[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2019073512A1 - システム分析方法、システム分析装置、および、プログラム - Google Patents

システム分析方法、システム分析装置、および、プログラム Download PDF

Info

Publication number
JPWO2019073512A1
JPWO2019073512A1 JP2019547811A JP2019547811A JPWO2019073512A1 JP WO2019073512 A1 JPWO2019073512 A1 JP WO2019073512A1 JP 2019547811 A JP2019547811 A JP 2019547811A JP 2019547811 A JP2019547811 A JP 2019547811A JP WO2019073512 A1 JPWO2019073512 A1 JP WO2019073512A1
Authority
JP
Japan
Prior art keywords
change point
group
relevance
degree
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019547811A
Other languages
English (en)
Other versions
JP6915693B2 (ja
Inventor
昌尚 棗田
昌尚 棗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2019073512A1 publication Critical patent/JPWO2019073512A1/ja
Application granted granted Critical
Publication of JP6915693B2 publication Critical patent/JP6915693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0281Quantitative, e.g. mathematical distance; Clustering; Neural networks; Statistical analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

分析対象となるシステムにおいて、複数の事象が発生した場合に、各事象を分離して、各事象に対応する情報を出力するシステム分析方法を提供する。システム分析方法は、システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表した履歴情報を取得するステップと、履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定するステップと、変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定するステップと、履歴情報と関連度に基づいて変化点群を複数のグループに分類し、変化点グループ群を生成するステップと、変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力するステップと、を含む。

Description

本発明は、システム分析方法、システム分析装置、および、プログラムに関する。特に、システムの状態を分析する、システム分析方法、システム分析装置、および、プログラムに関する。
近年、システムの構成要素から得られるセンサデータに基づいて、システムの状態を分析するシステム分析装置が利用されている。このようなシステム分析装置による分析処理は、システムを安全かつ効率的に運用する目的で行われる。また、その分析処理の1つとして、センサデータを多変量解析することにより、システムの異常を検知する処理がある。このような分析処理では、システム分析装置は、システムの異常を検知すると、異常の発生を運用者およびシステムに通知する。この結果、異常または異常の予兆が早期に検知され、対策の初動を早めて被害を最小化することが可能となる。
分析処理の対象となるシステムとして、例えば、ICT(Information and Communication Technology)システム、化学プラント、発電所、動力設備などの相互に影響を及ぼし合う要素から構成された纏まり、または、仕組みが挙げられる。
ところで、システム分析装置の中には、システム分析装置がシステムの異常を検知した場合、原因の特定に資する情報を提供するものが存在する。提供される情報の1つとして、異常に関連するセンサ名が挙げられる。特許文献1ないし3は、このような異常に関連するセンサ名を運用者およびシステムに通知する技術を開示する。
具体的には、特許文献1に開示されたプロセス監視診断装置は、システム分析装置が異常を検知した時点での異常度の高いセンサ名を異常に関連するセンサ名として提供する。
また、特許文献2に開示された時系列データ処理装置は、一定期間の時系列データから、異常伝播順を推定し、異常に関連するセンサ名を、推定した異常伝播順に並べ替えて提供する。
さらに、特許文献3には、複数のセンサデータの項目の中から、センサデータの挙動の相互の関連性が大きいもの同士を集めてグループ化し、グループ内におけるデータ項目間の相互関係、および、グループ間の相互関係を表したリンクモデルを構築する技術が記載されている。
さらに、特許文献4は、システムの稼働状況を監視する運用管理装置等に関する技術を開示する。特許文献4に開示された装置は、複数の監視対象装置から、複数の性能指標(メトリック)の計測値を取得し、2つの相異なるメトリックについて、その相関モデルを生成する。特許文献4に開示された装置は、相関モデルを用いて算出した、あるメトリックに関する推定値と当該メトリックの実測値とを比較した結果に基づいて、異常項目を検出する。特許文献4に開示された装置は、監視対象装置毎に、2つのメトリックによる組み合わせの総数と検出した異常項目数とを用いて異常スコアを算出し、係る異常スコアが高いメトリックを、異常発生源として特定する。
特開2014−096050号公報 特開2014−115714号公報 特開2011−243118号公報 特許第5267684号公報
特許文献1ないし4の全開示内容は、本書に引用をもって繰り込み記載されているものとする。以下の分析は、本発明者によってなされたものである。
特許文献1ないし4に開示された装置は、複数種類の異常および異常の予兆を含む事象が検知された場合、検知された複数の事象を混同して出力する可能性がある。したがって、特許文献1ないし4に開示された装置によると、かかる場合に、運用者はシステムの状況を適切に把握することができないという問題がある。
そこで、分析対象となるシステムにおいて、複数の事象が発生した場合に、各事象を分離して、各事象に対応する情報を出力することが望まれる。本発明の目的は、分析対象となるシステムにおいて、複数の事象が発生した場合に、各事象を分離して、各事象に対応する情報を出力することに寄与するシステム分析方法、システム分析装置、および、プログラムを提供することにある。
本発明乃至開示の第1の視点によれば、システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表した履歴情報を取得するステップと、前記履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定するステップと、前記変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定するステップと、前記履歴情報と前記関連度に基づいて前記変化点群を複数のグループに分類し、変化点グループ群を生成するステップと、前記変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力するステップと、を含む、システム分析方法が提供される。
本発明乃至開示の第2の視点によれば、システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表す履歴情報を取得する履歴情報取得部と、前記履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定する変化点推定部と、前記変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定する関連度推定部と、前記履歴情報と前記関連度に基づいて前記変化点群を複数のグループに分類し、変化点グループ群を生成するクラスタリング部と、前記変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力する出力部と、を備える、システム分析装置が提供される。
本発明乃至開示の第3の視点によれば、システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表す履歴情報を取得する処理と、前記履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定する処理と、前記変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定する処理と、前記履歴情報と前記関連度に基づいて前記変化点群を複数のグループに分類した、変化点グループ群を生成する処理と、前記変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力する処理と、をコンピュータに実行させるプログラムが提供される。
なお、このプログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。本発明は、コンピュータプログラム製品として具現することも可能である。
本発明乃至開示の各視点によれば、分析対象となるシステムにおいて、複数の事象が発生した場合に、各事象を分離して、各事象に対応する情報を出力することに寄与するシステム分析方法、システム分析装置、および、プログラムが、提供される。
一実施形態に係るシステム分析装置の構成を例示するブロック図である。 第1の実施形態におけるシステム分析装置の概略構成を示すブロック図である。 第1の実施形態におけるシステム分析装置の具体的構成を例示するブロック図である。 第1の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第1の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第1の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第1の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第1の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第1の実施形態におけるシステム分析装置の動作を例示するフロー図である。 第2の実施形態におけるシステム分析装置の具体的構成を例示するブロック図である。 第2の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第2の実施形態におけるシステム分析装置による出力結果の一例を示す図である。 第2の実施形態におけるシステム分析装置の動作を例示するフロー図である。 第3の実施形態におけるシステム分析装置の具体的構成を例示するブロック図である。 第4の実施形態におけるシステム分析装置の具体的構成を例示するブロック図である。 第1ないし第4の実施形態におけるシステム分析装置を実現するコンピュータの構成を例示するブロック図である。
はじめに、一実施形態の概要について説明する。なお、この概要に付記する図面参照符号は、専ら理解を助けるための例示であり、本発明を図示の態様に限定することを意図するものではない。また、各図におけるブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。
図1は、一実施形態に係るシステム分析装置10の構成を例示するブロック図である。図1を参照すると、システム分析装置10は、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、および、出力部16を備えている。
履歴情報取得部12は、対象(例えば図2、図3の分析対象システム200)となるシステムに設けられた複数のセンサ(例えば図2、図3のセンサ21)が出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表した履歴情報を取得する。変化点推定部13は、履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定する。関連度推定部14は、変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定する。クラスタリング部15は、履歴情報と関連度に基づいて、変化点群を複数のグループに分類した、変化点グループ群を生成する。出力部16は、変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力する。
かかるシステム分析装置10によると、システムの状態の関連度だけではなく、履歴情報によって、その時間変化も考慮されて、システムの変化点群がグループ分けされ、グループごとにシステムの異常に関連する情報が出力される。このとき、変化点群は、事象に応じてグループ分けされている。このため、本実施形態によれば、分析対象システムにおいて複数の事象が発生した場合、各事象を分離して、各事象に対応する情報を出力することができる。
以下では、「センサが出力するセンサ値の異常」および「異なるセンサが出力するセンサ値の関係(の異常)」を、それぞれ単に「センサの異常」および「センサ間の関係性(の異常)」とも称する。
<実施形態1>
次に、第1の実施形態に係るシステム分析装置、システム分析方法、および、プログラムについて、図2ないし図9を参照しつつ説明する。
[構成]
最初に、図2を参照して本実施形態におけるシステム分析装置の概略構成について説明する。図2は、本実施形態におけるシステム分析装置100の概略構成を例示するブロック図である。
図2に示すように、本実施形態におけるシステム分析装置100は、対象となるシステム(以下「分析対象システム」という。)200の分析を行なう装置である。システム分析装置100は、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、および、出力部16を備えている。
履歴情報取得部12は、分析対象システム200に設けられた複数のセンサ21のそれぞれが出力したセンサ値の処理結果に基づいて、センサ21のそれぞれ、および、センサ21間の関係性それぞれの少なくともいずれか一方の履歴情報を取得する。なお、分析対象システム200に設けられたセンサ21の個数は、4個に限られない。ここで、履歴情報は、センサ21またはセンサ21間の関係を示す識別子と、各時刻での正常または異常の判定結果と、判定結果に対応する時刻を含む。
変化点推定部13は、取得された履歴情報に基づいて、変化点群を推定する。なお、1つの変化点には、それに対応する1つの時刻がある。
関連度推定部14は、推定された変化点群に含まれる任意の2つの時刻間における関連度を推定する。
クラスタリング部15は、取得された履歴情報と推定された関連度に基づいて、変化点グループ群を生成する。
出力部16は、生成された変化点グループ群のグループごとに出力情報を生成し出力する。ここで、出力情報は、発生している異常についての状態把握や異常原因を特定するのに資する情報である。例えば、異常に関係するセンサ群の名称リストや、異常が発生し始めた時間帯や、異常に関係するセンサをシステム構成図上に可視化したものが当該情報に相当する。あるいは、当該情報は、異常に関係するセンサおよび/またはセンサ間の関係性に基づいて検索して発見した過去に発生した類似過去トラブルの名称や、類似過去トラブルに関する報告書へのリンク等であってもよい。
各センサ21が出力したセンサ値は、分析対象システム200の構成要素から得られる各種の値である。例えば、センサ値として、分析対象システム200の構成要素に設けられたセンサ21を通して取得される計測値が挙げられる。かかる計測値として、例えば、弁の開度、液面高さ、温度、流量、圧力、電流、電圧等が挙げられる。また、センサ値として、これらの計測値を用いて算出される推定値も挙げられる。さらに、センサ値として、分析対象システム200を所望の稼働状態に変更するために情報処理装置によって発せられる制御信号も挙げられる。
以上のように、本実施形態では、システムの状態の関連度だけではなく、履歴情報によって、その時間変化も考慮されて、システムの変化点群がグループ分けされ、グループごとに異常に関連する情報が出力される。このとき、変化点群は、事象に応じてグループ分けされている。このため、本実施形態によれば、分析対象システムにおいて複数の事象が発生した場合、各事象を分離して、各事象に対応する情報を出力することができる。
次に、図3を参照して、本実施形態におけるシステム分析装置100の構成についてさらに具体的に説明する。図3は、本実施形態におけるシステム分析装置100の具体的構成を例示するブロック図である。
図3に示すように、本実施形態のシステム分析装置100は、上述した履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、および、出力部16に加えて、状態情報取得部11をさらに備えていてもよい。これらの各部については後述する。
また、図3に示すように、システム分析装置100は、ネットワークを介して、分析対象システム200に接続されている。システム分析装置100は、分析対象システム200のセンサ値から、分析対象システム200に発生した異常を分析し、分析結果および付加情報を出力する。なお、図3において、変化点推定部13、関連度推定部14、クラスタリング部15、および、出力部16を囲む破線の矩形は、当該破線で囲まれた各機能ブロックが、状態情報取得部11および履歴情報取得部12が出力した情報に基づいて動作することを表す。
また、本実施形態において、分析対象システム200は、1つ以上の被分析装置20を含んでおり、各被分析装置20が分析の対象となる。分析対象システム200の一例としては、発電プラントシステムが挙げられる。この場合、被分析装置20として、例えば、タービン、給水加熱器、復水器などが挙げられる。また、被分析装置20には、例えば、配管、信号線などの装置間を接続する要素が含まれていてもよい。さらに、分析対象システム200は、上述の発電プラントシステムのようにシステム全体であってもよいし、あるシステムにおいてその一部の機能を実現するための部分であってもよい。さらに、ICT(Information and Communication Technology)システム、化学プラント、発電所、動力設備等、相互に影響を及ぼし合う要素から構成される纏まり、または、仕組みであってもよい。
被分析装置20のそれぞれにおいて、各被分析装置20に設けられたセンサ21は、所定のタイミングごとにセンサ値を計測し、計測したセンサ値をシステム分析装置100に送信する。また、本実施形態においてセンサ21は、通常の計測機器のようにハードウェアとしての実体があるものに限定されない。すなわち、センサ21はソフトウェア、制御信号の出力元なども含み、これを一括りとして「センサ」と呼ぶ。
「センサ値」は、センサ21から得られる値である。センサ値の例としては、弁の開度、液面高さ、温度、流量、圧力、電流、電圧等、設備に設置された計測機器によって計測される計測値が挙げられる。センサ値の他の例としては、計測値から算出される推定値、制御信号の値等も挙げられる。以下では、各センサ値は、整数や小数といった数値で表されるものとする。なお、図3においては、1つの被分析装置20に対して1つのセンサ21が設けられている。ただし、1つの被分析装置20に設けられるセンサ21の数は特に限定されない。また、センサ値に異常が生じる場合として、センサ21の計測対象において異常が生じた場合のみならず、センサ21自体に異常(故障)が生じた場合も考えられる。
また、本実施形態では、各被分析装置20から得られるセンサ値に対応するセンサ21ごとに、1つのデータ項目が割り当てられるものとする。また、各被分析装置20から同一と推定できるタイミングで収集されたセンサ値の集合を、「状態情報」と表記する。また、状態情報に含まれるセンサ値に対応するデータ項目の集合を「データ項目群」と表記する。例えば、センサ21が「タンクA内の温度」を計測するセンサ、「配管Aの流量」を計測するセンサであれば、データ項目群には「タンクA内の温度」と「配管Aの流量」が含まれることになる。
つまり、本実施形態では、状態情報は、複数のデータ項目によって構成される。ここで、「同一と推定できるタイミングで収集される」とは、各被分析装置20で同一時刻または所定範囲内の時刻に計測されることであってもよい。また、「同一と推定できるタイミングで収集される」とは、システム分析装置100による一連の収集処理によって収集されることであってもよい。
また、本実施形態において、分析対象システム200は、被分析装置20が取得したセンサ値を記憶する記憶装置30を含む。かかる記憶装置として、例えば、データサーバ、DCS(Distributed Control System)、SCADA(Supervisory Control And Data Acquisition)、プロセスコンピュータ等が挙げられる。被分析装置20は、任意のタイミングでセンサ値を取得し、取得したセンサ値を記憶装置30に記憶させる。
また、本実施形態において、分析対象システム200は、被分析装置20が取得したセンサ値に基づいて履歴情報を生成し記録する監視装置40を含む。かかる監視装置として、例えば、DCSや統計的プロセス管理を用いたシステム分析装置等、ルールや統計モデル等を用いてデータ項目および/またはデータ項目間の関係性の異常を検知する装置が挙げられる。
ここで、システム分析装置100の各機能ブロックの詳細について説明する。
状態情報取得部11は、所定の期間に対する状態情報を記憶装置30から取得する。所定の期間とは、例えば、最新の時刻から所定の期間分遡った時刻までの期間である。
履歴情報取得部12は、所定の期間に対する履歴情報を監視装置40から取得する。所定の期間とは、例えば、最新の時刻から所定の期間分遡った時刻までの期間である。
変化点推定部13は、履歴情報に基づいて、変化点群を推定する。変化点は、履歴情報に含まれるデータ項目(センサ21)およびデータ項目間(センサ21間)の関係を示す識別子ごとに最大1つ推定される。よって、1つの変化点には対応する識別子がある。変化点は、履歴情報の最新の時刻まで継続している異常が発生した時刻である。履歴情報の最新の時刻で異常が発生していない識別子に対して変化点は推定されないため、その識別子が有する変化点は0個である。
変化点推定部13は、統計的な処理を用いて、履歴情報に含まれる識別子別に異常の継続性を評価し、その評価結果を用いて、変化点を推定してもよい。これは、センサデータがセンサノイズまたは外乱が原因で、履歴情報に含まれる異常/正常の判定結果も揺らぐ場合があり、統計的な処理を施すことで、より正確に変化点を推定できるためである。具体的には、変化点推定部13は、まず、所定の期間を複数の期間に分割し、分割した期間ごとに、異常と判定された時間の割合が所定の閾値より大きいかどうかを判定する。そして、変化点推定部13は、所定の期間の最新の時刻を終点として、判定の結果が連続して異常となっている複数の分割期間群を特定し、特定した分割期間群に対応する最も過去の時刻を変化点とする。ただし、この方法では異常と判定された時間が分割期間で偏っている場合、推定された変化点の時刻が実際の異常の発生よりも過去の時刻となることがある。そこで、異常と判定された時間の割合に適用した閾値に基づいて、変化点の時刻を調整してもよい。例えば、閾値を30%とした場合は、調整前の変化点に分割期間の70%分の時間を加算した時刻とする。これは、分割期間のより新しい時刻側30%に異常が集中したとの考えに基づいている。ここで、分割期間における判定に用いる所定の閾値は、ユーザによる任意の数値の付与によって設定されていてもよい。また、統計的な手法を用いて設定してもよい。例えば、正常または異常の揺らぎがランダムであると仮定した際の分割期間の長さにおけるポアソン分布の信頼区間に基づいて、所定の閾値を設定してもよい。
関連度推定部14は、任意の2つの変化点間における関連度を推定する。関連度推定部14は、関連度を推定するために、まず変化点毎にセンサ21それぞれの異常度を算出し、異常度ベクトルを変化点毎に生成する。そして、この2つの異常度ベクトル間の類似度として、関連度を算出する。関連度推定部14が算出する異常度は、センサ毎の異常度を算出したものであればよい。この異常度の算出方法としては、例えば、特許文献1の異常度の算出方法や、特許文献4の異常スコアの算出方法が挙げられる。特許文献1の異常度の算出方法では、変化点に対応する時刻の異常度を、状態情報取得部11が取得した状態情報を用いて算出する。特許文献4の異常スコアの算出方法では、状態情報取得部11は必ずしも必要ではなく、本実施形態から状態情報取得部11を除いてシステム分析装置を構成できる。これは、関連度推定部14が、特許文献4記載の相関モデルを記憶していれば、相関モデル(データ項目間の関係性)とその正常/異常判定結果から異常度を算出できるためである。ここで、変化点における、その正常/異常判定結果は、変化点推定部13での処理と同様に、履歴情報のみから算出できる。
関連度推定部14が算出するベクトル間の類似度が備えるべき特性について制限はないが、異常度の絶対値に影響されにくいものであることが望ましい。これは本願開示では変化点を事象ごとに分けることを目的としており、深刻度だけが増加した変化点で事象が分かれないようにするためである。このような特性をもつ類似度の定義として、例えば、コサイン類似度(1−コサイン距離)が挙げられる。また、算出されるベクトル間の類似度は、その類似性にそって、連続的な値を取る必要はなく、離散的な値であってもよい。例えば、類似度算出において、算出した類似度が所定の値よりも低い場合、類似度を任意の定数とするような後処理を施したものを、最終的なベクトル間の類似度としてもよい。
クラスタリング部15は、変化点グループ群を生成するために、取得された履歴情報と推定された関連度に基づいて、変化点間の距離を算出する。変化点間の距離は、変化点間の時間的な距離と、関連度を考慮して決定されていればよい。例えば、変化点間の時間的な距離は、変化点に対応する時刻差や、それらに定数をかけて規格化したものが挙げられる。変化点に対応する時刻は、取得された履歴情報から変化点推定部13での処理によって求められる。例えば、変化点間の距離は、関連度から計算される非関連度と変化点間の時間的な距離の積である。ここで、非関連度は、例えば、関連度の逆数や、定数から関連度を引いたものである。また、変化点間の距離は、複数の計算方法を組み合わせて算出されてもよい。たとえば、変化点間の距離を、時間的に隣接している変化点間についてのみ所定の数式で算出し、その他の変化点間の距離は、変化点間の距離が取りうる最大値としてもよい。
クラスタリング部15は、算出した変化点間の距離に基づいて、変化点グループ群を生成する。変化点グループ群の数は1つ以上であり、各変化点グループは1つ以上の変化点を含む。クラスタリング部15は、変化点グループ群を生成するために、クラスタリングアルゴリズムを用いる。クラスタリングアルゴリズムは、クラスタリング対象間の距離または類似度に基づいて、対象をグループ化するものが用いられる。このようなクラスタリングアルゴリズムとしては、k−means、x−means、Affinity Propagation、スペクトラルクラスタリング等があげられる。クラスタリング部15は、時間的に隣接している変化点間のみがグループ化されるように、変化点グループ群を生成してもよい。この場合、例えば、Isingモデルを用いたクラスタリングを用いることができる。
また、クラスタリング部15は、クラスタリングの結果を逐次利用して、複数回クラスタリングを実行してもよい。クラスタリング部15は、各回のクラスタリングにおいて、関連度または変化点間の距離を調整してもよい。その調整として、例えば、クラスタリング部15は、一度グループ化された変化点間の距離がより小さくなるような処理を施してもよい。クラスタリング部15は、2回目以降のクラスタリングにおいて、個別の変化点間の距離に代えて、変化点グループ間の距離を計算し、その距離に基づいて、変化点グループを更にクラスタリングしてもよい。
クラスタリング部15の動作の具体例として、Isingモデルを用いた変化点グループ群の生成について説明する。この方法では、クラスタリング対象である変化点を、上下2つのスピン状態をもつ原子に見立て、それらが1次元に並んだ原子群を考える。そして、原子群のエネルギーが最小になったときの個々の原子のスピンの向きを求める。このとき、スピンの向きが隣接して揃っている原子群を1つのグループとする。ここで、原子の順は、変化点に対応する時刻とし、時刻が早いものから順に並んでいるものとする。今、各変化点に対応する時刻をt、変化点間の交換相互作用エネルギーをJ(i、i+1)、スピンの向きをsとする。スピンの向きは、便宜上、上向きなら1、下向きなら−1とする。ここでiは各変化点を示すインデックスであり、正の整数とする。変化点の個数をNとする。このとき、原子群全体のエネルギーEは、式(1)で与えられる。

Figure 2019073512

交換相互作用エネルギーは類似度に相当するものであり、この値が正に大きいほど、その隣接するスピンは同じ方向、つまり同一グループになりやすくなる。逆にこの値が負に大きいほど、その隣接するスピンは逆方向、つまりグループの境界になりやすくなる。
例えば、交換相互作用エネルギーJ(i、i+1)は、変化点間の関連度をD(i、i+1)、調整パラメータをaとし、D(i、i+1)は0から1までの実数をとるとすると、式(2)で与えられる。

Figure 2019073512

調整パラメータaを変化させることで、クラスタの数が変化する。クラスタの数は、例えば、所定の数としてもよいし、変化点グループ間の距離が全て所定の値以上となる数としてもよい。
クラスタの数は、調整パラメータaのみを変化させて決定してもよいが、クラスタリングを複数回繰り返して決定してもよい。例えば、調整パラメータaと変化点間の関連度D(i、i+1)を交互に変化させながら、クラスタ数を決定してもよい。この場合、クラスタの数の最大値を予め決めておき、クラスタの数がその数になるよう調整パラメータaを調整する。そして、得られたクラスタに応じて、関連度D(i、i+1)を更新する。例えば、同一グループになっていれば、関連度を1とし、グループの境界になっていれば、グループ間の関連度とする。グループ間の関連度は、関連度推定部14での処理と同様に計算できる。例えば、隣接する2つの変化点グループ群に対して、時刻が早い方の変化点グループと、両方の変化点グループをまとめたグループに対して、データ項目の異常度を算出し、その距離を類似度に換算したものを、グループ間の関連度として算出すればよい。変化点グループにデータ項目とデータ項目間の関係性が含まれる場合は、特許文献4の方法を用いてデータ項目の異常度を算出してもよい。データ項目の異常度が0から1の値をとるとすると、異常なデータ項目については1とし、異常なデータ項目間の関係性と相関モデルを用いて、他のデータ項目の異常度を算出する。このとき、データ項目として変化点グループに含まれていたものを除外して、他のデータ項目の異常度を算出すれば、2種類の計算方法を用いることによる不都合を回避できる。
出力部16は、生成された変化点グループ群のグループごとに出力情報を生成し出力する。出力部16は、例えば、図4に示すように、クラスタリング部15によるグループ化で得られた変化点グループに含まれるデータ項目のリストを、変化点グループの対応する時間順に並べて出力してもよい。例えば、出力するデータ項目のリストは、特に異常が疑われるものや、異常の原因に直結するものを、データ項目の異常度に基づいて絞り込んでもよい。例えば、データ項目間の関係性に対応する変化点が変化点グループに含まれる場合は、クラスタリング部15と同様にデータ項目別に異常度を算出し、データ項目の異常度に基づいて出力するデータ項目を絞り込んでもよい。また、出力部16は、例えば、図5に示すように、変化点グループごとに異常の発生が疑われる時間の範囲を推定した結果を、さらに出力してもよい。異常の発生が疑われる時間の範囲は、変化点グループに含まれる変化点に対応する時刻の最も早い時刻から最も遅い時刻としてよい。なお、図4および図5は、それぞれ、本実施形態におけるシステム分析装置100による出力結果の一例を示すものにすぎず、出力結果は図示の態様に限定されない。
さらに、本実施形態では、出力部16は、グループに加えて、注目するグループに属するデータ項目の所定の時刻における異常度、その統計値、または、その再計算値を出力してもよい。なお、出力部16によるセンサ21のグループの提示方法は、これらの方法に限定されない。
さらに、出力部16は、図6に示すように、データ項目をグループの識別が可能なマーカ(識別子)としてシステム構成図上に提示してもよい。この場合、出力部16は、マーカが異常の発生が疑われる時間の順序を示すようにしてもよい。
図6は、本実施形態におけるシステム分析装置100による出力結果の一例を示す図である。なお、図6に示す分析対象システムは、発電プラントシステムである。また、図6において、G1、およびG2のGの直後の番号は、グループに付与された番号である。なお、出力部16は、異常の発生が疑われる時間の順序を示す表現方法として、文字列に限られず、色や形状等の他の表現方法を用いてもよい。また、グループの表現方法も、図示の態様に制限されない。
また、出力部16は、グループを、異常の発生が疑われる時間の順序に従って、表示するグループを切り替えて提示してもよい。このとき、出力部16は、完全に表示を切り替える代わりに、強調するグループを切り替えてもよい。さらに、出力部16は、かかる切り替えを所定の時間間隔で自動的に行ってもよい。また、出力部16は、この切り替えを含む一連の表示を所定回数、または、ユーザの操作があるまで繰り返してもよい。
さらに、出力部16は、一部のグループを表示してもよい。このとき、出力部16は完全に表示を切り替える代わりに、一部のグループを強調して表示してもよい。
また、出力部16は、グループを、異常の発生が疑われる時間の順序に従って、表示するグループを切り替えて提示してもよい。このとき、出力部16は完全に表示を切り替える代わりに、強調するグループを切り替えてもよい。さらに、出力部16は、かかる切り替えをユーザの操作に応じて実行してもよいし、所定の時間間隔で自動的に切り替えてもよい。また、出力部16はかかる切り替えを含む一連の表示を所定回数、または、ユーザの操作があるまで繰り返してもよい。
さらに、出力部16は、図7に示すように、システムや装置に関する異常度指標(異常度合いを示す)の時系列データを、各グループの異常開始時間に対応する時間帯に、各グループのシンボルを付与して出力してもよい。このように出力することによって、異常度合いと、異常状態の遷移を一括して把握できるため、ユーザは効率良く分析対象システム200の状況を把握することができる。
さらに、出力部16は、図8に示すように、変化点グループごとに異常の発生が疑われる時間の範囲を推定した結果と、類似過去トラブルを、さらに出力してもよい。類似過去トラブルは、変化点グループに含まれるデータ項目や、データ項目間の関係性に基づいて、検索したものでもよい。
さらに、出力部16は、センサ21のグループまたはグループの集合に含まれるセンサ21の物理量の種別の割合、およびセンサ21のグループに含まれるセンサ21の系統の割合を、パイチャートまたはリストとして提示してもよい。なお、「系統」とは、機能的なシステムの構成単位を示す。「系統」は、予め運用者によって指定してもよい。
[動作]
次に、本実施形態におけるシステム分析装置100の動作について、図9を参照して説明する。図9は、本実施形態におけるシステム分析装置100の動作を例示するフロー図である。以下の説明では、図2および図3を適宜参酌する。また、本実施形態では、システム分析装置100を動作させることによって、システム分析方法が実施される。したがって、本実施形態に係るシステム分析方法は、以下のシステム分析装置100の動作によって説明される。
ここでは一例として、関連度推定部14は相関モデルを用いて変化点ごとのセンサ21それぞれの異常度を算出するものとし、予め相関モデルを取得しているものとする。
図9に示すように、ステップS1において、履歴情報取得部12は、分析対象システム200から、所定期間における履歴情報を収集する。また、状態情報取得部11は状態情報を収集する。
次に、変化点推定部13は、ステップS1で取得された履歴情報に基づいて、変化点群を推定する(ステップS2)。一例として、各変化点は、その対応する時刻と、対応するデータ項目またはデータ項目間の関係性を参照可能とする識別子を有する。
次に、関連度推定部14は、ステップS2で履歴情報から推定された変化点群に対して、変化点間の関連度を算出する(ステップS3)。変化点間の関連度の算出に当たって、関連度推定部14は、任意の2つ変化点に対して、それぞれの異常度ベクトルを算出する。そして、関連度推定部14は、それらの類似度を算出し、それを変化点間の関連度とする。
次に、クラスタリング部15は、ステップS1で収集された履歴情報とステップS3で推定された関連度に基づいて、上述のクラスタリング手法を用いて、ステップS2で推定された変化点群をグループ化し、変化点グループ群を生成する(ステップS4)。
次に、出力部16は、ステップS4によるクラスタリングで得られたセンサ21のグループから上述の出力情報を生成し、出力する(ステップS5)。
以上で、システム分析装置100における処理は終了する。また、所定期間の経過後に、分析対象システム200から履歴情報が出力されると、システム分析装置100は再度ステップS1〜S5を実行する。
[効果]
以上のように、本実施形態では、システム分析装置100は、変化点間の時間的な距離に加え、変化点間の関連度に基づいて、変化点をグループ化する。よって、変化点間の時間的な距離が近かったとしても、その変化点間の関連度が低いものを区別することができる。逆に、変化点間の時間的な距離が遠かったとしても、その変化点間の関連度が高いものを同一のものと推定することができる。その結果、システム分析装置100は、複数の事象が含まれる場合であっても、クラスタリングによって事象を分離することができる。このため、システム分析装置100では、事象ごとに情報を出力することが可能となる。
<プログラム>
本実施形態に係るプログラムは、コンピュータに、図9に示すステップS1〜S5を実行させる。かかるプログラムをコンピュータにインストールして実行することによって、本実施形態におけるシステム分析装置100およびシステム分析方法を実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、および、出力部16として機能しつつ処理を行なう。
また、本実施形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されるようにしてもよい。この場合、例えば、各コンピュータが、それぞれ、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、および、出力部16のいずれかとして機能してもよい。
さらに、本実施形態におけるプログラムは、システム分析装置100を実現するコンピュータの記憶装置に格納され、コンピュータのCPUに読み出されて実行される。この場合、プログラムは、コンピュータ読み取り可能な記録媒体として提供されてもよいし、ネットワークを介して提供されてもよい。
<実施形態2>
次に、第2の実施形態に係るシステム分析装置、システム分析方法、および、プログラムについて、図10ないし図13を参照して説明する。
[構成]
まず、図10を参照して第2の実施形態におけるシステム分析装置の構成について説明する。図10は、本実施形態におけるシステム分析装置300の具体的構成を例示するブロック図である。
図10に示すように、本実施形態におけるシステム分析装置300は、図2および図3に示した第1の実施形態におけるシステム分析装置100とは相違し、クラスタ階層構造化部17を備え、出力部16に替えて出力部26を備えている。これ以外の点については、システム分析装置300は、システム分析装置100と同様の構成を有する。以下、本実施形態と第1の実施形態との差異点を中心に説明する。
クラスタ階層構造化部17は、状態情報取得部11が取得した所定期間分の状態情報を用いて、センサ21間の因果関係を推定する。さらに、クラスタ階層構造化部17は、推定した因果関係に基づいて、変化点グループ間の因果関係の有無を推定し、クラスタリング部15が生成した変化点グループ群に階層構造を与える。推定したセンサ21間の因果関係は、因果関係情報であり、関係性情報である。
クラスタ階層構造化部17は、グループ間に因果関係があると推定した場合、そのグループ間に対して因果の方向に基づく階層構造を与える。一方、クラスタ階層構造化部17は、いずれのグループに対しても因果関係が認められなかったグループについては、階層構造を付与しない。
クラスタ階層構造化部17は、推定した因果の方向に沿う因果関係の数を、すべてまたは一部の2つのグループ間で集計し、その集計値に基づいてグループ間の因果関係を判定する。具体的には、クラスタ階層構造化部17は、2つの変化点グループに対して、より早い時刻を変化点に対応する時刻として有するグループに含まれるデータ項目から、他方のグループに含まれるデータ項目への因果関係を推定する。このときデータ項目には対応するセンサ21があるため、データ項目間の因果関係をセンサ21間の因果関係に変換できる。クラスタ階層構造化部17は、判定条件として、例えば、集計値が予め設定しておいた数以上であるという条件を用いてもよい。また、クラスタ階層構造化部17は、判定条件として、集計値を2つのグループのメンバ間の組み合わせの数で割った値が予め設定しておいた数以上であるという条件を用いてもよい。
クラスタ階層構造化部17は、グループ間における因果の方向を、グループごとの異常開始時刻に基づいて推定する。具体的には、クラスタ階層構造化部17は異常開始時刻が早いグループから異常開始時刻が遅いグループに向かう方向を因果の方向とする。
クラスタ階層構造化部17は、状態情報取得部11が取得した状態情報の時系列からセンサ21間の因果関係を推定するために、例えば一般的なデータ分析技術を用いてもよい。この方法として、2つの時系列データの時間差を変化させながら、相互相関関数を算出して推定する方法や、移動エントロピー(Transfer Entropy)を用いる方法や、2つのセンサ21間の関係性を回帰式で推定し、その回帰式の係数の時間遅れから推定する方法や、Cross Mappingを用いる方法などがある。因果関係を推定に用いる状態情報の時系列は、例えば、クラスタリングを実行する際に、図示しない入力装置を用いて、ユーザが指定してもよいし、予め設定しておいたルールに基づいて決定してもよい。予め設定しておいたルールに基づいて因果関係を推定に用いる状態情報の時系列を決定する場合、例えば、履歴情報取得部12が取得した履歴情報が含まれる範囲の時刻としてもよい。また、履歴情報取得部12が取得した履歴情報の最新の時刻から運用者が予め定めた期間遡った時点までとしてもよい。また、履歴情報取得部12が取得した履歴情報の最新の時刻から、変化点推定部13が推定した変化点のうち、最も過去の時刻まで遡った時点としてもよい。さらに、履歴情報取得部12が取得した履歴情報の最新の時刻から、変化点推定部13が推定した変化点のうち、最も過去の時刻まで遡った時点からさらに予め定めた期間だけ遡った時点までとしてもよい。
出力部26は、例えば、図11に示すように、クラスタリング部15によるグループ化で得られた変化点グループに含まれるデータ項目のリストを、クラスタ階層構造化部17で推定したグループ間の因果関係の方向と、変化点グループの対応する時間順に並べて出力する。図11では、階層化された変化点グループに対して、因果関係の方向が左側から右側に向かうよう表示を構成している。また、図11では、上側から下側に向かうほど、階層化された変化点グループで因果関係の元になった変化点グループに対応する最も早い時刻が遅くなるよう表示を構成している。出力部26は、例えば、グループごとに異常の発生が疑われる時間の範囲を推定した結果を、さらに出力してもよい。なお、図11は、本実施形態におけるシステム分析装置300による出力結果の一例を示すものにすぎず、出力結果は図示の態様に限定されない。
さらに、本実施形態では、出力部26は、グループに加えて、注目するグループに属するセンサ21の所定の時刻における異常度、その統計値、または、その再計算値を出力してもよい。なお、出力部26によるセンサ21のグループの提示方法は、これらの方法に限定されない。
また、出力部26は、センサ21のグループを、センサ名のリスト形式で提示してもよい。さらに、出力部26は、図12に示すように、階層構造で結びついたグループの集合と階層構造を識別可能なマーカ(識別子)としてシステム構成図上に提示してもよい。後者の場合、すなわち、センサ21のグループを、階層構造で結びついたグループの集合と階層構造を識別可能なマーカとしてシステム構成図上に提示する場合、出力部26は、マーカの階層構造に対応する部分が異常の発生が疑われる時間の順序を示すようにしてもよい。また、出力部26は階層構造を持たないグループと、階層構造を持つグループを区別できるようにマーカを構成してもよい。
図12は、本実施形態におけるシステム分析装置100による出力結果の一例を示す図である。なお、図12に示す分析対象システムは、発電プラントシステムである。また、図12において、G1−1、G1−2、およびG2のGの直後の番号は、階層化されたグループの集合に付与された番号である。一方、ハイフン(−)に続く番号は、グループの集合内での階層に付与された番号である。また、ラベルにおけるハイフンの有無は、階層構造の有無を示す。なお、出力部26は、階層構造の有無を示す表現方法として、文字列に限られず、色や形状等の他の表現方法を用いてもよい。図12においては、これら2種類の数字を組み合わせたラベルによって、グループと階層構造を識別可能なマーカを構成している。なお、出力部26は、階層構造で結びついたグループの集合と階層構造を識別可能にする際に用いる表現方法として、文字列に限られず、色や形状等の他の表現方法を用いてもよい。また、グループの集合や階層構造の単独の表現方法も、図示の態様に制限されない。さらに、階層の数は2層に限定されず、さらに多層の構造を有していてもよい。
また、出力部26は、階層構造で結びついたグループの集合と階層構造の一部を強調して提示してもよい。
さらに、出力部26は、階層構造で結びついたグループの集合と階層構造の一部を提示してもよい。
また、出力部26は、階層構造で結びついたグループの集合を、異常の発生が疑われる時間の順序に従って、表示するグループの集合を切り替えて提示してもよい。このとき、出力部26は、完全に表示を切り替える代わりに、強調するグループの集合を切り替えてもよい。さらに、出力部26は、かかる切り替えを所定の時間間隔で自動的に行ってもよい。また、出力部26は、この切り替えを含む一連の表示を所定回数、または、ユーザの操作があるまで繰り返してもよい。
さらに、出力部26は、階層構造で結びついたグループの集合の一部のグループを表示してもよい。このとき、出力部26は完全に表示を切り替える代わりに、強調するグループの集合またはグループを切り替えてもよい。
また、出力部26は、階層構造で結びついたグループの集合を、異常の発生が疑われる時間の順序に従って、表示するグループの集合を切り替えて提示してもよい。このとき、出力部26は完全に表示を切り替える代わりに、強調するグループの集合を切り替えてもよい。さらに、出力部26は、かかる切り替えをユーザの操作に応じて実行してもよいし、所定の時間間隔で自動的に切り替えてもよい。また、出力部26はかかる切り替えを含む一連の表示を所定回数、または、ユーザの操作があるまで繰り返してもよい。
[動作]
次に、本実施形態におけるシステム分析装置300の動作について、図13を参照して説明する。図13は、本実施形態におけるシステム分析装置300の動作を例示するフロー図である。以下の説明においては、図10を適宜参酌する。本実施形態では、システム分析装置300を動作させることによって、システム分析方法が実施される。したがって、本実施形態に係るシステム分析方法は、以下のシステム分析装置300の動作によって説明される。
ここでは一例として、関連度推定部14は相関モデルを用いて変化点ごとのセンサ21それぞれの異常度を算出するものとし、予め相関モデルを取得しているものとする。
図13に示すように、履歴情報取得部12は、分析対象システム200から、所定期間における履歴情報を収集する(ステップS1)。また、並行して、状態情報取得部11は状態情報を収集する。
次に、変化点推定部13は、ステップS1で取得された履歴情報に基づいて、変化点群を推定する(ステップS2)。一例として、各変化点は、その対応する時刻と、対応するデータ項目またはデータ項目間の関係性を参照可能とする識別子を有する。
次に、関連度推定部14は、ステップS2で履歴情報から推定された変化点群に対して、変化点間の関連度を算出する(ステップS3)。変化点間の関連度の算出に当たって、関連度推定部14は、任意の2つ変化点に対して、それぞれの異常度ベクトルを算出する。そして、関連度推定部14は、それらの類似度を算出し、それを変化点間の関連度とする。
次に、クラスタリング部15は、ステップS1で取得された履歴情報とステップS3で推定された関連度に基づいて、上述のクラスタリング手法を用いて、ステップS2で推定された変化点群をグループ化し、変化点グループ群を生成する(ステップS4)。
次に、クラスタ階層構造化部17は、状態情報取得部11が取得した所定の期間の状態情報を用いて、センサ21間の因果関係を推定し、当該推定した因果関係に基づいてステップS4で生成されたグループを階層構造化する(ステップS6)。
次に、出力部26は、ステップS4によるクラスタリングで得られたセンサ21のグループと、ステップS6で得られたその階層構造から上述の出力情報を生成し、出力する(ステップS7)。
以上で、システム分析装置300における処理は終了する。また、所定期間の経過後に、分析対象システム200から履歴情報が出力されると、システム分析装置300は再度ステップS1〜S7を実行する。
[効果]
以上のように、本実施形態におけるシステム分析装置300によると、第1の実施形態のシステム分析装置100と同様の効果を得ることができる。さらに、本実施形態では、グループが階層構造化されることによって、1つの根本原因の事象によって連鎖的に引き起こされた事象が複数のグループとして得られていても、その因果関係をグループの階層構造として把握できるため、運用者はより的確に分析対象システム200の状況を把握することができる。
続いて、本実施形態における変形例について以下に説明する。なお、以下においては、上述した第1の実施形態との相違点を中心に説明する。
<変形例1>
変形例1においては、クラスタ階層構造化部17は、グループの異常開始時間が最も近いグループ間のみについて階層化を実施する。このように構成することで、グループの階層構造が分岐を伴わないため、出力結果の複雑化を抑制することができる。
<プログラム>
本実施形態に係るプログラムは、コンピュータに、図13に示すステップS1〜S7を実行させる。かかるプログラムをコンピュータにインストールして実行することによって、本実施形態におけるシステム分析装置300および表示方法を実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、クラスタ階層構造化部17、および、出力部26として機能しつつ処理を行なう。
また、本実施形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されるようにしてもよい。この場合、例えば、各コンピュータが、それぞれ、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、クラスタ階層構造化部17、および、出力部26のいずれかとして機能してもよい。
さらに、本実施形態におけるプログラムは、システム分析装置300を実現するコンピュータの記憶装置に格納され、コンピュータのCPUに読み出されて実行される。この場合、プログラムは、コンピュータ読み取り可能な記録媒体として提供されてもよいし、ネットワークを介して提供されてもよい。
<実施形態3>
次に、第3の実施形態に係るシステム分析装置、システム分析方法、および、プログラムについて、図14を参照して説明する。
[構成]
まず、図14を参照して第3の実施形態におけるシステム分析装置の構成について説明する。図14は、本実施形態におけるシステム分析装置400の具体的構成を例示するブロック図である。
図14に示すように、本実施形態におけるシステム分析装置400は、図2および図3に示した第1の実施形態におけるシステム分析装置100とは相違し、関係性取得部18を備え、関連度推定部14に替えて関連度推定部24を備えている。これ以外の点については、システム分析装置400は、システム分析装置100と同様の構成を有する。以下、本実施形態と第1の実施形態との差異点を中心に説明する。
関係性取得部18は、センサ21間の関係性情報を取得する。関係性情報は、複数のセンサ21間の関係性を示す情報である。関係性情報は、分析対象システム200の状態情報を構成する複数のデータ項目の全部または一部に対して提供され、変化点間の関連度を算出するために用いられる。関係性情報は、複数のセンサ21間の因果関係情報や、異常別に異常の影響がセンサ21群に現れる順番に関する情報である。関係性情報は、センサ21群の一部について、その順番を示す情報を、少なくとも一組含む。例えば、センサ値が「弁の開度」と「液面高さ」であれば、弁の開度と液面高さの関係が関係性情報として記述される。あるいは、「弁の開度」が変化することで「液面の高さ」が変化するといった順番に関する情報が関係性情報に該当する。
また、センサ21間の因果関係情報は、状態情報取得部11が取得した状態情報の時系列から推定してもよいし、状態情報の時系列に依存しない外部情報から推定してもよいし、状態情報の時系列と状態情報の時系列に依存しない外部情報から推定してもよい。
センサ21間の因果関係情報を状態情報取得部11が取得した状態情報の時系列から推定する方法として、例えば第2の実施形態で述べた方法がある。
センサ21間の因果関係情報を状態情報の時系列に依存しない外部情報から推定する方法として、例えば専門家が有する知識や、被分析装置20間およびその内部の接続関係やシステム動作に関連する方程式から推定する方法がある。
センサ21間の因果関係情報を状態情報の時系列と状態情報の時系列に依存しない外部情報から推定する方法として、以下のような方法がある。例えば、状態情報の時系列から推定された因果関係に含まれていないセンサ21間の因果関係について、状態情報の時系列に依存しない外部情報から推定された因果関係で補完する方法がある。あるいは、状態情報の時系列から推定された因果関係情報と状態情報の時系列に依存しない外部情報から推定された因果関係情報の両方に含まれる因果関係情報を抽出する方法がある。
関連度推定部24は、任意の2つの変化点間における関連度を推定する。関連度推定部24は、変化点間における関連度を算出する際に、関係性取得部18が取得した関係性情報を用いることを除いて、関連度推定部14と同じである。
例えば、関連度推定部24が、関係性情報として異常別に異常の影響がセンサ21群に現れる順番を用いて、関連度を算出する場合について具体的に説明する。関連度推定部24は、変化点群に含まれるセンサ21を、その変化点に対応する時刻が古い順に並べる。その順番が最も当てはまる関係性情報に含まれるセンサ21の順番を検索する。そして、当てはまるセンサ21の順番のあった変化点間には高い関連度を割り当て、なかった変化点間には低い関連度を割り当てる。当てはまる順番が見つからなかったセンサ21群について、複数回、検索を実行して、対応する順番の見つかった変化点間には高い関連度を割り当てるようにしてもよい。変化点群がデータ項目間の関係性に関する変化点を含む場合、その変化点毎に、変化点に関連するデータ項目を推定したのちに、関連度を算出してもよい。そのような場合での変化点に関連するデータ項目を推定する方法として、特許文献4の異常スコアを算出し、所定の値より高い異常スコアを持つデータ項目を、変化点に関連するデータ項目としてよい。
[動作]
次に、本実施形態におけるシステム分析装置400の動作について説明する。本実施形態におけるシステム分析装置400の動作は、ステップS3以前に関係性取得部18が関係性情報を外部から取得することと、関連度推定部24が関係性情報に基づいて変化点間の関連度を算出することを除いて、第1の実施形態におけるシステム分析装置100と同様に動作する。
[効果]
以上のように、本実施形態におけるシステム分析装置400によると、第1の実施形態のシステム分析装置100と同様の効果を得ることができる。さらに、変化点間の関連度の算出に必要な知識を外部から与えることができる。これによって、より精度よく変化点群をグループ化することができるため、運用者はより的確に分析対象システム200の状況を把握することができる。
<プログラム>
本実施形態に係るプログラムは、コンピュータに、動作の項で述べた処理を実行させる。かかるプログラムをコンピュータにインストールして実行することによって、本実施形態におけるシステム分析装置400およびシステム分析方法を実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、履歴情報取得部12、変化点推定部13、関連度推定部24、関係性取得部18、クラスタリング部15、および、出力部16として機能しつつ処理を行なう。
また、本実施形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されるようにしてもよい。この場合、例えば、各コンピュータが、それぞれ、履歴情報取得部12、変化点推定部13、関連度推定部24、関係性取得部18、クラスタリング部15、および、出力部16のいずれかとして機能してもよい。
さらに、本実施形態におけるプログラムは、システム分析装置400を実現するコンピュータの記憶装置に格納され、コンピュータのCPUに読み出されて実行される。この場合、プログラムは、コンピュータ読み取り可能な記録媒体として提供されてもよいし、ネットワークを介して提供されてもよい。
<実施形態4>
次に、第4の実施形態に係るシステム分析装置、システム分析方法、および、プログラムについて、図15を参照して説明する。
[構成]
まず、図15を参照して第4の実施形態におけるシステム分析装置の構成について説明する。図15は、本実施形態におけるシステム分析装置500の具体的構成を例示するブロック図である。
図15に示すように、本実施形態におけるシステム分析装置500は、図10に示した第2の実施形態におけるシステム分析装置300とは相違し、関係性取得部18を備え、クラスタ階層構造化部17に替えてクラスタ階層構造化部57を備えている。これ以外の点については、システム分析装置500は、システム分析装置300と同様の構成を有する。以下、本実施形態と第2の実施形態との差異点を中心に説明する。
関係性取得部18は、センサ21間の関係性情報を取得する。関係性取得部18は、第3の実施形態と同様な機能を有する。
クラスタ階層構造化部57は、関係性取得部18が取得した関係性情報に基づいて、クラスタリング部15が生成した変化点グループ群に階層構造を与える。
クラスタ階層構造化部57は、グループ間に関係があると推定した場合、そのグループ間に対して関係の方向に基づく階層構造を与える。一方、クラスタ階層構造化部57は、いずれのグループに対しても関係が認められなかったグループについては、階層構造を付与しない。
例えば、クラスタ階層構造化部57が、関係性情報として異常別に異常の影響がセンサ21群に現れる順番を用いて、変化点グループに階層構造を与える場合について具体的に説明する。
クラスタ階層構造化部57は、変化点グループ群を、変化点グループに含まれる変化点に対応する時刻の最も早い時刻に基づいて、その時刻が早い順に変化点グループ群を並べる。各変化点グループから変化点に対応するデータ項目を1つ取り出したときに、関係性情報の順番に最も当てはまる順番を、取り出すデータ項目を変えながら検索する。そして、当てはまった変化点グループ群に、その順番に従って階層構造を付与する。階層構造が付与されなかった変化点グループ群について、複数回、検索を実行して、対応する順番の見つかった変化点グループ群に階層構造を付与してもよい。変化点グループから取りだすデータ項目は、変化点グループに含まれる変化点に対応するデータ項目の一部でもよい。例えば、変化点グループごとにセンサの異常度を算出した際に、異常度が所定の値よりも高いセンサに対応するデータ項目としてもよい。例えば、変化点グループがデータ項目間の関係性に関する変化点を含む場合、特許文献4の異常スコアを算出し、所定の値より高い異常スコアを持つデータ項目を、変化点グループに関連するデータ項目としてよい。
[動作]
次に、本実施形態におけるシステム分析装置500の動作について説明する。本実施形態におけるシステム分析装置500の動作は、ステップS6以前に関係性取得部18が関係性情報を外部から取得することと、関連度推定部24が関係性情報に基づいて変化点間の関連度を算出することを除いて、第2の実施形態におけるシステム分析装置300と同様に動作する。
[効果]
以上のように、本実施形態におけるシステム分析装置500によると、第2の実施形態のシステム分析装置300と同様の効果を得ることができる。さらに、クラスタ階層構造化部57が変化点グループ群に階層構造を与える際に、必要な知識を外部から与えることができる。これによって、より精度よく変化点グループ群に階層構造を与えることができるため、運用者はより的確に分析対象システム200の状況を把握することができる。
<プログラム>
本実施形態に係るプログラムは、コンピュータに、動作の項で述べた処理を実行させる。かかるプログラムをコンピュータにインストールして実行することによって、本実施形態におけるシステム分析装置500およびシステム分析方法を実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、関係性取得部18、クラスタ階層構造化部57、および、出力部16として機能しつつ処理を行なう。
また、本実施形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されるようにしてもよい。この場合、例えば、各コンピュータが、それぞれ、履歴情報取得部12、変化点推定部13、関連度推定部14、クラスタリング部15、関係性取得部18、クラスタ階層構造化部57、および、出力部16のいずれかとして機能してもよい。
さらに、本実施形態におけるプログラムは、システム分析装置500を実現するコンピュータの記憶装置に格納され、コンピュータのCPUに読み出されて実行される。この場合、プログラムは、コンピュータ読み取り可能な記録媒体として提供されてもよいし、ネットワークを介して提供されてもよい。
ところで、上述した第1ないし第4の実施形態は、分析対象システム200が発電プラントシステムである場合について説明したが、本願開示では、分析対象システム200はこれに限定されない。分析対象システム200としては、IT(Information Technology)システム、プラントシステム、構造物、輸送機器等も挙げられる。これらの場合でも、システム分析装置は、分析対象システムの状態を示す情報が含まれるデータの種目をセンサとして、その履歴情報を用いて出力情報を生成することが可能である。
さらに、上述した第1ないし第4の実施形態では、システム分析装置の各機能ブロックが、記憶装置またはROM(Read Only Memory)に記憶されたコンピュータプログラムを実行するCPUによって実現される例を中心に説明した。ただし、本願開示はこれに限定されない。本願開示において、システム分析装置は、各機能ブロックの全部が専用のハードウェアにより実現されてもよいし、機能ブロックの一部がハードウェアで実現され、残部がソフトウェアで実現されてもよい。
また、本願開示では、上述した第1ないし第4の実施形態を適宜組合せて実施してもよい。さらに、本願開示は上述した各実施形態に限定されず、様々な態様で実施することが可能である。例えば、第1ないし第4の実施形態に係るシステム分析装置が履歴情報を生成するための分析モデルの取得部や、分析部を備え、異常の発生を検知する異常検知部を備えるように構成してもよい。つまり、第1ないし第4の実施形態に係るシステム分析装置が監視装置40の機能を備えてもよい。
<物理構成>
ここで、第1ないし第4の実施形態におけるプログラムを実行することによって、システム分析装置を実現するコンピュータについて、図16を参照して説明する。図16は、第1ないし第4の実施形態におけるシステム分析装置を実現するコンピュータを一例として示すブロック図である。
図16を参照すると、コンピュータ110は、CPU(Central Processing Unit)111、メインメモリ112、記憶装置113、入力インターフェイス114、表示コントローラ115、データリーダ/ライタ116、および、通信インターフェイス117を備えている。これらの各部は、バス121を介して互いにデータ通信可能に接続される。
CPU111は、記憶装置113に格納された、第1ないし第4の実施形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定の順序で実行して各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、第1ないし第4の実施形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであってもよい。
また、記憶装置113の具体例としては、ハードディスクドライブ(HDD:Hard Disk Drive)の他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボードおよびマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、およびコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))およびSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記憶媒体、または、CD−ROM(Compact Disk Read Only Memory)などの光学記憶媒体が挙げられる。
以上のように、上記実施形態によれば、分析対象となるシステムにおいて、複数種類の異常が発生した場合に、種類に応じて異常を分離して、種類ごとの情報の出力を可能にすることができる。本願開示は、一例として、システムの異常診断の用途に好適に適用することができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
上述の第1の視点に係るシステム分析方法のとおりである。
[付記2]
センサ間の関係性を示す関係性情報に基づいて、前記変化点グループ群に階層構造を与えるステップをさらに含む、好ましくは付記1に記載のシステム分析方法。
[付記3]
前記関係性情報を取得するステップをさらに含む、好ましくは付記2に記載のシステム分析方法。
[付記4]
前記関連度を推定するステップが、前記関係性情報を用いて前記関連度を推定する、好ましくは付記3に記載のシステム分析方法。
[付記5]
前記変化点群を推定するステップは、
前記履歴情報において継続している異常が発生した時刻を前記変化点として推定する、好ましくは付記1ないし4のいずれか一に記載のシステム分析方法。
[付記6]
前記関連度を推定するステップは、
前記変化点群をなす各変化点において、センサそれぞれの異常度を算出し、前記算出した異常度を要素とする異常度ベクトルを変化点ごとに生成し、前記変化点ごとに生成した異常度ベクトルの類似度を前記関連度とする、好ましくは付記1ないし5のいずれか一に記載のシステム分析方法。
[付記7]
前記変化点グループ群を生成するステップは、
前記履歴情報と前記関連度に基づいて、前記変化点群をなす変化点間の距離を算出し、前記算出された変化点間の距離に応じて前記変化点グループ群を生成する、好ましくは付記1ないし6のいずれか一に記載のシステム分析方法。
[付記8]
前記変化点グループ群を生成するステップは、
前記関連度から計算される非関連度と前記変化点間の時間的な距離の積を前記変化点間の距離として算出する、好ましくは付記7に記載のシステム分析方法。
[付記9]
前記変化点グループ群に階層構造を与えるステップは、
異なるセンサ間の因果関係を推定し、前記推定した異なるセンサ間の因果関係に基づいて、前記変化点グループ間における因果関係の有無を推定し、前記変化点グループ間における因果関係が有る場合に前記変化点グループ群に階層構造を与える、好ましくは付記2に記載のシステム分析方法。
[付記10]
前記変化点グループ群に階層構造を与えるステップは、前記因果関係がある変化点グループ間に対して因果の方向に基づく階層構造を与える、好ましくは付記9に記載のシステム分析方法。
[付記11]
上述の第2の視点に係るシステム分析装置のとおりである。
[付記12]
センサ間の関係性を示す関係性情報に基づいて、前記変化点グループ群に階層構造を与える、クラスタ階層構造化部をさらに備える、好ましくは付記11に記載のシステム分析装置。
[付記13]
前記関係性情報を取得する、関係性取得部をさらに備える、好ましくは付記12に記載のシステム分析装置。
[付記14]
前記関連度推定部が、前記関係性情報を用いて前記関連度を推定する、好ましくは付記13に記載のシステム分析装置。
[付記15]
上述の第3の視点に係るプログラムのとおりである。
なお、上記特許文献の全開示内容は、本書に引用をもって繰り込み記載されているものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10、100、300、400、500 システム分析装置
11 状態情報取得部
12 履歴情報取得部
13 変化点推定部
14、24 関連度推定部
15 クラスタリング部
16、26 出力部
17、57 クラスタ階層構造化部
18 関係性取得部
20 被分析装置
21 センサ
30 記憶装置
40 監視装置
110 コンピュータ
111 CPU(Central Processing Unit)
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス
200 分析対象システム

Claims (15)

  1. システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表した履歴情報を取得するステップと、
    前記履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定するステップと、
    前記変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定するステップと、
    前記履歴情報と前記関連度に基づいて前記変化点群を複数のグループに分類し、変化点グループ群を生成するステップと、
    前記変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力するステップと、を含む、
    システム分析方法。
  2. センサ間の関係性を示す関係性情報に基づいて、前記変化点グループ群に階層構造を与えるステップをさらに含む、請求項1に記載のシステム分析方法。
  3. 前記関係性情報を取得するステップをさらに含む、請求項2に記載のシステム分析方法。
  4. 前記関連度を推定するステップが、前記関係性情報を用いて前記関連度を推定する、請求項3に記載のシステム分析方法。
  5. 前記変化点群を推定するステップは、
    前記履歴情報において継続している異常が発生した時刻を前記変化点として推定する、請求項1ないし4のいずれか一項に記載のシステム分析方法。
  6. 前記関連度を推定するステップは、
    前記変化点群をなす各変化点において、センサそれぞれの異常度を算出し、前記算出した異常度を要素とする異常度ベクトルを変化点ごとに生成し、前記変化点ごとに生成した異常度ベクトルの類似度を前記関連度とする、請求項1ないし5のいずれか一項に記載のシステム分析方法。
  7. 前記変化点グループ群を生成するステップは、
    前記履歴情報と前記関連度に基づいて、前記変化点群をなす変化点間の距離を算出し、前記算出された変化点間の距離に応じて前記変化点グループ群を生成する、請求項1ないし6のいずれか一項に記載のシステム分析方法。
  8. 前記変化点グループ群を生成するステップは、
    前記関連度から計算される非関連度と前記変化点間の時間的な距離の積を前記変化点間の距離として算出する、請求項7に記載のシステム分析方法。
  9. 前記変化点グループ群に階層構造を与えるステップは、
    異なるセンサ間の因果関係を推定し、前記推定した異なるセンサ間の因果関係に基づいて、前記変化点グループ間における因果関係の有無を推定し、前記変化点グループ間における因果関係が有る場合に前記変化点グループ群に階層構造を与える、請求項2に記載のシステム分析方法。
  10. 前記変化点グループ群に階層構造を与えるステップは、前記因果関係がある変化点グループ間に対して因果の方向に基づく階層構造を与える、請求項9に記載のシステム分析方法。
  11. システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表す履歴情報を取得する履歴情報取得部と、
    前記履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定する変化点推定部と、
    前記変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定する関連度推定部と、
    前記履歴情報と前記関連度に基づいて前記変化点群を複数のグループに分類し、変化点グループ群を生成するクラスタリング部と、
    前記変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力する出力部と、を備える、
    システム分析装置。
  12. センサ間の関係性を示す関係性情報に基づいて、前記変化点グループ群に階層構造を与える、クラスタ階層構造化部をさらに備える、請求項11に記載のシステム分析装置。
  13. 前記関係性情報を取得する、関係性取得部をさらに備える、請求項12に記載のシステム分析装置。
  14. 前記関連度推定部が、前記関係性情報を用いて前記関連度を推定する、請求項13に記載のシステム分析装置。
  15. システムに設けられた複数のセンサが出力するセンサ値に基づいて、各センサが出力するセンサ値が異常であるか否か、および/または、異なるセンサが出力するセンサ値間の関係が異常であるか否かを時系列で表す履歴情報を取得する処理と、
    前記履歴情報に基づいて、システムの状態に変化が生じた時刻を示す変化点からなる変化点群を推定する処理と、
    前記変化点群に含まれる任意の2つの時刻間におけるシステムの状態の関連性を示す関連度を推定する処理と、
    前記履歴情報と前記関連度に基づいて前記変化点群を複数のグループに分類した、変化点グループ群を生成する処理と、
    前記変化点グループ群のグループごとに異常に関連する情報である出力情報を生成し出力する処理と、をコンピュータに実行させるプログラム。
JP2019547811A 2017-10-10 2017-10-10 システム分析方法、システム分析装置、および、プログラム Active JP6915693B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036622 WO2019073512A1 (ja) 2017-10-10 2017-10-10 システム分析方法、システム分析装置、および、プログラム

Publications (2)

Publication Number Publication Date
JPWO2019073512A1 true JPWO2019073512A1 (ja) 2020-10-22
JP6915693B2 JP6915693B2 (ja) 2021-08-04

Family

ID=66100536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547811A Active JP6915693B2 (ja) 2017-10-10 2017-10-10 システム分析方法、システム分析装置、および、プログラム

Country Status (3)

Country Link
US (1) US11378944B2 (ja)
JP (1) JP6915693B2 (ja)
WO (1) WO2019073512A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052015A1 (ja) * 2016-09-14 2018-03-22 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
US20210325842A1 (en) * 2020-04-15 2021-10-21 Kabushiki Kaisha Toshiba Process monitoring device, process monitoring method, and program
CN113342616B (zh) * 2021-06-30 2023-10-27 北京奇艺世纪科技有限公司 异常指标信息的定位方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243118A (ja) * 2010-05-20 2011-12-01 Hitachi Ltd 監視診断装置および監視診断方法
JP5267684B2 (ja) * 2010-01-08 2013-08-21 日本電気株式会社 運用管理装置、運用管理方法、及びプログラム記憶媒体
JP2014096050A (ja) * 2012-11-09 2014-05-22 Toshiba Corp プロセス監視診断装置、プロセス監視診断プログラム
JP2014115714A (ja) * 2012-12-06 2014-06-26 Mitsubishi Electric Corp 時系列データ処理装置、時系列データ処理方法及び時系列データ処理プログラム
JP2015172945A (ja) * 2009-08-28 2015-10-01 株式会社日立製作所 設備状態監視方法およびその装置
WO2017150286A1 (ja) * 2016-02-29 2017-09-08 日本電気株式会社 システム分析装置、システム分析方法、及び、コンピュータ読み取り可能な記録媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415282B1 (en) 1998-04-22 2002-07-02 Nec Usa, Inc. Method and apparatus for query refinement
JP2009265707A (ja) 2008-04-22 2009-11-12 Hitachi Ltd プロセスの自動グループ化とその性能監視方法
JP5301310B2 (ja) * 2009-02-17 2013-09-25 株式会社日立製作所 異常検知方法及び異常検知システム
JP5431235B2 (ja) 2009-08-28 2014-03-05 株式会社日立製作所 設備状態監視方法およびその装置
JP6147171B2 (ja) 2013-11-20 2017-06-14 三菱電機株式会社 プラント監視装置及びプラント監視プログラム
JP2016024786A (ja) 2014-07-24 2016-02-08 富士通フロンテック株式会社 ログ解析装置
US10261851B2 (en) * 2015-01-23 2019-04-16 Lightbend, Inc. Anomaly detection using circumstance-specific detectors
JP6358351B1 (ja) * 2017-03-21 2018-07-18 Jfeスチール株式会社 表面欠陥検査方法及び表面欠陥検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172945A (ja) * 2009-08-28 2015-10-01 株式会社日立製作所 設備状態監視方法およびその装置
JP5267684B2 (ja) * 2010-01-08 2013-08-21 日本電気株式会社 運用管理装置、運用管理方法、及びプログラム記憶媒体
JP2011243118A (ja) * 2010-05-20 2011-12-01 Hitachi Ltd 監視診断装置および監視診断方法
JP2014096050A (ja) * 2012-11-09 2014-05-22 Toshiba Corp プロセス監視診断装置、プロセス監視診断プログラム
JP2014115714A (ja) * 2012-12-06 2014-06-26 Mitsubishi Electric Corp 時系列データ処理装置、時系列データ処理方法及び時系列データ処理プログラム
WO2017150286A1 (ja) * 2016-02-29 2017-09-08 日本電気株式会社 システム分析装置、システム分析方法、及び、コンピュータ読み取り可能な記録媒体

Also Published As

Publication number Publication date
WO2019073512A1 (ja) 2019-04-18
US20200310401A1 (en) 2020-10-01
JP6915693B2 (ja) 2021-08-04
US11378944B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
JP5945350B2 (ja) 設備状態監視方法およびその装置
JP6658540B2 (ja) システム分析装置、システム分析方法およびプログラム
JP5431235B2 (ja) 設備状態監視方法およびその装置
JP6489235B2 (ja) システム分析方法、システム分析装置、および、プログラム
US9658916B2 (en) System analysis device, system analysis method and system analysis program
JP6521096B2 (ja) 表示方法、表示装置、および、プログラム
US20170103148A1 (en) System-analyzing device, analysis-model generation method, system analysis method, and system-analyzing program
US11657121B2 (en) Abnormality detection device, abnormality detection method and computer readable medium
JP5827425B1 (ja) 予兆診断システム及び予兆診断方法
JP5827426B1 (ja) 予兆診断システム及び予兆診断方法
JP6164311B1 (ja) 情報処理装置、情報処理方法、及び、プログラム
JP6183449B2 (ja) システム分析装置、及び、システム分析方法
WO2016147657A1 (ja) 情報処理装置、情報処理方法、及び、記録媒体
JP6777142B2 (ja) システム分析装置、システム分析方法、及び、プログラム
JP6915693B2 (ja) システム分析方法、システム分析装置、および、プログラム
JP5771317B1 (ja) 異常診断装置及び異常診断方法
JP6973445B2 (ja) 表示方法、表示装置、および、プログラム
US10157113B2 (en) Information processing device, analysis method, and recording medium
JP5771318B1 (ja) 異常診断装置及び異常診断方法
JP2022165669A (ja) 異常検出装置、異常検出方法、および異常検出プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150