例示はなく、実質的に粉末品は対象となっておらず、輸送コストの点について検討の余地が有る。 The applicant has so far developed a sludge dehydrating agent consisting of a mixture of a cationic polymer having a specific solution viscosity and a specific amphoteric polymer (Patent Document 3). When the sludge dewatering agent of the present invention is used, a larger sludge cohesive floc and a higher amount of drainage can be obtained with a smaller addition amount even for difficult-to-dehydrate sludge and difficult-to-dehydrate conditions, and the obtained cake water content is also remarkable. It is reduced and good processing is possible. This sludge dewatering agent shows excellent dewatering performance. Even in this technology, there is no example of powdered products, and powdered products are not practically targeted, and there is room for consideration in terms of transportation costs.

特許第4043517号Patent No. 4043517 特許第5103395号Patent No. 5103395 特許第4201419号Patent No. 4201419

本発明の課題は、難脱水汚泥に対しても優れた脱水性能を示し、輸送コストの欠点を解消し、従来から広く使用されている汎用の粉末用の自動溶解装置等の既存設備にて使用できる高性能な粉末状の高分子凝集剤を提供することである。特に、難脱水汚泥に対して優れた脱水性能を発揮することに加え、少ない添加量で脱水処理できる優れた高分子凝集剤を提供することである。 The subject of the present invention is that it exhibits excellent dewatering performance even for difficult-to-dehydrate sludge, eliminates the drawback of transportation cost, and is used in existing equipment such as a general-purpose automatic melting device for powder that has been widely used in the past. It is to provide a high-performance powdery polymer flocculant that can be produced. In particular, it is an object of the present invention to provide an excellent polymer flocculant that can be dehydrated with a small amount of addition in addition to exhibiting excellent dehydration performance for difficult-to-dehydrate sludge.

本発明者らは鋭意検討を進めた結果、特定の溶液物性を示す水溶性重合体(A)と、それとは異なる溶液物性を示す水溶性重合体(B)とを含む粉末状の高分子凝集剤が、上記課題をすべて解決できることを見出した。つまり、本発明の粉末状の高分子凝集剤は、優れた脱水性能を発揮し、輸送コストの欠点を解消し、従来から広く使用されている汎用の粉末品の自動溶解装置等の既存設備で使用できることを確認し、本発明を完成した。 As a result of diligent studies, the present inventors have conducted a powdery polymer aggregation containing a water-soluble polymer (A) exhibiting a specific solution physical characteristic and a water-soluble polymer (B) exhibiting a different solution physical characteristic. We have found that the agent can solve all of the above problems. That is, the powdered polymer flocculant of the present invention exhibits excellent dehydration performance, eliminates the drawbacks of transportation costs, and is used in existing equipment such as a general-purpose automatic melting device for powdered products that has been widely used in the past. After confirming that it can be used, the present invention was completed.

すなわち、本発明は、
〔1〕少なくとも下記式(1)で表される溶液粘度比が900以上、10,000未満である水溶性重合体(A)と、前記溶液粘度比が100以上、900未満である水溶性重合体(B)とを含有し、水溶性重合体(A)及び水溶性重合体(B)の合計質量に対する水溶性重合体(A)の含有量が5〜90質量%であることを特徴とする粉末状のカチオン性又は両性の高分子凝集剤である。
That is, the present invention
[1] At least the water-soluble polymer (A) having a solution viscosity ratio of 900 or more and less than 10,000 represented by the following formula (1) and the water-soluble weight having a solution viscosity ratio of 100 or more and less than 900. It contains the coalescence (B), and the content of the water-soluble polymer (A) is 5 to 90% by mass with respect to the total mass of the water-soluble polymer (A) and the water-soluble polymer (B). It is a powdery cationic or amphoteric polymer flocculant.

Figure 2020027312
Figure 2020027312

但し、0.5%水溶液粘度は、0.5質量%濃度の重合体水溶液をB型回転式粘度計を用いて、ローター回転数12rpm、25℃で測定した粘度(mPa・s)であり、0.1%塩粘度は、0.5質量%濃度の重合体水溶液を0.1質量%濃度に希釈し、1NのNaClを溶解した重合体の塩水溶液をB型回転式粘度計とBLアダプターを用いて、ローター回転数60rpm、25℃で測定した粘度(mPa・s)である。 However, the viscosity of the 0.5% aqueous solution is the viscosity (mPa · s) measured by using a B-type rotary viscometer at a rotor rotation speed of 12 rpm and 25 ° C. for a polymer aqueous solution having a concentration of 0.5% by mass. For the 0.1% salt viscosity, a 0.5% by mass concentration polymer aqueous solution was diluted to a 0.1% by mass concentration, and a 1N NaCl-dissolved polymer salt aqueous solution was used as a B-type rotary viscometer and a BL adapter. Is the viscosity (mPa · s) measured at a rotor rotation speed of 60 rpm and 25 ° C.

〔2〕前記水溶性重合体(A)及び(B)が、下記一般式(2)で表される構造のカチオン性構成単位の1種又は2種以上を含む前記〔1〕に記載の粉末状の高分子凝集剤である。 [2] The powder according to the above [1], wherein the water-soluble polymers (A) and (B) contain one or more cationic constituent units having a structure represented by the following general formula (2). It is a polymer flocculant.

Figure 2020027312
Figure 2020027312

但し、Rは水素原子又はメチル基、R及びRはそれぞれ独立に炭素数1〜3のアルキル基又はベンジル基、Rは水素原子、炭素数1〜3のアルキル基又はベンジル基であり、同種でも異種でもよい。Xは酸素原子又はNH、Qは炭素数1〜4のアルキレン基又は炭素数2〜4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表す。However, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are independently alkyl groups or benzyl groups having 1 to 3 carbon atoms, and R 4 is a hydrogen atom or an alkyl group or benzyl group having 1 to 3 carbon atoms. Yes, it may be of the same type or different types. X represents an oxygen atom or NH, Q represents an alkylene group having 1 to 4 carbon atoms or a hydroxyalkylene group having 2 to 4 carbon atoms, and Z represents a counter anion.

〔3〕前記水溶性重合体(A)及び(B)が、ジメチルアミノエチルアクリレートの塩化メチル第4級塩又は塩化ベンジル第4級塩、ジメチルアミノエチルメタクリレートの塩化メチル第4級塩の少なくとも1種を含む単量体混合物を重合して得られたものである前記〔1〕又は〔2〕に記載の粉末状の高分子凝集剤である。 [3] The water-soluble polymers (A) and (B) are at least one of a methyl chloride quaternary salt or a benzyl chloride quaternary salt of dimethylaminoethyl acrylate and a methyl chloride quaternary salt of dimethylaminoethyl methacrylate. The powdery polymer flocculant according to the above [1] or [2], which is obtained by polymerizing a monomer mixture containing seeds.

〔4〕前記水溶性重合体(A)及び/又は(B)が、さらにノニオン性単量体を含む単量体混合物を重合して得られたものである前記〔3〕に記載の粉末状の高分子凝集剤である。 [4] The powder form according to the above [3], wherein the water-soluble polymer (A) and / or (B) is obtained by further polymerizing a monomer mixture containing a nonionic monomer. It is a polymer flocculant of.

〔5〕前記ノニオン性単量体がアクリルアミドである前記〔4〕に記載の粉末状の高分子凝集剤である。 [5] The powdery polymer flocculant according to the above [4], wherein the nonionic monomer is acrylamide.

〔6〕前記水溶性重合体(A)及び/又は(B)が、さらにアニオン性単量体を含む単量体混合物を重合して得られたものである前記〔4〕又は〔5〕に記載の粉末状の高分子凝集剤である。 [6] In the above [4] or [5], the water-soluble polymer (A) and / or (B) is obtained by further polymerizing a monomer mixture containing an anionic monomer. The powdery polymer flocculant according to the above.

〔7〕前記アニオン性単量体がアクリル酸である前記〔6〕に記載の粉末状の高分子凝集剤である。 [7] The powdery polymer flocculant according to the above [6], wherein the anionic monomer is acrylic acid.

〔8〕前記水溶性重合体(A)及び(B)が、いずれも嵩比重が0.5〜0.8g/cmの粉末であり、当該粉末のうち少なくとも1種が粒子強度が5N以上となるように造粒加工された造粒物を含む粉末であり、2種以上の当該粉末が混合されたものである前記〔1〕〜〔7〕のいずれかに記載の粉末状の高分子凝集剤である。[8] The water-soluble polymers (A) and (B) are both powders having a bulk specific gravity of 0.5 to 0.8 g / cm 3 , and at least one of the powders has a particle strength of 5 N or more. The powdery polymer according to any one of the above [1] to [7], which is a powder containing a granulated product that has been granulated so as to be, and is a mixture of two or more kinds of the powder. It is a flocculant.

〔9〕汚泥に、前記〔1〕〜〔8〕のいずれかに記載の高分子凝集剤の少なくとも1種を添加して脱水する汚泥の脱水方法である。 [9] A method for dehydrating sludge by adding at least one of the polymer flocculants according to any one of the above [1] to [8] to sludge.

〔10〕前記水溶性重合体(A)の0.5%水溶液粘度が1,000〜15,000mPa・sであり、前記水溶性重合体(A)の0.1%塩粘度が1.1〜3.5mPa・sであり、前記水溶性重合体(B)の0.5%水溶液粘度が500〜3,500mPa・sであり、前記水溶性重合体(B)の0.1%塩粘度が1.8〜7.0mPa・sである、前記〔1〕〜〔8〕のいずれかに記載の粉末状の高分子凝集剤である。 [10] The 0.5% aqueous solution viscosity of the water-soluble polymer (A) is 1,000 to 15,000 mPa · s, and the 0.1% salt viscosity of the water-soluble polymer (A) is 1.1. ~ 3.5 mPa · s, the 0.5% aqueous solution viscosity of the water-soluble polymer (B) is 500 to 3,500 mPa · s, and the 0.1% salt viscosity of the water-soluble polymer (B). The powdery polymer flocculant according to any one of the above [1] to [8], wherein is 1.8 to 7.0 mPa · s.

〔11〕前記〔1〕〜〔8〕のいずれかに記載の粉末状の高分子凝集剤の製造方法であって、逆相エマルション重合により粉末状の前記水溶性重合体(A)を調製し、水溶液重合により粉末状の前記水溶性重合体(B)を調製し、両者を混合することで粉末状の高分子凝集剤を製造する方法である。 [11] The method for producing a powdery polymer flocculant according to any one of the above [1] to [8], wherein the powdery water-soluble polymer (A) is prepared by reverse phase emulsion polymerization. This is a method for producing a powdery polymer flocculant by preparing the powdery water-soluble polymer (B) by aqueous polymerization and mixing the two.

本発明で得られる高分子凝集剤は、難脱水汚泥に対しても優れた脱水性能を発揮することに加え、輸送コストの欠点を解消し、従来から広く使用されている汎用の粉末用の自動溶解装置等の既存設備でも使用することができる。特に、難脱水汚泥に対して優れた脱水性能を発揮することと少ない添加量で脱水処理できるという相反する性能を高度にバランスさせることができる。そのような高性能な粉末状の高分子凝集剤を提供することができる。 The polymer flocculant obtained in the present invention not only exhibits excellent dewatering performance for difficult-to-dehydrate sludge, but also eliminates the drawback of transportation cost, and is an automatic powder for general-purpose powder that has been widely used in the past. It can also be used in existing equipment such as melting equipment. In particular, it is possible to highly balance the contradictory performance of exhibiting excellent dewatering performance for difficult-to-dehydrate sludge and the ability to perform dewatering treatment with a small amount of addition. It is possible to provide such a high-performance powdery polymer flocculant.

また、本発明の高分子凝集剤は、生活排水および産業排水汚泥の凝集・脱水剤として、製紙用濾水歩留向上剤、濾水性向上剤、地合形成助剤および紙力増強剤等の製紙用薬剤、掘削・泥水処理用凝集剤、原油増産用添加剤、有機凝結剤、増粘剤、分散剤、スケール防止剤、帯電防止剤および繊維用処理剤等の幅広い用途に応用することが可能である。 Further, the polymer coagulant of the present invention is used as a coagulation / dehydrating agent for domestic wastewater and industrial wastewater sludge, such as a draining fluid retention improver for papermaking, a drainage improver, a formation aid, and a paper strength enhancer. It can be applied to a wide range of applications such as paper chemicals, coagulants for drilling / muddy water treatment, additives for increasing crude oil production, organic coagulants, thickeners, dispersants, antiscale agents, antistatic agents and processing agents for textiles. It is possible.

以下に本発明について詳細に説明する。
なお、本明細書においては、アクリレートおよび/またはメタクリレートを(メタ)アクリレートと表し、アクリルアミドおよび/またはメタクリルアミドを(メタ)アクリルアミドと表し、アクリル酸および/またはメタクリル酸を(メタ)アクリル酸と表し、また、酸とその塩を、酸(塩)と表す。
The present invention will be described in detail below.
In the present specification, acrylate and / or methacrylate is referred to as (meth) acrylate, acrylamide and / or methacrylamide is referred to as (meth) acrylamide, and acrylic acid and / or methacrylic acid is referred to as (meth) acrylic acid. Also, an acid and its salt are referred to as an acid (salt).

本発明の高分子凝集剤は、難脱水汚泥に対して優れた脱水性能を発揮することに加え、少ない添加量で脱水処理できる優れた性能を実現するために、特定の溶液物性を示す水溶性重合体(A)と、それとは異なる溶液物性を示す水溶性重合体(B)とを含有する。 The polymer flocculant of the present invention exhibits excellent dehydration performance for difficult-to-dehydrate sludge, and is water-soluble, which exhibits specific solution physical characteristics in order to realize excellent performance that allows dehydration treatment with a small amount of addition. It contains a polymer (A) and a water-soluble polymer (B) having different solution physical characteristics.

本発明では、前記水溶性重合体(A)および水溶性重合体(B)を特定するのに、下記式(1)で表される溶液粘度比を使用する。 In the present invention, the solution viscosity ratio represented by the following formula (1) is used to specify the water-soluble polymer (A) and the water-soluble polymer (B).

Figure 2020027312
Figure 2020027312

但し、0.5%水溶液粘度は、0.5質量%濃度の重合体水溶液をB型回転式粘度計を用いて、ローター回転数12rpm、25℃で測定した粘度(mPa・s)であり、0.1%塩粘度は、0.5質量%濃度の重合体水溶液を0.1質量%濃度に希釈し、1NのNaClを溶解した重合体の塩水溶液をB型回転式粘度計とBLアダプターを用いて、ローター回転数60rpm、25℃で測定した粘度(mPa・s)である。 However, the viscosity of the 0.5% aqueous solution is the viscosity (mPa · s) measured by using a B-type rotary viscometer at a rotor rotation speed of 12 rpm and 25 ° C. for a polymer aqueous solution having a concentration of 0.5% by mass. For the 0.1% salt viscosity, a 0.5% by mass concentration polymer aqueous solution was diluted to a 0.1% by mass concentration, and a 1N NaCl-dissolved polymer salt aqueous solution was used as a B-type rotary viscometer and a BL adapter. Is the viscosity (mPa · s) measured at a rotor rotation speed of 60 rpm and 25 ° C.

前記溶液粘度比は、通常、1以上の正の数であり、数値が大きいほど水溶性重合体に分岐や架橋等の非直鎖構造の導入量が多いことを意味し、数値が小さいほど水溶性重合体に非直鎖構造の導入量が少なく、直鎖性が高いことを意味する。本明細書では、当該溶液粘度比で表される非直鎖構造の導入量の違いを「架橋度」と表現することがある。 The solution viscosity ratio is usually a positive number of 1 or more, and the larger the value, the larger the amount of non-linear structure introduced into the water-soluble polymer such as branching and cross-linking, and the smaller the value, the more water-soluble. This means that the amount of the non-linear structure introduced into the sex polymer is small and the linearity is high. In the present specification, the difference in the introduction amount of the non-linear structure represented by the solution viscosity ratio may be expressed as "crosslinking degree".

本発明の水溶性重合体(A)の溶液粘度比は、900以上、10,000以下である。溶液粘度比が10,000を超えると、架橋度が高過ぎて、通常の直鎖型の高分子凝集剤に比べて添加量を数倍から数10倍に増量しないと凝集しないので、経済的な観点から現実的ではない。一方、溶液粘度比が900未満の場合には、架橋度が低過ぎて、難脱水汚泥に対して優れた脱水性能を発揮することができない。水溶性重合体(A)の溶液粘度比は950以上、5,000以下であることが好ましく、特に1,000以上、3,500以下であることが最も好ましい。 The solution viscosity ratio of the water-soluble polymer (A) of the present invention is 900 or more and 10,000 or less. If the solution viscosity ratio exceeds 10,000, the degree of cross-linking is too high, and aggregation does not occur unless the amount added is increased several times to several tens of times as compared with a normal linear polymer flocculant, which is economical. It is not realistic from the point of view. On the other hand, when the solution viscosity ratio is less than 900, the degree of cross-linking is too low, and excellent dehydration performance cannot be exhibited for difficult-to-dehydrate sludge. The solution viscosity ratio of the water-soluble polymer (A) is preferably 950 or more and 5,000 or less, and most preferably 1,000 or more and 3,500 or less.

本発明の水溶性重合体(A)の0.5%水溶液粘度は、1,000〜15,000mPa・sであることが好ましい。0.5%水溶液粘度が15,000mPa・sを超えると、架橋度が高過ぎて、通常の直鎖型の高分子凝集剤に比べて添加量を数倍から数10倍に増量しないと凝集しないので、経済的な観点から現実的ではない場合がある。一方、0.5%水溶液粘度が1,000mPa・s未満では、架橋度が低過ぎるか分子量が低過ぎて、難脱水汚泥に対して優れた脱水性能を発揮することができない場合がある。水溶性重合体(A)の0.5%水溶液粘度は1,500〜10,000mPa・sであることがより好ましく、2,000〜6,000mPa・sであることが最も好ましい。 The viscosity of the 0.5% aqueous solution of the water-soluble polymer (A) of the present invention is preferably 1,000 to 15,000 mPa · s. If the viscosity of the 0.5% aqueous solution exceeds 15,000 mPa · s, the degree of cross-linking is too high, and aggregation must be increased several times to several tens of times as much as that of a normal linear polymer flocculant. Since it does not, it may not be realistic from an economic point of view. On the other hand, if the viscosity of the 0.5% aqueous solution is less than 1,000 mPa · s, the degree of cross-linking is too low or the molecular weight is too low, and excellent dehydration performance may not be exhibited for difficult-to-dehydrate sludge. The viscosity of the water-soluble polymer (A) in a 0.5% aqueous solution is more preferably 1,500 to 10,000 mPa · s, and most preferably 2,000 to 6,000 mPa · s.

本発明の水溶性重合体(A)の0.1%塩粘度は、1.1〜3.5mPa・sであることが好ましい。0.1%塩粘度が1.1mPa・s未満では、架橋度が高過ぎて、通常の直鎖型の高分子凝集剤に比べて添加量を数倍から数10倍に増量しないと凝集しないので、経済的な観点から現実的ではない場合がある。一方、0.1%塩粘度が3.5mPa・sを超えると、架橋度が低過ぎて、難脱水汚泥に対して優れた脱水性能を発揮することができない場合がある。水溶性重合体(A)の0.1%塩粘度は1.2〜3.0mPa・sであることがより好ましく、1.4〜2.5mPa・sであることが最も好ましい。 The 0.1% salt viscosity of the water-soluble polymer (A) of the present invention is preferably 1.1 to 3.5 mPa · s. If the 0.1% salt viscosity is less than 1.1 mPa · s, the degree of cross-linking is too high, and aggregation does not occur unless the amount added is increased several to several tens of times as compared with a normal linear polymer flocculant. Therefore, it may not be realistic from an economic point of view. On the other hand, if the 0.1% salt viscosity exceeds 3.5 mPa · s, the degree of cross-linking may be too low to exhibit excellent dewatering performance for difficult-to-dehydrate sludge. The 0.1% salt viscosity of the water-soluble polymer (A) is more preferably 1.2 to 3.0 mPa · s, and most preferably 1.4 to 2.5 mPa · s.

本発明の水溶性重合体(A)では、0.5%水溶液粘度は1,000〜15,000mPa・sであり、0.1%塩粘度は1.1〜3.5mPa・sであることが好ましい。 In the water-soluble polymer (A) of the present invention, the viscosity of a 0.5% aqueous solution is 1,000 to 15,000 mPa · s, and the viscosity of 0.1% salt is 1.1 to 3.5 mPa · s. Is preferable.

本発明の水溶性重合体(B)の溶液粘度比は、100以上、900未満である。溶液粘度比が900以上の場合には、直鎖性が不十分であり、水溶性重合体(A)と併用しても、難脱水汚泥に対して優れた脱水性能を発揮することと少ない添加量で脱水処理できるという相反する性能を高度にバランスさせることができない。一方、溶液粘度比が100未満の場合には、分子量やイオン性が低過ぎて、高分子凝集剤としての十分な性能を実現できない。水溶性重合体(B)の溶液粘度比は150以上、850以下であることが好ましく、特に200以上、800以下であることが最も好ましい。 The solution viscosity ratio of the water-soluble polymer (B) of the present invention is 100 or more and less than 900. When the solution viscosity ratio is 900 or more, the linearity is insufficient, and even when used in combination with the water-soluble polymer (A), it exhibits excellent dewatering performance for difficult-to-dehydrate sludge and is added in a small amount. It is not possible to highly balance the contradictory performance of being able to dehydrate by quantity. On the other hand, when the solution viscosity ratio is less than 100, the molecular weight and ionicity are too low to realize sufficient performance as a polymer flocculant. The solution viscosity ratio of the water-soluble polymer (B) is preferably 150 or more and 850 or less, and most preferably 200 or more and 800 or less.

本発明の水溶性重合体(B)の0.5%水溶液粘度は、500〜3,500mPa・sであることが好ましい。0.5%水溶液粘度が3,500mPa・sを超えると、直鎖性が不十分であり、水溶性重合体(A)と併用しても、難脱水汚泥に対して優れた脱水性能を発揮することと少ない添加量で脱水処理できるという相反する性能を高度にバランスさせることができない場合がある。一方、0.5%水溶液粘度が500mPa・s未満では、分子量やイオン性が低過ぎて、高分子凝集剤としての十分な性能を実現できない場合がある。水溶性重合体(B)の0.5%水溶液粘度は700〜3,000mPa・sであることがより好ましく、900〜2,500mPa・sであることが最も好ましい。 The viscosity of the 0.5% aqueous solution of the water-soluble polymer (B) of the present invention is preferably 500 to 3,500 mPa · s. When the viscosity of the 0.5% aqueous solution exceeds 3,500 mPa · s, the linearity is insufficient, and even when used in combination with the water-soluble polymer (A), it exhibits excellent dewatering performance against difficult-to-dehydrate sludge. In some cases, it is not possible to highly balance the contradictory performance of being able to perform dehydration treatment with a small amount of addition. On the other hand, if the viscosity of the 0.5% aqueous solution is less than 500 mPa · s, the molecular weight and ionicity may be too low to realize sufficient performance as a polymer flocculant. The viscosity of the 0.5% aqueous solution of the water-soluble polymer (B) is more preferably 700 to 3,000 mPa · s, and most preferably 900 to 2,500 mPa · s.

本発明の水溶性重合体(B)の0.1%塩粘度は、1.8〜7.0mPa・sであることが好ましい。0.1%塩粘度が7.0mPa・sを超えると、直鎖性が不十分となる場合があり、水溶性重合体(A)と併用しても、難脱水汚泥に対して優れた脱水性能を発揮することと少ない添加量で脱水処理できるという相反する性能を高度にバランスさせることができない場合がある。一方、0.1%塩粘度が1.8mPa・s未満では、分子量やイオン性が低過ぎて、高分子凝集剤としての十分な性能を実現できない場合がある。水溶性重合体(B)の0.1%塩粘度は2.0〜5.6mPa・sであることがより好ましく、2.2〜3.9mPa・sであることが最も好ましい。 The 0.1% salt viscosity of the water-soluble polymer (B) of the present invention is preferably 1.8 to 7.0 mPa · s. If the 0.1% salt viscosity exceeds 7.0 mPa · s, the linearity may be insufficient, and even when used in combination with the water-soluble polymer (A), it is excellently dehydrated against difficult-to-dehydrate sludge. It may not be possible to highly balance the contradictory performances of exhibiting performance and dehydration treatment with a small amount of addition. On the other hand, if the 0.1% salt viscosity is less than 1.8 mPa · s, the molecular weight and ionicity may be too low to realize sufficient performance as a polymer flocculant. The 0.1% salt viscosity of the water-soluble polymer (B) is more preferably 2.0 to 5.6 mPa · s, and most preferably 2.2 to 3.9 mPa · s.

本発明の水溶性重合体(B)では、0.5%水溶液粘度は500〜3,500mPa・sであり、0.1%塩粘度は1.8〜7.0mPa・sであることが好ましい。 In the water-soluble polymer (B) of the present invention, the viscosity of the 0.5% aqueous solution is preferably 500 to 3,500 mPa · s, and the viscosity of the 0.1% salt is preferably 1.8 to 7.0 mPa · s. ..

本発明では、水溶性重合体(A)及び水溶性重合体(B)の合計質量に対する水溶性重合体(A)の含有量は5〜90質量%である。水溶性重合体(A)の含有量が90質量%を超えると、水溶性重合体(A)の性能が強過ぎて、添加量を増量しないと凝集しないので、経済的な観点から好ましくない。水溶性重合体(A)の含有量が5質量%未満だと、水溶性重合体(B)の性能が強過ぎて、難脱水汚泥に対して優れた脱水性能を発揮することができない。水溶性重合体(A)の含有量は10〜80質量%が好ましく、特に10〜70質量%が最も好ましい。 In the present invention, the content of the water-soluble polymer (A) is 5 to 90% by mass with respect to the total mass of the water-soluble polymer (A) and the water-soluble polymer (B). If the content of the water-soluble polymer (A) exceeds 90% by mass, the performance of the water-soluble polymer (A) is too strong and the water-soluble polymer (A) does not aggregate unless the amount added is increased, which is not preferable from an economical point of view. If the content of the water-soluble polymer (A) is less than 5% by mass, the performance of the water-soluble polymer (B) is too strong, and excellent dehydration performance cannot be exhibited for difficult-to-dehydrate sludge. The content of the water-soluble polymer (A) is preferably 10 to 80% by mass, and most preferably 10 to 70% by mass.

本発明では、水溶性重合体(A)及び水溶性重合体(B)の合計質量に対する水溶性重合体(B)の含有量は10〜95質量%である。水溶性重合体(B)の含有量が95質量%を超えると、水溶性重合体(B)の性能が強過ぎて、難脱水汚泥に対して優れた脱水性能を発揮することができない。水溶性重合体(B)の含有量が10質量%未満だと、水溶性重合体(A)の性能が強過ぎて、添加量を増量しないと凝集しないので、経済的な観点から好ましくない。水溶性重合体(B)の含有量は20〜90質量%が好ましく、特に30〜90質量%が最も好ましい。 In the present invention, the content of the water-soluble polymer (B) with respect to the total mass of the water-soluble polymer (A) and the water-soluble polymer (B) is 10 to 95% by mass. If the content of the water-soluble polymer (B) exceeds 95% by mass, the performance of the water-soluble polymer (B) is too strong, and excellent dehydration performance cannot be exhibited for difficult-to-dehydrate sludge. If the content of the water-soluble polymer (B) is less than 10% by mass, the performance of the water-soluble polymer (A) is too strong and the water-soluble polymer (A) does not aggregate unless the amount added is increased, which is not preferable from an economical point of view. The content of the water-soluble polymer (B) is preferably 20 to 90% by mass, and most preferably 30 to 90% by mass.

本発明の水溶性重合体(A)及び(B)は、カチオン性又は両性の水溶性重合体であり、カチオン性単量体を必須成分として含む単量体混合物をラジカル重合して得ることができる。この単量体混合物には、カチオン性単量体の他、必要に応じてカチオン性単量体と共重合可能な他の単量体を含んでもよい。また、当該水溶性重合体(A)及び(B)は、下記一般式(2)で表される構造のカチオン性構成単位の1種又は2種以上を含むものが好ましい。 The water-soluble polymers (A) and (B) of the present invention are cationic or amphoteric water-soluble polymers, and can be obtained by radical polymerization of a monomer mixture containing a cationic monomer as an essential component. can. In addition to the cationic monomer, the monomer mixture may contain other monomers copolymerizable with the cationic monomer, if necessary. Further, the water-soluble polymers (A) and (B) preferably contain one or more cationic constituent units having a structure represented by the following general formula (2).

Figure 2020027312
Figure 2020027312

但し、Rは水素原子又はメチル基、R及びRはそれぞれ独立に炭素数1〜3のアルキル基又はベンジル基、Rは水素原子、炭素数1〜3のアルキル基又はベンジル基であり、同種でも異種でもよい。Xは酸素原子又はNH、Qは炭素数1〜4のアルキレン基又は炭素数2〜4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表す。However, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are independently alkyl groups or benzyl groups having 1 to 3 carbon atoms, and R 4 is a hydrogen atom or an alkyl group or benzyl group having 1 to 3 carbon atoms. Yes, it may be of the same type or different types. X represents an oxygen atom or NH, Q represents an alkylene group having 1 to 4 carbon atoms or a hydroxyalkylene group having 2 to 4 carbon atoms, and Z represents a counter anion.

本発明で使用できるカチオン性単量体は、ラジカル重合し得るラジカル重合性の二重結合およびカチオン基を有する単量体であれば何れでもよく、下記一般式(3)で表される化合物の他、ジアリルジメチルアンモニウムクロライド等のジアリルジアルキルアンモニウムハロゲン化物等を挙げることができる。これらのカチオン性単量体の中でも、ラジカル重合反応性に優れて、高分子凝集剤として必要な高分子量化が容易であり、得られる重合体の高分子凝集剤としての性能が優れることから、下記一般式(3)で表される化合物が好ましい。 The cationic monomer that can be used in the present invention may be any monomer having a radically polymerizable double bond and a cationic group capable of radical polymerization, and the compound represented by the following general formula (3). In addition, diallyldialkylammonium halides such as diallyldimethylammonium chloride can be mentioned. Among these cationic monomers, it is excellent in radical polymerization reactivity, easy to increase the molecular weight required as a polymer flocculant, and excellent performance of the obtained polymer as a polymer flocculant. The compound represented by the following general formula (3) is preferable.

Figure 2020027312
Figure 2020027312

但し、Rは水素原子またはメチル基、RおよびRはそれぞれ独立に炭素数1〜3のアルキル基またはベンジル基、Rは水素原子、炭素数1〜3のアルキル基またはベンジル基であり、同種でも異種でもよい。Xは酸素原子またはNH、Qは炭素数1〜4のアルキレン基または炭素数2〜4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表し、Zとしては、塩化物イオン等のハロゲン化物イオンや硫酸イオンが例示される。However, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are independently alkyl groups or benzyl groups having 1 to 3 carbon atoms, and R 4 is a hydrogen atom or an alkyl group or benzyl group having 1 to 3 carbon atoms. Yes, it may be of the same type or different types. X represents an oxygen atom or NH, Q represents an alkylene group having 1 to 4 carbon atoms or a hydroxyalkylene group having 2 to 4 carbon atoms, Z represents a counter anion, and Z represents a halide ion such as a chloride ion. And sulfate ion are exemplified.

前記一般式(3)で表されるカチオン性単量体の具体例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノ−2−ヒドロキシプロピル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレートの塩酸塩および硫酸塩、塩化メチル等のハロゲン化アルキル付加物、塩化ベンジル等のハロゲン化ベンジル付加物、硫酸ジメチル等の硫酸ジアルキル付加物等である第4級塩が例示される。また、ジメチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミドの塩酸塩および硫酸塩、塩化メチル等のハロゲン化アルキル付加物、塩化ベンジル等のハロゲン化ベンジル付加物、硫酸ジメチル等の硫酸ジアルキル付加物等である第4級塩も例示される。 Specific examples of the cationic monomer represented by the general formula (3) include dialkyls such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and dimethylamino-2-hydroxypropyl (meth) acrylate. Examples thereof include hydrochlorides and sulfates of aminoalkyl (meth) acrylates, alkyl halide adducts such as methyl chloride, benzyl halide adducts such as benzyl chloride, and dialkyl adducts sulfate such as dimethyl sulfate. Will be done. In addition, dialkylaminoalkyl (meth) acrylamide hydrochloride and sulfate such as dimethylaminopropyl (meth) acrylamide, alkyl halide adduct such as methyl chloride, benzyl halide adduct such as benzyl chloride, and sulfuric acid such as dimethyl sulfate. A quaternary salt such as a dialkyl adduct is also exemplified.

これらの好ましいカチオン性単量体の中でも、特に高分子凝集剤に必要な高分子量化が容易なジメチルアミノエチルアクリレートの塩化メチル付加物である第4級塩およびジメチルアミノエチルメタクリレートの塩化メチル付加物である第4級塩が最も好ましい。また養豚場等の畜産関係で排出される高塩濃度(電気伝導度が高い)汚泥の処理にはジメチルアミノエチルアクリレートの塩化ベンジル付加物である第4級塩が好ましい。これらのカチオン性単量体は単独で使用しても、2種以上を併用してもよい。 Among these preferable cationic monomers, a quaternary salt which is a methyl chloride adduct of dimethylaminoethyl acrylate and a methyl adduct of dimethylaminoethyl methacrylate, which are particularly easy to increase the molecular weight required for a polymer flocculant. The quaternary salt is most preferable. A quaternary salt, which is a benzyl chloride adduct of dimethylaminoethyl acrylate, is preferable for treating sludge having a high salt concentration (high electrical conductivity) discharged from livestock farms and the like. These cationic monomers may be used alone or in combination of two or more.

本発明においてはカチオン性単量体と共重合可能な単量体であれば特に制限無く用いることができる。これらのうち、ノニオン性単量体およびアニオン性単量体は以下に例示される。 In the present invention, any monomer copolymerizable with the cationic monomer can be used without particular limitation. Of these, nonionic monomers and anionic monomers are exemplified below.

ノニオン性単量体としては、(メタ)アクリルアミド系化合物の他、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヒドロキシエチル等の(メタ)アクリル酸アルキル、スチレン、アクリロニトリル、酢酸ビニル等を挙げることができる。これらのノニオン性単量体の中でも、高分子凝集剤として必要な高分子量化が容易であり、高分子凝集剤としての性能が優れることから、(メタ)アクリルアミドが好ましく、水溶性であり、高分子凝集剤としての性能が特に優れるアクリルアミドが最も好ましい。これらのノニオン性単量体は単独で使用しても、2種以上を併用してもよい。 Nonionic monomers include (meth) acrylamide compounds, (meth) methyl acrylate, (meth) ethyl acrylate, (meth) butyl acrylate, (meth) hydroxyethyl acrylate, and the like. Examples thereof include alkyl acrylate, styrene, acrylonitrile, vinyl acetate and the like. Among these nonionic monomers, (meth) acrylamide is preferable, water-soluble, and highly high because it is easy to increase the molecular weight required as a polymer flocculant and the performance as a polymer flocculant is excellent. Acrylamide, which has particularly excellent performance as a molecular flocculant, is most preferable. These nonionic monomers may be used alone or in combination of two or more.

アニオン性単量体としては、(メタ)アクリル酸およびこれらの塩類の他、ビニルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、マレイン酸等およびこれらの塩類を挙げることができる。これらのアニオン性単量体の中でも、高分子凝集剤として必要な高分子量化が容易であり、高分子凝集剤としての性能が優れることから(メタ)アクリル酸およびそれらの塩類が好ましい。塩類としては、アンモニウム塩並びにナトリウム塩およびカリウム塩等のアルカリ金属塩が好ましい。これらのアニオン性単量体は単独で使用しても、2種以上を併用してもよい。 Examples of the anionic monomer include (meth) acrylic acid and salts thereof, vinyl sulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid, maleic acid and the like, and salts thereof. Among these anionic monomers, (meth) acrylic acid and salts thereof are preferable because it is easy to increase the molecular weight required as a polymer flocculant and the performance as a polymer flocculant is excellent. As the salts, ammonium salts and alkali metal salts such as sodium salts and potassium salts are preferable. These anionic monomers may be used alone or in combination of two or more.

単量体混合物中の各単量体の配合比(モル比)には特に制限がない。単量体混合物中の各単量体の配合比(モル比)は、カチオン性単量体:アニオン性単量体:ノニオン性単量体=1〜100:0〜99:0〜99である。ノニオン性単量体を用いる場合、単量体混合物中におけるノニオン性単量体の含有量は、3〜98モル%が好ましく、5〜95モル%が特に好ましい。 The compounding ratio (molar ratio) of each monomer in the monomer mixture is not particularly limited. The compounding ratio (molar ratio) of each monomer in the monomer mixture is cationic monomer: anionic monomer: nonionic monomer = 1 to 100: 0 to 99: 0 to 99. .. When a nonionic monomer is used, the content of the nonionic monomer in the monomer mixture is preferably 3 to 98 mol%, particularly preferably 5 to 95 mol%.

架橋性単量体はポリマー鎖に分岐や架橋構造を導入する目的で使用される。架橋性単量体としてはメチレンビスアクリルアミドまたは下記(4)式で示されるジ(メタ)アクリレートが好ましく、後者では水溶性の高いポリエチレングリコールおよび/またはポリプロピレングリコールが付加されたジ(メタ)アクリレートが好ましい。これらの中でも分子量が小さく水溶性であり、反応性の高いメチレンビスアクリルアミドが特に好ましい。 Crosslinkable monomers are used for the purpose of introducing branched or crosslinked structures into polymer chains. As the crosslinkable monomer, methylenebisacrylamide or di (meth) acrylate represented by the following formula (4) is preferable, and in the latter, di (meth) acrylate to which highly water-soluble polyethylene glycol and / or polypropylene glycol is added is preferable. preferable. Among these, methylenebisacrylamide having a small molecular weight, water solubility, and high reactivity is particularly preferable.

Figure 2020027312
Figure 2020027312

但し、RおよびRはそれぞれ独立にHまたはCH、YはO(CO)またはO(CO)であり、nは1〜10の整数を示す。However, R 5 and R 6 are independently H or CH 3 , Y is O (C 2 H 4 O) n or O (C 3 H 6 O) n , and n is an integer of 1 to 10.

架橋性単量体の好ましい添加量は使用する架橋性単量体の種類や分子量や反応性によって異なるが、一般的には全単量体混合物の合計質量に対して1〜1,000ppmが好ましく、1〜500ppmがより好ましく、1〜200ppmが最も好ましい。1,000ppmを超えて添加すると架橋度が高過ぎて、高分子凝集剤としての凝集性能が著しく低下する。 The preferable amount of the crosslinkable monomer added varies depending on the type of the crosslinkable monomer used, the molecular weight and the reactivity, but generally, 1 to 1,000 ppm is preferable with respect to the total mass of the total monomer mixture. , 1 to 500 ppm is more preferable, and 1 to 200 ppm is most preferable. If it is added in excess of 1,000 ppm, the degree of cross-linking is too high, and the agglutinating performance as a polymer flocculant is significantly reduced.

本発明の水溶性重合体(A)及び(B)を得るための重合の方法は、特に制限されないが、本発明に適用可能なラジカル重合の具体的な形態として、水溶液重合、逆相懸濁重合、逆相エマルション重合等が例示される。これらの中でも水溶性重合体(A)には、水溶性重合体の一次粒子径(メジアン径)を10μm以下に調整しやすく、溶液粘度比を900以上、10,000以下に調整しやすいことから逆相エマルション重合の適用が好ましい。一方、水溶性重合体(B)には、溶液粘度比を100以上、900未満に調整しやすく、工業的な生産における生産コストの面でも有利な水溶液重合の適用が好ましい。 The polymerization method for obtaining the water-soluble polymers (A) and (B) of the present invention is not particularly limited, but specific forms of radical polymerization applicable to the present invention include aqueous polymerization and reverse phase suspension. Examples thereof include polymerization and reverse phase emulsion polymerization. Among these, for the water-soluble polymer (A), the primary particle diameter (median diameter) of the water-soluble polymer can be easily adjusted to 10 μm or less, and the solution viscosity ratio can be easily adjusted to 900 or more and 10,000 or less. Application of reverse phase emulsion polymerization is preferred. On the other hand, for the water-soluble polymer (B), it is preferable to apply aqueous solution polymerization in which the solution viscosity ratio can be easily adjusted to 100 or more and less than 900, which is advantageous in terms of production cost in industrial production.

本発明では、粉末状の高分子凝集剤を製造する際に、逆相エマルション重合により粉末状の前記水溶性重合体(A)を調製し、水溶液重合により粉末状の前記水溶性重合体(B)を調製し、両者を混合することで粉末状の高分子凝集剤を製造する方法とすることが好ましい。 In the present invention, when producing a powdery polymer flocculant, the powdery water-soluble polymer (A) is prepared by reverse phase emulsion polymerization, and the powdery water-soluble polymer (B) is prepared by aqueous solution polymerization. ), And a method for producing a powdery polymer flocculant by mixing the two is preferable.

(1)逆相エマルション重合の適用例
逆相エマルション重合を適用する場合、一般に連続相には水と実質的に非混和性の炭化水素が使用される。本発明の高分子凝集剤では、エマルション重合後、必要に応じて還流脱水後、粉末化のために連続相の炭化水素を乾燥する必要がある。そのため、あまり高沸点の炭化水素は好ましくなく、常圧における沸点が65〜130℃の範囲のものが好ましい。具体的には、ノルマルヘプタンが好ましい。
(1) Application example of reverse phase emulsion polymerization When reverse phase emulsion polymerization is applied, hydrocarbons that are substantially immiscible with water are generally used for the continuous phase. In the polymer flocculant of the present invention, it is necessary to carry out emulsion polymerization, reflux dehydration if necessary, and then dry the continuous phase hydrocarbons for pulverization. Therefore, hydrocarbons having a very high boiling point are not preferable, and hydrocarbons having a boiling point at normal pressure in the range of 65 to 130 ° C. are preferable. Specifically, normal heptane is preferable.

本発明の高分子凝集剤では、逆相エマルション重合用の界面活性剤として、HLBが3.0〜9.0のノニオン性界面活性剤が好適に使用される。HLBが3.0〜5.0のノニオン性界面活性剤がさらに好ましい。 In the polymer flocculant of the present invention, a nonionic surfactant having an HLB of 3.0 to 9.0 is preferably used as the surfactant for reverse phase emulsion polymerization. Nonionic surfactants with an HLB of 3.0 to 5.0 are even more preferred.

界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレアルキレンアルキルエーテル、ソルビタンモノオレート、ソルビタンセスキオレート、ソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタントリオレート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノオレート、ポリエチレングリコールジオレエート、オレイン酸ジエタノールアミド、ラウリン酸モノエタノールアミド、ステアリン酸モノエタノールアミド等のノニオン性界面活性剤を挙げることができる。
これら界面活性剤の有効な添加量は、油中水型エマルション全量に対して0.25〜15質量%が好ましく、0.5〜10質量%がより好ましい。
Examples of surfactants are polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyoxyethyl alkylene alkyl ether, sorbitan monoolate, sorbitan sesquiolate, sorbitan monolaure. Rate, Polyoxyethylene sorbitan monolaurate, Polyoxyethylene sorbitan triolate, Polyoxyethylene sorbit tetraoleate, Polyethylene glycol monoolate, Polyethylene glycol dioleate, Diethanolamide oleate, Monoethanolamide laurate, Monostearate Nonionic surfactants such as ethanolamide can be mentioned.
The effective addition amount of these surfactants is preferably 0.25 to 15% by mass, more preferably 0.5 to 10% by mass, based on the total amount of the water-in-oil emulsion.

重合条件は使用するモノマーや開始剤、重合体の物性に応じて適宜設定される。重合温度は0〜100℃で行い、10〜80℃が好ましい。単量体濃度は20〜50質量%が好ましく、25〜45質量%がより好ましい。重合時間は1〜10時間が好ましい。 The polymerization conditions are appropriately set according to the monomer used, the initiator, and the physical properties of the polymer. The polymerization temperature is 0 to 100 ° C., preferably 10 to 80 ° C. The monomer concentration is preferably 20 to 50% by mass, more preferably 25 to 45% by mass. The polymerization time is preferably 1 to 10 hours.

重合開始剤としては、過硫酸ナトリウム及び過硫酸カリウム等の過硫酸塩、ベンゾイルパーオキサイドやt−ブチルハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の有機過酸化物、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビスイソブチロニトリルおよび2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド]等のアゾ系化合物、並びに過酸化水素、過硫酸塩等の酸化剤と亜硫酸ナトリウム、硫酸第一鉄等の還元剤の組み合わせからなるレドックス系開始剤など公知のものが挙げられる。これらの重合開始剤は単独で使用しても、2種以上を併用してもよい。 Examples of the polymerization initiator include persulfates such as sodium persulfate and potassium persulfate, organic peroxides such as benzoyl peroxide, t-butyl hydroperoxide, and paramentan hydroperoxide, and 2,2'-azobis (2). -Methylpropionamidine) dihydrochloride, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobisisobutyronitrile and 2,2'-azobis [2-methyl-N- (2) -Hydroxyethyl) -propionamide] and other azo compounds, as well as known redox-based initiators consisting of a combination of an oxidizing agent such as hydrogen peroxide and persulfate and a reducing agent such as sodium sulfite and ferrous sulfate. Can be mentioned. These polymerization initiators may be used alone or in combination of two or more.

分子量を調節する方法としては、公知の連鎖移動剤を使用することができる。公知の連鎖移動剤としては、メルカプトエタノール、メルカプトプロピオン酸等のチオール化合物や、亜硫酸ナトリウム、亜硫酸水素ナトリウムおよび次亜リン酸ナトリウム等の還元性無機塩類、エタノール、イソプロピルアルコール等のアルコール類、メタリルスルホン酸ナトリウム等の(メタ)アリル化合物が挙げられる。 As a method for adjusting the molecular weight, a known chain transfer agent can be used. Known chain transfer agents include thiol compounds such as mercaptoethanol and mercaptopropionic acid, reducing inorganic salts such as sodium sulfite, sodium hydrogen sulfite and sodium hypophosphate, alcohols such as ethanol and isopropyl alcohol, and metallicyl. Examples thereof include (meth) allyl compounds such as sodium sulfite.

この他、本発明の効果を阻害しない範囲で安定剤やpH調整剤、酸化防止剤等の添加物を追加しても良い。 In addition, additives such as stabilizers, pH adjusters, and antioxidants may be added as long as the effects of the present invention are not impaired.

本発明の高分子凝集剤のうち、水溶性重合体(A)を逆相エマルション重合で得る場合には、当該水溶性重合体の一次粒子の粒度分布のメジアン径を0.3〜10μmに調整するのが好ましく、0.5〜5μmがさらに好ましく、0.7〜3μmが最も好ましい。メジアン径が10μmを超えると、高分子凝集剤の凝集性能が著しく低下する。メジアン径を0.3μmより小さくしても高分子凝集剤の性能は向上せず、乳化剤の増量や乳化機でより高せん断を加える処理が無駄となるので好ましくない。水溶性重合体の一次粒子のメジアン径が上記の範囲に入るように、炭化水素に界面活性剤を溶解した油相に単量体混合物の水溶液の水相を添加後、乳化機を用いて乳化しておくことが好ましい。 When the water-soluble polymer (A) of the polymer flocculant of the present invention is obtained by reverse phase emulsion polymerization, the median diameter of the particle size distribution of the primary particles of the water-soluble polymer is adjusted to 0.3 to 10 μm. It is preferably 0.5 to 5 μm, more preferably 0.7 to 3 μm. If the median diameter exceeds 10 μm, the agglutinating performance of the polymer flocculant is significantly reduced. Even if the median diameter is made smaller than 0.3 μm, the performance of the polymer flocculant is not improved, and the process of increasing the amount of emulsifier and applying higher shear in the emulsifier becomes wasteful, which is not preferable. After adding the aqueous phase of the aqueous solution of the monomer mixture to the oil phase in which the surfactant is dissolved in the hydrocarbon so that the median diameter of the primary particles of the water-soluble polymer falls within the above range, it is emulsified using an emulsifier. It is preferable to keep it.

また、逆相エマルション重合で得られた油中水型エマルションの水溶性重合体を乾燥する前に、当該エマルションが破壊されないように還流脱水により当該エマルション中の水分を除去することが好ましい。還流脱水を行わずに、または水分の除去が不十分のまま乾燥すると、炭化水素の沸点にもよるが水分よりも先に炭化水素の乾燥が進み、含水ポリマー粒子同士が融着して巨大な含水ゲル状の堆積物になる。その場合、残りの水分を十分に乾燥することが難しくなったり、含水ポリマーが撹拌槽や乾燥機の壁や底に付着したままガラス状に固化するため、取り出して粉末化することが難しくなる。 Further, before drying the water-soluble polymer of the water-in-oil emulsion obtained by reverse phase emulsion polymerization, it is preferable to remove the water content in the emulsion by reflux dehydration so that the emulsion is not destroyed. If the product is dried without reflux dehydration or with insufficient removal of water, the hydrocarbon will dry before the water content, depending on the boiling point of the hydrocarbon, and the hydrous polymer particles will fuse together and become huge. It becomes a hydrogel-like deposit. In that case, it becomes difficult to sufficiently dry the remaining water, or the hydrous polymer solidifies into a glass while adhering to the wall or bottom of the stirring tank or dryer, which makes it difficult to take it out and pulverize it.

還流脱水の後、水溶性重合体が分散したスラリーから残りの水分や炭化水素を乾燥すれば粉末状の水溶性重合体を好適に得ることができる。 After reflux dehydration, the powdery water-soluble polymer can be preferably obtained by drying the remaining water and hydrocarbons from the slurry in which the water-soluble polymer is dispersed.

または、別法として、逆相エマルション重合で得られた油中水型エマルションの水溶性重合体を、還流脱水は行わずに、または還流脱水で一部の水分を除去した後、スプレー乾燥して粉末化することもできる。しかし、背景技術に記載のとおり、スプレー乾燥機の特性上、少量ずつ短時間で乾燥する必要があることから、非常に高温で乾燥する必要があり、高分子量の水溶性重合体が熱劣化を受け易いく、品質がバラついたり、目標とする溶液粘度比に調整できない場合がある。その場合は、乾燥温度を下げて、さらに少量ずつ乾燥することで熱劣化を抑える必要がある。 Alternatively, as another method, the water-soluble polymer of the water-in-oil emulsion obtained by reverse phase emulsion polymerization is spray-dried without performing reflux dehydration or after removing a part of water by reflux dehydration. It can also be powdered. However, as described in the background technology, due to the characteristics of the spray dryer, it is necessary to dry little by little in a short time, so it is necessary to dry at a very high temperature, and the high molecular weight water-soluble polymer causes thermal deterioration. It is easy to receive, the quality may vary, or it may not be possible to adjust to the target solution viscosity ratio. In that case, it is necessary to suppress the thermal deterioration by lowering the drying temperature and further drying in small amounts.

本発明の高分子凝集剤を逆相エマルション重合で得る場合、上記操作によって粉末状の水溶性重合体を得た後、さらに湿式撹拌造粒後、必要に応じて乾燥、篩分、解砕等を行うことで、高分子凝集剤として使用しやすい粉体特性に調整することが好ましい。粉体特性の例としては、粒径が1.7mmを超える粗粒と180μm未満の微粉はそれぞれ10質量%以下であることが好ましく、より好ましくは5質量%以下である。粗粒が多いと高分子凝集剤の粉末を水に溶解するときの溶解速度が遅くなるので好ましくない。一方、微粉が多いと粉立ちするため、高分子凝集剤を取り扱う人の作業環境が悪化するので好ましくない。また、0.5〜1.7mmの粒度成分は50質量%以上であることが好ましく、より好ましくは60質量%以上、最も好ましくは70質量%以上である。嵩比重は0.5〜0.8g/cmであることが好ましく、より好ましくは0.6〜0.7g/cmである。When the polymer flocculant of the present invention is obtained by reverse phase emulsion polymerization, a powdery water-soluble polymer is obtained by the above operation, then wet stirring and granulation, and if necessary, drying, sieving, crushing, etc. It is preferable to adjust the powder characteristics so that it can be easily used as a polymer flocculant. As an example of the powder characteristics, the coarse particles having a particle size of more than 1.7 mm and the fine powder having a particle size of less than 180 μm are each preferably 10% by mass or less, more preferably 5% by mass or less. If there are many coarse particles, the dissolution rate when the polymer flocculant powder is dissolved in water becomes slow, which is not preferable. On the other hand, if there is a large amount of fine powder, it will be powdered, which will deteriorate the working environment of the person who handles the polymer flocculant, which is not preferable. The particle size component of 0.5 to 1.7 mm is preferably 50% by mass or more, more preferably 60% by mass or more, and most preferably 70% by mass or more. Preferably the bulk density is 0.5~0.8g / cm 3, more preferably 0.6~0.7g / cm 3.

さらに、粉末状の水溶性重合体を造粒した場合、造粒品の粒子強度は5〜50Nであることが好ましく、より好ましくは10〜40Nであり、最も好ましくは15〜30Nである。粒子強度が5N未満で不足する場合、造粒品を輸送中または使用中に造粒された粒子の一部が崩壊して微粉に戻ってしまう可能性がある。一方、粒子強度が50Nを超える強度は高分子凝集剤の品質としては過剰であり、コスト的にも高くなるので好ましくない。 Further, when the powdery water-soluble polymer is granulated, the particle strength of the granulated product is preferably 5 to 50 N, more preferably 10 to 40 N, and most preferably 15 to 30 N. If the particle strength is less than 5N and insufficient, some of the granulated particles may collapse and return to fine powder during transportation or use of the granulated product. On the other hand, a strength in which the particle strength exceeds 50 N is not preferable because the quality of the polymer flocculant is excessive and the cost is high.

(2)水溶液重合の適用例
水溶液重合を適用する場合、少なくともカチオン性単量体を含む単量体混合物の水溶液を、ラジカル重合開始剤の存在下、水溶液重合する方法が例示される。単量体混合物の濃度は25〜85質量%とすることが好ましく、より好ましくは30〜65質量%である。単量体混合物の水溶液のpHは2〜5に調製することが好ましい。
(2) Application Example of Aqueous Solution Polymerization When applying aqueous solution polymerization, a method of aqueous solution polymerization of an aqueous solution of a monomer mixture containing at least a cationic monomer in the presence of a radical polymerization initiator is exemplified. The concentration of the monomer mixture is preferably 25 to 85% by mass, more preferably 30 to 65% by mass. The pH of the aqueous solution of the monomer mixture is preferably adjusted to 2-5.

重合反応の際に用いられるラジカル重合開始剤は特に制限されない。水溶液重合の場合は、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、t−ブチルハイドロパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ系化合物、レドックス系開始剤および光重合開始剤等を適宜利用できる。 The radical polymerization initiator used in the polymerization reaction is not particularly limited. In the case of aqueous solution polymerization, persulfates such as potassium persulfate and ammonium persulfate, organic peroxides such as t-butyl hydroperoxide, azo compounds such as azobisisobutyronitrile, redox-based initiators and photopolymerization. Initiators and the like can be used as appropriate.

これらのラジカル重合開始剤は単独で使用しても、2種以上を併用してもよい。 These radical polymerization initiators may be used alone or in combination of two or more.

重合開始温度は、通常0〜35℃が好ましい。重合時間は、通常0.1〜3時間が好ましい。また、重合反応は酸素の存在しない不活性雰囲気で行うことが好ましい。これらの重合条件は公知である。重合反応終了後には、必要に応じて適宜熱処理や乾燥、粉砕等の後処理を行う。これらの後処理も公知の方法を適用できる。 The polymerization start temperature is usually preferably 0 to 35 ° C. The polymerization time is usually preferably 0.1 to 3 hours. Further, the polymerization reaction is preferably carried out in an inert atmosphere in which oxygen does not exist. These polymerization conditions are known. After the completion of the polymerization reaction, post-treatments such as heat treatment, drying, and pulverization are appropriately performed as necessary. Known methods can also be applied to these post-treatments.

前記水溶液重合の中でも、得られる水溶性重合体の物性や品質のバラツキが少なく、安定した生産が可能であり、物性の調整が容易である等の理由から、光照射重合が特に好ましい。光照射重合の具体例としては、少なくともカチオン性単量体を含む単量体混合物の水溶液を、光重合開始剤および連鎖移動剤の存在下、単量体混合物の水溶液に光を照射して重合を行う方法が例示される。 Among the aqueous solution polymerizations, light irradiation polymerization is particularly preferable because the obtained water-soluble polymer has little variation in physical properties and quality, stable production is possible, and the physical properties can be easily adjusted. As a specific example of light irradiation polymerization, an aqueous solution of a monomer mixture containing at least a cationic monomer is polymerized by irradiating the aqueous solution of the monomer mixture with light in the presence of a photopolymerization initiator and a chain transfer agent. The method of performing the above is exemplified.

光照射重合に用いられる光重合開始剤は特に制限されない。好ましい光重合開始剤として、アセトフェノン系光重合開始剤やアゾ系開始剤等が例示されるが、その中でも単量体混合物の水溶液への溶解度が高く、高分子凝集剤として必要な高分子量化が容易である等の理由から、水溶性のアゾ系開始剤が特に好ましい。 The photopolymerization initiator used for light irradiation polymerization is not particularly limited. Preferable photopolymerization initiators include acetophenone-based photopolymerization initiators and azo-based initiators. Among them, the monomer mixture has high solubility in an aqueous solution, and the high molecular weight required as a polymer flocculant can be obtained. A water-soluble azo-based initiator is particularly preferable because it is easy and the like.

水溶性アゾ系開始剤の具体例としては、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩、4,4’−アゾビス(4−シアノ吉草酸)等が例示される。 Specific examples of the water-soluble azo initiator include 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 4,4'-azobis (4-cyanovaleric acid) and the like.

これらの光重合開始剤は単独で使用しても、2種以上を併用してもよい。 These photopolymerization initiators may be used alone or in combination of two or more.

光重合開始剤の添加量は特に制限されない。光重合開始剤の種類、水溶性重合体の分子量、単量体組成および残存単量体の含有量に応じて、適宜調整すればよい。水溶性アゾ系開始剤の場合、通常、単量体混合物中の各単量体の合計質量に対して、質量基準で100〜3,000ppmが好ましい。 The amount of the photopolymerization initiator added is not particularly limited. It may be appropriately adjusted according to the type of the photopolymerization initiator, the molecular weight of the water-soluble polymer, the monomer composition and the content of the residual monomer. In the case of a water-soluble azo initiator, it is usually preferably 100 to 3,000 ppm by mass with respect to the total mass of each monomer in the monomer mixture.

光照射重合に用いられる連鎖移動剤は、主に水溶性重合体の分子量の調整および不溶解物の発生を抑制する目的で添加されるが、その種類は特に制限されない。水溶液重合で使用可能な連鎖移動剤としては、亜硫酸水素ナトリウム、亜硫酸ナトリウム、次亜リン酸ナトリウム、メルカプトエタノール、イソプロパノール等が例示される。これらの中でも単量体混合物の水溶液への溶解度が高く、少量の添加量でも効果が高く、水溶性重合体の分子量を容易に調整できる等の理由から、亜硫酸水素ナトリウムが好ましい。 The chain transfer agent used for light irradiation polymerization is mainly added for the purpose of adjusting the molecular weight of the water-soluble polymer and suppressing the generation of insoluble matter, but the type thereof is not particularly limited. Examples of the chain transfer agent that can be used in aqueous solution polymerization include sodium hydrogen sulfite, sodium sulfite, sodium hypophosphite, mercaptoethanol, isopropanol and the like. Among these, sodium bisulfite is preferable because it has high solubility in an aqueous solution of the monomer mixture, is highly effective even with a small amount of addition, and the molecular weight of the water-soluble polymer can be easily adjusted.

これらの連鎖移動剤は単独で使用しても、2種以上を併用してもよい。 These chain transfer agents may be used alone or in combination of two or more.

連鎖移動剤の添加量は特に制限されない。連鎖移動剤の種類、水溶性重合体の分子量、単量体組成、架橋性単量体の添加量および不溶解量に応じて、適宜調整すればよい。亜硫酸水素ナトリウムの場合、通常、単量体混合物中の各単量体の合計質量に対して、質量基準で1〜100ppmが好ましい。 The amount of the chain transfer agent added is not particularly limited. It may be appropriately adjusted according to the type of chain transfer agent, the molecular weight of the water-soluble polymer, the monomer composition, the amount of the crosslinkable monomer added and the amount of insolubility. In the case of sodium bisulfite, it is usually preferably 1 to 100 ppm on a mass basis with respect to the total mass of each monomer in the monomer mixture.

光照射重合に用いられる光の波長、照射強度、照射時間等の光照射条件は特に制限されない。使用する光重合開始剤の種類および添加量並びに水溶性重合体の物性および性能に応じて、適宜調整すればよい。光重合開始剤として、前記水溶性アゾ系開始剤を使用する場合、波長365nm付近の光が好ましく、照射強度は365nm用のUV照度計による0.1〜1.0mW/cmが好ましい。照射時間は、通常0.1〜3時間が好ましい。The light irradiation conditions such as the wavelength of light, the irradiation intensity, and the irradiation time used for the light irradiation polymerization are not particularly limited. It may be appropriately adjusted according to the type and amount of the photopolymerization initiator used and the physical properties and performance of the water-soluble polymer. When the water-soluble azo-based initiator is used as the photopolymerization initiator, light having a wavelength of around 365 nm is preferable, and the irradiation intensity is preferably 0.1 to 1.0 mW / cm 2 by a UV illuminance meter for 365 nm. The irradiation time is usually preferably 0.1 to 3 hours.

本発明の高分子凝集剤では、粉末化のため、水溶液重合後に得られる含水ゲルを適当な大きさ(好ましくは0.5〜5mm程度)に細断した後、乾燥することが好ましい。必要に応じて、それを更に粉砕して粉末状にしてもよく、また造粒や篩分等を行うことで、高分子凝集剤として使用しやすい粉体特性に調整してもよい。含水ゲルの乾燥は、一般に60〜130℃で行うことが好ましい。好ましい粉体特性は、前記と同様である。 In the polymer flocculant of the present invention, for powdering, it is preferable that the hydrogel obtained after the aqueous solution polymerization is shredded to an appropriate size (preferably about 0.5 to 5 mm) and then dried. If necessary, it may be further pulverized into a powder, or granulated, sieved, or the like to adjust the powder characteristics so that it can be easily used as a polymer flocculant. The water-containing gel is generally preferably dried at 60 to 130 ° C. Preferred powder properties are the same as described above.

本発明の高分子凝集剤のうち、水溶性重合体(B)を水溶液重合で得る場合、当該水溶性重合体の重量平均分子量は、100万〜2000万であることが好ましい。重量平均分子量が100万未満の場合、高分子凝集剤としての汚泥フロックの形成能が不足して、フロック径が十分に大きくならないことがある。また、重量平均分子量が2000万を超えると、架橋反応が進みすぎることがあり、その場合、水に溶けない不溶解量が増加して、高分子凝集剤として有効に作用する有効成分の量が減るばかりでなく、高分子凝集剤を水に溶解した溶解液を送液する現場のポンプを閉塞させるトラブルの原因になることがある。 When the water-soluble polymer (B) of the polymer flocculant of the present invention is obtained by aqueous solution polymerization, the weight average molecular weight of the water-soluble polymer is preferably 1 million to 20 million. When the weight average molecular weight is less than 1 million, the ability to form sludge flocs as a polymer flocculant is insufficient, and the flocs diameter may not be sufficiently large. Further, if the weight average molecular weight exceeds 20 million, the cross-linking reaction may proceed too much, and in that case, the insoluble amount that is insoluble in water increases, and the amount of the active ingredient that effectively acts as a polymer flocculant increases. Not only is it reduced, but it may also cause troubles that block the pump at the site where the solution of the polymer flocculant dissolved in water is sent.

汚泥の脱水方法
本発明の高分子凝集剤の少なくとも1種を添加して脱水する汚泥の脱水方法では、処理対象の汚泥は特に制限されない。下水処理、し尿処理および生活廃水処理等で発生する汚泥の他、食品工場、食肉加工および化学工場等の各種産業廃水処理で発生する汚泥、養豚場等の畜産関係で発生する生し尿およびその廃水処理で発生する汚泥、パルプまたは製紙工業で発生する汚泥等の各種汚泥が処理対象になる。汚泥の種類にも制限はなく、初沈汚泥、余剰汚泥およびこれらの混合汚泥、濃縮汚泥および嫌気性微生物処理した消化汚泥等が何れも処理対象になる。
Sludge dewatering method In the sludge dewatering method in which at least one of the polymer flocculants of the present invention is added to dewater, the sludge to be treated is not particularly limited. In addition to sludge generated in sewage treatment, human waste treatment, domestic wastewater treatment, etc., sludge generated in various industrial wastewater treatments such as food factories, meat processing and chemical factories, raw urine generated in livestock farms such as pig farms and its wastewater Various sludges such as sludge generated in the treatment and sludge generated in the pulp or paper industry are treated. There are no restrictions on the type of sludge, and initial sludge, excess sludge, mixed sludge thereof, concentrated sludge, digested sludge treated with anaerobic microorganisms, etc. are all treated.

本発明の汚泥の脱水方法は、上記各種汚泥に、本発明の高分子凝集剤の少なくとも1種を添加して脱水することを特徴とする。 The sludge dehydration method of the present invention is characterized in that at least one of the polymer flocculants of the present invention is added to the various sludges to dehydrate the sludge.

脱水方法の具体例としては、以下の方法が例示される。すなわち、汚泥に、必要に応じて無機凝集剤を添加し、好ましくはpHを4〜7に調節する。その後、この汚泥に本発明の高分子凝集剤を添加し、公知の方法で撹拌および/または混合することで汚泥中の懸濁物と高分子凝集剤を作用させて、汚泥フロックを形成させる。形成された汚泥フロックを、公知の手段により機械的に脱水処理することで、処理水と脱水ケーキに分離する。なお、本発明の高分子凝集剤として両性水溶性重合体を使用する場合は、前記無機凝集剤を併用することが好ましい。また、脱臭、脱リンおよび脱窒等を目的とする場合は、汚泥のpHを5未満にすることが好ましい。 The following methods are exemplified as specific examples of the dehydration method. That is, an inorganic flocculant is added to the sludge as needed, and the pH is preferably adjusted to 4 to 7. Then, the polymer flocculant of the present invention is added to the sludge, and the suspension in the sludge and the polymer flocculant are allowed to act by stirring and / or mixing by a known method to form sludge flocs. The formed sludge flocs are mechanically dehydrated by a known means to separate them into treated water and a dehydrated cake. When an amphoteric water-soluble polymer is used as the polymer flocculant of the present invention, it is preferable to use the inorganic flocculant in combination. Further, when the purpose is deodorization, dephosphorification, denitrification, etc., the pH of sludge is preferably less than 5.

無機凝集剤としては、特に制限されないが、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄、ポリ硫酸第二鉄等が例示される。 The inorganic flocculant is not particularly limited, and examples thereof include a sulfate band, polyaluminum chloride, ferric chloride, ferrous sulfate, and polyferric sulfate.

脱水装置としては、特に制限されないが、スクリュープレス型脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機、スクリューデカンター、多重円盤等が例示される。 The dehydrator is not particularly limited, and examples thereof include a screw press type dehydrator, a belt press type dehydrator, a filter press type dehydrator, a screw decanter, and a multiple disk.

以下、実施例によりさらに具体的に本発明を説明するが、本発明はこれらの実施例により限定されるものではない。各種物性の測定方法は以下の通りである。各種物性の測定における温度条件は、特に断りのない限り25℃である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The methods for measuring various physical properties are as follows. The temperature condition for measuring various physical properties is 25 ° C. unless otherwise specified.

〔0.5%水溶液粘度〕
純水400mLに、0.50質量%となる量の試料(粉末サンプル)を加えて十分に溶解し、試料溶液を調製した。B型回転式粘度計を用いて、この試料溶液の25℃、ローター回転数12rpmにおける粘度を測定した。
[Viscosity of 0.5% aqueous solution]
A sample (powder sample) in an amount of 0.50% by mass was added to 400 mL of pure water and sufficiently dissolved to prepare a sample solution. Using a B-type rotary viscometer, the viscosity of this sample solution at 25 ° C. and a rotor rotation speed of 12 rpm was measured.

〔0.1%塩粘度〕
塩化ナトリウム5.84gを純水に溶解して全容量を80.0mLに調製した塩化ナトリウム水溶液に、前記0.5%水溶液粘度を測定後の試料溶液20.0mLを加えて十分に溶解し試料溶液を調製した。BLアダプタおよび専用のBLローターを装着したB型回転式粘度計を用いて、この試料溶液の25℃、ローター回転数60rpmにおける粘度を測定した。
[0.1% salt viscosity]
To a sodium chloride aqueous solution prepared by dissolving 5.84 g of sodium chloride in pure water to a total volume of 80.0 mL, add 20.0 mL of the sample solution after measuring the viscosity of the 0.5% aqueous solution to sufficiently dissolve the sample. A solution was prepared. The viscosity of this sample solution at 25 ° C. and a rotor rotation speed of 60 rpm was measured using a B-type rotary viscometer equipped with a BL adapter and a dedicated BL rotor.

〔嵩比重〕
容量25cmの円筒型容器の上にセットしたロートから容器に試料(粉末サンプル)を溢れるまで投入した後、山盛りとなった余剰分を綺麗に取り除き、円筒型容器にぴったりと入った試料の質量と容量の比から嵩比重を求めた。
[Volume specific density]
After the sample (powder sample) is poured into the container from the funnel set on the cylindrical container with a capacity of 25 cm 3 until it overflows, the heaped excess is removed cleanly, and the mass of the sample that fits perfectly in the cylindrical container. The bulk specific gravity was calculated from the ratio of the volume and the volume.

〔粒子強度〕
試料(粉末サンプル)をステンレス製試験篩で篩分し、粒子径が1.0〜1.7mmの粒子を取り出した。これらの粒子について、以下の方法で粒子強度を測定した。
[Particle strength]
The sample (powder sample) was sieved with a stainless steel test sieve, and particles having a particle size of 1.0 to 1.7 mm were taken out. The particle strength of these particles was measured by the following method.

まず、粒子強度を測定する1粒目の粒子を実験台とガラスプレートで挟み、ガラスプレートの上から荷重を加えて粒子を圧縮し、粒子が破壊されるまで徐々に荷重を増加した。そして、粒子が破壊される瞬間の荷重を硬度計(株式会社テクロック製の商品名「テクロック・デュロメータGS−720G」)で測定した。なお、実験台とガラスプレートができるだけ平行を保つように注意した。また、硬度計の押針でガラスプレートを介して粒子の真上から粒子に荷重を加えて測定した。 First, the first particle whose particle strength was to be measured was sandwiched between a laboratory table and a glass plate, and a load was applied from above the glass plate to compress the particles, and the load was gradually increased until the particles were destroyed. Then, the load at the moment when the particles were broken was measured with a hardness tester (trade name "TECLOCK Durometer GS-720G" manufactured by TECLOCK Co., Ltd.). Care was taken to keep the laboratory table and the glass plate as parallel as possible. In addition, a load was applied to the particles from directly above the particles via a glass plate with a needle of a hardness tester for measurement.

1粒目の粒子の圧縮破壊時の荷重を測定後、同じ操作を繰り返して、合計10個の粒子の圧縮破壊時の荷重を測定し、その荷重の平均値を求めて粒子強度(N)とした。 After measuring the load at the time of compression failure of the first particle, the same operation is repeated, the load at the time of compression failure of a total of 10 particles is measured, and the average value of the load is calculated as the particle strength (N). did.

〔フロック径〕
凝集した汚泥中のフロックの大きさ(フロック径)を目視で測定した。
[Flock diameter]
The size of the flocs (flock diameter) in the agglomerated sludge was visually measured.

〔重力ろ過性〕
内径80mm、深さ50mm、目開き250μm又は180μmのステンレス製試験篩に、凝集した汚泥を一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、汚泥投入後、5秒、10秒、20秒、30秒経過後のろ液の容量を計測して、重力ろ過性を評価した。このうち、10秒経過後のろ液の容量を10秒後ろ液量(mL)とした。
[Gravity filterability]
Aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 250 μm or 180 μm at once, and gravity filtration was performed. At this time, set the funnel so that the filtrate enters the 200 mL graduated cylinder, measure the volume of the filtrate 5 seconds, 10 seconds, 20 seconds, and 30 seconds after the sludge is added, and perform gravity filtration. Gender was evaluated. Of these, the volume of the filtrate after 10 seconds was defined as the amount of liquid (mL) after 10 seconds.

〔ろ液の外観〕
前記の重力ろ過性を評価後のろ液の外観について、下記の基準で目視で評価した。
◎: ろ液に懸濁成分(SS)の流出が全く見られない。
〇: ろ液に懸濁成分(SS)の流出がほとんど見られない。
△: ろ液に懸濁成分(SS)の流出が若干量見られる。
×: ろ液に懸濁成分(SS)の流出が多量に見られる。
[Appearance of filtrate]
The appearance of the filtrate after the evaluation of the gravity filterability was visually evaluated according to the following criteria.
⊚: No outflow of suspended component (SS) is observed in the filtrate.
〇: Almost no outflow of suspended component (SS) is observed in the filtrate.
Δ: A small amount of suspended component (SS) outflow is observed in the filtrate.
X: A large amount of suspended component (SS) flows out from the filtrate.

〔脱水ケーキの含水率〕
前記の重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥フロックを、別途記載した脱水方法および条件により機械的に脱水して脱水ケーキを得た。得られた脱水ケーキを取り出し、アルミパンに秤量して、105℃の熱風乾燥機で16時間乾燥した後、乾燥後の質量を測定し、乾燥による減少量と乾燥前の質量の質量比から含水率を求めた。
[Moisture content of dehydrated cake]
The sludge floc after gravity filtration remaining on the stainless steel test sieve after evaluating the gravity filterability was mechanically dehydrated according to the dehydration method and conditions described separately to obtain a dehydrated cake. The obtained dehydrated cake is taken out, weighed in an aluminum pan, dried in a hot air dryer at 105 ° C. for 16 hours, and then the mass after drying is measured. I asked for the rate.

〔脱水ケーキのろ布からの剥離性〕
前記の機械的な脱水試験後の脱水ケーキをろ布から剥がす際、脱水ケーキがろ布から綺麗に剥がれずにろ布に残留する状態を、下記の基準で目視で評価した。
◎: ろ布に脱水ケーキの残留が全く見られない。
〇: ろ布に脱水ケーキの残留がほとんど見られない。
△: ろ布に脱水ケーキの残留が若干量見られる。
×: ろ布に脱水ケーキの残留が多量に見られる。
[Removability of dehydrated cake from filter cloth]
When the dehydrated cake after the mechanical dehydration test was peeled off from the filter cloth, the state in which the dehydrated cake did not peel off cleanly from the filter cloth and remained on the filter cloth was visually evaluated according to the following criteria.
⊚: No residue of dehydrated cake is found on the filter cloth.
〇: Almost no dewatered cake remains on the filter cloth.
Δ: A small amount of dehydrated cake remains on the filter cloth.
X: A large amount of dehydrated cake remains on the filter cloth.

〔フロック強度の手絞り評価〕
前記のステンレス製試験篩上に残った重力ろ過後の汚泥フロックの適量を手に取り、汚泥フロックに含まれる水分を片手で数段階で徐々に強く握って絞り、指の間からSSや凝集物が漏れずにうまく手絞りできるかというフロック強度を下記の基準で評価した。
◎: 指の間から凝集物が全く漏れず、固く絞ることができる。
〇: 指の間から凝集物がほとんど漏れず、固く絞ることができる。
△: 指の間から凝集物が若干量漏れる、または、
脱水ケーキがややベタついて、固く絞ることが難しい。
×: 指の間から凝集物が多量に漏れる、または、
脱水ケーキがかなりベタついて、固く絞ることができない。
[Hand-squeezing evaluation of flock strength]
Take an appropriate amount of sludge floc after gravity filtration remaining on the stainless steel test sieve, squeeze the water contained in the sludge floc with one hand gradually and firmly in several steps, and squeeze SS and aggregates from between your fingers. The flock strength was evaluated according to the following criteria to see if it could be squeezed by hand without leaking.
⊚: No agglomerates leak between the fingers and can be squeezed tightly.
〇: Almost no agglomerates leak between the fingers and can be squeezed tightly.
Δ: A small amount of agglomerates leaks between the fingers, or
The dehydrated cake is a little sticky and difficult to squeeze hard.
×: A large amount of agglomerates leaks between the fingers, or
The dehydrated cake is so sticky that it cannot be squeezed tightly.

<製造例1>
容量2Lの円筒形のセパラブルフラスコにHLBが3.7のソルビタンセスキオレート17.1gを計りとり、256.0gのノルマルヘプタンを添加して溶解し、油相を調製した。一方、別のビーカーに79質量%ジメチルアミノエチルアクリレート塩化メチル4級塩水溶液463.8gと50質量%アクリルアミド水溶液67.2gを混合し、架橋剤としてメチレンビスアクリルアミドの0.1質量%水溶液3.6g、イソプロピルアルコール0.8g、キレート剤のEDTA・二ナトリウムの5質量%水溶液を4.0g、開始剤としてt−ブチルハイドロパーオキサイドの0.35質量%水溶液2.0gを添加後、純水を添加し、98%硫酸でpH4.0に調整し、682.6gの水相を調製した。
<Manufacturing example 1>
17.1 g of sorbitan sesquiolate having an HLB of 3.7 was weighed in a cylindrical separable flask having a capacity of 2 L, and 256.0 g of normal heptane was added and dissolved to prepare an oil phase. On the other hand, 463.8 g of a 79 mass% dimethylaminoethyl acrylate quaternary salt chloride aqueous solution and 67.2 g of a 50 mass% acrylamide aqueous solution were mixed in another beaker, and a 0.1 mass% aqueous solution of methylenebisacrylamide was used as a cross-linking agent. After adding 6 g, 0.8 g of isopropyl alcohol, 4.0 g of a 5 mass% aqueous solution of EDTA / disodium as a chelating agent, and 2.0 g of a 0.35 mass% aqueous solution of t-butyl hydroperoxide as an initiator, pure water. Was added, and the pH was adjusted to 4.0 with 98% sulfuric acid to prepare 682.6 g of an aqueous phase.

次いで、セパラブルフラスコ中で油相を撹拌しながら、水相を添加し、ホモジナイザーで10,000rpmで7分間高速撹拌してメジアン径が1.5μmの油中水型エマルションを調製した。窒素ガス吹き込み管、還流冷却器、温度計を備えたセパラブルカバーをフラスコにセットし、撹拌翼で撹拌しながら、窒素ガスで脱気を開始した。十分に脱気した後、窒素ガスを供給しながら、さらに二酸化硫黄を0.02vol%含む窒素ガスを11.6ml/分の供給量で乳化液中に吹き込み、重合を開始させた。 Next, the aqueous phase was added while stirring the oil phase in the separable flask, and the mixture was stirred at 10,000 rpm for 7 minutes at high speed with a homogenizer to prepare a water-in-oil emulsion having a median diameter of 1.5 μm. A separable cover equipped with a nitrogen gas blowing tube, a reflux condenser, and a thermometer was set in the flask, and degassing was started with nitrogen gas while stirring with a stirring blade. After sufficiently degassing, while supplying nitrogen gas, nitrogen gas containing 0.02 vol% of sulfur dioxide was further blown into the emulsion at a supply amount of 11.6 ml / min to initiate polymerization.

50℃に到達後、2時間この温度を保持した後、初期と同じ開始剤水溶液を追加で添加し、二酸化硫黄を含む窒素ガスの供給量を312.2ml/分に増やし、さらに50℃で1時間保持した後、窒素ガスおよび二酸化硫黄を含む窒素ガスを停止し、重合を終了した。その後、ピロ亜硫酸ナトリウムの1質量%水溶液を4.0g、リンゴ酸の50質量%水溶液9.7gを添加し混合して、目的物の水溶性重合体を含む油中水型エマルションを得た。得られた油中水型エマルションの成分比率は、重合中にノルマルヘプタンと水が僅かに揮発した結果、固形分が45.4質量%、ノルマルヘプタンが24.5質量%、水が30.1質量%であった。 After reaching 50 ° C. and maintaining this temperature for 2 hours, the same initiator aqueous solution as the initial one was additionally added to increase the supply of nitrogen gas containing sulfur dioxide to 312.2 ml / min, and further at 50 ° C. 1 After holding for a time, the nitrogen gas and the nitrogen gas containing sulfur dioxide were stopped, and the polymerization was completed. Then, 4.0 g of a 1% by mass aqueous solution of sodium pyrosulfite and 9.7 g of a 50% by mass aqueous solution of malic acid were added and mixed to obtain a water-in-oil emulsion containing the desired water-soluble polymer. The composition ratio of the obtained water-in-oil emulsion was 45.4% by mass of solid content, 24.5% by mass of normal heptane, and 30.1% of water as a result of slight volatilization of normal heptane and water during polymerization. It was% by mass.

続いて、窒素ガスの吹き込み口、上部に還流冷却器を取り付けたディーン・スターク装置、温度計、さらに還流冷却器の上に真空計、圧力調整弁、真空ポンプを備えた容量300mLのセパラブルフラスコに、ノルマルヘプタンの含有量が固形分の質量の1.1倍となるように、上記で得られた水溶性重合体を含む油中水型エマルション100.0gとノルマルヘプタン25.4gを仕込み、さらに還流冷却器の下の直管部に枝のところまでノルマルヘプタンを仕込み、フラスコ内を撹拌翼で撹拌しながら、窒素ガスを流して系内の気相を窒素置換した。 Next, a separable flask with a capacity of 300 mL equipped with a nitrogen gas inlet, a Dean Stark device with a reflux condenser on the top, a thermometer, and a vacuum gauge, a pressure control valve, and a vacuum pump on the reflux condenser. Into the flask, 100.0 g of a water-in-oil emulsion containing the water-soluble polymer obtained above and 25.4 g of normal heptane were charged so that the content of normal heptane was 1.1 times the mass of the solid content. Further, normal heptane was charged to the branch in the straight pipe portion under the reflux condenser, and nitrogen gas was flowed while stirring the inside of the flask with a stirring blade to replace the gas phase in the system with nitrogen.

その後、オイルバスの温度を130℃に昇温し始めたところ、油中水型エマルションの温度も上昇しておよそ84℃で共沸点に達し、ノルマルヘプタンと水を含む共沸の蒸気が出始めた。共沸の蒸気は還流冷却器まで上がり、凝縮して液体となって直管部に落下する。そこで水はノルマルヘプタンと相分離し、直管部の下相に水が溜まる。一方、直管部の上相にはノルマルヘプタンがあるので、直管部からオーバーフローして溢れるノルマルヘプタンは枝管を通ってフラスコに戻る。こうして直管部に溜まった水が多くなったら、直管部の下のコックを開けて水を抜き取り、還流脱水工程が終了するまでこの操作を繰り返す。そして、脱水率が92%に到達した後、油中水型エマルションを40℃以下に冷却して還流脱水工程を終了した。 After that, when the temperature of the oil bath began to rise to 130 ° C, the temperature of the water-in-oil emulsion also rose and reached the azeotropic boiling point at about 84 ° C, and azeotropic steam containing normal heptane and water began to appear. rice field. The azeotropic steam rises to the reflux condenser, condenses into a liquid, and falls into the straight pipe section. There, the water is phase-separated from normal heptane, and water collects in the lower phase of the straight pipe. On the other hand, since there is normal heptane in the upper phase of the straight pipe portion, the normal heptane overflowing from the straight pipe portion returns to the flask through the branch pipe. When the amount of water accumulated in the straight pipe portion increases in this way, the cock under the straight pipe portion is opened to drain the water, and this operation is repeated until the reflux dehydration step is completed. Then, after the dehydration rate reached 92%, the water-in-oil emulsion was cooled to 40 ° C. or lower to complete the reflux dehydration step.

なお、還流脱水工程が進んでフラスコ内の油中水型エマルションに含まれる水量が減るに連れて沸点が上昇し、次第にノルマルヘプタンの沸点98℃に近付いた。 As the reflux dehydration step progressed and the amount of water contained in the water-in-oil emulsion in the flask decreased, the boiling point increased and gradually approached the boiling point of normal heptane at 98 ° C.

引き続き、ディーン・スターク装置の直管部およびその下に設置した受液槽の残液を排出した後、撹拌下、絶対圧13kPaに減圧し、オイルバスを室温から90℃に昇温して減圧乾燥を行った。途中、油中水型エマルションの温度が40〜43℃くらいで沸点に達し、ノルマルヘプタンと残りの水を含む蒸気が出始めた。凝縮液の流量を見ながら真空度を調節し、全溶剤量の90%以上を蒸発させて、品温が上昇に転じたことを確認後、絶対圧4kPaで30分間の仕上げ乾燥を行った。 Subsequently, after draining the residual liquid in the straight pipe portion of the Dean-Stark apparatus and the liquid receiving tank installed under it, the pressure is reduced to an absolute pressure of 13 kPa under stirring, and the oil bath is heated from room temperature to 90 ° C to reduce the pressure. It was dried. On the way, the temperature of the water-in-oil emulsion reached the boiling point at about 40 to 43 ° C., and steam containing normal heptane and the remaining water began to be emitted. The degree of vacuum was adjusted while observing the flow rate of the condensate, 90% or more of the total amount of the solvent was evaporated, and after confirming that the product temperature started to rise, finish drying was performed at an absolute pressure of 4 kPa for 30 minutes.

凝縮液は直管部には溜めないように直管部の下のコックを常時開放し、その下の受液槽に溜めるようにした。受液槽に溜まった凝縮液が多くなったら、直管部の下のコックを閉めて受液槽の真空を窒素で戻して凝縮液を排出し、乾燥工程が終了するまでこの操作を繰り返した。30分後、乾燥工程を終了し、品温を40℃以下に冷却して粉末状の水溶性重合体を得た。なお、この段階の粉末サンプルは、固形分が97.0質量%、嵩比重が0.40g/cmであり、粉の流動性が極めて悪く、軽く凝集した取り扱いしにくい粉体特性の粉末であった。The cock under the straight pipe was always opened so that the condensate would not be collected in the straight pipe, and the condensate was collected in the liquid receiving tank under it. When the amount of condensate accumulated in the receiving tank increased, the cock under the straight pipe was closed, the vacuum in the receiving tank was returned with nitrogen, the condensate was discharged, and this operation was repeated until the drying process was completed. .. After 30 minutes, the drying step was completed, and the product temperature was cooled to 40 ° C. or lower to obtain a powdery water-soluble polymer. The powder sample at this stage has a solid content of 97.0% by mass and a bulk specific gravity of 0.40 g / cm 3 , and has extremely poor fluidity, and is a lightly agglomerated powder with powder characteristics that is difficult to handle. there were.

さらに、上記と同様の計装を備えたガラス製のセパラブルカバーと容量300mLのステンレス製のセパラブルフラスコを組み合わせた撹拌槽に、底面および壁面とのクリアランスが約1mmとなるようにステンレス製のアンカー翼をセットし、上記で得られた粉末状の水溶性重合体50gを仕込み、ゆっくり撹拌しながら60℃のオイルバスに30分間浸けて粉末サンプルを加温した。次いで、撹拌速度を200rpmに上げて撹拌しながら、結合剤の純水4gをシリンジポンプで約4分間で添加した後、密閉のまま、外温60℃で30分間加熱撹拌して蒸らし状態で湿式撹拌造粒を行った。 Furthermore, a stirring tank that combines a glass separable cover equipped with the same instrumentation as above and a stainless steel separable flask with a capacity of 300 mL is made of stainless steel so that the clearance between the bottom surface and the wall surface is about 1 mm. The anchor blades were set, 50 g of the powdery water-soluble polymer obtained above was charged, and the powder sample was heated by immersing it in an oil bath at 60 ° C. for 30 minutes with gentle stirring. Next, while stirring at a stirring speed of 200 rpm, 4 g of pure water as a binder was added with a syringe pump for about 4 minutes, and then the mixture was heated and stirred at an outside temperature of 60 ° C. for 30 minutes while being sealed and wet in a steamed state. Stirring granulation was performed.

さらに、200rpmで撹拌しながら、外温60℃、絶対圧7kPaに減圧して30分間湿式撹拌造粒を継続した。その後、外温90℃に昇温し、絶対圧4kPaで1時間減圧加熱乾燥した後、目開き2.0mmのステンレス製試験篩で篩分して粗粒を除去し、通過するものを造粒品1とした。粗粒については、篩を通過するように解砕して造粒品2とした。造粒品1と造粒品2を混合して粉体特性を改良した水溶性重合体A1を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。 Further, while stirring at 200 rpm, the pressure was reduced to an outside temperature of 60 ° C. and an absolute pressure of 7 kPa, and wet stirring granulation was continued for 30 minutes. Then, the temperature is raised to an outside temperature of 90 ° C., heat-dried under reduced pressure at an absolute pressure of 4 kPa for 1 hour, and then sieved with a stainless steel test sieve having a mesh size of 2.0 mm to remove coarse particles, and then granulated. It was designated as product 1. The coarse granules were crushed so as to pass through a sieve to obtain a granulated product 2. The granulated product 1 and the granulated product 2 were mixed to obtain a water-soluble polymer A1 having improved powder properties. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例2〜6>
各単量体の組成、架橋剤の添加量、連鎖移動剤の種類および添加量等の重合条件、造粒条件を表1に示すように変えたこと以外は、製造例1と同様に操作して、粉体特性を改良した水溶性重合体A2〜A6を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。
<Manufacturing Examples 2 to 6>
The operation was the same as in Production Example 1 except that the composition of each monomer, the amount of the cross-linking agent added, the polymerization conditions such as the type and amount of the chain transfer agent added, and the granulation conditions were changed as shown in Table 1. As a result, water-soluble polymers A2 to A6 having improved powder properties were obtained. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例7>
各単量体の組成、架橋剤の添加量、連鎖移動剤の種類および添加量等の重合条件、造粒条件を表1に示すように変えたこと、開始剤を2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩の4質量%水溶液2.0gに変えたこと、二酸化硫黄を含む窒素ガスの代わりに窒素ガスだけを使用したこと、反応温度を60℃に変えたこと以外は、製造例1と同様に操作して、粉体特性を改良した水溶性重合体A7を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。
<Manufacturing example 7>
The composition of each monomer, the amount of cross-linking agent added, the polymerization conditions such as the type and amount of chain transfer agent added, and the granulation conditions were changed as shown in Table 1, and the initiator was changed to 2,2'-azobis ( Except for changing to 2.0 g of a 4% by mass aqueous solution of 2-methylpropionamidine) dihydrochloride, using only nitrogen gas instead of nitrogen gas containing sulfur dioxide, and changing the reaction temperature to 60 ° C. , The same procedure as in Production Example 1 was carried out to obtain a water-soluble polymer A7 having improved powder properties. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例8>
内面をテフロン(登録商標)コーティングしたステンレス製反応容器に、79質量%ジメチルアミノエチルアクリレート塩化メチル第4級塩水溶液727.0gと40質量%アクリルアミド水溶液131.7gを秤量し、純水を加えて全質量を1100gとした。この溶液をpH=4に調整した後、窒素ガスを60分間溶液に吹き込みながら溶液の温度を5℃に調節した。その後、ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物である多官能性アクリレート系架橋剤(東亞合成株式会社製;商品名「アロニックスM−306」)、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩および亜硫酸水素ナトリウムを、各単量体純分の合計質量に対して、それぞれ20質量ppm、300質量ppm、30質量ppmとなるように少量の純水または溶媒に溶かして添加した。
<Manufacturing example 8>
727.0 g of a 79 mass% dimethylaminoethyl acrylate quaternary salt chloride aqueous solution and 131.7 g of a 40 mass% acrylamide aqueous solution were weighed in a stainless steel reaction vessel whose inner surface was coated with Teflon (registered trademark), and pure water was added. The total mass was 1100 g. After adjusting the pH of this solution to 4, the temperature of the solution was adjusted to 5 ° C. while blowing nitrogen gas into the solution for 60 minutes. Then, a polyfunctional acrylate-based cross-linking agent (manufactured by Toa Synthetic Co., Ltd .; trade name "Aronix M-306"), which is a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate, 2,2'-azobis (2-methylpropion). Amidin) dihydrochloride and sodium bisulfite are added by dissolving in a small amount of pure water or a solvent so that the total mass of each monomer pure content is 20 mass ppm, 300 mass ppm, and 30 mass ppm, respectively. did.

次いで、反応容器の上方からこの溶液に光照射して重合を行い、含水ゲル状の水溶性重合体を得た。光照射には10Wブラックライト蛍光管4本を用い、照射強度が365nm用のUV照度計で0.4mW/cmとなる条件下で30分間光照射後、400Wブラックライト水銀ランプに切り替えて60分間光照射を継続した。得られた含水ゲルを反応容器から取り出し、チョッパーで細断後、温度100℃の熱風乾燥機で2.5時間乾燥後、粉砕して粉末状の水溶性重合体B1を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。Next, this solution was irradiated with light from above the reaction vessel to carry out polymerization, and a water-containing gel-like water-soluble polymer was obtained. Four 10W blacklight fluorescent tubes are used for light irradiation, and after light irradiation for 30 minutes under the condition that the irradiation intensity is 0.4mW / cm 2 with a UV illuminometer for 365nm, the light is switched to a 400W blacklight mercury lamp 60. Light irradiation was continued for a minute. The obtained hydrogel was taken out from the reaction vessel, shredded with a chopper, dried with a hot air dryer at a temperature of 100 ° C. for 2.5 hours, and then pulverized to obtain a powdery water-soluble polymer B1. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例9>
亜硫酸水素ナトリウムの添加量を表1に示すように変えたこと、並びに、架橋剤を添加しなかったこと以外は、製造例8と同様に操作して、粉末状の水溶性重合体B2を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。
<Manufacturing example 9>
The powdery water-soluble polymer B2 was obtained in the same manner as in Production Example 8 except that the amount of sodium bisulfite added was changed as shown in Table 1 and the cross-linking agent was not added. rice field. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例10>
架橋剤および亜硫酸水素ナトリウムを添加しなかったこと、並びに、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩の添加量を200質量ppmに変えたこと以外は、製造例8と同様に操作して、粉末状の水溶性重合体B3を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。
<Manufacturing example 10>
Same as Production Example 8 except that no cross-linking agent and sodium bisulfite were added, and the amount of 2,2'-azobis (2-methylpropionamidine) dihydrochloride added was changed to 200 parts by mass ppm. To obtain a powdery water-soluble polymer B3. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例11>
各単量体の組成および亜硫酸水素ナトリウムの添加量を表1に示すように変えたこと、並びに、架橋剤を使用せず、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩の添加量を1200質量ppmに変えたこと以外は、製造例8と同様に操作して、粉末状の水溶性重合体B4を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。
<Manufacturing example 11>
The composition of each monomer and the amount of sodium bisulfite added were changed as shown in Table 1, and 2,2'-azobis (2-methylpropion amidine) dihydrochloride without using a cross-linking agent. A powdery water-soluble polymer B4 was obtained in the same manner as in Production Example 8 except that the addition amount was changed to 1200 mass ppm. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

<製造例12>
各単量体の組成および亜硫酸水素ナトリウムの添加量を表1に示すように変えたこと、並びに、架橋剤を使用せず、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩の添加量を1400質量ppmに変えたこと以外は、製造例8と同様に操作して、粉末状の水溶性重合体B5を得た。また得られた粉末サンプルの粉体特性および物性評価を行い、表1に示した。
<Manufacturing example 12>
The composition of each monomer and the amount of sodium bisulfite added were changed as shown in Table 1, and 2,2'-azobis (2-methylpropion amidine) dihydrochloride without using a cross-linking agent. A powdery water-soluble polymer B5 was obtained in the same manner as in Production Example 8 except that the addition amount was changed to 1400 mass ppm. The powder characteristics and physical properties of the obtained powder sample were evaluated and shown in Table 1.

Figure 2020027312
Figure 2020027312

但し、表1における略号については、下記のものを表す。
「エマルション」:逆相エマルション重合
「水溶液」:水溶液重合
「DAC」:ジメチルアミノエチルアクリレート塩化メチル4級塩
「DAB」:ジメチルアミノエチルアクリレート塩化ベンジル4級塩
「DMC」:ジメチルアミノエチルメタクリレート塩化メチル4級塩
「AM」:アクリルアミド
「AA」:アクリル酸
「MBA」:N,N’−メチレンビスアクリルアミド
「M−306」:ペンタエリスリトールトリアクリレートと
ペンタエリスリトールテトラアクリレートの混合物
(東亞合成株式会社製;商品名「アロニックスM−306」)
「IPA」:イソプロピルアルコール
「NaH2PO2」:次亜リン酸ナトリウム
「NaHSO3」:亜硫酸水素ナトリウム
However, the abbreviations in Table 1 represent the following.
"Emulsion": Reverse-phase emulsion polymerization "Aqueous solution": Aqueous solution polymerization "DAC": Dimethylaminoethyl acrylate Methyl chloride quaternary salt "DAB": Dimethylaminoethyl acrylate benzyl chloride quaternary salt "DMC": Dimethylaminoethyl methacrylate methyl chloride Tertiary salt "AM": Acrylamide "AA": Acrylic acid "MBA": N, N'-methylenebisacrylamide "M-306": With pentaerythritol triacrylate
Mixture of pentaerythritol tetraacrylate
(Manufactured by Toagosei Co., Ltd .; product name "Aronix M-306")
"IPA": Isopropyl alcohol "NaH2PO2": Sodium hypophosphate "NaHSO3": Sodium bisulfite

<製造例13〜18、比較製造例1>
製造例1〜3、製造例8および製造例11で製造した粉末状の水溶性重合体を、表2に示す質量比率で均一になるように混合して、粉末状の高分子凝集剤を得た。
<Production Examples 13 to 18, Comparative Production Example 1>
The powdery water-soluble polymers produced in Production Examples 1 to 3, 8 and 11 are mixed so as to be uniform in the mass ratio shown in Table 2 to obtain a powdery polymer flocculant. rice field.

Figure 2020027312
Figure 2020027312

<実施例1〜6、比較例1〜6>
公共下水処理場から採取した汚泥について、フロック形成および脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=5.2、TS=38,200mg/L、VTS/TS=89.5質量%、SS=32,200mg/L、VSS/SS=91.3質量%、粗浮遊物/SS=46.6質量%であった。
<Examples 1 to 6, Comparative Examples 1 to 6>
A tabletop test of floc formation and dehydration treatment was conducted on sludge collected from a public sewage treatment plant. The properties of this sludge are pH = 5.2, TS = 38,200 mg / L, VTS / TS = 89.5% by mass, SS = 32,200 mg / L, VSS / SS = 91.3% by mass, Coarse suspended matter / SS = 46.6% by mass.

まず300mLのビーカーに汚泥200mLを採取し、これに、製造例13〜18、比較製造例1および製造例1〜3、製造例8、製造例11で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表3に示す添加量となるように、シリンジでそれぞれ添加した。この汚泥をスパーテルで60秒間で150回撹拌し、汚泥をフロック化させ、フロック径を目視で測定した。次に、この凝集した汚泥全量を内径80mm、深さ50mm、目開き180μmのステンレス製試験篩に一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、所定時間経過毎にろ液の容量を測定して、重力ろ過性を評価した。また、ろ液の外観を目視で評価した。 First, 200 mL of sludge was collected in a 300 mL beaker, and 0.2 mass of the polymer flocculant produced in Production Examples 13 to 18, Comparative Production Examples 1 and 1-3, Production Example 8 and Production Example 11 was added. % Aqueous solution was added with a syringe so that the polymer flocculant was added in the amount shown in Table 3 with respect to the sludge mass. The sludge was stirred with a spatula 150 times for 60 seconds to flock the sludge, and the flock diameter was visually measured. Next, the total amount of the aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 180 μm at once, and gravity filtration was performed. At this time, the funnel was set so that the filtrate would enter the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Moreover, the appearance of the filtrate was visually evaluated.

次いで、重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥フロックをろ布の上にのせてミニベルトプレス機で圧搾し、圧搾終了後の脱水ケーキを取り出し、脱水ケーキの含水率を測定した。これらの試験結果を表3に示した。 Next, the sludge floc after gravity filtration remaining on the stainless steel test sieve after evaluation of gravity filterability was placed on a filter cloth and squeezed with a mini belt press machine, and the dehydrated cake after squeezing was taken out and the dehydrated cake was taken out. The water content of the cake was measured. The results of these tests are shown in Table 3.

なお、ミニベルトプレス機の条件は、次のとおりである。圧搾ロール段数=3段、ベルト走行速度=0.5m/分、面圧=0.05MPa、ろ布種類:シキシマカンパスT−1189L(杉綾織)、ろ布の通気度=16L/cm/分である。The conditions of the mini belt press machine are as follows. Number of squeezing roll stages = 3 stages, belt running speed = 0.5 m / min, surface pressure = 0.05 MPa, filter cloth type: Shikishima Campus T-1189L (sugi twill), filter cloth air permeability = 16 L / cm 2 / min Is.

Figure 2020027312
Figure 2020027312

表3から、公共下水処理場の汚泥に対して、水溶性重合体(A)と水溶性重合体(B)とを特定の質量比率で含む実施例1〜6は、水溶性重合体(B)しか含まない比較例1〜2に比べて、高分子凝集剤の添加量は増えるものの、最適添加量における10秒後ろ液量は大幅に増加し、重力ろ過性に優れた。また、幅広い添加量において、ろ液の外観に優れ、脱水ケーキの含水率が71.0%未満と低くなり、機械的な圧搾脱水性にも優れた。 From Table 3, Examples 1 to 6 containing the water-soluble polymer (A) and the water-soluble polymer (B) in a specific mass ratio with respect to the sludge of the public sewage treatment plant are the water-soluble polymers (B). Although the amount of the polymer flocculant added was increased as compared with Comparative Examples 1 and 2 containing only), the amount of liquid after 10 seconds at the optimum amount of addition was significantly increased, and the gravity filterability was excellent. Further, in a wide range of addition amounts, the appearance of the filtrate was excellent, the water content of the dehydrated cake was as low as less than 71.0%, and the mechanical squeezing dehydration property was also excellent.

さらに、実施例1〜6は、水溶性重合体(A)しか含まない比較例3〜5に比べると、高分子凝集剤の最適添加量を減らせる傾向にあり、最適添加量における10秒後ろ液量や脱水ケーキの含水率も比較例3〜5に比べて優れることから、実施例1〜6の高分子凝集剤は少ない添加量で脱水処理できて、且つ、優れた脱水性能を示した。 Further, in Examples 1 to 6, the optimum addition amount of the polymer flocculant tends to be reduced as compared with Comparative Examples 3 to 5 containing only the water-soluble polymer (A), and 10 seconds after the optimum addition amount. Since the amount of liquid and the water content of the dehydrated cake are also superior to those of Comparative Examples 3 to 5, the polymer flocculants of Examples 1 to 6 could be dehydrated with a small amount of addition and showed excellent dehydration performance. ..

<製造例19〜22>
製造例4〜5および製造例9〜10で製造した粉末状の水溶性重合体を、表4に示す質量比率で均一になるように混合して、粉末状の高分子凝集剤を得た。
<Manufacturing Examples 19 to 22>
The powdery water-soluble polymers produced in Production Examples 4 to 5 and Production Examples 9 to 10 were mixed so as to be uniform in the mass ratio shown in Table 4 to obtain a powdery polymer flocculant.

Figure 2020027312
Figure 2020027312

<実施例7〜10、比較例7〜9>
養豚場の排尿汚水の浄化処理施設から採取した養豚場の廃水処理汚泥について、フロック形成および脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=5.8、TS=38,000mg/L、VTS/TS=74.9質量%、SS=17,500mg/L、VSS/SS=88.0質量%、粗浮遊物/SS=6.63質量%、電気伝導度=1,710mS/mであった。この原汚泥は粘性が高過ぎるので、採取した原汚泥に同じ容量の処理水を加えて2倍に希釈した汚泥を用いて、以下の評価を行った。
<Examples 7 to 10, Comparative Examples 7 to 9>
A tabletop test of floc formation and dehydration treatment was carried out on the wastewater treatment sludge of the pig farm collected from the purification treatment facility of urinary sewage of the pig farm. The properties of this sludge are pH = 5.8, TS = 38,000 mg / L, VTS / TS = 74.9% by mass, SS = 17,500 mg / L, VSS / SS = 88.0% by mass, The coarse suspended matter / SS = 6.63% by mass and the electric conductivity = 1,710 mS / m. Since this raw sludge is too viscous, the following evaluation was carried out using sludge obtained by adding the same volume of treated water to the collected raw sludge and diluting it twice.

まず300mLのビーカーに希釈した汚泥200mLを採取し、これに、製造例19〜22および製造例4、製造例5、製造例9で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表5に示す添加量となるように、シリンジでそれぞれ添加した。この汚泥をスパーテルで60秒間撹拌し、汚泥をフロック化させ、フロック径を目視で測定した。次に、この凝集した汚泥全量を内径80mm、深さ50mm、目開き180μmのステンレス製試験篩に一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、所定時間経過毎にろ液の容量を測定して、重力ろ過性を評価した。また、ろ液の外観を目視で評価した。 First, 200 mL of sludge diluted in a 300 mL beaker was collected, and a 0.2% by mass aqueous solution of the polymer flocculant produced in Production Examples 19 to 22 and Production Examples 4, 5, and 9 was added to the high molecular weight coagulant. The molecular flocculants were added with a syringe so that the amount of the molecular flocculant was the amount shown in Table 5 with respect to the sludge mass. The sludge was stirred with a spatula for 60 seconds to flock the sludge, and the flock diameter was visually measured. Next, the total amount of the aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 180 μm at once, and gravity filtration was performed. At this time, the funnel was set so that the filtrate would enter the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Moreover, the appearance of the filtrate was visually evaluated.

次いで、重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥フロックをろ布の上にのせてミニベルトプレス機で圧搾し、圧搾終了後の脱水ケーキを取り出し、脱水ケーキのろ布からの剥離性を評価した。これらの試験結果を表5に示した。 Next, the sludge floc after gravity filtration remaining on the stainless steel test sieve after evaluation of gravity filterability was placed on a filter cloth and squeezed with a mini belt press machine, and the dehydrated cake after squeezing was taken out and the dehydrated cake was taken out. The releasability from the filter cloth was evaluated. The results of these tests are shown in Table 5.

なお、ミニベルトプレス機の条件は、次のとおりである。圧搾ロール段数=3段、ベルト走行速度=0.5m/分、面圧=0.05MPa、ろ布種類:日本フィルコン製ポリエステルE−6080である。 The conditions of the mini belt press machine are as follows. Number of squeezing roll stages = 3 stages, belt running speed = 0.5 m / min, surface pressure = 0.05 MPa, filter cloth type: Polyester E-6080 manufactured by Nippon Filcon.

Figure 2020027312
Figure 2020027312

表5から、養豚場の廃水処理汚泥に対して、水溶性重合体(A)と水溶性重合体(B)とを特定の質量比率で含む実施例7〜10は、水溶性重合体(B)しか含まない比較例7に比べて、高分子凝集剤の添加量は増えるものの、最適添加量における10秒後ろ液量は大幅に増加し、重力ろ過性に優れた。また、ろ液の外観や脱水ケーキのろ布からの剥離性にも優れた。 From Table 5, Examples 7 to 10 containing the water-soluble polymer (A) and the water-soluble polymer (B) in a specific mass ratio with respect to the wastewater-treated sludge of the pig farm are the water-soluble polymer (B). Although the amount of the polymer flocculant added was increased as compared with Comparative Example 7 containing only), the amount of liquid after 10 seconds at the optimum amount of addition was significantly increased, and the gravity filterability was excellent. In addition, the appearance of the filtrate and the peelability of the dehydrated cake from the filter cloth were also excellent.

さらに、実施例7〜10は、水溶性重合体(A)しか含まない比較例8〜9に比べると、高分子凝集剤の最適添加量を減らせる傾向にあり、最適添加量における10秒後ろ液量やろ液の外観や脱水ケーキのろ布からの剥離性にも優れることから、実施例7〜10の高分子凝集剤は少ない添加量で脱水処理できて、且つ、優れた脱水性能を示した。 Further, in Examples 7 to 10, the optimum addition amount of the polymer flocculant tends to be reduced as compared with Comparative Examples 8 to 9 containing only the water-soluble polymer (A), and 10 seconds after the optimum addition amount. Since the amount of the liquid, the appearance of the filtrate, and the releasability of the dehydrated cake from the filter cloth are excellent, the polymer flocculants of Examples 7 to 10 can be dehydrated with a small amount of addition and exhibit excellent dehydration performance. rice field.

<製造例23>
製造例7および製造例11で製造した粉末状の水溶性重合体を、表6に示す質量比率で均一になるように混合して、粉末状の高分子凝集剤を得た。
<Manufacturing example 23>
The powdery water-soluble polymers produced in Production Example 7 and Production Example 11 were mixed so as to be uniform in the mass ratio shown in Table 6 to obtain a powdery polymer flocculant.

Figure 2020027312
Figure 2020027312

<実施例11、比較例10〜11>
し尿処理施設から採取したし尿処理汚泥について、フロック形成および脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=6.7、TS=18,200mg/L、VTS/TS=76.4質量%、SS=17,100mg/L、VSS/SS=77.8質量%、粗浮遊物/SS=0.59質量%であった。
<Example 11, Comparative Examples 10 to 11>
A tabletop test of floc formation and dehydration treatment was carried out on the human waste treatment sludge collected from the human waste treatment facility. The properties of this sludge are pH = 6.7, TS = 18,200 mg / L, VTS / TS = 76.4% by mass, SS = 17,100 mg / L, VSS / SS = 77.8% by mass, Coarse suspended matter / SS = 0.59% by mass.

まず300mLのビーカーに汚泥200mLを採取し、これに、製造例23および製造例7、製造例11で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表7に示す添加量となるように、シリンジでそれぞれ添加した。この汚泥をスパーテルで30秒間で100回撹拌し、汚泥をフロック化させ、フロック径を目視で測定した。次に、この凝集した汚泥全量を内径80mm、深さ50mm、目開き250μmのステンレス製試験篩に一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、所定時間経過毎にろ液の容量を測定して、重力ろ過性を評価した。また、ろ液の外観を目視で評価した。 First, 200 mL of sludge was collected in a 300 mL beaker, and a 0.2% by mass aqueous solution of the polymer flocculant produced in Production Example 23, Production Example 7, and Production Example 11 was added to the sludge by the polymer flocculant with respect to the sludge mass. Each was added with a syringe so as to have the addition amount shown in Table 7. The sludge was stirred with a spatula 100 times for 30 seconds to flock the sludge, and the flock diameter was visually measured. Next, the total amount of the aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 250 μm at once, and gravity filtration was performed. At this time, the funnel was set so that the filtrate would enter the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Moreover, the appearance of the filtrate was visually evaluated.

次いで、重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥フロックをろ布の上にのせてミニベルトプレス機で圧搾し、圧搾終了後の脱水ケーキを取り出し、脱水ケーキの含水率を測定した。これらの試験結果を表7に示した。 Next, the sludge floc after gravity filtration remaining on the stainless steel test sieve after evaluation of gravity filterability was placed on a filter cloth and squeezed with a mini belt press machine, and the dehydrated cake after squeezing was taken out and the dehydrated cake was taken out. The water content of the cake was measured. The results of these tests are shown in Table 7.

なお、ミニベルトプレス機の条件は、次のとおりである。圧搾ロール段数=3段、ベルト走行速度=0.5m/分、面圧=0.05MPa、ろ布種類:シキシマカンパスT−1189L(杉綾織)、ろ布の通気度=16L/cm/分である。The conditions of the mini belt press machine are as follows. Number of squeezing roll stages = 3 stages, belt running speed = 0.5 m / min, surface pressure = 0.05 MPa, filter cloth type: Shikishima Campus T-1189L (sugi twill), filter cloth air permeability = 16 L / cm 2 / min Is.

Figure 2020027312
Figure 2020027312

表7から、し尿処理施設の汚泥に対して、水溶性重合体(A)と水溶性重合体(B)とを特定の質量比率で含む実施例11は、水溶性重合体(B)しか含まない比較例10に比べて、高分子凝集剤の添加量は増えるものの、最適添加量における10秒後ろ液量は大幅に増加し、重力ろ過性に優れた。また、ろ液の外観や脱水ケーキの含水率にも優れた。 From Table 7, Example 11 containing the water-soluble polymer (A) and the water-soluble polymer (B) in a specific mass ratio with respect to the sludge of the human waste treatment facility contains only the water-soluble polymer (B). Compared with Comparative Example 10, the amount of the polymer flocculant added was increased, but the amount of liquid after 10 seconds at the optimum amount of addition was significantly increased, and the gravity filterability was excellent. In addition, the appearance of the filtrate and the water content of the dehydrated cake were also excellent.

さらに、実施例11は、水溶性重合体(A)しか含まない比較例11に比べると、高分子凝集剤の幅広い添加量で10秒後ろ液量やろ液の外観、脱水ケーキの含水率にも優れて、良好な脱水性能を示した。なお、脱水ケーキの含水率について、実施例11は比較例10〜11に比べて含水率1%程度の改善が見られたが、この差は有意であった。当該し尿処理施設の安定した処理を可能にすることに加え、後工程の脱水ケーキの乾燥および焼却設備の電力使用量および燃料使用量の削減に貢献できる。 Further, in Example 11, as compared with Comparative Example 11 containing only the water-soluble polymer (A), the amount of the polymer flocculant added was wide, and the amount of the liquid after 10 seconds, the appearance of the filtrate, and the water content of the dehydrated cake were also improved. It was excellent and showed good dehydration performance. Regarding the water content of the dehydrated cake, the water content of Example 11 was improved by about 1% as compared with Comparative Examples 10 to 11, but this difference was significant. In addition to enabling stable treatment of the urine treatment facility, it can contribute to the reduction of electricity consumption and fuel consumption of the dehydrated cake drying and incinerator in the subsequent process.

<製造例24>
製造例6および製造例12で製造した粉末状の水溶性重合体を、表8に示す質量比率で均一になるように混合して、粉末状の高分子凝集剤を得た。
<Manufacturing example 24>
The powdery water-soluble polymers produced in Production Example 6 and Production Example 12 were mixed so as to be uniform in the mass ratio shown in Table 8 to obtain a powdery polymer flocculant.

Figure 2020027312
Figure 2020027312

<実施例12、比較例12〜13>
製紙工場から採取した製紙汚泥について、フロック形成および脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=6.6、TS=41,200mg/L、VTS/TS=34.0質量%、SS=38,600mg/L、VSS/SS=33.9質量%、粗浮遊物/SS=3.63質量%、灰分=66.1質量%であった。
<Example 12, Comparative Examples 12 to 13>
A tabletop test of floc formation and dehydration treatment was carried out on the paper sludge collected from the paper mill. The properties of this sludge are pH = 6.6, TS = 41,200 mg / L, VTS / TS = 34.0% by mass, SS = 38,600 mg / L, VSS / SS = 33.9% by mass, The coarse suspended matter / SS = 3.63% by mass and the ash content = 66.1% by mass.

まず300mLのビーカーに汚泥200mLを採取し、これに、1剤目のアニオン性高分子凝集剤(MTアクアポリマー株式会社製;商品名「アコフロックA−235H」)の0.1質量%水溶液を、高分子凝集剤が汚泥質量に対して10質量ppmとなるようにシリンジで添加した。この汚泥をスパーテルで50回撹拌し、汚泥をフロック化させた。 First, 200 mL of sludge was collected in a 300 mL beaker, and a 0.1% by mass aqueous solution of the first anionic polymer flocculant (manufactured by MT Aqua Polymer Co., Ltd .; trade name "Akovlock A-235H") was added thereto. The polymer flocculant was added with a syringe so as to be 10 mass ppm with respect to the sludge mass. The sludge was stirred with a spatula 50 times to flock the sludge.

次に、2剤目のカチオン性又は両性高分子凝集剤である製造例24および製造例6、製造例12で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表9に示す添加量となるように、シリンジでそれぞれ添加した。この汚泥をビーカー間の移し替えによる混合を10回行った後、さらにスパーテルで30回撹拌して整え、汚泥のフロックを造粒させた。このときのフロック径を目視で測定した。その後、この凝集した汚泥全量を内径80mm、深さ50mm、目開き250μmのステンレス製試験篩に一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、所定時間経過毎にろ液の容量を測定して、重力ろ過性を評価した。また、ろ液の外観を目視で評価した。 Next, a 0.2% by mass aqueous solution of the polymer flocculant produced in Production Example 24, Production Example 6, and Production Example 12, which is the second cationic or amphoteric polymer flocculant, is subjected to sludge. Each was added with a syringe so that the amount added was as shown in Table 9 with respect to the mass. The sludge was mixed by transfer between beakers 10 times, and then stirred with a spatula 30 times to prepare the sludge flocs. The flock diameter at this time was visually measured. Then, the total amount of the aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 250 μm at once, and gravity filtration was performed. At this time, the funnel was set so that the filtrate would enter the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Moreover, the appearance of the filtrate was visually evaluated.

次いで、重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥フロックの適量を手に取り、汚泥フロックに含まれる水分を片手で絞って、指の間からSSや凝集物が漏れずにうまく手絞りできるかというフロック強度を評価した。これらの試験結果を表9に示した。 Next, take an appropriate amount of sludge flocs after gravity filtration remaining on the stainless steel test sieve after evaluating the gravity filterability, squeeze the water contained in the sludge flocs with one hand, and SS and aggregates from between the fingers. We evaluated the flock strength to see if it could be squeezed by hand without leaking. The results of these tests are shown in Table 9.

Figure 2020027312
Figure 2020027312

表9から、製紙汚泥に対して、水溶性重合体(A)と水溶性重合体(B)とを特定の質量比率で含む実施例12は、水溶性重合体(B)しか含まない比較例12に比べて、高分子凝集剤の添加量はやや増えるものの、最適添加量における10秒後ろ液量は大幅に増加し、重力ろ過性に優れた。また、ろ液の外観やフロックの手絞り評価にも優れた。 From Table 9, Example 12 containing the water-soluble polymer (A) and the water-soluble polymer (B) in a specific mass ratio with respect to the papermaking sludge is a comparative example containing only the water-soluble polymer (B). Although the amount of the polymer flocculant added was slightly increased as compared with No. 12, the amount of liquid after 10 seconds at the optimum amount of addition was significantly increased, and the gravity filterability was excellent. It was also excellent in the appearance of the filtrate and the evaluation of flock hand squeezing.

さらに、実施例12は、水溶性重合体(A)しか含まない比較例13に比べても、高分子凝集剤の幅広い添加量で10秒後ろ液量やろ液の外観、フロックの手絞り評価に優れて、良好な脱水性能を示した。 Further, in Example 12, compared with Comparative Example 13 containing only the water-soluble polymer (A), a wide range of addition amounts of the polymer flocculant was used to evaluate the amount of liquid after 10 seconds, the appearance of the filtrate, and the manual drawing of flocs. It was excellent and showed good dehydration performance.

Claims (11)

少なくとも下記式(1)で表される溶液粘度比が900以上、10,000以下である水溶性重合体(A)と、前記溶液粘度比が100以上、900未満である水溶性重合体(B)とを含有し、水溶性重合体(A)及び水溶性重合体(B)の合計質量に対する水溶性重合体(A)の含有量が5〜90質量%であることを特徴とする粉末状のカチオン性又は両性の高分子凝集剤。
Figure 2020027312
但し、0.5%水溶液粘度は、0.5質量%濃度の重合体水溶液をB型回転式粘度計を用いて、ローター回転数12rpm、25℃で測定した粘度(mPa・s)であり、0.1%塩粘度は、0.5質量%濃度の重合体水溶液を0.1質量%濃度に希釈し、1NのNaClを溶解した重合体の塩水溶液をB型回転式粘度計とBLアダプターを用いて、ローター回転数60rpm、25℃で測定した粘度(mPa・s)である。
A water-soluble polymer (A) having a solution viscosity ratio of at least 900 or more and 10,000 or less represented by the following formula (1) and a water-soluble polymer (B) having a solution viscosity ratio of 100 or more and less than 900. ), And the content of the water-soluble polymer (A) is 5 to 90% by mass with respect to the total mass of the water-soluble polymer (A) and the water-soluble polymer (B). Cationic or amphoteric polymer flocculants.
Figure 2020027312
However, the viscosity of the 0.5% aqueous solution is the viscosity (mPa · s) measured by using a B-type rotary viscometer at a rotor rotation speed of 12 rpm and 25 ° C. for a polymer aqueous solution having a concentration of 0.5% by mass. For the 0.1% salt viscosity, a 0.5% by mass concentration polymer aqueous solution was diluted to a 0.1% by mass concentration, and a 1N NaCl-dissolved polymer salt aqueous solution was used as a B-type rotary viscometer and a BL adapter. Is the viscosity (mPa · s) measured at a rotor rotation speed of 60 rpm and 25 ° C.
前記水溶性重合体(A)及び(B)が、下記一般式(2)で表される構造のカチオン性構成単位の1種又は2種以上を含む請求項1に記載の粉末状の高分子凝集剤。
Figure 2020027312
但し、Rは水素原子又はメチル基、R及びRはそれぞれ独立に炭素数1〜3のアルキル基又はベンジル基、Rは水素原子、炭素数1〜3のアルキル基又はベンジル基であり、同種でも異種でもよい。Xは酸素原子又はNH、Qは炭素数1〜4のアルキレン基又は炭素数2〜4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表す。
The powdery polymer according to claim 1, wherein the water-soluble polymers (A) and (B) contain one or more cationic structural units having a structure represented by the following general formula (2). Coagulant.
Figure 2020027312
However, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are independently alkyl groups or benzyl groups having 1 to 3 carbon atoms, and R 4 is a hydrogen atom or an alkyl group or benzyl group having 1 to 3 carbon atoms. Yes, it may be of the same type or different types. X represents an oxygen atom or NH, Q represents an alkylene group having 1 to 4 carbon atoms or a hydroxyalkylene group having 2 to 4 carbon atoms, and Z represents a counter anion.
前記水溶性重合体(A)及び(B)が、ジメチルアミノエチルアクリレートの塩化メチル第4級塩又は塩化ベンジル第4級塩、ジメチルアミノエチルメタクリレートの塩化メチル第4級塩の少なくとも1種を含む単量体混合物を重合して得られたものである請求項1又は請求項2に記載の粉末状の高分子凝集剤。 The water-soluble polymers (A) and (B) contain at least one of a methyl quaternary salt of dimethylaminoethyl acrylate or a quaternary salt of benzyl chloride and a quaternary salt of methyl chloride of dimethylaminoethyl methacrylate. The powdery polymer flocculant according to claim 1 or 2, which is obtained by polymerizing a monomer mixture. 前記水溶性重合体(A)及び/又は(B)が、さらにノニオン性単量体を含む単量体混合物を重合して得られたものである請求項3に記載の粉末状の高分子凝集剤。 The powdery polymer aggregation according to claim 3, wherein the water-soluble polymer (A) and / or (B) is obtained by further polymerizing a monomer mixture containing a nonionic monomer. Agent. 前記ノニオン性単量体がアクリルアミドである請求項4に記載の粉末状の高分子凝集剤。 The powdery polymer flocculant according to claim 4, wherein the nonionic monomer is acrylamide. 前記水溶性重合体(A)及び/又は(B)が、さらにアニオン性単量体を含む単量体混合物を重合して得られたものである請求項4又は請求項5に記載の粉末状の高分子凝集剤。 The powdery state according to claim 4 or 5, wherein the water-soluble polymer (A) and / or (B) is obtained by further polymerizing a monomer mixture containing an anionic monomer. Polymer flocculant. 前記アニオン性単量体がアクリル酸である請求項6に記載の粉末状の高分子凝集剤。 The powdery polymer flocculant according to claim 6, wherein the anionic monomer is acrylic acid. 前記水溶性重合体(A)及び(B)が、いずれも嵩比重が0.5〜0.8g/cmの粉末であり、当該粉末のうち少なくとも1種が粒子強度が5N以上となるように造粒加工された造粒物を含む粉末であり、2種以上の当該粉末が混合されたものである請求項1〜請求項7のいずれかに記載の粉末状の高分子凝集剤。The water-soluble polymers (A) and (B) are both powders having a bulk specific gravity of 0.5 to 0.8 g / cm 3 , and at least one of the powders has a particle strength of 5 N or more. The powdery polymer flocculant according to any one of claims 1 to 7, which is a powder containing a granulated product which has been granulated in the above, and is a mixture of two or more kinds of the powder. 汚泥に、請求項1〜請求項8のいずれかに記載の高分子凝集剤の少なくとも1種を添加して脱水する汚泥の脱水方法。 A method for dehydrating sludge by adding at least one of the polymer flocculants according to any one of claims 1 to 8 to sludge to dehydrate the sludge. 前記水溶性重合体(A)の0.5%水溶液粘度が1,000〜15,000mPa・sであり、前記水溶性重合体(A)の0.1%塩粘度が1.1〜3.5mPa・sであり、前記水溶性重合体(B)の0.5%水溶液粘度が500〜3,500mPa・sであり、前記水溶性重合体(B)の0.1%塩粘度が1.8〜7.0mPa・sである請求項1〜請求項8のいずれかに記載の粉末状の高分子凝集剤。 The 0.5% aqueous solution viscosity of the water-soluble polymer (A) is 1,000 to 15,000 mPa · s, and the 0.1% salt viscosity of the water-soluble polymer (A) is 1.1 to 3. It is 5 mPa · s, the 0.5% aqueous solution viscosity of the water-soluble polymer (B) is 500 to 3,500 mPa · s, and the 0.1% salt viscosity of the water-soluble polymer (B) is 1. The powdery polymer flocculant according to any one of claims 1 to 8, which is 8 to 7.0 mPa · s. 請求項1〜請求項8のいずれかに記載の粉末状の高分子凝集剤の製造方法であって、逆相エマルション重合により粉末状の前記水溶性重合体(A)を調製し、水溶液重合により粉末状の前記水溶性重合体(B)を調製し、両者を混合することで粉末状の高分子凝集剤を製造する方法。 The method for producing a powdery polymer flocculant according to any one of claims 1 to 8, wherein the powdery water-soluble polymer (A) is prepared by reverse phase emulsion polymerization and subjected to aqueous solution polymerization. A method for producing a powdery polymer flocculant by preparing the powdery water-soluble polymer (B) and mixing the two.
JP2020534764A 2018-08-03 2019-08-02 Polymer flocculant and sludge dewatering method Active JP7362620B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018146899 2018-08-03
JP2018146899 2018-08-03
PCT/JP2019/030409 WO2020027312A1 (en) 2018-08-03 2019-08-02 Macromolecular coagulant and sludge dehydration method

Publications (2)

Publication Number Publication Date
JPWO2020027312A1 true JPWO2020027312A1 (en) 2021-08-10
JP7362620B2 JP7362620B2 (en) 2023-10-17

Family

ID=69230874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534764A Active JP7362620B2 (en) 2018-08-03 2019-08-02 Polymer flocculant and sludge dewatering method

Country Status (2)

Country Link
JP (1) JP7362620B2 (en)
WO (1) WO2020027312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489062B2 (en) 2020-07-22 2024-05-23 ハイモ株式会社 Dewatering method for high salt concentration sludge

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523355A (en) * 2001-04-05 2004-08-05 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド How to aggregate suspension
JP2005144346A (en) * 2003-11-17 2005-06-09 Hymo Corp Coagulating agent and its usage
JP2008104908A (en) * 2006-10-23 2008-05-08 Daiyanitorikkusu Kk Amphoteric polymer flocculant and sludge-treating method using the same
JP2009285545A (en) * 2008-05-28 2009-12-10 Mt Aquapolymer Inc Method of mixing powdered polymer flocculant
JP2010195915A (en) * 2009-02-25 2010-09-09 Hymo Corp Powdery water-soluble polymer
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same
JP2013049050A (en) * 2011-07-29 2013-03-14 Sanyo Chem Ind Ltd Polymer flocculant
JP2014024044A (en) * 2012-07-30 2014-02-06 Tomooka Kaken Kk Cation high polymer coagulant
JP2017209651A (en) * 2016-05-27 2017-11-30 栗田工業株式会社 Paper pulp sludge treatment method
JP2018001048A (en) * 2016-06-27 2018-01-11 Mtアクアポリマー株式会社 Production method of polymer flocculant granulated powder and dewatering method of sludge
JP2018108560A (en) * 2016-12-30 2018-07-12 Mtアクアポリマー株式会社 Polymer flocculant and method for manufacture of same, and method for dewatering sludge by use of polymer flocculant, and method for evaluating flocculation performance of polymer flocculant

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523355A (en) * 2001-04-05 2004-08-05 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド How to aggregate suspension
JP2005144346A (en) * 2003-11-17 2005-06-09 Hymo Corp Coagulating agent and its usage
JP2008104908A (en) * 2006-10-23 2008-05-08 Daiyanitorikkusu Kk Amphoteric polymer flocculant and sludge-treating method using the same
JP2009285545A (en) * 2008-05-28 2009-12-10 Mt Aquapolymer Inc Method of mixing powdered polymer flocculant
JP2010195915A (en) * 2009-02-25 2010-09-09 Hymo Corp Powdery water-soluble polymer
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same
JP2013049050A (en) * 2011-07-29 2013-03-14 Sanyo Chem Ind Ltd Polymer flocculant
JP2014024044A (en) * 2012-07-30 2014-02-06 Tomooka Kaken Kk Cation high polymer coagulant
JP2017209651A (en) * 2016-05-27 2017-11-30 栗田工業株式会社 Paper pulp sludge treatment method
JP2018001048A (en) * 2016-06-27 2018-01-11 Mtアクアポリマー株式会社 Production method of polymer flocculant granulated powder and dewatering method of sludge
JP2018108560A (en) * 2016-12-30 2018-07-12 Mtアクアポリマー株式会社 Polymer flocculant and method for manufacture of same, and method for dewatering sludge by use of polymer flocculant, and method for evaluating flocculation performance of polymer flocculant

Also Published As

Publication number Publication date
JP7362620B2 (en) 2023-10-17
WO2020027312A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6152108B2 (en) Polymer flocculant, method for producing the same, and sludge dewatering method using the same
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP4857170B2 (en) Cationic polymer flocculant and sludge treatment method using the same
KR101204285B1 (en) Process for the dewatering of aqueous suspensions
RU2352590C2 (en) Water-soluble powdered cation-agent polymer compound, method of production and application
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP2011224420A (en) Sludge dewatering agent and sludge dewatering treatment method
JP6486006B2 (en) Polymer flocculant and sludge dewatering method using the same
JP7362620B2 (en) Polymer flocculant and sludge dewatering method
WO2001046281A1 (en) Polymeric flocculant and method of sludge dehydration
JP6839979B2 (en) A polymer flocculant and a method for producing the same, a method for dehydrating sludge using the polymer flocculant, and a method for evaluating the flocculation performance of the polymer flocculant.
JP6770348B2 (en) Method for producing polymer flocculant powder and method for dehydrating sludge
JP6770349B2 (en) Method for producing polymer flocculant granulated powder and method for dehydrating sludge
JP6649762B2 (en) Crosslinked polymer flocculant, method for producing the same, and method for treating wastewater using the same
JP5038587B2 (en) Dewatering method for sewage digested sludge
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP5940881B2 (en) Amphoteric polymer flocculant, method for producing the same and sludge dewatering method using the same
JP2017000914A (en) Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
KR102357817B1 (en) Method for producing polymer flocculant powder and dewatering method of sludge
JP3561839B2 (en) Cationic polymer composite with enhanced aggregation effect
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
JP4019858B2 (en) Water-soluble copolymer, polymer flocculant, and sludge dewatering method
JP5683219B2 (en) Sludge dewatering agent and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150