[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2019163647A1 - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法 Download PDF

Info

Publication number
JPWO2019163647A1
JPWO2019163647A1 JP2020501717A JP2020501717A JPWO2019163647A1 JP WO2019163647 A1 JPWO2019163647 A1 JP WO2019163647A1 JP 2020501717 A JP2020501717 A JP 2020501717A JP 2020501717 A JP2020501717 A JP 2020501717A JP WO2019163647 A1 JPWO2019163647 A1 JP WO2019163647A1
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
lift
type semiconductor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020501717A
Other languages
English (en)
Other versions
JP7228561B2 (ja
Inventor
良太 三島
良太 三島
邦裕 中野
邦裕 中野
小西 克典
克典 小西
足立 大輔
大輔 足立
崇 口山
崇 口山
山本 憲治
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2019163647A1 publication Critical patent/JPWO2019163647A1/ja
Application granted granted Critical
Publication of JP7228561B2 publication Critical patent/JP7228561B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

結晶基板(11)の一方の主面の上に、第1導電型の第1半導体層(13p)を形成する工程と、第1半導体層の上にシリコン系薄膜材料を含むリフトオフ層(LF)を形成する工程と、リフトオフ層及び第1半導体層を選択的に除去する工程と、リフトオフ層及び第1半導体層を含む一方の主面上に、第2導電型の第2半導体層(13n)を形成する工程と、エッチング溶液を用いてリフトオフ層を除去することにより、リフトオフ層を覆う第2半導体層を除去する工程とを含む。結晶基板とリフトオフ層との互いの線膨張係数は、式(1):リフトオフ層の線膨張係数 < 半導体基板の線膨張係数を満たし、且つ、第2半導体層を形成する工程及び第2半導体層を除去する工程の少なくとも一方の工程は、リフトオフ層を形成する工程よりもプロセス温度が高い。

Description

本発明は、太陽電池の製造方法に関する。
従来、太陽電池は、半導体基板の両面(受光面及び裏面)に電極を配置した両面電極型が一般的であった。近年、電極による遮蔽損がない太陽電池として、特許文献1に示されるような、裏面にのみ電極を配置したバックコンタクト(裏面電極)型太陽電池が開発されている。
特開2009−200267号公報
しかしながら、バックコンタクト型太陽電池は、両面電極型の面積と比べて狭い裏面内に、p型半導体層及びn型半導体層を電気的に分離して形成しなければならず、特許文献1では、レーザ光を用いてp型半導体層とn型半導体層とを電気的に分離している。このため、バックコンタクト型太陽電池は、例えば両面電極型の太陽電池と比べて製造が非常に煩雑になるという問題がある。
また、レーザ光を用いて、p型半導体層とn型半導体層との電気的な分離を煩雑に行ってしまうと、レーザ光の精度不足又はレーザ光の出力不足等によって、絶縁分離を十分に行えないこともある。このような場合、バックコンタクト型太陽電池の性能は低下してしまうという問題もある。特に、p型半導体層及びn型半導体層を、テクスチャ形状を有する半導体基板の上に形成する場合には、性能低下のリスクは高くなる。
本発明は、前記従来の問題を解決するためになされたものであり、その目的は、高性能なバックコンタクト型太陽電池を簡易に製造できるようにすることにある。
前記の目的を達成するため、本発明の一態様は、半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、リフトオフ層及び第1半導体層を選択的に除去する工程と、リフトオフ層及び第1半導体層を含む一方の主面の上に、第2導電型の第2半導体層を形成する工程と、エッチング溶液を用いて、リフトオフ層を除去することにより、リフトオフ層を覆う第2半導体層を除去する工程とを含む。半導体基板と前記リフトオフ層との互いの線膨張係数は、以下の関係式(1):リフトオフ層の線膨張係数 < 半導体基板の線膨張係数 …(1)を満たし、且つ、第2半導体層を形成する工程及び第2半導体層を除去する工程の少なくとも一方の工程は、リフトオフ層を形成する工程よりもプロセス温度が高い。
本発明によれば、高性能なバックコンタクト型太陽電池が簡易に製造される。
図1は一実施形態に係る太陽電池を部分的に示す模式断面図である。 図2は一実施形態に係る太陽電池を構成する結晶基板の裏側主面を示す平面図である。 図3は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。 図4は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。 図5は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。 図6は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。 図7は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。 図8は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。 図9は一実施形態に係る太陽電池の製造方法においてリフトオフ層にクラックが生じた状態を示す部分的な拡大断面図である。 図10は一実施形態に係る太陽電池の製造方法の一工程を示す部分的な模式断面図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物又はその用途を制限することを意図しない。また、図面中の各構成部材の寸法比は、図示する際の便宜上のものであり、必ずしも実寸比を表してはいない。
(一実施形態)
本発明の一実施形態について図面を参照しながら説明する。
図1は本実施形態に係る太陽電池(セル)の部分的な断面図を示す。図1に示すように、本実施形態に係る太陽電池10は、シリコン(Si)製の結晶基板11を用いている。結晶基板11は、互いに対向する2つの主面11S(11SU、11SB)を有している。ここでは、光が入射する主面を表側主面11SUと呼び、これと反対側の主面を裏側主面11SBと呼ぶ。便宜上、表側主面11SUは、裏側主面11SBよりも積極的に受光させる側を受光側とし、積極的に受光させない側を非受光側とする。
本実施形態に係る太陽電池10は、いわゆるヘテロ接合結晶シリコン太陽電池であり、電極層を裏側主面11SBに配置したバックコンタクト型(裏面電極型)太陽電池である。
太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p、n型半導体層13n)、低反射層14、及び電極層15(透明電極層17、金属電極層18)を含む。
以下では、便宜上、p型半導体層13p又はn型半導体層13nに個別に対応する部材には、参照符号の末尾に「p」又は「n」を付すことがある。また、p型、n型のように導電型が相違するため、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称することもある。
結晶基板11は、単結晶シリコンで形成された半導体基板であっても、多結晶シリコンで形成された半導体基板であってもよい。以下では、単結晶シリコン基板を例に挙げて説明する。
結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン(P)原子)を導入されたn型単結晶シリコン基板であっても、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素(B)原子)を導入されたp型単結晶シリコン基板であってもよい。以下では、キャリア寿命が長いといわれるn型の単結晶基板を例に挙げて説明する。
また、結晶基板11は、受光した光を閉じこめておくという観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とから構成されるテクスチャ構造TX(第1テクスチャ構造)を有していてもよい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板11における面方位が(100)面のエッチングレートと、面方位が(111)面のエッチングレートとの差を応用した異方性エッチングによって形成することができる。
結晶基板11の厚さは、250μm以下であってもよい。なお、厚さを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。そこで、これ以降、この垂直方向、すなわち、厚さを測定する方向を厚さ方向とする。
テクスチャ構造TXの大きさとして、例えば頂点(山)の数で定義することが可能である。本発明においては、光取り込みと生産性との観点から、50000個/mm以上100000個/mm以下の範囲であることが好ましく、特には70000個/mm以上85000個/mm以下の範囲であると好ましい。
結晶基板11の厚さは、250μm以下とすると、シリコンの使用量を減らせるため、シリコン基板を確保しやすくなり、低コスト化が図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも好ましい。
一方で、結晶基板11の厚さが過度に小さいと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりする。このため、結晶基板11の厚さは、50μm以上が好ましく、70μm以上がより好ましい。結晶基板11の主面にテクスチャ構造TXが形成されている場合には、結晶基板11の厚さは、受光側及び裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。
ところで、結晶基板11と導電型半導体層13との間には、真性(i型)半導体層12を配置することができる。真性半導体層12(12U、12p、12n)が結晶基板11の両主面11S(11SU、11SB)を覆うことによって、結晶基板11への不純物の拡散を抑えつつ、表面パッシベーションを行う。なお、「真性(i型)」とは、導電性不純物を含まない完全な真性に限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物又はp型不純物を含む「弱n型」又は「弱p型」の実質的に真性である層をも包含する。
なお、真性半導体層12(12U、12p、12n)は、必須ではなく、必要に応じて、適宜形成すればよい。
真性半導体層12の材料は、特に限定されないが、非晶質シリコン系材料であってもよく、薄膜としてシリコンと水素とを含む水素化非晶質シリコン系薄膜(a−Si:H薄膜)であってもよい。なお、ここでいう非晶質とは、長周期で秩序を有していない構造であり、すなわち、完全な無秩序なだけでなく、短周期で秩序を有しているものも含まれる。
また、真性半導体層12の厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
真性半導体層12の形成方法は、特に限定されないが、プラズマCVD(Plasma enhanced Chemical Vapor Deposition)法が用いられる。この方法によると、単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行える。また、プラズマCVD法であれば、真性半導体層12における層中の水素濃度をその厚さ方向で変化させることにより、キャリアの回収を行う上で有効なエネルギーギャッププロファイルの形成をも行える。
なお、プラズマCVD法による薄膜の成膜条件としては、例えば、基板温度が100℃以上300℃以下、圧力が20Pa以上2600Pa以下、及び高周波のパワー密度が0.003W/cm以上0.5W/cm以下であってもよい。
また、薄膜の形成に使用する原料ガスとしては、真性半導体層12の場合は、モノシラン(SiH)及びジシラン(Si)等のシリコン含有ガス、又はそれらのガスと水素(H)とを混合したガスであってもよい。
なお、上記のガスに、メタン(CH)、アンモニア(NH)若しくはモノゲルマン(GeH)等の異種の元素を含むガスを添加して、シリコンカーバイド(SiC)、シリコンナイトライド(SiN)又はシリコンゲルマニウム(SIGe)等のシリコン化合物を形成することにより、薄膜のエネルギーギャップを適宜変更してもよい。
導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。図1に示すように、p型半導体層13pは、結晶基板11の裏側主面11SBの一部に真性半導体層12pを介して形成される。n型半導体層13nは、結晶基板11の裏側主面の他の一部に真性半導体層12nを介して形成される。すなわち、p型半導体層13pと結晶基板11との間、及びn型半導体層13nと結晶基板11との間に、それぞれパッシベーションの役割を果たす中間層として真性半導体層12が介在する。
p型半導体層13p及びn型半導体層13nの各厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、結晶基板11に対するパッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
p型半導体層13p及びn型半導体層13nは、結晶基板11の裏側において、p型半導体層13pとn型半導体層13nとが電気的に分離されるように配置される。導電型半導体層13の幅は、50μm以上3000μm以下であってよく、80μm以上500μm以下であるとより好ましい。加えて、p型半導体層13pとn型半導体層13nとの間隔は、3000μm以下であってよく、1000μm以下であるとより好ましい(なお、半導体層の幅及び後述する電極層の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば線状になった一部分の延び方向と直交する方向の長さを意図する)。
結晶基板11内で生成した光励起子(キャリア)が導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きい。このため、輸送損を低減させるという観点から、p型半導体層13pがn型半導体層13nよりも幅が狭くてもよい。例えば、p型半導体層13pの幅は、n型半導体層13nの幅の0.5倍以上0.9倍以下であってもよく、また、0.6倍以上0.8倍以下であるとより好ましい。
低反射層14は、太陽電池10が受けた光の反射を抑制する層である。低反射層14の材料には、光を透過する透光性の材料であれば、特に限定されないが、例えば、酸化ケイ素(SiO)、窒化ケイ素(SiN)、酸化亜鉛(ZnO)又は酸化チタン(TiO)が挙げられる。また、低反射層14の形成方法としては、例えば、酸化亜鉛又は酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布してもよい。
電極層15は、p型半導体層13p又はn型半導体層13nをそれぞれ覆うように形成されて、各導電型半導体層13と電気的に接続される。これにより、電極層15は、p型半導体層13p又はn型半導体層13nに生じるキャリアを導く輸送層として機能する。
なお、各半導体層13p、13nに対応する電極層15p、15nは、離間して配置されることで、p型半導体層13pとn型半導体層13nとの短絡を防止する。
また、電極層15は、導電性が高い金属のみで形成されてもよい。また、p型半導体層13p及びn型半導体層13nとのそれぞれの電気的な接合の観点から、又は電極材料である金属の両半導体層13p、13nに対する原子の拡散を抑制するという観点から、透明導電性酸化物で構成された電極層15を、金属製の電極層とp型半導体層13pとの間及び金属製の電極層とn型半導体層13nとの間にそれぞれ設けてもよい。
本実施形態においては、透明導電性酸化物で形成される電極層15を透明電極層17と称し、金属製の電極層15を金属電極層18と称する。また、図2に示す結晶基板11の裏側主面11SBの平面図に示すように、それぞれ櫛歯形状を持つp型半導体層13p及びn型半導体層13nにおいて、櫛背部上に形成される電極層をバスバー部と称し、櫛歯部上に形成される電極層をフィンガ部と称することがある。
透明電極層17は、材料としては特に限定されないが、例えば、酸化亜鉛(ZnO)若しくは酸化インジウム(InO)、又は酸化インジウムに種々の金属酸化物、例えば酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)若しくは酸化モリブデン(MoO)等を1重量%以上10重量%以下の濃度で添加した透明導電性酸化物が挙げられる。
透明電極層17の厚さは、20nm以上200nm以下であってもよい。この厚さに好適な透明電極層の形成方法には、例えば、スパッタ法等の物理気相堆積(PVD:physical Vapor Deposition)法、又は有機金属化合物と酸素又は水との反応を利用した金属有機化学気相堆積法(MOCVD:Metal-Organic Chemical Vapor Deposition)法等が挙げられる。
金属電極層18は、材料としては特に限定されないが、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)又はニッケル(Ni)等が挙げられる。
金属電極層18の厚さは、1μm以上80μm以下であってもよい。この厚さに好適な金属電極層18の形成方法には、材料ペーストをインクジェットによる印刷若しくはスクリーン印刷する印刷法、又はめっき法が挙げられる。但し、これには限定されず、真空プロセスを採用する場合には、蒸着又はスパッタリング法を採用してもよい。
また、p型半導体層13p及びn型半導体層13nにおける櫛歯部の幅と、該櫛歯部の上に形成される金属電極層18の幅とは、同程度であってもよい。但し、櫛歯部の幅と比べて、金属電極層18の幅が狭くてもよい。また、金属電極層18同士のリーク電流が防止される構成であれば、櫛歯部の幅と比べて、金属電極層18の幅が広くてもよい。
本実施形態においては、結晶基板11の裏側主面11SBの上に、真性半導体層12、導電型半導体層13、低反射層14及び電極層15を積層した状態で、各接合面のパッシベーション、導電型半導体層13及びその界面における欠陥準位の発生の抑制、並びに透明電極層17における透明導電性酸化物の結晶化を目的として、所定のアニール処理を施す。
本実施形態に係るアニール処理には、例えば、上記の各層を形成した結晶基板11を150℃以上200℃以下に過熱したオーブンに投入して行うアニール処理が挙げられる。この場合、オーブン内の雰囲気は大気でもよく、さらには、雰囲気として水素又は窒素を用いると、より効果的なアニール処理を行うことができる。また、このアニール処理は、各層を形成した結晶基板11に、赤外線ヒータにより赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。
[太陽電池の製造方法]
以下、本実施形態に係る太陽電池10の製造方法について図3〜図10を参照しながら説明する。
まず、図3に示すように、表側主面11SU及び裏側主面11SBにそれぞれテクスチャ構造TXを有する結晶基板11を準備する。
次に、図4に示すように、結晶基板11の表側主面11SUの上に、例えば真性半導体層12Uを形成する。続いて、形成した真性半導体層12Uの上に反射防止層14を形成する。反射防止層14には、入射光を閉じ込める光閉じ込め効果の観点から、適した光吸収係数及び屈折率を有するシリコンナイトライド(SiN)又はシリコンオキサイド(SiO)が用いられる。
次に、図5に示すように、結晶基板11の裏側主面11SBの上にp型半導体層13pを形成する。なお、図5では、上述したように、結晶基板11とp型半導体層13pとの間に、例えばi型非晶質シリコンを用いた真性半導体層12pを形成する。従って、本実施形態においては、p型半導体層(第1半導体層)13pを形成する工程は、p型半導体層13pを形成するよりも前に、結晶基板(半導体基板)11の一方の主面(裏側主面)11Sの上に真性半導体層(第1真性半導体層)12pを形成する工程を含む。
p型半導体層13pは、p型のドーパント(ホウ素(B)等)が添加されたシリコン層で、不純物拡散の抑制又は直列抵抗抑制という観点から、非晶質シリコンで形成されることが好ましい。一方、p型半導体層13pに代えて、n型半導体層13nを用いる場合は、n型のドーパント(リン(P)等)が添加されたシリコン層で、p型半導体層13pと同様に、非晶質シリコンで形成されることが好ましい。導電型半導体層13の原料ガスとしては、モノシラン(SiH)若しくはジシラン(Si)等のシリコン含有ガス、又はシリコン系ガスと水素(H)との混合ガスを用いてもよい。ドーパントガスには、p型半導体層13pの形成にはジボラン(B)等を用いることができ、n型半導体層の形成にはホスフィン(PH)等を用いることができる。また、ホウ素(B)又はリン(P)といった不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈した混合ガスを用いてもよい。
また、p型半導体層13p又はn型半導体層13nのエネルギーギャップの調整のために、メタン(CH)、二酸化炭素(CO)、アンモニア(NH)又はモノゲルマン(GeH)等の異種の元素を含むガスを添加することにより、p型半導体層13p又はn型半導体層13nが化合物化されてもよい。
続いて、図5に示すように、形成されたp型半導体層13pの上にリフトオフ層LFを形成する。リフトオフ層LFは、後述の図6に示す工程においてパターニング除去され(以下、パターニング工程と呼ぶことがある。)、さらに、図8に示す工程においてn型半導体層13nと同時に除去される。リフトオフ層LFは、図8のリフトオフ工程で除去されるが、該リフトオフ工程に至るまでの前工程で過剰にエッチングされないためには、エッチング速度は、以下の関係式(2A)(2B)を満たすように制御されることが好ましい。
<パターニング工程>
第1導電型半導体層13pのエッチング速度 ≦ リフトオフ層LFのエッチング速度 …(2A)
<リフトオフ工程>
第1導電型半導体層13pのエッチング速度 << リフトオフ層LFのエッチング速度…(2B)
すなわち、エッチング溶液を用いるパターニング工程及びリフトオフ工程では、第1導電型半導体層13pのエッチング速度 ≦ リフトオフ層LFのエッチング速度…(2)になっていればよい。
これは、本実施形態において、エッチング液には、フッ化水素酸を主成分とする溶液が用いられるため、図6に示すパターニング工程ではエッチングされすぎず、一方、図8に示すリフトオフ工程で充分にリフトオフされる(溶解する)ことが必要であるためである。このようなエッチング形態となるために、図7に示す工程、又は図7に示す工程と図8に示す工程との間の工程においては、図5に示す工程のプロセス温度よりも高い温度のプロセスを経ることが好ましい。例えば、図5に示すリフトオフ層形成工程のプロセス温度が150℃であった場合には、160℃以上190℃以下の温度範囲、さらには170℃以上185℃以下の温度範囲で熱処理される工程を経ることが好ましい。これより高温となると、真性半導体層12、p型半導体層13p及びn型半導体層13nの膜質が低下して太陽電池特性が低下するおそれがあり、好ましくない。なお、プロセス温度とは、結晶基板11、真性半導体層12、導電型半導体層13、及びリフトオフ層LFが実際に到達している温度のことをいう。
本実施形態に係るリフトオフ層LFは、温度が200℃付近における線膨張係数が、結晶基板11の線膨張係数よりも小さいことが好ましい。すなわち、リフトオフ層LFと結晶基板11との互いの線膨張係数は、以下の関係式(1)を満たすことが好ましい。
リフトオフ層の線膨張係数 < 結晶基板11の線膨張係数 …(1)
具体的には、結晶基板11を構成するシリコンの線膨張係数が3.4ppm/K以上3.5ppm/K以下であるので、それより線膨張係数が小さい値を示すことが好ましい。このため、リフトオフ層LFは、酸化ケイ素(線膨張係数:0.5ppm/K以上1.0ppm/K以下)又は窒化ケイ素(3.1ppm/K)を主成分とすると好ましい。特に好ましいのは、線膨張係数の観点から酸化ケイ素である。なお、酸窒化ケイ素のような複合化合物として線膨張係数を制御しても構わない。リフトオフ層LFの組成の点では、主成分である酸化ケイ素をSiOと表現した場合に、組成xの値は0.5以上2.2以下の範囲が好ましく、さらには1.2以上2.0以下、特には1.4以上1.9以下が好ましいが、いずれの場合にも上記の大小関係(関係式(1))を満たしていることが重要である。ここで、組成xの値が一般的なストイキオメトリックな値(x=2.0)よりも大きい値が上限となっているが、これは、リフトオフ層LFの薄膜形成プロセスにおいて、過剰に酸素が含まれる場合があるためである。窒化ケイ素についてもSiNと表現した場合に、組成yの値は0.8以上1.4以下の範囲が好ましく、さらには0.9以上1.3以下が好ましい。
リフトオフ層LFの厚さは、全体として20nm以上600nm以下であってもよく、特には50nm以上450nm以下であることが好ましい。この範囲内で、厚すぎることによるエッチング不足及び生産性の低下、及び薄すぎることによる図6に示すパターニング工程での過剰エッチングが抑制される。
次に、図6に示すp型半導体層(第1半導体層)13pを選択的に除去する工程(パターニング工程)では、図5に示す工程で形成された真性半導体層12p、p型半導体層13p及びリフトオフ層LFがパターニング除去される。本工程は、公知の手法を用いることができ、例えばフォトリソグラフィ法を用いることにより、精度良く且つ結晶基板11へのダメージが少なくなるようにパターニングされる。本実施形態においては、光の取り込み効率を優先するという観点から、結晶基板11の裏側主面11SBもテクスチャ構造TXを有している。この場合には、レーザ光を用いたパターニング工程は多少困難となる。本工程のエッチングでは、段階的にエッチング液を交換することができ、例えばリフトオフ層LFのエッチングには、加水フッ化水素酸の溶液を用いることができ、p型半導体層13pのエッチングには、オゾンをフッ化水素酸に溶解させた溶液(以下、オゾン/フッ酸液)を用いることができる。
図6に示すパターニング工程では、真性半導体層12pまでをエッチングし、パターニング領域では結晶基板11が露出していると好ましい。このようにすると、光電変換によって発生するキャリアのライフタイムの低下が抑制される。
次に、図7に示す工程では、n型半導体層13nを形成する。n型半導体層13nは、結晶基板11の裏側主面11SBの上の全面に形成することができる。すなわち、n型半導体層13nは、リフトオフ層LFの上にも形成される。なお、図5に示す工程と同様に、結晶基板11とn型半導体層13nとの間に、真性半導体層12nを形成する。この場合、n型半導体層13nは、リフトオフ層LFの上面だけでなく、真性半導体層12nを介して、リフトオフ層LF、p型半導体層13p及び真性半導体層12pの側面(端面)を覆うように形成される。従って、本実施形態においては、n型半導体層(第2半導体層)13nを形成する工程は、n型半導体層13nを形成するよりも前に、結晶基板(半導体基板)11のリフトオフ層LF及びp型半導体層を含む一方の主面(裏側主面)11Sの上に真性半導体層(第2真性半導体層)12nを形成する工程を含む。また、真性半導体層12nを形成するより前に、図6のパターニング工程で露出した結晶基板11の表面を洗浄する工程を設けても構わない。洗浄工程は、パターニング工程で結晶基板11の表面に生じた欠陥及び不純物の除去を目的とし、例えばフッ化水素酸で処理する。
次に、図8に示すリフトオフ層LFを覆うn型半導体層(第2半導体層)13nを除去するリフトオフ工程では、リフトオフ層LF、並びにリフトオフ層LFの上に形成された真性半導体層12n及びn型半導体層13nを同時に除去する。図6に示すパターニング工程ではフォトリソグラフィ法を用いたのに対し、本工程ではフォトリソグラフィ等のレジスト塗布工程及び現像工程を要しない。このため、n型半導体層13nに対するパターン形成を簡易に行える。また、リフトオフ層LFに酸化ケイ素又は窒化ケイ素を主成分とする膜を適用する場合には、本工程でのエッチング液にはフッ化水素酸が用いられる。
本実施形態において、図7に示すn型半導体層形成工程及び図8に示すリフトオフ工程の少なくとも一方の工程に、図5に示すp型半導体層形成工程と比べてプロセス温度が高い工程が含まれていることが好ましい。これは、上述した線膨張係数の差を利用して、図9の拡大図に示すように、リフトオフ層LFに微細なクラックLFaを生じさせるためである。このクラックLFaが生じることにより、図8に示すリフトオフ工程でエッチング液がリフトオフ層LFに効率良く浸入する。これにより、リフトオフ層LF、及びこのリフトオフ層LF上のn型半導体層13nのエッチングを良好に行える。このクラックLFaは、リフトオフ層LFの厚さ方向の全体に発生する必要はなく、リフトオフ層LFの厚さの半分程度の深さ以上であればよい。
高い温度が付与されるプロセスは、例えば、図7に示すn型半導体層形成工程におけるn型半導体層13nの形成時が挙げられる。但し、これとは別の工程として、クラックLFaを発生させるための熱処理工程が施されてもよい。例えば、図8に示すリフトオフ工程の直前、又はリフトオフ工程内での初期処理として、リフトオフ層LFに対するアニール処理を行ってもよい。
次に、図10に示すように、結晶基板11における裏側主面11SBの上、すなわち、p型半導体層13p及びn型半導体層13nのそれぞれの上に、例えば、マスクを用いたスパッタリング法により、分離溝25を生じさせるように透明電極層17(17p、17n)を形成する。なお、透明電極層17(17p、17n)の形成は、スパッタリング法に代えて、以下のようにしてもよい。例えば、マスクを用いずに透明導電性酸化物膜を裏側主面11SB上の全面に成膜し、その後、フォトリソグラフィ法により、p型半導体層13p上及びn型半導体層13n上にそれぞれ透明導電性酸化物膜を残すエッチングを行って形成してもよい。ここで、p型半導体層13pとn型半導体層13nとを互いに分離絶縁する分離溝25を形成することにより、リーク電流が発生し難くなる。
その後、透明電極層17の上に、例えば開口部を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)を形成する。
以上の工程により、裏面接合型の太陽電池10が形成される。
本発明は、上記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、本発明を実施例により具体的に説明する。但し、本発明はこれらの実施例に限定されない。実施例及び比較例は、以下のようにして作製した([表1]を参照)。
[結晶基板]
まず、結晶基板として、厚さが200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の両主面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。
[真性半導体層]
次に、結晶基板をCVD装置に導入し、導入した結晶基板の両主面に、シリコン製の真性半導体層(厚さ8nm)を形成した。成膜条件は、基板温度が150℃、圧力が120Pa、SiH/Hの流量比が3/10、及びパワー密度が0.011W/cmであった。
[p型半導体層(第1導電型半導体層)]
次に、両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、結晶基板における裏側主面の真性半導体層の上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。
成膜条件は、基板温度が150℃、圧力が60Pa、SiH/Bの流量比が1/3、及びパワー密度が0.01W/cmであった。なお、本実施例でのBガスの流量は、BがHにより5000ppmまで希釈された希釈ガスの流量である。
[リフトオフ層]
次に、実施例1に用いる第1リフトオフ層として、プラズマCVD装置を用いて、酸化ケイ素(SiO)を200nmの膜厚(マスクで遮蔽されない領域上)で形成した。基板温度を150℃、圧力を0.9kPa、SiH/CO/Hの流量比を1/10/750、及びパワー密度を0.15W/cmとした。
また、実施例2に用いる第2リフトオフ層として、プラズマCVD装置を用いて、窒化ケイ素(SiN)を200nmの膜厚(マスクで遮蔽されない領域上)で形成した。基板温度を150℃、圧力を0.2kPa、SiH/HN/Hの流量比を1/4/50、及びパワー密度を0.15W/cmとした。
[リフトオフ層及びp型半導体層のパターニング]
次に、p型半導体層が形成された結晶基板の裏側主面又は両主面の上に、感光性レジスト膜を成膜した。成膜した感光性レジスト膜に対して、フォトリソグラフィ法により露光及び現像を行って、p型半導体層のエッチング領域を露出した。ここでは、まず、エッチング領域が露出した結晶基板を、濃度が1重量%の加水フッ化水素酸に浸漬して、エッチング領域のリフトオフ層を除去した。続いて、純水によるリンスを行った後に、濃度が5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ酸液に浸漬して、エッチング領域のp型半導体層及び真性半導体層を除去した。以下、この工程をp型半導体層パターニング工程と略称する。
[n型半導体層(第2導電型半導体層)]
続いて、p型半導体層パターニング工程の後に、裏側主面の露出部分を濃度が2重量%のフッ化水素酸によって洗浄した結晶基板をCVD装置に導入し、裏側主面に真性半導体層、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。
成膜条件は、基板温度が150℃又は180℃、圧力が60Pa、SiH/PHの流量比が1/2、及びパワー密度が0.01W/cmであった。なお、本実施例でのPHガスの流量は、PHがHにより5000ppmまで希釈された希釈ガスの流量である。
[リフトオフ層にクラックを発生させるアニール処理]
次に、n型半導体層が形成された結晶基板を大気雰囲気下で温度が180℃のオーブンで20分間のアニール処理を行った。ここでのアニール対象は、主にリフトオフ層である。このアニール処理により、リフトオフ層に必要なクラックが生じる。
[リフトオフ層及びn型半導体層の除去(リフトオフ)]
次に、n型半導体層が形成され、アニール処理された結晶基板を、濃度が5重量%フッ化水素酸に浸漬した。これにより、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層が同時に除去された。
[電極層]
次に、マグネトロンスパッタリング装置を用いて、透明電極層の基となる酸化物膜(膜厚100nm)を、結晶基板の導電型半導体層の上に形成した。透明導電性酸化物としては、酸化スズを濃度10重量%で含有した酸化インジウム(ITO)をターゲットとして使用した。スパッタリング装置のチャンバ内に、アルゴン(Ar)と酸素(O)との混合ガスを導入し、チャンバ内の圧力を0.6Paに設定した。アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cmの電力密度で成膜を行った。
次に、フォトリソグラフィ法により、p型半導体層及びn型半導体層の上の透明導電性酸化物膜のみを残すようにエッチングして、透明電極層を形成した。このエッチングにより形成された透明電極層により、p型半導体層上の透明導電性酸化物膜と、n型半導体層上の透明導電性酸化物膜との間での導通が防止された。
さらに、透明電極層の上に、銀ペースト(藤倉化成製:ドータイトFA−333)を希釈せずにスクリーン印刷し、温度が150℃のオーブンで60分間の加熱処理を行った。これにより、金属電極層が形成された。
次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、[表1]を参照とする。
[膜厚及びエッチング性の評価]
リフトオフ層の膜厚及びエッチングの状態は、SEM(フィールドエミッション型走査型電子顕微鏡S4800:日立ハイテクノロジーズ社製)を用い、10万倍の倍率で観察して測定した。p型半導体層パターニング工程の後に、設計上のパターニング除去領域に従ってエッチングできている場合には「○」とし、リフトオフ層が過剰にエッチングされた場合には「×」とした。
リフトオフ工程では、リフトオフ層が除去された場合には「○」とし、リフトオフ層が残った場合には「×」とした。比較例2では、p型半導体層パターニング工程でリフトオフ層が除去され、その後のリフトオフ工程での評価が不可能だったため、「−」とした。
[変換効率の評価]
ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射して、太陽電池の変換効率(Eff(%))を測定した。実施例1の変換効率(太陽電池特性)を1.00とし、その相対値を[表1]に掲載した。
実施例1及び比較例1では、リフトオフ層として酸化ケイ素を用いた。実施例2では窒化ケイ素を用いた。
比較例2では、真性半導体層と同一の条件で厚さが200nmの非晶質シリコンによるリフトオフ層を形成し、p型半導体層パターニング工程では、他の実施例及び比較例と同様のオゾン/フッ酸(濃度5.5重量%)を用いてエッチングを行った。リフトオフ工程では、オゾン/フッ酸(濃度2重量%)を用いた。
Figure 2019163647
実施例と比較例とを比べると、リフトオフ処理よりも前にリフトオフ層に対するアニール処理を施すことにより、リフトオフ工程でのリフトオフを良好に行えることが分かった。また、実施例1、実施例2及び比較例2においては、線膨張係数が結晶基板よりも小さい酸化ケイ素又は窒化ケイ素を用いている(上述の関係式(1)を参照。)。これにより、アニール処理によってリフトオフ層にクラックを生じさせることができるので、このクラックがリフトオフに好ましい影響を与えていることが考えられる。
これに対し、比較例2では、非晶質シリコンによるリフトオフ層を除去する工程において、n型半導体層及び真性半導体層に対するエッチングが優先して行われたため、太陽電池として機能しなかった。また、リフトオフ層にクラックは発生しなかった。これは、結晶基板と非晶質シリコンとの互いの線膨張係数が近い値であることがその要因であると考えられる。
10 太陽電池
11 結晶基板(半導体基板)
12 真性半導体層
13 導電型半導体層
13p p型半導体層[第1導電型の第1半導体層/第2導電型の第2半導体層]
13n n型半導体層[第2導電型の第2半導体層/第1導電型の第1半導体層]
15 電極層
17 透明電極層
18 金属電極層
LF リフトオフ層
LFa クラック

Claims (4)

  1. 半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、
    前記第1半導体層の上に、シリコン系薄膜材料を含むリフトオフ層を形成する工程と、
    前記リフトオフ層及び第1半導体層を選択的に除去する工程と、
    前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に、第2導電型の第2半導体層を形成する工程と、
    エッチング溶液を用いて、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程とを含み、
    前記半導体基板と前記リフトオフ層との互いの線膨張係数は、以下の関係式(1):
    リフトオフ層の線膨張係数 < 半導体基板の線膨張係数 …(1)
    を満たし、且つ、
    前記第2半導体層を形成する工程及び前記第2半導体層を除去する工程の少なくとも一方の工程は、前記リフトオフ層を形成する工程よりも、プロセス温度が高い太陽電池の製造方法。
  2. 請求項1に記載の太陽電池の製造方法において、
    前記リフトオフ層は、酸化ケイ素を主成分とし、且つ、
    エッチング溶液を用いて、前記リフトオフ層及び第1半導体層を選択的に除去する工程、及び前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程では、前記第1半導体層のエッチング速度と前記リフトオフ層のエッチング速度とは、以下の関係式(2):
    第1半導体層のエッチング速度 ≦ リフトオフ層のエッチング速度…(2)
    を満たす太陽電池の製造方法。
  3. 請求項1又は2に記載の太陽電池の製造方法において、
    前記半導体基板における少なくとも第1半導体層及び第2半導体層が形成される面は、テクスチャ構造を有している太陽電池の製造方法。
  4. 請求項1〜3のいずれか1項に記載の太陽電池の製造方法において、
    前記第1半導体層を形成する工程は、前記第1半導体層を形成するよりも前に、前記半導体基板の前記一方の主面の上に第1真性半導体層を形成する工程を含み、
    前記第1半導体層を選択的に除去する工程は、前記第1半導体層に続いて前記第1真性半導体層を選択的に除去する工程を含み、
    前記第2半導体層を形成する工程は、前記第2半導体層を形成するよりも前に、前記半導体基板の前記リフトオフ層及び第1半導体層を含む前記一方の主面の上に第2真性半導体層を形成する工程を含み、
    前記第2半導体層を除去する工程は、前記第2半導体層に続いて前記第2真性半導体層を選択的に除去する工程を含む太陽電池の製造方法。
JP2020501717A 2018-02-23 2019-02-14 太陽電池の製造方法 Active JP7228561B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018030758 2018-02-23
JP2018030758 2018-02-23
PCT/JP2019/005407 WO2019163647A1 (ja) 2018-02-23 2019-02-14 太陽電池の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019163647A1 true JPWO2019163647A1 (ja) 2021-02-04
JP7228561B2 JP7228561B2 (ja) 2023-02-24

Family

ID=67687193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501717A Active JP7228561B2 (ja) 2018-02-23 2019-02-14 太陽電池の製造方法

Country Status (3)

Country Link
US (1) US11211519B2 (ja)
JP (1) JP7228561B2 (ja)
WO (1) WO2019163647A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228561B2 (ja) * 2018-02-23 2023-02-24 株式会社カネカ 太陽電池の製造方法
WO2021044617A1 (ja) * 2019-09-06 2021-03-11 株式会社カネカ 裏面電極型太陽電池の製造方法
CN112151625B (zh) * 2020-09-04 2022-10-14 泰州隆基乐叶光伏科技有限公司 太阳电池及生产方法、电池组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265233B1 (en) * 1999-02-22 2001-07-24 Mosel Vitelic, Inc. Method for determining crack limit of film deposited on semiconductor wafer
JP2002134510A (ja) * 2000-10-20 2002-05-10 Fuji Electric Co Ltd 配線または電極の形成方法
US20040129670A1 (en) * 2002-12-30 2004-07-08 Soon-Yong Kweon Method for fabricating ferroelectric random access memory device
JP2005123494A (ja) * 2003-10-20 2005-05-12 Matsushita Electric Ind Co Ltd 半導体装置の製造方法および分析方法
US20080048278A1 (en) * 2006-08-25 2008-02-28 Fujifilm Corporation Method of forming pattern of inorganic material film and structure containing the pattern
JP2012177661A (ja) * 2011-02-28 2012-09-13 Denso Corp 半導体装置の製造方法
WO2015060432A1 (ja) * 2013-10-25 2015-04-30 シャープ株式会社 光電変換装置
JP2015142132A (ja) * 2014-01-29 2015-08-03 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
WO2017217219A1 (ja) * 2016-06-15 2017-12-21 株式会社カネカ 太陽電池及びその製造方法、並びに太陽電池モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431177C (zh) * 2003-09-24 2008-11-05 三洋电机株式会社 光生伏打元件及其制造方法
JP5230222B2 (ja) 2008-02-21 2013-07-10 三洋電機株式会社 太陽電池
CN103329281B (zh) * 2011-11-22 2014-10-08 株式会社钟化 太阳能电池及其制造方法以及太阳能电池模块
JP6491602B2 (ja) * 2013-10-30 2019-03-27 株式会社カネカ 太陽電池の製造方法、および太陽電池モジュールの製造方法
US9196758B2 (en) * 2013-12-20 2015-11-24 Sunpower Corporation Solar cell emitter region fabrication with differentiated p-type and n-type region architectures
US10522704B2 (en) * 2015-02-13 2019-12-31 Kaneka Corporation Solar cell, method for manufacturing same
WO2019138613A1 (ja) * 2018-01-09 2019-07-18 株式会社カネカ 太陽電池の製造方法
WO2019163646A1 (ja) * 2018-02-23 2019-08-29 株式会社カネカ 太陽電池の製造方法
WO2019163648A1 (ja) * 2018-02-23 2019-08-29 株式会社カネカ 太陽電池の製造方法
JP7228561B2 (ja) * 2018-02-23 2023-02-24 株式会社カネカ 太陽電池の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265233B1 (en) * 1999-02-22 2001-07-24 Mosel Vitelic, Inc. Method for determining crack limit of film deposited on semiconductor wafer
JP2002134510A (ja) * 2000-10-20 2002-05-10 Fuji Electric Co Ltd 配線または電極の形成方法
US20040129670A1 (en) * 2002-12-30 2004-07-08 Soon-Yong Kweon Method for fabricating ferroelectric random access memory device
JP2005123494A (ja) * 2003-10-20 2005-05-12 Matsushita Electric Ind Co Ltd 半導体装置の製造方法および分析方法
US20080048278A1 (en) * 2006-08-25 2008-02-28 Fujifilm Corporation Method of forming pattern of inorganic material film and structure containing the pattern
JP2012177661A (ja) * 2011-02-28 2012-09-13 Denso Corp 半導体装置の製造方法
WO2015060432A1 (ja) * 2013-10-25 2015-04-30 シャープ株式会社 光電変換装置
JP2015142132A (ja) * 2014-01-29 2015-08-03 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
WO2017217219A1 (ja) * 2016-06-15 2017-12-21 株式会社カネカ 太陽電池及びその製造方法、並びに太陽電池モジュール

Also Published As

Publication number Publication date
US20200411713A1 (en) 2020-12-31
JP7228561B2 (ja) 2023-02-24
US11211519B2 (en) 2021-12-28
WO2019163647A1 (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP7361023B2 (ja) 太陽電池の製造方法及びそれに用いるホルダ
JP5675476B2 (ja) 結晶シリコン系太陽電池
US11211519B2 (en) Method for manufacturing solar cell
WO2019163646A1 (ja) 太陽電池の製造方法
WO2019138613A1 (ja) 太陽電池の製造方法
JP6452011B2 (ja) 太陽電池
JP7281444B2 (ja) 太陽電池の製造方法
JP7221276B2 (ja) 太陽電池の製造方法、および、太陽電池
JP2011077454A (ja) 結晶シリコン系太陽電池とその製造方法
JP5645734B2 (ja) 太陽電池素子
JP7237920B2 (ja) 太陽電池の製造方法
JP7183245B2 (ja) 太陽電池の製造方法
JP6053082B1 (ja) 光発電素子及びその製造方法
JP7353865B2 (ja) 太陽電池の製造方法
JP7361045B2 (ja) 太陽電池の製造方法
WO2020022044A1 (ja) 太陽電池の製造方法
TW201511306A (zh) 鈍化發射極背電極矽晶太陽能電池及其製造方法
JP2020096126A (ja) 裏面電極型太陽電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150