[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005144346A - Coagulating agent and its usage - Google Patents

Coagulating agent and its usage Download PDF

Info

Publication number
JP2005144346A
JP2005144346A JP2003386514A JP2003386514A JP2005144346A JP 2005144346 A JP2005144346 A JP 2005144346A JP 2003386514 A JP2003386514 A JP 2003386514A JP 2003386514 A JP2003386514 A JP 2003386514A JP 2005144346 A JP2005144346 A JP 2005144346A
Authority
JP
Japan
Prior art keywords
monomer
water
mol
crosslinkable
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003386514A
Other languages
Japanese (ja)
Other versions
JP4167969B2 (en
Inventor
Takekazu Hayashida
豪一 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2003386514A priority Critical patent/JP4167969B2/en
Publication of JP2005144346A publication Critical patent/JP2005144346A/en
Application granted granted Critical
Publication of JP4167969B2 publication Critical patent/JP4167969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coagulating agent comprising two kinds of cross-linking water-soluble ionic polymers and its usage, especially a coagulating agent solving the problem of reducing the loadings while retaining the advantages of the cross-linking polymers. <P>SOLUTION: The agent comprises a vinyl polymer type cross-linking water-soluble ionic polymer of a charge inclusion rate of ≥35% and a vinyl polymer type cross-linking water-soluble ionic polymer of a charge inclusion rate of 5-35%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二種の架橋性水溶性イオン性高分子からなる凝集処理剤及びその使用方法に関するものであり、詳しくはイオン性単量体及び多官能性単量体および/または架橋性単量体を必須成分とする単量体混合物を共重合し製造した電荷内包率35%以上のビニル重合系架橋性イオン性水溶性高分子(A)と、イオン性単量体及び複数のビニル基を有する多官能性単量体および/または架橋性単量体を必須成分とする単量体混合物を共重合した電荷内包率5%以上、35%未満のビニル重合系架橋性イオン性水溶性高分子(B)とを組み合わせた凝集処理剤とその使用方法に関する。   The present invention relates to an aggregating treatment agent comprising two kinds of crosslinkable water-soluble ionic polymers and a method for using the same, and more specifically, an ionic monomer and a polyfunctional monomer and / or a crosslinkable monomer. A vinyl-polymerizable cross-linkable ionic water-soluble polymer (A) having a charge inclusion rate of 35% or more produced by copolymerization of a monomer mixture containing an ionic monomer as an essential component, an ionic monomer and a plurality of vinyl groups A vinyl-polymerizable crosslinkable ionic water-soluble polymer having a charge inclusion ratio of 5% or more and less than 35%, which is obtained by copolymerizing a monomer mixture containing a polyfunctional monomer and / or a crosslinkable monomer as an essential component The present invention relates to an aggregating agent combined with (B) and a method for using the same.

各種汚泥の脱水には、従来カチオン性高分子凝集剤が使用されている。近年の汚泥発生量の増加及び汚泥性状の悪化により、従来のカチオン性高分子凝集剤では、汚泥の処理量に限界があることや、脱水ケーキ含水率、SS回収率、ケーキの濾布からの剥離性などの点で処理状態は必ずしも満足できるものではなく、改善が求められている。   Conventionally, a cationic polymer flocculant has been used for dewatering various sludges. Due to the recent increase in sludge generation and deterioration of sludge properties, conventional cationic polymer flocculants have limited sludge throughput, dehydrated cake moisture content, SS recovery rate, from cake filter cloth The treatment state is not always satisfactory in terms of peelability and the like, and improvement is demanded.

一方で脱水ケーキ含水率の低下や濾布からの剥離性改善を目的として、特許文献1)や特許文献2などには、架橋性のイオン性高分子凝集剤が開示されている。このように架橋性水溶性高分子は、種々の特徴や機能を有しているが、水溶液中における分子の広がりが相対的に小さいためか、汚泥脱水剤に適用した場合、直鎖状高分子に較べ添加量が増加してしまうという問題が存在する。架橋性水溶性高分子のこのような欠点を改良するため特許文献3あるいは特許文献4には、四級アンモニウム塩基を含有し、メタクリレ−ト系単量体、アクリレ−ト系単量体及びアニオン性単量体を一定の比率で共重合した両性高分子脱水剤が開示されている。しかし、これらも目的を十分満足するものではなかった。   On the other hand, for the purpose of lowering the moisture content of the dehydrated cake and improving the peelability from the filter cloth, Patent Document 1), Patent Document 2, and the like disclose crosslinkable ionic polymer flocculants. As described above, the crosslinkable water-soluble polymer has various characteristics and functions. However, when the polymer is applied to a sludge dehydrating agent, the molecular spread in the aqueous solution is relatively small. There is a problem that the amount of addition increases compared to the above. In order to improve such disadvantages of the crosslinkable water-soluble polymer, Patent Document 3 or Patent Document 4 contains a quaternary ammonium base, a methacrylate monomer, an acrylate monomer and an anion. An amphoteric polymer dehydrating agent obtained by copolymerizing an ionic monomer at a certain ratio is disclosed. However, these also did not fully satisfy the purpose.

特開平2−219887号公報Japanese Patent Laid-Open No. 2-219887 特公平8−164号公報Japanese Patent Publication No. 8-164 特開平7−256299号公報JP 7-256299 A 特開平7−256300号公報JP 7-256300 A

架橋性の水溶性イオン性高分子を汚泥脱水剤として使用した場合、脱水ケーキ含水率の低下など優れた点が発現するが、その反面、効果の発現するまで添加するにはどうしても添加量が増加し、その結果、コストの増大という問題が発生する。本発明の目的は、架橋性の水溶性イオン性高分子の長所を残し、添加量の削減という問題を解決する凝集処理剤を提供することである。   When a crosslinkable water-soluble ionic polymer is used as a sludge dewatering agent, excellent points such as a decrease in the moisture content of the dehydrated cake are manifested, but on the other hand, the amount of addition is inevitably increased until the effect is manifested. As a result, there arises a problem of an increase in cost. An object of the present invention is to provide an aggregating agent that leaves the advantages of a crosslinkable water-soluble ionic polymer and solves the problem of reducing the amount of addition.

本発明者は、上記課題を解決するため鋭意検討した結果、下記のような発明に達した。すなわち請求項1の発明は、電荷内包率35%以上のビニル重合系架橋性水溶性イオン性高分子(A)と、電荷内包率5以上、35%未満のビニル重合系架橋性水溶性イオン性高分子(B)を組み合わせた凝集処理剤に関する。   As a result of intensive studies to solve the above problems, the present inventor has reached the following invention. That is, the invention of claim 1 includes a vinyl polymerization-type crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and a vinyl polymerization-type crosslinkable water-soluble ionicity having a charge inclusion rate of 5 to less than 35%. The present invention relates to an aggregating agent combined with a polymer (B).

請求項2の発明は、前記ビニル重合系架橋性水溶性イオン性高分子(A)および(B)が、それぞれ下記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、下記一般式(3)で表わされる単量体を0〜50モル%及び非イオン性単量体0〜95モル%からなる単量体混合物と多官能性単量体および/または架橋性単量体の水溶液を界面活性剤により水に非混和性有機液体を連続相、単量体混合物水溶液を分散相となるよう乳化し重合した後、適宜転相剤を添加し製造されたものであることを特徴とする請求項1に記載の凝集処理剤である。

Figure 2005144346



一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキルあるいはアルコキシル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い、Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基を表わす、X は陰イオンをそれぞれ表わす。
Figure 2005144346



一般式(2)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表わす。
Figure 2005144346




一般式(3)
は水素、メチル基またはカルボキシメチル基、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOO、Rは水素またはCOO 、YおよびY は水素イオンまたは陽イオン In the invention of claim 2, the vinyl polymerized crosslinkable water-soluble ionic polymer (A) and (B) is a monomer represented by the following general formula (1) and / or (2): 100 mol%, a monomer mixture consisting of 0 to 50 mol% of the monomer represented by the following general formula (3) and 0 to 95 mol% of a nonionic monomer and a polyfunctional monomer and / or An aqueous solution of a crosslinkable monomer was emulsified and polymerized by a surfactant so that the water-immiscible organic liquid was a continuous phase and the aqueous monomer mixture solution was a dispersed phase. The aggregating agent according to claim 1, wherein the agent is an aggregating agent.
Figure 2005144346



General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group, or a benzyl group. A may be oxygen or NH, B may represent an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, and X 1 may represent an anion.
Figure 2005144346



General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
Figure 2005144346




General formula (3)
R 8 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , R 9 Is hydrogen or COO Y 1 + , Y + and Y 1 + are hydrogen ions or cations

請求項3の発明は、前記ビニル重合系架橋性水溶性イオン性高分子(A)あるいはビニル重合系架橋性水溶性イオン性高分子(B)が、それぞれ(A1)あるいは(B1)の単量体混合物水溶液を界面活性剤により水に非混和性有機液体を連続相、単量体混合物水溶液を分散相となるよう乳化し重合した後、適宜転相剤を添加し製造されたものであることを特徴とする請求項1に記載の凝集処理剤である。
単量体組成(A1);前記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、前記一般式(3)で表わされる単量体を0〜50モル%及び非イオン性単量体0〜95モル%。さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
単量体組成(B1);前記架橋性水溶性イオン性高分子(B)が、前記一般式(3)で表わされる単量体を5〜100モル%及び非イオン性単量体0〜95モル%。
さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
According to the invention of claim 3, the vinyl polymerized crosslinkable water soluble ionic polymer (A) or the vinyl polymerized crosslinkable water soluble ionic polymer (B) is a single monomer of (A1) or (B1), respectively. It is manufactured by emulsifying and polymerizing an aqueous body mixture solution with a surfactant so that the water-immiscible organic liquid becomes a continuous phase and an aqueous monomer mixture solution as a dispersed phase, and then appropriately adding a phase inversion agent. The aggregating agent according to claim 1, wherein:
Monomer composition (A1): 5-100 mol% of the monomer represented by the general formula (1) and / or (2), and 0-50 mol of the monomer represented by the general formula (3) % And non-ionic monomer 0-95 mol%. Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.
Monomer composition (B1): The crosslinkable water-soluble ionic polymer (B) contains 5 to 100 mol% of the monomer represented by the general formula (3) and nonionic monomers 0 to 95. Mol%.
Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.

請求項4の発明は、前記ビニル重合系架橋性水溶性イオン性高分子(A)あるいはビニル重合系架橋性水溶性イオン性高分子(B)が、それぞれ(A2)あるいは(B2)の単量体混合物水溶液を界面活性剤により水に非混和性有機液体を連続相、単量体混合物水溶液を分散相となるよう乳化し重合した後、適宜転相剤を添加し製造されたものであることを特徴とする請求項1に記載の凝集処理剤である。
単量体組成(A2);前記一般式(3)で表わされる単量体を5〜100モル%及び非イオン性単量体0〜95モル%。さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
単量体組成(B2);前記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、前記一般式(3)で表わされる単量体を0〜50モル%及び非イオン性単量体0〜95モル%。さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
According to the invention of claim 4, the vinyl polymerization crosslinkable water-soluble ionic polymer (A) or the vinyl polymerization crosslinkable water soluble ionic polymer (B) is a single amount of (A2) or (B2), respectively. It is manufactured by emulsifying and polymerizing an aqueous body mixture solution with a surfactant so that the water-immiscible organic liquid becomes a continuous phase and an aqueous monomer mixture solution as a dispersed phase, and then appropriately adding a phase inversion agent. The aggregating agent according to claim 1, wherein:
Monomer composition (A2): 5-100 mol% of the monomer represented by the general formula (3) and 0-95 mol% of a nonionic monomer. Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.
Monomer composition (B2): 5-100 mol% of the monomer represented by the general formula (1) and / or (2), and 0-50 mol of the monomer represented by the general formula (3) % And non-ionic monomer 0-95 mol%. Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.

請求項5の発明は、請求項1〜4に記載の架橋性水溶性イオン性高分子(A)および(B)を組み合わせた凝集処理剤を汚泥に添加し、脱水機により脱水することを特徴とする汚泥脱水方法である。 The invention of claim 5 is characterized in that an aggregating agent combining the crosslinkable water-soluble ionic polymers (A) and (B) according to claims 1 to 4 is added to sludge and dehydrated by a dehydrator. This is a sludge dewatering method.

本発明のW/O型エマルジョンからなる電荷内包率35%以上の架橋性水溶性イオン性高分子(A)と、電荷内包率5以上、35%未満の架橋性水溶性イオン性高分子(B)を組み合わせることにより、架橋性の水溶性イオン性高分子の欠点である処理コストの増大を抑制し、その長所である脱水ケーキ含水率の低下など優れた点を残しつつ添加量の削減という問題を解決することが可能である。   A crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and a crosslinkable water-soluble ionic polymer (B) having a charge inclusion rate of 5 or more and less than 35%, comprising the W / O type emulsion of the present invention. ) In combination, it suppresses the increase in processing cost, which is a disadvantage of the crosslinkable water-soluble ionic polymer, and reduces the amount of addition while retaining the advantages such as the reduced moisture content of the dehydrated cake. Can be solved.

本発明において、カチオン性の架橋性水溶性イオン性高分子および、両性でかつカチオン性単量体とアニオン性単量体のモル濃度の差が正である架橋性水溶性イオン性高分子では、電荷内包率とは以下のように計算される。
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した架橋性水溶性イオン性高分子0.01%水溶液をミューテック社製PCD滴定装置(M&uuml;tek PCD 03、M&uuml;tek PCD−Two Titrator Version2)により、滴下液:1/1000N ポリビニルスルホン酸カリウム水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて 滴定し、求めた滴定量である。βは酢酸にてpH4.0に調整した架橋性水溶性イオン性高分子0.01%水溶液に1/400N ポリビニルスルホン酸カリウム水溶液を電荷の中和を行うに十分な量加え、十分に攪拌し、同様にPCD滴定装置により、滴下液:1/1000N ジアリルジメチルアンモニウムクロライド水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて滴定し、この滴定量をブランク値から差し引いた値とする。ブランク値とは酢酸にてpH4.0に調整した前記サンプルと同濃度のポリビニルスルホン酸カリウム水溶液を同様にPCD滴定装置により、滴下液:1/1000N ジアリルジメチルアンモニウムクロライド水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて滴定し、求めた滴定量である。
In the present invention, a cationic crosslinkable water-soluble ionic polymer and a crosslinkable water-soluble ionic polymer that is amphoteric and has a positive molar concentration difference between a cationic monomer and an anionic monomer, The charge inclusion rate is calculated as follows.
Charge inclusion rate [%] = (1−α / β) × 100
α is a 0.01% aqueous solution of a crosslinkable water-soluble ionic polymer adjusted to pH 4.0 with acetic acid by a PCD titration apparatus (M &uuml; tek PCD 03, M &uuml; tek PCD-Two Titortor Version 2) manufactured by Mutec. Dropping solution: 1/1000 N aqueous polyvinyl sulfonate solution, dropping rate: 0.05 ml / 10 sec, end point determination: 0 mV. Titration determined by titration. β is added to a 0.01% aqueous solution of a crosslinkable water-soluble ionic polymer adjusted to pH 4.0 with acetic acid in an amount sufficient to neutralize the charge with a 1 / 400N aqueous potassium polyvinyl sulfonate solution, and sufficiently stirred. Similarly, titrate with a PCD titrator at a drop solution: 1 / 1000N diallyldimethylammonium chloride aqueous solution, drop rate: 0.05 ml / 10 sec, end point determination: 0 mV, and subtract this titration value from the blank value. . The blank value is the same as the sample adjusted to pH 4.0 with acetic acid, and the same concentration of potassium polyvinyl sulfonate aqueous solution is similarly added by a PCD titration apparatus. Dropping solution: 1 / 1000N diallyldimethylammonium chloride aqueous solution, dropping rate: 0.05 ml / 10 sec, end point determination: titration obtained by titration at 0 mv.

本発明において、アニオン性の架橋性水溶性イオン性高分子および、両性でかつカチオン性単量体とアニオン性単量体のモル濃度の差が負である架橋性水溶性イオン性高分子では、電荷内包率とは以下のように計算される。
電荷内包率[%]=(1−α/β)×100
αはアンモニアにてpH10.0に調整した架橋性水溶性イオン性高分子0.01%水溶液をミューテック社製PCD滴定装置(M&uuml;tek PCD 03、M&uuml;tek PCD−Two Titrator Version2)により、滴下液:1/1000N ジアリルジメチルアンモニウムクロライド水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて 滴定し、求めた滴定量である。βはアンモニアにてpH10.0に調整した架橋性水溶性イオン性高分子0.01%水溶液に1/400N ジアリルジメチルアンモニウムクロライド水溶液を電荷の中和を行うに十分な量加え、十分に攪拌し、同様にPCD滴定装置により、滴下液:1/1000N ポリビニルスルホン酸カリウム水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて滴定し、この滴定量をブランク値から差し引いた値とする。ブランク値とはアンモニアにてpH10.0に調整した前記サンプルと同濃度のジアリルジメチルアンモニウムクロライド水溶液を同様にPCD滴定装置により、滴下液:1/1000N ポリビニルスルホン酸カリウム水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて滴定し、求めた滴定量である。
In the present invention, an anionic crosslinkable water-soluble ionic polymer and a crosslinkable water-soluble ionic polymer that is amphoteric and has a negative difference in molar concentration between the cationic monomer and the anionic monomer, The charge inclusion rate is calculated as follows.
Charge inclusion rate [%] = (1−α / β) × 100
α is a 0.01% aqueous solution of a cross-linkable water-soluble ionic polymer adjusted to pH 10.0 with ammonia using a PCD titration apparatus (M &uuml; tek PCD 03, M &uuml; tek PCD-Two Titortor Version 2) manufactured by Mutec. Dropping solution: 1 / 1000N diallyldimethylammonium chloride aqueous solution, dropping rate: 0.05 ml / 10 sec, end point determination: 0 mV. Titration determined by titration. β is added to a 0.01% aqueous solution of a crosslinkable water-soluble ionic polymer adjusted to pH 10.0 with ammonia by adding a sufficient amount of 1 / 400N diallyldimethylammonium chloride aqueous solution to neutralize the charge, and sufficiently agitated. In the same manner, titrate with a PCD titrator at a drop solution: 1 / 1000N potassium polyvinylsulfonate aqueous solution, drop rate: 0.05 ml / 10 sec, end point determination: 0 mV, and subtract this titration value from the blank value. . The blank value is a diallyldimethylammonium chloride aqueous solution having the same concentration as that of the above sample adjusted to pH 10.0 with ammonia in the same manner by using a PCD titration apparatus. Dropping solution: 1/1000 N aqueous potassium polyvinylsulfonate solution, dropping rate: 0.05 ml / 10 sec, end point determination: titration obtained by titration at 0 mv.

本発明で使用する架橋性水溶性イオン性高分子の組み合わせとしては、以下のものがある。すなわち電荷内包率35%以上のカチオン性あるいは両性架橋性水溶性イオン性高分子(A)と電荷内包率5以上、35%未満のカチオン性あるいは両性架橋性水溶性イオン性高分子(B)との組み合わせ。電荷内包率35%以上のカチオン性あるいは両性架橋性水溶性イオン性高分子(A)と電荷内包率5以上、35%未満のアニオン性架橋性水溶性イオン性高分子(B)との組み合わせ。さらに電荷内包率35%以上のアニオン性架橋性水溶性イオン性高分子(A)と電荷内包率5以上、35%未満のカチオン性あるいは両性架橋性水溶性イオン性高分子(B)との組み合わせである。 Examples of combinations of the crosslinkable water-soluble ionic polymer used in the present invention include the following. That is, a cationic or amphoteric crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and a cationic or amphoteric crosslinkable water-soluble ionic polymer (B) having a charge inclusion rate of 5 or more and less than 35% Combination. A combination of a cationic or amphoteric crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and an anionic crosslinkable water-soluble ionic polymer (B) having a charge inclusion rate of 5 or more and less than 35%. Further, a combination of an anionic crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and a cationic or amphoteric crosslinkable water-soluble ionic polymer (B) having a charge inclusion rate of 5 or more and less than 35% It is.

カチオン性あるいは両性架橋性水溶性高分子(A)あるいは(B)は、前記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、
好ましくは20〜100モル%、下記一般式(3)で表わされる単量体を0〜49モル%、好ましくは0〜35モル%及び非イオン性単量体0〜95モル%、好ましくは0〜80モル%からなる単量体混合物と多官能性単量体および/または架橋性単量体を共重合し製造することができる。
The cationic or amphoteric crosslinkable water-soluble polymer (A) or (B) is a monomer represented by the general formula (1) and / or (2) in an amount of 5 to 100 mol%,
Preferably 20 to 100 mol%, 0 to 49 mol%, preferably 0 to 35 mol% of a monomer represented by the following general formula (3) and 0 to 95 mol% of nonionic monomer, preferably 0 It can be produced by copolymerizing a monomer mixture comprising ˜80 mol% with a polyfunctional monomer and / or a crosslinkable monomer.

アニオン性架橋性水溶性高分子(A)あるいは(B)は、前記一般式(3)で表わされる単量体を5〜100モル%、好ましくは10〜70モル%、及び非イオン性単量体0〜95モル%、好ましくは30〜90モル%からなる単量体混合物と多官能性単量体および/または架橋性単量体を共重合し製造することができる。 In the anionic crosslinkable water-soluble polymer (A) or (B), the monomer represented by the general formula (3) is 5 to 100 mol%, preferably 10 to 70 mol%, and a nonionic monomer. It can be produced by copolymerizing a monomer mixture consisting of 0 to 95 mol%, preferably 30 to 90 mol% of a body, a polyfunctional monomer and / or a crosslinkable monomer.

本発明で使用するカチオン性あるいは両性架橋性水溶性高分子(A)および(B)を製造する際使用するイオン性単量体のうち、カチオン性単量体は以下ような例がある。すなわち(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミド、メチルジアリルアミンなどの重合体や共重合体が上げられ、四級アンモニウム基含重合体の例は、前記三級アミノ含有単量体の塩化メチルや塩化ベンジルによる四級化物である(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物、ジアリルジメチルアンモニウム塩化物などである。 Among the ionic monomers used in producing the cationic or amphoteric crosslinkable water-soluble polymers (A) and (B) used in the present invention, examples of the cationic monomers are as follows. That is, polymers and copolymers such as dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, and methyldiallylamine are raised, and examples of quaternary ammonium group-containing polymers include the above-mentioned tertiary amino-containing monomer (Meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy 2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (Meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride, (meth) acryloylaminopropyldimethylbenzylammonium Arm chloride, diallyl dimethyl ammonium chloride, and the like.

また、両性架橋性水溶性高分子(A)および(B)、あるいはアニオン性架橋性水溶性イオン性高分子(A)および(B)を製造する際使用するアニオン性単量体としては、スルフォン基含有単量体でもカルボキシル基含有単量体でもさしつかえなく、さらには両方を併用しても良い。スルフォン基含有単量体の例は、ビニルスルフォン酸、ビニルベンゼンスルフォン酸あるいは2−アクリルアミド2−メチルプロパンスルフォン酸などである。またカルボキシル基含有単量体の例は、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどである。   In addition, as the anionic monomer used when producing the amphoteric crosslinkable water-soluble polymers (A) and (B) or the anionic crosslinkable water-soluble ionic polymers (A) and (B), sulfone may be used. Either a group-containing monomer or a carboxyl group-containing monomer may be used, and both may be used in combination. Examples of the sulfone group-containing monomer are vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido 2-methylpropane sulfonic acid, and the like. Examples of the carboxyl group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, maleic acid, and p-carboxystyrene.

カチオン性あるいは両性架橋性水溶性高分子(A)および(B)、あるいはアニオン性架橋性水溶性高分子(A)および(B)を製造する際使用する非イオン性単量体の例としては、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドアクリロイルモルホリン、アクリロイルピペラジンなどがあげられる Examples of nonionic monomers used when producing cationic or amphoteric crosslinkable water-soluble polymers (A) and (B), or anionic crosslinkable water-soluble polymers (A) and (B) , (Meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide Examples include acryloyl morpholine and acryloyl piperazine.

本発明で使用する複数のビニル基を有する多官能性単量体の例として、メチレンビスアクリルアミドやエチレングルコ−ルジ(メタ)アクリレ−トなどがあげられる。また架橋性単量体としてはN、N−ジメチルアクリルアミドのような熱架橋性単量体などがあげられる。   Examples of the polyfunctional monomer having a plurality of vinyl groups used in the present invention include methylene bisacrylamide and ethylene glycol di (meth) acrylate. Examples of the crosslinkable monomer include thermally crosslinkable monomers such as N, N-dimethylacrylamide.

複数のビニル基を有する多官能性単量体および/また架橋性単量体の、前記イオン性単量体、あるいはイオン性単量体および非イオン性単量体に対する添加量は、通常前記単量体混合物に対して0.005〜0.1重量%の範囲であり、好ましくは0.01〜0.1重量%の範囲である。また、重合度を調節するため連鎖移動剤としてイソプロピルアルコール等を対単量体0.01〜3重量%併用すると効果的である。 The addition amount of the polyfunctional monomer having a plurality of vinyl groups and / or the crosslinkable monomer with respect to the ionic monomer or the ionic monomer and the nonionic monomer is usually the above-mentioned single monomer. It is in the range of 0.005 to 0.1% by weight, preferably 0.01 to 0.1% by weight, based on the monomer mixture. In order to adjust the degree of polymerization, it is effective to use 0.01 to 3% by weight of isopropyl alcohol as a chain transfer agent in combination with the monomer.

本発明の架橋性水溶性イオン性高分子は、イオン性単量体、あるいはイオン性単量体および非イオン性単量体と複数のビニル基を有する多官能性単量体および/または架橋性単量体からなる単量体混合物を共重合することによって製造することができる。重合はこれら単量体を混合した水溶液を調製した後、通常の重合法によって行うことができる。 The crosslinkable water-soluble ionic polymer of the present invention is an ionic monomer, or a polyfunctional monomer having a plurality of vinyl groups and / or an ionic monomer and a nonionic monomer and / or a crosslinkable property. It can manufacture by copolymerizing the monomer mixture which consists of a monomer. The polymerization can be carried out by an ordinary polymerization method after preparing an aqueous solution in which these monomers are mixed.

重合法としては、水溶液重合、油中水型エマルジョン重合、油中水型分散重合、塩水中分散重合などによって重合した後、水溶液、分散液、エマルジョンあるいは粉末など任意の製品形態にすることができる。好ましい形態としては、濃度を高められ、溶解時間も短い油中水型エマルジョン重合品である。   As the polymerization method, after polymerization by aqueous solution polymerization, water-in-oil emulsion polymerization, water-in-oil dispersion polymerization, salt water dispersion polymerization, etc., it can be made into any product form such as aqueous solution, dispersion, emulsion or powder. . A preferred form is a water-in-oil emulsion polymerized product having a high concentration and a short dissolution time.

油中水型高分子エマルジョンの製造方法としては、イオン性単量体、あるいはイオン性単量体および共重合可能な単量体とからなる単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させた後、重合することにより合成する方法である。   As a method for producing a water-in-oil polymer emulsion, a monomer mixture comprising an ionic monomer or an ionic monomer and a copolymerizable monomer is water, at least water-immiscible. An oily substance composed of a hydrocarbon, an amount effective for forming a water-in-oil emulsion, and at least one surfactant having HLB are mixed and stirred vigorously to form a water-in-oil emulsion, followed by polymerization. This is a method of synthesis.

また分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。含有量としては、油中水型エマルジョン全量に対して20重量%〜50重量%の範囲であり、好ましくは20重量%〜35重量%の範囲である。   Examples of oily substances composed of hydrocarbons used as dispersion media include paraffins, mineral oils such as kerosene, light oil, and middle oil, or hydrocarbon-based synthetics having characteristics such as boiling point and viscosity substantially in the same range as these. An oil or a mixture thereof may be mentioned. As content, it is the range of 20 weight%-50 weight% with respect to the total amount of water-in-oil emulsion, Preferably it is the range of 20 weight%-35 weight%.

油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB3〜11のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンモノステアレ−ト、ソルビタンモノパルミテ−トなどがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10重量%であり、好ましくは1〜5重量%の範囲である。   Examples of at least one surfactant having an amount effective to form a water-in-oil emulsion and HLB are HLB 3-11 nonionic surfactants, specific examples of which include sorbitan monooleate Sorbitan monostearate, sorbitan monopalmitate and the like. The addition amount of these surfactants is 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total amount of the water-in-oil emulsion.

重合後は、転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエ−テル系、ポリオキシエチレンアルコールエ−テル系などである。   After the polymerization, a hydrophilic interfacial modifier called a phase inversion agent is added to make the emulsion particles covered with the oil film easy to become familiar with water, and to dissolve the water-soluble polymer therein. Dilute with and use for each application. Examples of hydrophilic surfactants are cationic surfactants and nonionic surfactants of HLB 9-15, such as polyoxyethylene polyoxypropylene alkyl ether systems and polyoxyethylene alcohol ether systems. is there.

重合条件は通常、使用する単量体や共重合モル%によって適宜決めていき、温度としては0〜100℃の範囲で行う。特に油中水型エマルジョン重合法を適用する場合は、20〜80℃、好ましくは20〜60℃の範囲で行う。重合開始はラジカル重合開始剤を使用する。これら開始剤は油溶性あるいは水溶性のどちらでも良く、アゾ系、過酸化物系、レドックス系いずれでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1’−アゾビス(シクロヘキサンカルボニトリル)、2、2’−アゾビス(2−メチルブチロニトリル)、2、2’−アゾビス(2−メチルプロピオネ−ト)、4、4−アゾビス(4−メトキシ−2、4ジメチル)バレロニトリルなどがあげられる。   The polymerization conditions are usually appropriately determined according to the monomer used and the copolymerization mol%, and the temperature is in the range of 0 to 100 ° C. In particular, when the water-in-oil emulsion polymerization method is applied, it is carried out in the range of 20 to 80 ° C, preferably 20 to 60 ° C. For the initiation of polymerization, a radical polymerization initiator is used. These initiators may be either oil-soluble or water-soluble, and can be polymerized by any of azo, peroxide, and redox systems. Examples of oil-soluble azo initiators are 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2-methylpropionate), 4,4-azobis (4-methoxy-2,4dimethyl) valeronitrile and the like.

水溶性アゾ系開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)などがあげられる。またレドックス系の例としては、ペルオクソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミンなどとの組み合わせがあげられる。さらに過酸化物の例としては、ペルオクソ二硫酸アンモニウムあるいはカリウム、過酸化水素,ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t-ブチルペルオキシ2−エチルヘキサノエ−トなどをあげることができる。 Examples of water-soluble azo initiators include 2,2′-azobis (amidinopropane) dichloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] And dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of redox systems include a combination of ammonium peroxodisulfate and sodium sulfite, sodium hydrogen sulfite, trimethylamine, tetramethylethylenediamine, and the like. Examples of peroxides include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy 2-ethylhexanoate, etc. I can give you.

単量体の重合濃度は20〜50重量%の範囲であり、好ましくは25〜40重量%の範囲であり、単量体の組成、重合法、開始剤の選択によって適宜重合の濃度と温度を設定する。これらの単量体を重合して得られる水溶性高分子の分子量は、好ましくは300万〜2,000万の範囲である。 The polymerization concentration of the monomer is in the range of 20 to 50% by weight, preferably in the range of 25 to 40% by weight. The concentration and temperature of the polymerization are appropriately determined depending on the monomer composition, the polymerization method, and the selection of the initiator. Set. The molecular weight of the water-soluble polymer obtained by polymerizing these monomers is preferably in the range of 3 million to 20 million.

これら電荷内包率35%以上の架橋性水溶性イオン性高分子(A)と、電荷内包率5〜35%の架橋性水溶性イオン性高分子(B)との混合割合は、重量で10:90〜90:10の範囲であり、好ましくは20:80〜80:20の範囲である。この範囲よりどちらかの成分が多くなると、片方の性質が強く現れすぎ、特徴がなくなる。また架橋性水溶性アニオン性高分子と架橋性水溶性カチオン性あるいは両性高分子と組み合わせる場合は、それぞれ高分子の単位重量に対するイオン当量値比が(架橋性水溶性カチオン性あるいは両性高分子の総カチオン当量値)/(架橋性水溶性アニオン性高分子の総アニオン当量値)が0.8より大きいほうがよく、1.0以上であるほうがより好ましい。添加法としては、同時、逐次あるいは二種を混合するなど任意にすることができる。   The mixing ratio of the crosslinkable water-soluble ionic polymer (A) having a charge inclusion ratio of 35% or more and the crosslinkable water-soluble ionic polymer (B) having a charge inclusion ratio of 5 to 35% is 10: It is the range of 90-90: 10, Preferably it is the range of 20: 80-80: 20. If either component is greater than this range, one of the properties will appear too strong and the features will be lost. When a crosslinkable water-soluble anionic polymer and a crosslinkable water-soluble cationic or amphoteric polymer are combined, the ratio of the ion equivalent value to the unit weight of the polymer (the total of the crosslinkable water-soluble cationic or amphoteric polymer). The cation equivalent value) / (total anion equivalent value of the crosslinkable water-soluble anionic polymer) is preferably larger than 0.8, more preferably 1.0 or more. The addition method can be arbitrary, such as simultaneous, sequential, or mixing two kinds.

本発明の電荷内包率35%以上の架橋性水溶性イオン性高分子(A)と、電荷内包率5〜35%の架橋性水溶性イオン性高分子(B)とを組み合わせた凝集処理剤は、製紙排水、化学工業排水、食品工業排水などの生物処理したときに発生する余剰汚泥、あるいは都市下水の生汚泥、混合生汚泥、余剰汚泥、消化汚泥などの有機汚泥、あるいは製紙スラッジの脱水に使用することができる。   An aggregating agent combining the crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and the crosslinkable water-soluble ionic polymer (B) having a charge inclusion rate of 5 to 35% according to the present invention, For the dewatering of surplus sludge generated when biological treatment such as paper wastewater, chemical industrial wastewater, food industrial wastewater, etc., or organic sludge such as raw sludge, mixed raw sludge, surplus sludge, digested sludge, etc. Can be used.

本発明の電荷内包率35%以上の架橋性水溶性イオン性高分子と(A)、電荷内包率5〜35%の架橋性水溶性イオン性高分子(B)とを組み合わせた凝集処理剤の添加量は、汚泥固形分に対し重量で通常0.1〜3%の範囲であり、好ましくは0.2〜2%の範囲である。 An aggregation treatment agent comprising the crosslinkable water-soluble ionic polymer having a charge inclusion ratio of 35% or more according to the present invention and (A) and the crosslinkable water-soluble ionic polymer (B) having a charge inclusion ratio of 5 to 35%. The addition amount is usually in the range of 0.1 to 3% by weight with respect to the sludge solid content, and preferably in the range of 0.2 to 2%.

(合成例1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン130gにソルビタンモノオレート5.0gを仕込み溶解させた。別にアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液211.8g、アクリルアミド(AAMと略記)50%水溶液31.1g、メチレンビスアクリルアミド0.2%水溶液2.78g、イソプロピルアルコール0.19g(対単量体0.1重量%)、イオン交換水119.1gを各々採取し、混合し完全に溶解させた。その後油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMQ/AAM=80/20(モル%)である。 (Synthesis Example 1) In a reaction vessel equipped with a stirrer and a temperature controller, 5.0 g of sorbitan monooleate was charged and dissolved in 130 g of isoparaffin having a boiling point of 190 ° C to 230 ° C. Separately, acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ) 80% aqueous solution 211.8 g, acrylamide (abbreviated as AAM) 50% aqueous solution 31.1 g, methylenebisacrylamide 0.2% aqueous solution 2.78 g, isopropyl alcohol 0.7. 19 g (0.1% by weight of monomer) and 119.1 g of ion-exchanged water were each collected, mixed and completely dissolved. Thereafter, the oil and the aqueous solution were mixed, and stirred and emulsified with a homogenizer at 1000 rpm for 15 minutes. The monomer composition at this time is DMQ / AAM = 80/20 (mol%).

得られたエマルジョンを単量体溶液の温度を40〜43℃に保ち、窒素置換を30分行った後、ジメチル−2,2−アゾビスイソブチレート(和光純薬製V−601)0.7g(対単量体0.038重量%)を加え、重合反応を開始させた。反応温度を42±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレンポリオキシプロピレンアルキルエ−テル5.0g(対液1重量%)を添加混合した。その後、B型粘度計により製品粘度を測定すると、330mPa・sであった。コロイド滴定法と前記計算式により電荷内包率を求めると65.3%であった。これを脱水試験用試料として用い、試料−1とする。さらに合成例1と同様の操作によりDMQ/AAM=80/20(モル%)電荷内包率48.7%(試料−2)、DMQ/AAM=80/20(モル%)電荷内包率29.1%(試料−3)、DMQ/AAM=80/20(モル%)電荷内包率11.3%(試料−4)DMQ/AAM/AAC=80/10/10(モル%)電荷内包率42.0%(試料−5)、DMQ/AAM/AAC=80/20/10(モル%)電荷内包率17.5%(試料−6)、DMQ/AAC=80/20(モル%)電荷内包率40.5.0%(試料−7)、DMQ/AAC=80/20(モル%)電荷内包率21.6%(試料−8)、である架橋性水溶性高分子を合成した。結果を表−1に示す。   The obtained emulsion was maintained at a temperature of the monomer solution at 40 to 43 ° C., and after nitrogen substitution for 30 minutes, dimethyl-2,2-azobisisobutyrate (V-601 manufactured by Wako Pure Chemical Industries) 7 g (0.038% by weight of monomer) was added to initiate the polymerization reaction. The reaction was completed at a reaction temperature of 42 ± 2 ° C. for 12 hours to complete the reaction. After the polymerization, 5.0 g of polyoxyethylene polyoxypropylene alkyl ether (1% by weight with respect to the liquid) was added to and mixed with the resulting water-in-oil emulsion as a phase inversion agent. Then, when the product viscosity was measured with a B-type viscometer, it was 330 mPa · s. The charge inclusion rate determined by the colloid titration method and the above formula was 65.3%. This is used as a sample for a dehydration test and is referred to as Sample-1. Furthermore, DMQ / AAM = 80/20 (mol%) charge inclusion rate 48.7% (sample-2), DMQ / AAM = 80/20 (mol%) charge inclusion rate 29.1 in the same manner as in Synthesis Example 1. % (Sample-3), DMQ / AAM = 80/20 (mol%) charge inclusion rate 11.3% (sample-4) DMQ / AAM / AAC = 80/10/10 (mol%) charge inclusion rate 42. 0% (sample-5), DMQ / AAM / AAC = 80/20/10 (mol%) charge inclusion rate 17.5% (sample-6), DMQ / AAC = 80/20 (mol%) charge inclusion rate A crosslinkable water-soluble polymer having 40.5.0% (sample-7), DMQ / AAC = 80/20 (mol%), and charge inclusion rate of 21.6% (sample-8) was synthesized. The results are shown in Table-1.

(比較合成例1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン130gにソルビタンモノオレート5.0gを仕込み溶解させた。別にアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液211.8g、アクリルアミド(AAMと略記)50%水溶液31.1g、イソプロピルアルコール0.19g(対単量体0.1重量%)、イオン交換水121.9gを各々採取し、混合し完全に溶解させた。その後油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMQ/AAM=80/20(モル%)である。 (Comparative Synthesis Example 1) 5.0 g of sorbitan monooleate was charged and dissolved in 130 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. in a reaction vessel equipped with a stirrer and a temperature controller. Separately, acryloyloxyethyltrimethylammonium chloride (abbreviated as DMQ) 80% aqueous solution 211.8 g, acrylamide (abbreviated as AAM) 50% aqueous solution 31.1 g, isopropyl alcohol 0.19 g (0.1% by weight monomer) , 121.9 g of ion-exchanged water was collected, mixed and completely dissolved. Thereafter, the oil and the aqueous solution were mixed, and stirred and emulsified with a homogenizer at 1000 rpm for 15 minutes. The monomer composition at this time is DMQ / AAM = 80/20 (mol%).

得られたエマルジョンを単量体溶液の温度を40〜43℃に保ち、窒素置換を30分行った後、ジメチル−2,2−アゾビスイソブチレート(和光純薬製V−601)0.7g(対単量体0.038重量%)を加え、重合反応を開始させた。反応温度を42±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレンポリオキシプロピレンアルキルエ−テル5.0g(対液1重量%)を添加混合した。その後、B型粘度計により製品粘度を測定すると、290mPa・sであった。前記計算式より電荷内包率を求めると2.3%であった。これを脱水試験用試料として用い比較−1とする。結果を表1に示す。その後、各試料を表2及び3に示すような配合で汚泥脱水用試料M−1〜M−10及び比較試料CM−1〜CM−13をそれぞれ調製した。











(表1)

Figure 2005144346
DMQ:アクリロイルオキシエチルトリメチルアンモニウムクロリド、AAM:アクリルアミド、AAC:アクリル酸、エマルジョン粘度;mPa・s、架橋性単量体添加量;対単量体重量%、電荷内包率;%
(表2)
Figure 2005144346
配合比;重量比

(表3)
Figure 2005144346
配合比;重量比 The obtained emulsion was maintained at a temperature of the monomer solution at 40 to 43 ° C., and after nitrogen substitution for 30 minutes, dimethyl-2,2-azobisisobutyrate (V-601 manufactured by Wako Pure Chemical Industries) 7 g (0.038% by weight of monomer) was added to initiate the polymerization reaction. The reaction was completed at a reaction temperature of 42 ± 2 ° C. for 12 hours to complete the reaction. After the polymerization, 5.0 g of polyoxyethylene polyoxypropylene alkyl ether (1% by weight with respect to the liquid) was added to and mixed with the resulting water-in-oil emulsion as a phase inversion agent. Then, when the product viscosity was measured with a B-type viscometer, it was 290 mPa · s. The charge inclusion rate determined from the above calculation formula was 2.3%. This is used as a sample for dehydration test and is referred to as Comparative-1. The results are shown in Table 1. Thereafter, sludge dewatering samples M-1 to M-10 and comparative samples CM-1 to CM-13 were prepared by mixing the samples as shown in Tables 2 and 3, respectively.











(Table 1)
Figure 2005144346
DMQ: acryloyloxyethyltrimethylammonium chloride, AAM: acrylamide, AAC: acrylic acid, emulsion viscosity; mPa · s, addition amount of crosslinkable monomer; monomer weight%, charge inclusion rate:%
(Table 2)
Figure 2005144346
Mixing ratio; weight ratio

(Table 3)
Figure 2005144346
Mixing ratio; weight ratio

し尿余剰汚泥200mlを300mlビーカーに採取し、表2に示す前記架橋性水溶性高分子二種の混合物からなる油中水系エマルジョン、M−1〜M−4を0.2%水溶液にて対汚泥液重量100〜300ppm添加後、ビーカー移し替え20回によって撹拌して汚泥凝集フロックを生成させ、フロックの粒径を測定した。その後、40メッシュ濾布をフィルターとして用いて、前記汚泥凝集フロックの生成した分散液を重力濾過した。5及び20秒後の各濾液量を測定した。また、得られた濾液の外観を目視にて下記5段階で評価した。 200 ml of excess human waste sludge was collected in a 300 ml beaker, and the water-in-oil emulsion consisting of a mixture of the two cross-linkable water-soluble polymers shown in Table 2, M-1 to M-4 was treated with 0.2% aqueous solution. After adding the liquid weight of 100 to 300 ppm, the beaker was transferred 20 times to produce sludge aggregation floc by stirring, and the floc particle size was measured. Then, using a 40 mesh filter cloth as a filter, the dispersion liquid in which the sludge aggregation floc was generated was gravity filtered. The amount of each filtrate was measured after 5 and 20 seconds. Moreover, the external appearance of the obtained filtrate was visually evaluated in the following five stages.

(濾液の外観の評価基準)
○:濾液の清澄性良い、濾液中にSS(懸濁粒子)が見られない
○−:濾液の清澄性良い、濾液中にSSが見られる
△:濾液に濁りあり、濾液中にSSが見られない
△−:濾液に濁りあり、濾液中にSSが見られる
×:濾液の濁りがひどく、濾液中にSSが見られる
(Evaluation criteria for the appearance of the filtrate)
○: Clearness of the filtrate is good, SS (suspension particles) is not found in the filtrate ○-: Good clarity of the filtrate, SS is seen in the filtrate Δ: The filtrate is turbid, SS is seen in the filtrate △ −: The filtrate is turbid, and SS is observed in the filtrate. ×: The filtrate is extremely turbid, and SS is observed in the filtrate.

得られた汚泥ケーキを汚泥脱水試験装置によって、ナイロン#202を濾布として用い3.0Kg/cm2、30秒間の条件にて圧搾脱水し、汚泥ケーキ含水率を測定した。それらの結果を表4に示す。供試汚泥の性状は以下の通りである。TS:22,000mg/l、VTS:69.3%/TS、SS:22,500mg/l(200メッシュ濾過)pH6.68。また比較試験として表3の比較試料CM−1〜CM−9を用い、実施例1と同様な試験操作によって行った。結果を表5に示す。
(表4)

Figure 2005144346
フロック径;mm、濾液量;mL、
濾液状態;試験条件に記載、含水率;重量%











(表5)
Figure 2005144346
フロック径;mm、濾液量;mL、
濾液状態;試験条件に記載、含水率;重量% The obtained sludge cake was squeezed and dehydrated with a sludge dewatering test apparatus using nylon # 202 as a filter cloth under the conditions of 3.0 Kg / cm 2 and 30 seconds, and the moisture content of the sludge cake was measured. The results are shown in Table 4. The properties of the test sludge are as follows. TS: 22,000 mg / l, VTS: 69.3% / TS, SS: 22,500 mg / l (200 mesh filtration) pH 6.68. In addition, comparative samples CM-1 to CM-9 shown in Table 3 were used as comparative tests, and the same test operation as in Example 1 was performed. The results are shown in Table 5.
(Table 4)
Figure 2005144346
Flock diameter: mm, filtrate amount: mL,
Filtrate state; described in test conditions, moisture content: wt%











(Table 5)
Figure 2005144346
Flock diameter: mm, filtrate amount: mL,
Filtrate state; described in test conditions, moisture content: wt%

実施例1と同様にM−5〜M−10に関して試験した。結果を表6に示す。また比較試験として実施例2と同様にCM−5〜CM−8に関して試験した。結果を表6に示す。









(表6)

Figure 2005144346
フロック径;mm、濾液量;mL、
濾液状態;試験条件に記載、含水率;重量% In the same manner as in Example 1, M-5 to M-10 were tested. The results are shown in Table 6. As a comparative test, CM-5 to CM-8 were tested in the same manner as in Example 2. The results are shown in Table 6.









(Table 6)
Figure 2005144346
Flock diameter: mm, filtrate amount: mL,
Filtrate state; described in test conditions, moisture content: wt%

以上のように本発明は架橋性水溶性イオン性高分子の長所を残し、添加量の削減という問題を解決する。












As described above, the present invention leaves the advantages of the crosslinkable water-soluble ionic polymer and solves the problem of reducing the addition amount.












Claims (5)

電荷内包率35%以上のビニル重合系架橋性水溶性イオン性高分子(A)と、電荷内包率5以上、35%未満のビニル重合系架橋性水溶性イオン性高分子(B)を組み合わせた凝集処理剤。 A vinyl polymerized crosslinkable water-soluble ionic polymer (A) having a charge inclusion rate of 35% or more and a vinyl polymerized crosslinkable water soluble ionic polymer (B) having a charge encapsulation rate of 5 or more and less than 35% were combined. Aggregation treatment agent. 前記ビニル重合系架橋性水溶性イオン性高分子(A)および(B)が、それぞれ下記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、下記一般式(3)で表わされる単量体を0〜50モル%及び非イオン性単量体0〜95モル%からなる単量体混合物と多官能性単量体および/または架橋性単量体の水溶液を界面活性剤により水に非混和性有機液体を連続相、単量体混合物水溶液を分散相となるよう乳化し重合した後、適宜転相剤を添加し製造されたものであることを特徴とする請求項1に記載の凝集処理剤。
Figure 2005144346



一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキルあるいはアルコキシル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い、Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基を表わす、X は陰イオンをそれぞれ表わす。
Figure 2005144346



一般式(2)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表わす。


Figure 2005144346



一般式(3)
は水素、メチル基またはカルボキシメチル基、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOO、Rは水素またはCOO 、YおよびY は水素イオンまたは陽イオン
The vinyl-polymerizable cross-linkable water-soluble ionic polymer (A) and (B) is a monomer represented by the following general formula (1) and / or (2): A monomer mixture comprising 0 to 50 mol% of the monomer represented by (3) and 0 to 95 mol% of a nonionic monomer and an aqueous solution of a polyfunctional monomer and / or a crosslinkable monomer It is produced by emulsifying and polymerizing a water-immiscible organic liquid in a continuous phase and a monomer mixture aqueous solution in a dispersed phase with a surfactant, and then adding a phase inversion agent as appropriate. The aggregation treatment agent according to claim 1.
Figure 2005144346



General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group, or a benzyl group. A may be oxygen or NH, B may represent an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, and X 1 may represent an anion.
Figure 2005144346



General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.


Figure 2005144346



General formula (3)
R 8 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , R 9 Is hydrogen or COO Y 1 + , Y + and Y 1 + are hydrogen ions or cations
前記ビニル重合系架橋性水溶性イオン性高分子(A)あるいはビニル重合系架橋性水溶性イオン性高分子(B)が、それぞれ(A1)あるいは(B1)の単量体混合物水溶液を界面活性剤により水に非混和性有機液体を連続相、単量体混合物水溶液を分散相となるよう乳化し重合した後、適宜転相剤を添加し製造されたものであることを特徴とする請求項1に記載の凝集処理剤。
単量体組成(A1);前記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、前記一般式(3)で表わされる単量体を0〜50モル%及び非イオン性単量体0〜95モル%。さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
単量体組成(B1);前記架橋性水溶性イオン性高分子(B)が、前記一般式(3)で表わされる単量体を5〜100モル%及び非イオン性単量体0〜95モル%。
さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
The vinyl-polymerizable crosslinkable water-soluble ionic polymer (A) or vinyl-polymerizable crosslinkable water-soluble ionic polymer (B) is used as a surfactant in the aqueous solution of the monomer mixture (A1) or (B1), respectively. The emulsion is prepared by emulsifying and polymerizing an immiscible organic liquid in water to form a continuous phase and an aqueous monomer mixture in a dispersed phase, and then adding a phase inversion agent as appropriate. The aggregating agent described in 1.
Monomer composition (A1): 5-100 mol% of the monomer represented by the general formula (1) and / or (2), and 0-50 mol of the monomer represented by the general formula (3) % And non-ionic monomer 0-95 mol%. Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.
Monomer composition (B1): The crosslinkable water-soluble ionic polymer (B) contains 5 to 100 mol% of the monomer represented by the general formula (3) and nonionic monomers 0 to 95. Mol%.
Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.
前記ビニル重合系架橋性水溶性イオン性高分子(A)あるいはビニル重合系架橋性水溶性イオン性高分子(B)が、それぞれ(A2)あるいは(B2)の単量体混合物水溶液を界面活性剤により水に非混和性有機液体を連続相、単量体混合物水溶液を分散相となるよう乳化し重合した後、適宜転相剤を添加し製造されたものであることを特徴とする請求項1に記載の凝集処理剤。
単量体組成(A2);前記一般式(3)で表わされる単量体を5〜100モル%及び非イオン性単量体0〜95モル%。さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
単量体組成(B2);前記一般式(1)及び/又は(2)で表わされる単量体を5〜100モル%、前記一般式(3)で表わされる単量体を0〜50モル%及び非イオン性単量体0〜95モル%。さらに前記単量体総和に対し多官能性単量体および/または架橋性単量体を生成した重合体が水溶性を保つモル比で添加する。
The vinyl-polymerizable crosslinkable water-soluble ionic polymer (A) or the vinyl-polymerizable crosslinkable water-soluble ionic polymer (B) is used as a surfactant in an aqueous monomer mixture of (A2) or (B2), respectively. The emulsion is prepared by emulsifying and polymerizing an immiscible organic liquid in water to form a continuous phase and an aqueous monomer mixture in a dispersed phase, and then adding a phase inversion agent as appropriate. The aggregating agent described in 1.
Monomer composition (A2): 5-100 mol% of the monomer represented by the general formula (3) and 0-95 mol% of a nonionic monomer. Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.
Monomer composition (B2): 5-100 mol% of the monomer represented by the general formula (1) and / or (2), and 0-50 mol of the monomer represented by the general formula (3) % And non-ionic monomer 0-95 mol%. Furthermore, the polymer in which the polyfunctional monomer and / or the crosslinkable monomer is added is added in a molar ratio that maintains water solubility with respect to the monomer sum.
請求項1〜4に記載の架橋性水溶性イオン性高分子(A)および(B)を組み合わせた凝集処理剤を汚泥に添加し、脱水機により脱水することを特徴とする汚泥脱水方法。


























A sludge dewatering method comprising adding a coagulation treatment agent combining the crosslinkable water-soluble ionic polymers (A) and (B) according to claim 1 to sludge and dewatering with a dehydrator.


























JP2003386514A 2003-11-17 2003-11-17 Aggregation treatment agent and method of using the same Expired - Fee Related JP4167969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386514A JP4167969B2 (en) 2003-11-17 2003-11-17 Aggregation treatment agent and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386514A JP4167969B2 (en) 2003-11-17 2003-11-17 Aggregation treatment agent and method of using the same

Publications (2)

Publication Number Publication Date
JP2005144346A true JP2005144346A (en) 2005-06-09
JP4167969B2 JP4167969B2 (en) 2008-10-22

Family

ID=34694181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386514A Expired - Fee Related JP4167969B2 (en) 2003-11-17 2003-11-17 Aggregation treatment agent and method of using the same

Country Status (1)

Country Link
JP (1) JP4167969B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000759A (en) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd Sludge dehydrating agent for rotary compression filter and sludge dehydrating method using the same
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2008221172A (en) * 2007-03-15 2008-09-25 Hymo Corp Sludge dehydrating agent, and sludge dehydrating method
JP2009039653A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering method
JP2009039650A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering agent and method
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application
JP2010053234A (en) * 2008-08-28 2010-03-11 Hymo Corp Powdered ionic water-soluble polymer and application thereof
JP2010159387A (en) * 2008-07-10 2010-07-22 Hymo Corp Powdery ionic water-soluble polymer, and use thereof
JP2010163538A (en) * 2009-01-16 2010-07-29 Hymo Corp Water-soluble polymer composition
JP2010194446A (en) * 2009-02-25 2010-09-09 Hymo Corp Sludge dehydrating method
JP2010215867A (en) * 2009-03-19 2010-09-30 Hymo Corp Water-soluble polymer composition
JP2010214341A (en) * 2009-03-19 2010-09-30 Hymo Corp Method for dehydrating sludge
JP2010222505A (en) * 2009-03-25 2010-10-07 Hymo Corp Water-soluble polymer composition
JP2011006831A (en) * 2009-05-28 2011-01-13 Hymo Corp Papermaking method
JP2011012354A (en) * 2009-06-30 2011-01-20 Hymo Corp Freeness-improving method
JP2012091079A (en) * 2010-10-25 2012-05-17 Daiyanitorikkusu Kk Organic coagulant
JP2012170944A (en) * 2011-02-24 2012-09-10 Hymo Corp Flocculation treatment agent, and method of dewatering sludge using the same
JP2012170945A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012170943A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012245464A (en) * 2011-05-27 2012-12-13 Hymo Corp Sludge dehydration method
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same
JP2017000914A (en) * 2015-06-04 2017-01-05 Mtアクアポリマー株式会社 Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
JP2017100111A (en) * 2015-12-04 2017-06-08 Mtアクアポリマー株式会社 Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
WO2018168447A1 (en) 2017-03-14 2018-09-20 栗田工業株式会社 Sludge dehydrating agent and sludge dehydrating method
JP2018149531A (en) * 2017-03-14 2018-09-27 栗田工業株式会社 Sludge dehydrating agent and sludge dewatering method
JP2019209287A (en) * 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydrating agent, and sludge dewatering method
JP2020025939A (en) * 2018-08-16 2020-02-20 栗田工業株式会社 Sludge dewatering method
WO2020217772A1 (en) 2019-04-24 2020-10-29 栗田工業株式会社 Sludge dehydrating agent and sludge dehydration method
JP2021035677A (en) * 2020-10-26 2021-03-04 エスエヌエフ・ソシエテ・アノニム Water-soluble polymer for sludge dewatering
JPWO2020027312A1 (en) * 2018-08-03 2021-08-10 Mtアクアポリマー株式会社 Method of dehydrating polymer flocculants and sludge

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687866B2 (en) * 2004-06-17 2011-05-25 巴工業株式会社 Sludge dewatering agent for rotary compression filter and sludge dewatering method using the same
JP2006000759A (en) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd Sludge dehydrating agent for rotary compression filter and sludge dehydrating method using the same
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JPWO2008015769A1 (en) * 2006-08-03 2009-12-17 ハイモ株式会社 Flocculant composition and method for producing the same
US7745529B2 (en) 2006-08-03 2010-06-29 Hymo Corporation Flocculant composition and method for manufacturing the same
JP5103395B2 (en) * 2006-08-03 2012-12-19 ハイモ株式会社 Flocculant composition and method for producing the same
JP2008221172A (en) * 2007-03-15 2008-09-25 Hymo Corp Sludge dehydrating agent, and sludge dehydrating method
JP2009039653A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering method
JP2009039650A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering agent and method
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application
JP2010159387A (en) * 2008-07-10 2010-07-22 Hymo Corp Powdery ionic water-soluble polymer, and use thereof
JP2010053234A (en) * 2008-08-28 2010-03-11 Hymo Corp Powdered ionic water-soluble polymer and application thereof
JP2010163538A (en) * 2009-01-16 2010-07-29 Hymo Corp Water-soluble polymer composition
JP2010194446A (en) * 2009-02-25 2010-09-09 Hymo Corp Sludge dehydrating method
JP2010214341A (en) * 2009-03-19 2010-09-30 Hymo Corp Method for dehydrating sludge
JP2010215867A (en) * 2009-03-19 2010-09-30 Hymo Corp Water-soluble polymer composition
JP2010222505A (en) * 2009-03-25 2010-10-07 Hymo Corp Water-soluble polymer composition
JP2011006831A (en) * 2009-05-28 2011-01-13 Hymo Corp Papermaking method
JP2011012354A (en) * 2009-06-30 2011-01-20 Hymo Corp Freeness-improving method
JP2012091079A (en) * 2010-10-25 2012-05-17 Daiyanitorikkusu Kk Organic coagulant
JP2012170945A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012170943A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012170944A (en) * 2011-02-24 2012-09-10 Hymo Corp Flocculation treatment agent, and method of dewatering sludge using the same
JP2012245464A (en) * 2011-05-27 2012-12-13 Hymo Corp Sludge dehydration method
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same
JP2017000914A (en) * 2015-06-04 2017-01-05 Mtアクアポリマー株式会社 Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
JP2017100111A (en) * 2015-12-04 2017-06-08 Mtアクアポリマー株式会社 Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
WO2018168447A1 (en) 2017-03-14 2018-09-20 栗田工業株式会社 Sludge dehydrating agent and sludge dehydrating method
JP2018149531A (en) * 2017-03-14 2018-09-27 栗田工業株式会社 Sludge dehydrating agent and sludge dewatering method
KR20190124710A (en) 2017-03-14 2019-11-05 쿠리타 고교 가부시키가이샤 Sludge dehydrator and sludge dewatering method
WO2019235345A1 (en) 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydration agent and sludge dehydration method
JP2019209287A (en) * 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydrating agent, and sludge dewatering method
KR20210018191A (en) 2018-06-06 2021-02-17 쿠리타 고교 가부시키가이샤 Sludge dehydration agent and sludge dehydration method
JPWO2020027312A1 (en) * 2018-08-03 2021-08-10 Mtアクアポリマー株式会社 Method of dehydrating polymer flocculants and sludge
JP7362620B2 (en) 2018-08-03 2023-10-17 Mtアクアポリマー株式会社 Polymer flocculant and sludge dewatering method
JP2020025939A (en) * 2018-08-16 2020-02-20 栗田工業株式会社 Sludge dewatering method
WO2020217772A1 (en) 2019-04-24 2020-10-29 栗田工業株式会社 Sludge dehydrating agent and sludge dehydration method
JP2020179330A (en) * 2019-04-24 2020-11-05 栗田工業株式会社 Sludge dehydration agent and sludge dehydration method
KR20220002281A (en) 2019-04-24 2022-01-06 쿠리타 고교 가부시키가이샤 Sludge Dewatering Agent and Sludge Dewatering Method
US12110242B2 (en) 2019-04-24 2024-10-08 Kurita Water Industries Ltd. Sludge dehydrating agent and sludge dehydration method
JP2021035677A (en) * 2020-10-26 2021-03-04 エスエヌエフ・ソシエテ・アノニム Water-soluble polymer for sludge dewatering

Also Published As

Publication number Publication date
JP4167969B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4167969B2 (en) Aggregation treatment agent and method of using the same
JP5103395B2 (en) Flocculant composition and method for producing the same
JP5557366B2 (en) Ionic water-soluble polymer composed of powder, production method thereof and use thereof
JP5622263B2 (en) Sludge dewatering method
JP5142210B2 (en) Sludge dewatering method
JP3886098B2 (en) Sludge dewatering agent and sludge dewatering method
JP4840995B2 (en) Dilutions of water-in-oil dispersions, methods for their preparation and methods for their use
JP4897523B2 (en) Sludge dewatering agent and sludge dewatering method
JP4167974B2 (en) Organic sludge dewatering method
JP4167972B2 (en) Organic sludge dewatering method
JP5283253B2 (en) Method for dewatering paper sludge
JP4167919B2 (en) Sludge dewatering method
JP5305443B2 (en) Water-soluble polymer composition
JP5995534B2 (en) Aggregation treatment agent and waste water treatment method
JP3714612B2 (en) Sludge dewatering method
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP5187927B2 (en) Water-soluble polymer dispersion and method for producing the same
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method
JP3707669B2 (en) Method for producing water-in-oil polymer emulsion
JP4753401B2 (en) How to use water-in-oil water-soluble polymer emulsion
JP2008221171A (en) Method for dehydrating organic sludge
JP4676632B2 (en) Method for controlling solubility of water-in-oil emulsion
JP5630782B2 (en) Sludge dewatering agent and sludge dewatering method
JP4167973B2 (en) Organic sludge dewatering method
JP5561759B2 (en) Water-in-oil emulsion, method for producing the same and method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Ref document number: 4167969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees