[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2018216166A1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JPWO2018216166A1
JPWO2018216166A1 JP2019519902A JP2019519902A JPWO2018216166A1 JP WO2018216166 A1 JPWO2018216166 A1 JP WO2018216166A1 JP 2019519902 A JP2019519902 A JP 2019519902A JP 2019519902 A JP2019519902 A JP 2019519902A JP WO2018216166 A1 JPWO2018216166 A1 JP WO2018216166A1
Authority
JP
Japan
Prior art keywords
heat transfer
ridges
plate
fluid
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519902A
Other languages
Japanese (ja)
Other versions
JP6799681B2 (en
Inventor
田中 信雄
信雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Publication of JPWO2018216166A1 publication Critical patent/JPWO2018216166A1/en
Application granted granted Critical
Publication of JP6799681B2 publication Critical patent/JP6799681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

プレート式熱交換器の伝熱プレートは、伝熱部の第一面(Sa1)を隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、第一面(Sa1)の裏面である第二面を他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、第一面(Sa1)間に第一流路を形成し、第二面間に第二流路を形成する。伝熱部の第一面(Sa1)は、複数の第一凸条(230)と、第一凸条よりも低く且つ第一凸条と交差する方向に延びる障壁用凸条(231)と、隣り合う第一凸条間に形成される複数の第一凹条(220)とを含み、伝熱部の第二面は、第一凸条と表裏の関係にある複数の第二凹条を含む。隣り合う伝熱プレートの第一凸条(230)は、相手方の伝熱プレートの第一凸条(230)間に位置し、隣り合う伝熱プレートの障壁用凸条(231)は、相手方の伝熱プレートの第一凸条(230)と交差衝合する。The heat transfer plate of the plate heat exchanger is such that the first surface (Sa1) of the heat transfer section faces the first surface of the heat transfer section of the heat transfer plates arranged next to each other, and A certain second surface is opposed to the second surface of the heat transfer portion in the heat transfer plate arranged next to each other on the other side, a first flow path is formed between the first surfaces (Sa1), and a second flow path is provided between the second surfaces. To form. The first surface (Sa1) of the heat transfer section includes a plurality of first ridges (230), a barrier ridge (231) lower than the first ridge and extending in a direction intersecting the first ridge, And a plurality of first concave stripes (220) formed between the adjacent first convex stripes, and the second surface of the heat transfer portion has a plurality of second concave stripes in front and back relation with the first convex stripe. Including. The first ridges (230) of the adjacent heat transfer plates are located between the first ridges (230) of the partner heat transfer plate, and the barrier ridges (231) of the adjacent heat transfer plates are Cross abut with the first ridge (230) of the heat transfer plate.

Description

本発明は、凝縮器や蒸発器として使用されるプレート式熱交換器に関する。   The present invention relates to a plate heat exchanger used as a condenser or an evaporator.

従来から、プレート式熱交換器は、複数の伝熱プレートを備える。複数の伝熱プレートのそれぞれは、伝熱部を含む。伝熱部は、第一方向に第一面と第二面とを有する。具体的には、伝熱部は、凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する。   Conventionally, the plate heat exchanger includes a plurality of heat transfer plates. Each of the plurality of heat transfer plates includes a heat transfer section. The heat transfer section has a first surface and a second surface in the first direction. Specifically, the heat transfer portion is a concave surface that faces the first surface on which the convex stripes and concave stripes are formed, and faces the opposite side to the first surface, and is in a front-back relationship with the convex stripes on the first surface. And a concave surface of the first surface and a second surface having a convex stripe in a front-back relationship.

伝熱部の第一面及び第二面のそれぞれにおいて、凸条は、第一方向と直交する第二方向に延びる伝熱部の中心線(以下、縦中心線という)と交差する。該凸条は、第一方向及び第二方向のそれぞれに直交する第三方向における伝熱部の全長に亘って形成される。   On each of the first surface and the second surface of the heat transfer section, the ridge intersects with a center line (hereinafter, referred to as a vertical center line) of the heat transfer section that extends in the second direction orthogonal to the first direction. The ridge is formed over the entire length of the heat transfer section in the third direction orthogonal to each of the first direction and the second direction.

複数の伝熱プレートは、第一方向に重ね合わされる。すなわち、複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートの伝熱部の第一面と対向させる。また、複数の伝熱プレートのそれぞれは、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートの伝熱部の第二面と対向させる。   The plurality of heat transfer plates are stacked in the first direction. That is, each of the plurality of heat transfer plates causes the first surface of the heat transfer portion thereof to face the first surface of the heat transfer portion of the heat transfer plate arranged next to each other on one side in the first direction. In addition, each of the plurality of heat transfer plates causes the second surface of the heat transfer section of itself to face the second surface of the heat transfer section of the heat transfer plate that is arranged next to the other side of the first direction.

この状態で、隣り合う伝熱プレートの伝熱部の凸条同士は、交差衝合し、伝熱部の凹条により、隣り合う伝熱プレートの伝熱部間に空間が形成される。すなわち、第一流体を第二方向に流通させる第一流路が隣り合う伝熱プレートの伝熱部の第一面間に形成される。また、第二流体を第二方向に流通させる第二流路が隣り合う伝熱プレートの伝熱部の第二面間に形成される。これに伴い、プレート式熱交換器は、第一流路と第二流路とを仕切る伝熱部を介して第一流路内の第一流体と第二流路内の第二流体とを熱交換させる(例えば、特許文献1参照)。   In this state, the ridges of the heat transfer portions of the adjacent heat transfer plates intersect each other, and the recessed ridges of the heat transfer portion form a space between the heat transfer portions of the adjacent heat transfer plates. That is, the first flow path that allows the first fluid to flow in the second direction is formed between the first surfaces of the heat transfer portions of the adjacent heat transfer plates. Moreover, the second flow path that allows the second fluid to flow in the second direction is formed between the second surfaces of the heat transfer portions of the adjacent heat transfer plates. Along with this, the plate heat exchanger exchanges heat between the first fluid in the first flow path and the second fluid in the second flow path via the heat transfer section that partitions the first flow path and the second flow path. (For example, see Patent Document 1).

ところで、この種のプレート式熱交換器は、第一流路内の第一流体と第二流路内の第二流体との熱交換により、第二流路内の第二流体を凝縮させる凝縮器として使用されることがある。また、この種のプレート式熱交換器は、第一流路内の第一流体と第二流路内の第二流体との熱交換により、第二流路内の第二流体を蒸発させる蒸発器として使用されることもある。   By the way, this type of plate heat exchanger is a condenser for condensing the second fluid in the second flow path by heat exchange between the first fluid in the first flow path and the second fluid in the second flow path. May be used as. In addition, this type of plate heat exchanger is an evaporator that evaporates the second fluid in the second flow path by heat exchange between the first fluid in the first flow path and the second fluid in the second flow path. Sometimes used as.

しかしながら、従来のプレート式熱交換器では、凝縮器や蒸発器として使用された場合、凝縮や蒸発の対象となる第二流体の特性との関係で、熱伝達性能を向上させるのに限界がある。   However, in the conventional plate heat exchanger, when used as a condenser or an evaporator, there is a limit in improving heat transfer performance in relation to the characteristics of the second fluid to be condensed or evaporated. .

具体的に説明すると、伝熱部の凸条は、該伝熱部の縦中心線を横切り、第三方向における伝熱部の全長に亘って形成される。そのため、伝熱部の凸条は、第一流路及び第二流路のそれぞれの流通抵抗を大きくする。   More specifically, the ridges of the heat transfer section are formed across the entire length of the heat transfer section in the third direction across the longitudinal center line of the heat transfer section. Therefore, the ridges of the heat transfer section increase the flow resistance of each of the first flow path and the second flow path.

一般的に、第一流体には、相変化を起こさない流体(単相流となる流体)が採用される。そのため、第一流路の流通抵抗の増加は、伝熱部に対して熱的な影響を及ぼす機会を増やす。従って、第一流路の流通抵抗の増加は、熱伝達性能を高める要因となる。   In general, a fluid that does not cause a phase change (a fluid that becomes a single-phase flow) is used as the first fluid. Therefore, the increase in the flow resistance of the first flow path increases the chances of thermally affecting the heat transfer section. Therefore, the increase in the flow resistance of the first flow path becomes a factor that enhances the heat transfer performance.

これに対し、第二流体には、フロン等の相変化を起こす流体(液体と気体とを含む二相流となる流体)が採用される。これに伴い、第二流路を画定する伝熱部の第二面上に、第二流体の液膜が形成される。そのため、熱伝達性能を向上させるべく、第二流体の流速を速め、伝熱部の第二面上に形成される液膜の流れを乱す必要がある。   On the other hand, as the second fluid, a fluid that causes a phase change such as Freon (a fluid that becomes a two-phase flow containing a liquid and a gas) is used. Along with this, a liquid film of the second fluid is formed on the second surface of the heat transfer section that defines the second flow path. Therefore, in order to improve the heat transfer performance, it is necessary to increase the flow velocity of the second fluid and disturb the flow of the liquid film formed on the second surface of the heat transfer section.

しかしながら、伝熱部の凸条は、該伝熱部の縦中心線を横切って、第三方向における伝熱部の全長に亘って形成されるため、伝熱部の凸条は、第二流路内での第二流体の流れを阻害する。すなわち、伝熱部の第二面にある凸条は、第二流路内での第二流体の流れに対して横切る(交差する)ように形成されるため、第二流路内での第二流体の流通抵抗を大きくする。   However, since the ridges of the heat transfer section are formed over the entire length of the heat transfer section in the third direction across the longitudinal center line of the heat transfer section, the ridges of the heat transfer section are Obstruct the flow of the second fluid in the passage. That is, since the ridge on the second surface of the heat transfer section is formed so as to cross (intersect) the flow of the second fluid in the second flow path, Increase the flow resistance of the two fluids.

そのため、従来のプレート式熱交換器では、第二流路内での第二流体の流速を速めるには限界があり、伝熱部の第二面上に形成される第二流体の液膜の流れを十分に乱すことができない。   Therefore, in the conventional plate heat exchanger, there is a limit in increasing the flow velocity of the second fluid in the second flow passage, and the liquid film of the second fluid formed on the second surface of the heat transfer section is limited. The flow cannot be sufficiently disturbed.

従って、従来のプレート式熱交換器では、第二流路を流通する第二流体の伝熱部に対する熱伝達性能を高めるのに限界がある。   Therefore, in the conventional plate heat exchanger, there is a limit in improving the heat transfer performance of the second fluid flowing through the second flow path to the heat transfer section.

日本国特開2001−99588号公報Japanese Patent Laid-Open No. 2001-99588

そこで、本発明は、第一流体との熱交換によって相変化する第二流体の伝熱部に対する熱伝達性能を向上させることのできるプレート式熱交換器を提供することを課題とする。   Therefore, it is an object of the present invention to provide a plate heat exchanger capable of improving the heat transfer performance of the second fluid that changes in phase by heat exchange with the first fluid, to the heat transfer section.

本発明のプレート式熱交換器は、凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する伝熱部を含む伝熱プレートであって、それぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、第一流体を第一方向と直交する第二方向に流通させる第一流路が隣り合う伝熱プレートの伝熱部の第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣り合う伝熱プレートの伝熱部の第二面間に形成され、隣り合う伝熱プレートのそれぞれの伝熱部は、第一面に形成される凸条として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条を含むとともに、第一面に形成される凹条として、第一方向及び第二方向と交差する方向で隣り合う第一凸条間に形成される複数の第一凹条を含み、且つ第二面に形成される凹条として、第一凸条と表裏の関係にある複数の第二凹条を含み、隣り合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートにおける伝熱部は、第一面に形成される凸条として、該第一面に形成される第一凸条よりも低い障壁用凸条であって、第一凸条と交差する方向に延びる少なくとも一つの障壁用凸条を含み、隣り合う伝熱プレートのそれぞれの第一凸条は、相手方の伝熱プレートの第一凸条間に位置し、少なくとも何れか一方の伝熱プレートの障壁用凸条と、相手方の伝熱プレートの第一凸条とが交差衝合している。   The plate heat exchanger of the present invention has a first surface on which ridges and recesses are formed, and a concave surface which faces the opposite side to the first surface and which is in a front-back relationship with the ridges on the first surface. A heat transfer plate including a heat transfer portion having a strip and a recessed surface of the first surface and a second surface having a convex strip in a front-back relationship, each heat transfer portion being superposed in the first direction. A plurality of heat transfer plates, and each of the plurality of heat transfer plates has a first surface of its own heat transfer section and a first surface of the heat transfer section in the heat transfer plate arranged next to each other on one side in the first direction. While facing each other, the second surface of its own heat transfer portion is opposed to the second surface of the heat transfer portion of the heat transfer plate arranged next to the other side in the first direction, and the first fluid is orthogonal to the first direction. The first flow path that circulates in two directions is formed between the first surfaces of the heat transfer portions of the adjacent heat transfer plates, and the second fluid flows in the second direction. The second flow path to be circulated is formed between the second surfaces of the heat transfer parts of the adjacent heat transfer plates, and each heat transfer part of the adjacent heat transfer plates is a ridge formed on the first surface. A plurality of first ridges arranged at intervals in a direction intersecting the one direction and the second direction, each of the plurality of first ridges extending in the second direction or a composite direction including the second direction as a component. As a concave stripe formed on the first surface, including a plurality of stripes, a plurality of first concave stripes formed between adjacent first convex stripes in a direction intersecting the first direction and the second direction, and As the recess formed on the two surfaces, a plurality of second recesses having a front and back relationship with the first protrusion are included, and the heat transfer portion in at least one of the heat transfer plates adjacent to each other is , A barrier lower than the first ridge formed on the first surface as the ridge formed on the first surface The first ridge of each of the adjacent heat transfer plates, which includes at least one barrier ridge extending in a direction intersecting with the first ridge, and the first ridge of each of the adjacent heat transfer plates is a first ridge of the other heat transfer plate. Located between them, the barrier ribs of at least one of the heat transfer plates and the first ribs of the other heat transfer plate intersect with each other.

本発明の一態様として、隣り合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートは、第一面に形成される凸条として、第二方向に間隔をあけて配置された複数の障壁用凸条を含んでいることが好ましい。   As one aspect of the present invention, at least one of the heat transfer plates adjacent to each other has a plurality of barriers arranged at intervals in the second direction as ridges formed on the first surface. It is preferable to include a convex ridge.

本発明の他態様として、隣り合う伝熱プレートのそれぞれの伝熱部は、第二面に形成される凸条として、第一凹条と表裏の関係にある複数の第二凸条を含み、隣り合う伝熱プレートのそれぞれの第二凸条は、相手方の伝熱プレートの第二凸条と重なり合い、該相手方の伝熱プレートの第二凸条の丁部と接触していてもよい。   As another aspect of the present invention, each heat transfer portion of the adjacent heat transfer plates includes a plurality of second ridges in front and back relation with the first ridge, as the ridges formed on the second surface. The second convex ridges of the adjacent heat transfer plates may overlap with the second convex ridges of the partner heat transfer plate and may be in contact with the claw portions of the second convex ridges of the partner heat transfer plate.

障壁用凸条は、少なくとも一つの屈曲凸条部を有し、屈曲凸条部は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部であって、第二方向に延びる中心線又は該中心線に対して平行な仮想線に対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部を含んでいてもよい。   The barrier rib has at least one bent rib, and the bent rib is a pair of inclined ribs each having a base end and a tip opposite to the base end. It may include a pair of inclined ridges that are inclined in opposite directions to each other with respect to a center line extending in two directions or an imaginary line parallel to the center line, and their tips are connected to each other.

隣り合う伝熱プレートのそれぞれの伝熱部は、屈曲凸条部を有する障壁用凸条を含み、隣り合う伝熱プレートの障壁用凸条の屈曲凸条部は、互いに正反対に屈曲して形成されていることが好ましい。   Each heat transfer portion of the adjacent heat transfer plates includes a barrier ridge having a bent ridge, and the bent ridges of the barrier ridges of the adjacent heat transfer plates are formed by bending in opposite directions to each other. Is preferably provided.

図1は、本発明の第一実施形態に係るプレート式熱交換器の斜視図である。FIG. 1 is a perspective view of a plate heat exchanger according to the first embodiment of the present invention. 図2は、第一実施形態に係るプレート式熱交換器の分解斜視図であって、第一流体及び第二流体の流通経路を含む分解斜視図である。FIG. 2 is an exploded perspective view of the plate heat exchanger according to the first embodiment, and is an exploded perspective view including the flow paths of the first fluid and the second fluid. 図3は、第一実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第一面側から見た図である。FIG. 3 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the first embodiment as viewed from the first surface side. 図4は、第一実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第二面側から見た図である。FIG. 4 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the first embodiment as viewed from the second surface side. 図5は、第一実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第一面側から見た図である。FIG. 5 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the first embodiment as viewed from the first surface side. 図6は、第一実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第二面側から見た図である。FIG. 6 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the first embodiment as viewed from the second surface side. 図7は、第一実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 7 is a schematic diagram showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to the first embodiment. 図8は、第一実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 8 is a schematic partial cross-sectional view of the plate heat exchanger according to the first embodiment as seen from the second direction. 図9は、図8のIX−IX断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8, and is a cross-sectional view additionally showing the flow of fluid in the first flow path and the second flow path. 図10は、図8のX−X断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。FIG. 10 is a cross-sectional view taken along line XX of FIG. 8 and is a cross-sectional view additionally showing the flow of fluid in the first flow path and the second flow path. 図11は、第一実施形態に係るプレート式熱交換器における第一流路内での第一流体の流れを示す図である。FIG. 11: is a figure which shows the flow of the 1st fluid in the 1st flow path in the plate-type heat exchanger which concerns on 1st embodiment. 図12は、第一実施形態に係るプレート式熱交換器における第二流路内での第二流体の流れを示す図である。FIG. 12: is a figure which shows the flow of the 2nd fluid in the 2nd flow path in the plate-type heat exchanger which concerns on 1st embodiment. 図13は、本発明の第二実施形態に係るプレート式熱交換器の分解斜視図であって、第一流体及び第二流体の流通経路を含む分解斜視図である。FIG. 13 is an exploded perspective view of the plate heat exchanger according to the second embodiment of the present invention, and is an exploded perspective view including the flow paths of the first fluid and the second fluid. 図14は、第二実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第一面側から見た図である。FIG. 14: is the figure which looked at the heat transfer plate (1st heat transfer plate) of the plate heat exchanger which concerns on 2nd embodiment from the 1st surface side. 図15は、第二実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第二面側から見た図である。FIG. 15 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the second embodiment as viewed from the second surface side. 図16は、第二実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第一面側から見た図である。FIG. 16: is the figure which looked at the heat transfer plate (2nd heat transfer plate) of the plate heat exchanger which concerns on 2nd embodiment from the 1st surface side. 図17は、第二実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第二面側から見た図である。FIG. 17 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the second embodiment as viewed from the second surface side. 図18は、第二実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 18 is a schematic diagram showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to the second embodiment. 図19は、第二実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 19 is a schematic partial cross-sectional view of the plate heat exchanger according to the second embodiment as seen from the second direction. 図20は、図19のXX−XX断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。20 is a cross-sectional view taken along the line XX-XX of FIG. 19, and is a cross-sectional view additionally showing the flow of fluid in the first flow path and the second flow path. 図21は、図19のXXI−XXI断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。FIG. 21 is a cross-sectional view taken along the line XXI-XXI of FIG. 19, showing the flow of the fluid in the first channel and the second channel. 図22は、図19のXXII−XXII断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。22 is a cross-sectional view taken along the line XXII-XXII in FIG. 19 and is a cross-sectional view additionally showing the flow of the fluid in the first flow passage and the second flow passage. 図23は、第二実施形態に係るプレート式熱交換器における第一流路内での第一流体の流れを示す図である。FIG. 23: is a figure which shows the flow of the 1st fluid in the 1st flow path in the plate-type heat exchanger which concerns on 2nd embodiment. 図24は、第二実施形態に係るプレート式熱交換器における第二流路内での第二流体の流れを示す図である。FIG. 24: is a figure which shows the flow of the 2nd fluid in the 2nd flow path in the plate heat exchanger which concerns on 2nd embodiment. 図25は、本発明の他実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 25 is a schematic partial cross-sectional view of the plate heat exchanger according to another embodiment of the present invention as seen from the second direction. 図26は、本発明の別の実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 26 is a schematic partial cross-sectional view of the plate heat exchanger according to another embodiment of the present invention as seen from the second direction. 図27は、本発明のさらに別の実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 27 is a schematic partial cross-sectional view of the plate heat exchanger according to still another embodiment of the present invention as seen from the second direction. 図28は、本発明のさらに別の実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 28 is a schematic diagram showing a flow path of a first fluid in a first flow path and a flow path of a second fluid in a second flow path of a plate heat exchanger according to still another embodiment of the present invention. Is. 図29は、本発明のさらに別の実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 29 is a schematic diagram showing a flow path of a first fluid in a first flow path and a flow path of a second fluid in a second flow path of a plate heat exchanger according to still another embodiment of the present invention. Is.

以下、本発明の第一実施形態に係るプレート式熱交換器について、添付図面を参照して説明する。   Hereinafter, a plate heat exchanger according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1及び図2に示す如く、第一実施形態に係るプレート式熱交換器(以下、本実施形態において、単に熱交換器という)1は、三つ以上の伝熱プレート2,3を備える。   As shown in FIGS. 1 and 2, a plate heat exchanger (hereinafter, simply referred to as a heat exchanger in the present embodiment) 1 according to the first embodiment includes three or more heat transfer plates 2 and 3.

三つ以上の伝熱プレート2,3は、第一方向に重ね合わされる。本実施形態において、三つ以上の伝熱プレート2,3には、二種類の伝熱プレートが含まれる。二種類の伝熱プレート2,3は、第一方向において交互に配置される。   The three or more heat transfer plates 2 and 3 are stacked in the first direction. In the present embodiment, the three or more heat transfer plates 2 and 3 include two types of heat transfer plates. The two types of heat transfer plates 2 and 3 are alternately arranged in the first direction.

これに伴い、熱交換器1には、図2に示す如く、伝熱プレート2,3を境にして、第一流体Aを流通させる第一流路Raと、第二流体Bを流通させる第二流路Rbとが第一方向において交互に形成される。   Along with this, as shown in FIG. 2, the heat exchanger 1 has a first flow path Ra through which the first fluid A flows and a second flow path B through which the second fluid B flows, with the heat transfer plates 2 and 3 as boundaries. The flow paths Rb are formed alternately in the first direction.

ここで、二種類の伝熱プレート2,3について具体的に説明する。二種類の伝熱プレート2,3は、共通点と、相違点とを有する。まず、二種類の伝熱プレート2,3の共通点について説明する。   Here, the two types of heat transfer plates 2 and 3 will be specifically described. The two types of heat transfer plates 2 and 3 have common points and different points. First, the common points between the two types of heat transfer plates 2 and 3 will be described.

伝熱プレート2,3は、図3乃至図6に示す如く、第一面Sa1,Sb1と該第一面Sa1,Sb1に対して反対向きの第二面Sa2,Sb2とを有する伝熱部20,30と、伝熱部20,30の外周縁全周から該伝熱部20,30と面交差する方向に延出した環状の嵌合部21,31とを備える。   As shown in FIGS. 3 to 6, the heat transfer plates 2 and 3 have a heat transfer section 20 having first surfaces Sa1 and Sb1 and second surfaces Sa2 and Sb2 opposite to the first surfaces Sa1 and Sb1. , 30 and annular fitting portions 21 and 31 extending from the entire outer peripheral edges of the heat transfer portions 20 and 30 in a direction that intersects the heat transfer portions 20 and 30 in a plane.

伝熱部20,30は、第一方向に厚みを有する。これに伴い、伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2は、第一方向に並ぶ。伝熱部20,30の外形(輪郭)は、第一方向と直交する第二方向に延びる一対の長辺と、第二方向に間隔をあけて配置される一対の短辺であって、それぞれが第一方向及び第二方向と直交する第三方向に延びて一対の長辺を繋ぐ一対の短辺とによって画定される。すなわち、第一方向から見た伝熱部20,30の外形は、第二方向に長手をなす長方形状である。   The heat transfer parts 20 and 30 have a thickness in the first direction. Along with this, the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 are arranged in the first direction. The outer shapes (contours) of the heat transfer parts 20 and 30 are a pair of long sides extending in a second direction orthogonal to the first direction and a pair of short sides arranged at intervals in the second direction. Is defined by a pair of short sides extending in a third direction orthogonal to the first direction and the second direction and connecting a pair of long sides. That is, the outer shape of the heat transfer parts 20 and 30 when viewed from the first direction is a rectangular shape that is long in the second direction.

伝熱部20,30は、第二方向に一端部と該一端部の反対側の他端部を有する。伝熱部20,30は、第二方向の一端部及び他端部のそれぞれに少なくとも二つの開口200,201,202,203,300,301,302,303を有する。本実施形態において、伝熱部20,30は、第二方向の一端部に二つの開口200,203,300,303を有し、第二方向の他端部に二つの開口201,202,301,302を有する。   The heat transfer parts 20 and 30 have one end in the second direction and the other end opposite to the one end. The heat transfer parts 20, 30 have at least two openings 200, 201, 202, 203, 300, 301, 302, 303 at one end and the other end in the second direction, respectively. In the present embodiment, the heat transfer parts 20, 30 have two openings 200, 203, 300, 303 at one end in the second direction and two openings 201, 202, 301 at the other end in the second direction. , 302.

第二方向における伝熱部20,30の一端部にある二つの開口200,203,300,303は、第三方向に並んでいる。また、第二方向における伝熱部20,30の他端部にある二つの開口201,202,301,302は、第三方向に並んでいる。   The two openings 200, 203, 300, 303 at one end of the heat transfer parts 20, 30 in the second direction are arranged in the third direction. Further, the two openings 201, 202, 301, 302 at the other ends of the heat transfer parts 20, 30 in the second direction are arranged in the third direction.

伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第一面Sa1,Sb1側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第二面Sa2,Sb2側において膨出している。   The periphery of one opening 200, 300 at one end of the heat transfer portion 20, 30 in the second direction and the periphery of one opening 201, 301 at the other end are recessed on the first surface Sa1, Sb1 side. . Along with this, the periphery of one opening 200, 300 at one end in the second direction and the periphery of one opening 201, 301 at the other end of the heat transfer parts 20, 30 are on the second surface Sa2, Sb2 side. Bulges out.

伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲の第二面Sa2,Sb2側への膨出量は、第一方向で隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口200,201,300,301(一端部の一方の開口200,300及び他端部の一方の開口201,301)の周囲と接触可能に設定される。   Amount of swelling to the second surface Sa2, Sb2 side around one opening 200, 300 at one end in the second direction and around one opening 201, 301 at the other end of the heat transfer section 20, 30. Are the openings 200, 201, 300, 301 of the heat transfer parts 20, 30 of the heat transfer plates 2, 3 arranged next to each other in the first direction (one opening 200, 300 at one end and one opening 201 at the other end). , 301) so that it can be contacted with the surroundings.

これに対し、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第二面Sa2,Sb2側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第一面Sa1,Sb1側において膨出している。   On the other hand, the periphery of the other opening 203, 303 at one end of the heat transfer portion 20, 30 in the second direction and the periphery of the other opening 202, 302 at the other end are on the second surface Sa2, Sb2 side. Is dented at. Accordingly, the periphery of the other opening 203, 303 at one end of the heat transfer portion 20, 30 in the second direction and the periphery of the other opening 202, 302 at the other end are on the first surface Sa1, Sb1 side. Bulges out.

伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲の第一面Sa1,Sb1側への膨出量は、第一方向で隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口202,203,302,303(一端部の他方の開口202,302及び他端部にある他方の開口203,303)の周囲(膨出した部分)と接触可能に設定される。なお、図3乃至図6において、第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおける凹凸関係を明確にすべく、開口200,201,202,203,300,301,302,303の周囲で窪んでいる領域、及び後述する凹条22,32の底部分に対してドットを付している。   Amount of swelling toward the first surface Sa1, Sb1 side around the other opening 203, 303 at one end in the second direction and the other opening 202, 302 at the other end of the heat transfer section 20, 30. Are the openings 202, 203, 302, 303 of the heat transfer portions 20, 30 of the heat transfer plates 2, 3 arranged next to each other in the first direction (the other opening 202, 302 at one end and the other opening at the other end). 203, 303) is set so as to be able to come into contact with the periphery (bulged portion). 3 to 6, the openings 200, 201, 202, 203, 300, 301, 302, 303 of the openings 200, 201, 202, 203, 300, 301, 302, 303 are formed in order to clarify the concave-convex relationship on each of the first surface Sa1, Sb1 and the second surface Sa2, Sb2. Dots are attached to the region that is recessed in the periphery and the bottom portions of the recesses 22 and 32 described below.

本実施形態において、伝熱プレート2,3を重ね合わせる態様との関係で、伝熱部20,30における第二方向の一端部にある一方の開口200,300と他端部にある一方の開口201,301とは、対角位置にある。また、伝熱部20,30における第二方向の一端部にある他方の開口203,303と他端部にある他方の開口202,302とは、対角位置にある。   In the present embodiment, in relation to the aspect in which the heat transfer plates 2 and 3 are overlapped, one opening 200, 300 at one end in the second direction and one opening at the other end in the heat transfer section 20, 30. 201 and 301 are in diagonal positions. Further, the other openings 203, 303 at one end of the heat transfer parts 20, 30 in the second direction and the other openings 202, 302 at the other end are at diagonal positions.

伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれには、凹条22,32及び凸条23,33が形成されている。伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおいて、凹条22,32及び凸条23,33のそれぞれは、複数(多数)ある。   Grooves 22, 32 and ridges 23, 33 are formed on the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30, respectively. In each of the first surfaces Sa1 and Sb1 and the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30, there are a plurality (a large number) of the recessed ridges 22 and 32 and the protruding ridges 23 and 33, respectively.

より具体的には、伝熱プレート2,3は、金属プレートをプレス成形することで成形される。これに伴い、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32と、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33とは、表裏の関係にある。また、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33と、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32とは、表裏の関係にある。すなわち、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32は、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33と対応した位置に形成される。また、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33は、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32と対応した位置に形成される。   More specifically, the heat transfer plates 2 and 3 are formed by press forming a metal plate. Along with this, the concave stripes 22 and 32 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the convex stripes 23 and 33 formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. And have a two-sided relationship. The convex stripes 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the concave stripes 22 and 32 formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are , There is a front and back relationship. That is, the recessed strips 22, 32 formed on the first surfaces Sa1, Sb1 of the heat transfer portions 20, 30 due to the deformation of the metal plate associated with the press forming are formed on the second surfaces Sa2, Sb2 of the heat transfer portions 20, 30. It is formed at a position corresponding to the formed ridges 23 and 33. In addition, the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 due to the deformation of the metal plate associated with the press forming are transferred to the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. It is formed at a position corresponding to the formed concave lines 22 and 32.

図3及び図5に示す如く、伝熱部20,30は、第一面Sa1,Sb1に形成される凹条22,32として、それぞれが第二方向に延びる複数の第一凹条220,320であって、第三方向に間隔をあけて配置された複数の第一凹条220,320を含む。また、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第三方向で隣り合う第一凹条220,320間で第二方向に延びる複数の第一凸条230,330を含む。すなわち、伝熱部20,30の第一面Sa1,Sb1において、第一凹条220,320及び第一凸条230,330は、第三方向で交互に配置される。   As shown in FIGS. 3 and 5, the heat transfer portions 20 and 30 are a plurality of first recessed strips 220 and 320 that extend in the second direction as the recessed strips 22 and 32 formed on the first surfaces Sa1 and Sb1. And includes a plurality of first recessed strips 220, 320 arranged at intervals in the third direction. Moreover, the heat transfer parts 20 and 30 are a plurality of first ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 and extending in the second direction between the first ridges 220 and 320 adjacent in the third direction. Includes one ridge 230, 330. That is, on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30, the first concave stripes 220 and 320 and the first convex stripes 230 and 330 are alternately arranged in the third direction.

さらに、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、該第一面Sa1,Sb1に形成される第一凸条230,330よりも低い障壁用凸条231,331であって、複数の第一凸条230,330と交差する方向に延びる少なくとも一つの障壁用凸条231,331を含む。   Further, the heat transfer portions 20 and 30 are used as barrier ribs 23 and 33 formed on the first surfaces Sa1 and Sb1 for barriers lower than the first ribs 230 and 330 formed on the first surfaces Sa1 and Sb1. The ridges 231 and 331 include at least one barrier ridge 231 and 331 extending in a direction intersecting with the plurality of first ridges 230 and 330.

複数の第一凹条220,320のそれぞれにおける第三方向の幅、及び複数の第一凸条230,330のそれぞれの第三方向の幅は、同一又は略同一である。第一凹条220,320を画定する内面と第一凸条230,330を画定する外面とは連続している。これにより、伝熱部20,30の第一面Sa1,Sb1は、第一方向に起伏した波形状に形成される。   The width in the third direction of each of the plurality of first concave stripes 220 and 320 and the width of each of the plurality of first convex stripes 230 and 330 in the third direction are the same or substantially the same. The inner surface defining the first concave stripes 220, 320 and the outer surface defining the first convex stripes 230, 330 are continuous. As a result, the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are formed in a wavy shape that undulates in the first direction.

これを前提に、伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置している。   On the premise of this, on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30, a specific first concave stripe 220, 320 of the plurality of first concave stripes 220, 320 and a plurality of first convex stripes 230 are provided. , 330 of the first first ridges 230, 330 adjacent to the first first ridges 230, 330 adjacent to the first first ridges 220, 320 of the first ridges 230, 330 of ing.

すなわち、特定の第一凹条220,320又は特定の第一凸条230,330は、一つの第一凹条220,320を挟んで隣り合う第一凸条230,330同士の間隔、又は一つの第一凸条230,330を挟んで隣り合う第一凹条220,320同士の間隔の1/4の距離だけ縦中心線CLから第三方向にずれて配置される。   That is, the specific first concave stripes 220, 320 or the specific first convex stripes 230, 330 are the intervals between the adjacent first convex stripes 230, 330 with one first concave stripe 220, 320 interposed therebetween, or The first concave stripes 230, 330 are sandwiched between the first concave stripes 220, 320, and the first concave stripes 220, 320 are arranged so as to be displaced from the vertical center line CL in the third direction by a distance ¼ of the distance between the adjacent first concave stripes 220, 320.

本実施形態において、伝熱部20,30の第一面Sa1,Sb1には、複数の障壁用凸条231,331がある。複数の障壁用凸条231,331は、第二方向に間隔をあけて配置される。複数の障壁用凸条231,331のそれぞれは、上述の如く、第一凸条230,330よりも低い。具体的には、第二面Sa2,Sb2上に形成される後述する複数の第二凸条233,333の丁部を通る仮想面(第二方向及び第三方向に広がる仮想面)からの突出量が、第一凸条230,330よりも障壁用凸条231,331の方が少ない。これに伴い、障壁用凸条231,331の丁部は、第一凸条230,330の丁部よりも第一方向において第二面側に位置する。すなわち、障壁用凸条231,331の丁部は、第一凸条230,330の丁部と第一凹条220,320の底部との間に位置する。   In the present embodiment, the plurality of barrier ribs 231 and 331 are provided on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, respectively. The plurality of barrier ribs 231 and 331 are arranged at intervals in the second direction. Each of the plurality of barrier ribs 231 and 331 is lower than the first ribs 230 and 330, as described above. Specifically, protrusion from a virtual surface (a virtual surface that spreads in the second direction and the third direction) that passes through the claws of a plurality of second protrusions 233 and 333 described below that are formed on the second surfaces Sa2 and Sb2. The amount of the barrier ribs 231 and 331 is smaller than that of the first ribs 230 and 330. Along with this, the claw portions of the barrier ribs 231 and 331 are located closer to the second surface in the first direction than the claw portions of the first ribs 230 and 330. That is, the claws of the barrier ribs 231, 331 are located between the claws of the first ribs 230, 330 and the bottoms of the first recesses 220, 320.

詳細については後述するが、本実施形態において、複数の伝熱プレート2,3が重ね合わされた状態において、隣り合う伝熱プレート2,3の一方の伝熱プレート2,3の第一凸条230,330間(第一凹条220,320)に、隣り合う伝熱プレート2,3の他方の伝熱プレート2,3の第一凸条230,330が位置する。   Although details will be described later, in the present embodiment, the first ridges 230 of one of the heat transfer plates 2 and 3 adjacent to each other in the state where the plurality of heat transfer plates 2 and 3 are stacked. , 330 (first concave lines 220, 320), the first convex lines 230, 330 of the other heat transfer plates 2, 3 of the adjacent heat transfer plates 2, 3 are located.

これに伴い、第一方向における第一凸条230,330の丁部と障壁用凸条231,331の丁部との間隔(距離)は、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330と、他方の伝熱プレート2,3の第一凹条220,320との間隔が第一流体Aの流通を確保できる間隔となるように、設定される。   Accordingly, the distance (distance) between the claws of the first ridges 230 and 330 and the claws of the barrier ridges 231 and 331 in the first direction is one of the adjacent heat transfer plates 2 and 3. The distance between the first ridges 230 and 330 of the heat transfer plates 2 and 3 and the first ridges 220 and 320 of the other heat transfer plates 2 and 3 is such that the flow of the first fluid A can be secured. , Set.

具体的に説明すると、本実施形態において、各伝熱プレート2,3において、複数の第一凹条220,320が同幅に設定されるとともに、複数の第一凸条230,330が同幅に設定される。また、各伝熱プレート2,3において、第一凹条220,320と第一凸条230,330とが略同幅に設定される。   More specifically, in the present embodiment, in each of the heat transfer plates 2 and 3, the plurality of first recesses 220 and 320 are set to have the same width, and the plurality of first protrusions 230 and 330 have the same width. Is set to. In addition, in each heat transfer plate 2 and 3, the first concave stripes 220 and 320 and the first convex stripes 230 and 330 are set to have substantially the same width.

これに伴い、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330が、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3の第一凹条220,320に近づきすぎると、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間の隙間が無くなるか、或いは、第一凸条230,330の丁部と第一凹条220,320の底部との間にできる隙間に比して極端に狭くなってしまう。   Along with this, the first ridges 230 and 330 of the heat transfer plates 2 and 3 of one of the heat transfer plates 2 and 3 that are adjacent to each other cause the heat transfer plate 2 of the other of the heat transfer plates 2 and 3 that is adjacent to , 3 of the first concave stripes 220, 320 too close to each other, the gap between the both sides of the first convex stripes 230, 330 in the width direction and the both sides of the first concave stripes 220, 320 in the width direction disappears, or The gap between the claws of the first ridges 230 and 330 and the bottoms of the first ridges 220 and 320 is extremely narrow.

そのため、本実施形態において、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間隔が、第一流体Aの流通性を確保できる間隔になるように、第一方向における第一凸条230,330の丁部と障壁用凸条231,331の丁部との間隔(距離)が設定される。   Therefore, in the present embodiment, the distance between both sides in the width direction of the first ridges 230, 330 and the both sides in the width direction of the first ridges 220, 320 is the distance at which the fluidity of the first fluid A can be ensured. As described above, the distance (distance) between the claws of the first ridges 230 and 330 and the claws of the barrier ridges 231 and 331 in the first direction is set.

本実施形態において、障壁用凸条231,331は、複数の第一凸条230,330及び第一凹条220,320と交差する。本実施形態において、障壁用凸条231,331は、伝熱部20,30の第三方向の全長に亘って形成される。   In the present embodiment, the barrier ribs 231 and 331 intersect the plurality of first ribs 230 and 330 and the first recesses 220 and 320. In the present embodiment, the barrier ribs 231 and 331 are formed over the entire length of the heat transfer portions 20 and 30 in the third direction.

本実施形態において、障壁用凸条231,331は、少なくとも一つの屈曲凸条部232,332を有する。屈曲凸条部232,332は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部232a,232b,332a,332bであって、縦中心線CLに対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部232a,232b,332a,332bを含む。本実施形態において、障壁用凸条231,331は、一つの屈曲凸条部232,332を有する。   In this embodiment, the barrier ribs 231 and 331 have at least one bent rib portion 232 or 332. The bent ridges 232, 332 are a pair of inclined ridges 232a, 232b, 332a, 332b each having a base end and a tip opposite to the base end, and are inclined with respect to the longitudinal centerline CL. It includes a pair of inclined ridges 232a, 232b, 332a, 332b which are inclined in opposite directions and whose tips are connected to each other. In the present embodiment, the barrier ribs 231 and 331 have one bent rib 232 and 332.

本実施形態において、屈曲凸条部232,332を構成する一対の傾斜凸条部232a,232b,332a,332bのそれぞれの基端は、第三方向における伝熱部20,30の端縁上に位置している。   In the present embodiment, the base ends of the pair of inclined ridges 232a, 232b, 332a, 332b forming the bent ridges 232, 332 are located on the edges of the heat transfer parts 20, 30 in the third direction. positioned.

これに対し、一対の傾斜凸条部232a,232b,332a,332bのそれぞれの先端は、第三方向における伝熱部20,30の中央(縦中心線CL上)に位置している。これにより、一対の傾斜凸条部232a,232b,332a,332bの先端部は、互いに合致した状態で接続されている。   On the other hand, the tip ends of the pair of inclined ridges 232a, 232b, 332a, 332b are located at the centers (on the vertical center line CL) of the heat transfer parts 20, 30 in the third direction. As a result, the tip ends of the pair of inclined ridges 232a, 232b, 332a, 332b are connected in a mutually matched state.

このような態様にされることで、本実施形態において、障壁用凸条231,331自体が屈曲凸条部232,332を構成している。一対の傾斜凸条部232a,232b,332a,332bは、第二方向に延びる仮想線を基準に対称的に配置されている。すなわち、一対の傾斜凸条部232a,232b,332a,332bの互いの傾斜方向は、真逆ではある。しかし、一対の傾斜凸条部232a,232b,332a,332bの第二方向に延びる縦中心線CLに対する傾斜角度は同一である。   With such an aspect, in this embodiment, the barrier ribs 231 and 331 themselves form the bent ribs 232 and 332. The pair of inclined ridges 232a, 232b, 332a, 332b are arranged symmetrically with respect to an imaginary line extending in the second direction. That is, the inclination directions of the pair of inclined ridges 232a, 232b, 332a, 332b are opposite to each other. However, the inclination angles of the pair of inclined ridges 232a, 232b, 332a, 332b with respect to the vertical center line CL extending in the second direction are the same.

このように、障壁用凸条231,331が伝熱部20,30の第三方向の全幅に亘って設けられる。これに伴い、伝熱部20,30の第一面Sa1,Sb1上の第一凹条220,320及び第一凸条230,330は、第二方向において複数個所で分断されている。これに伴い、分断された第一凹条220,320及び第一凸条230,330の少なくとも一端は、障壁用凸条231,331に繋がる。   In this way, the barrier ribs 231 and 331 are provided over the entire width of the heat transfer portions 20 and 30 in the third direction. Along with this, the first concave lines 220 and 320 and the first convex lines 230 and 330 on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30 are divided at a plurality of positions in the second direction. Along with this, at least one ends of the divided first concave lines 220 and 320 and the first convex lines 230 and 330 are connected to the barrier convex lines 231 and 331.

本実施形態において、分断された第一凹条220,320は、第二方向で整列している。これに伴い、分断された第一凸条230,330も、第二方向で整列している。   In the present embodiment, the divided first concave lines 220 and 320 are aligned in the second direction. Along with this, the divided first ridges 230 and 330 are also aligned in the second direction.

図4及び図6に示す如く、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、それぞれが第二方向に延びる複数の第二凹条221,321であって、第三方向に間隔をあけて配置された複数の第二凹条221,321を含む。また、伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第三方向で隣り合う第二凹条221,321間で第二方向に延びて形成された複数の第二凸条233,333を含む。すなわち、伝熱部20,30の第二面Sa2,Sb2において、第二凹条221,321及び第二凸条233,333は、第三方向で交互に配置される。   As shown in FIGS. 4 and 6, the heat transfer portions 20 and 30 are a plurality of second recessed strips 221 and 321 each extending in the second direction as the recessed strips 22 and 32 formed on the second surfaces Sa2 and Sb2. In addition, the plurality of second recessed strips 221 and 321 arranged at intervals in the third direction are included. In addition, the heat transfer portions 20 and 30 are formed as the convex stripes 23 and 33 formed on the second surfaces Sa2 and Sb2 and extend in the second direction between the second concave stripes 221 and 321 that are adjacent to each other in the third direction. A plurality of second ridges 233 and 333. That is, on the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30, the second concave stripes 221, 321 and the second convex stripes 233, 333 are alternately arranged in the third direction.

さらに、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、第一面Sa1,Sb1上の障壁用凸条231,331の裏側に形成される凹条(以下、裏側凹条という)222,322を含む。   Furthermore, the heat transfer parts 20 and 30 are recessed stripes 22 and 32 formed on the second surfaces Sa2 and Sb2, and are recessed stripes formed on the back side of the barrier ribs 231 and 331 on the first surfaces Sa1 and Sb1. It includes 222 and 322 (hereinafter referred to as the back side concave streaks).

第二凹条221,321は、第一面Sa1,Sb1上の第一凸条230,330の裏側に形成される凹条22,32である。これに伴い、第二凹条221,321は、第二方向に延びている。第二凸条233,333は、第一面Sa1,Sb1上の第一凹条220,320の裏側に形成される凸条23,33である。これに伴い、第二凸条233,333は、第二方向に延びている。   The second concave stripes 221 and 321 are concave stripes 22 and 32 formed on the back side of the first convex stripes 230 and 330 on the first surfaces Sa1 and Sb1. Along with this, the second recessed strips 221 and 321 extend in the second direction. The second ridges 233, 333 are the ridges 23, 33 formed on the back side of the first ridges 220, 320 on the first surfaces Sa1, Sb1. Along with this, the second ridges 233 and 333 extend in the second direction.

第二凹条221,321を画定する内面と第二凸条233,333を画定する外面とは連続している。これにより、伝熱部20,30の第二面Sa2,Sb2は、第一方向に起伏した波形状に形成される。   The inner surface that defines the second concave stripes 221 and 321 and the outer surface that defines the second convex stripes 233 and 333 are continuous. As a result, the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 are formed in a wavy shape undulating in the first direction.

裏側凹条222,322は、障壁用凸条231,331と凹凸関係を逆にする以外は同形態で形成される。従って、伝熱部20,30の第二面Sa2,Sb2には、一対の傾斜凸条部232a,232b,332a,332bのそれぞれの裏側に形成される凹条22,32である一対の傾斜凹条部223a,223b,323a,323bを含む屈曲凹条部223,323が形成される。   The back side concave lines 222 and 322 are formed in the same form as that of the barrier convex lines 231 and 331 except that the concave-convex relationship is reversed. Therefore, the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 have a pair of slanted recesses 22 and 32 formed on the back sides of the pair of slanted projections 232a, 232b, 332a, 332b. Bent concave line parts 223 and 323 including the line parts 223a, 223b, 323a and 323b are formed.

本実施形態において、屈曲凸条部232,332(一対の傾斜凸条部232a,232b,332a,332b)が障壁用凸条231,331を構成する。そのため、屈曲凹条部223,323は、障壁用凸条231,331の裏側に形成される裏側凹条222,322全体を構成する。   In the present embodiment, the bent ridges 232 and 332 (the pair of inclined ridges 232a, 232b, 332a, 332b) configure the barrier ridges 231 and 331. Therefore, the bent groove portions 223 and 323 configure the entire back side groove portions 222 and 322 formed on the back side of the barrier ribs 231 and 331.

これに伴い、第二凹条221,321及び第二凸条233,333は、裏側凹条222,322によって分断されている。これにより、分断された第二凸条233,333は、裏側凹条222,322に繋がっている。すなわち、分断された第二凹条221,321は、裏側凹条222,322内に向けて開放している。   Along with this, the second recessed strips 221 and 321 and the second projected strips 233 and 333 are divided by the back side recessed strips 222 and 322. As a result, the divided second ridges 233 and 333 are connected to the rear concave ridges 222 and 322. That is, the divided second recessed strips 221 and 321 are open toward the inside of the back side recessed strips 222 and 322.

二種類の伝熱プレート2,3の共通点は、以上の通りである。次に、二種類の伝熱プレート2,3の相違点について説明する。   The common points between the two types of heat transfer plates 2 and 3 are as described above. Next, the difference between the two types of heat transfer plates 2 and 3 will be described.

図3及び図5に示す如く、二種類の伝熱プレート2,3のうちの一方の伝熱プレート(以下、第一伝熱プレートという)2の第一面Sa1上の第一凸条230と、二種類の伝熱プレート2,3のうちの他方の伝熱プレート(以下、第二伝熱プレートという)3の第一面Sb1上の第一凸条330とは、第三方向において位置ずれして配置される。すなわち、第一伝熱プレート2の伝熱部20の第一面Sa1と第二伝熱プレート3の伝熱部30の第一面Sb1とが対向した状態で、第一伝熱プレート2の第一凸条230が第二伝熱プレート3の第一凹条320と対応するとともに、第二伝熱プレート3の第一凸条330が第一伝熱プレート2の第一凹条220と対応するように、それぞれの第一凹条220,320及び第一凸条230,330の配置が設定されている。   As shown in FIG. 3 and FIG. 5, a first ridge 230 on the first surface Sa1 of one of the two types of heat transfer plates 2 and 3 (hereinafter referred to as the first heat transfer plate) 2 , The first ridge 330 on the first surface Sb1 of the other heat transfer plate (hereinafter referred to as the second heat transfer plate) 3 of the two kinds of heat transfer plates 2 and 3 is displaced in the third direction. Are placed. That is, the first surface Sa1 of the heat transfer portion 20 of the first heat transfer plate 2 and the first surface Sb1 of the heat transfer portion 30 of the second heat transfer plate 3 are opposed to each other in the first heat transfer plate 2 The one convex line 230 corresponds to the first concave line 320 of the second heat transfer plate 3, and the first convex line 330 of the second heat transfer plate 3 corresponds to the first concave line 220 of the first heat transfer plate 2. As described above, the arrangement of the respective first concave stripes 220 and 320 and the first convex stripes 230 and 330 is set.

そして、本実施形態において、第一伝熱プレート2の障壁用凸条231と、第二伝熱プレート3の障壁用凸条331とは、第三方向に延びる仮想線を基準に互いに反転した態様で設けられている。すなわち、第一伝熱プレート2の障壁用凸条231の傾斜凸条部232a,232bの傾斜方向と、第二伝熱プレート3の障壁用凸条331の傾斜凸条部332a,332bと傾斜方向とが真逆ではある。   In this embodiment, the barrier ribs 231 of the first heat transfer plate 2 and the barrier ribs 331 of the second heat transfer plate 3 are reversed from each other with respect to an imaginary line extending in the third direction. It is provided in. That is, the inclined direction of the inclined convex portions 232a, 232b of the barrier ribs 231 of the first heat transfer plate 2 and the inclined direction of the inclined convex portions 332a, 332b of the barrier ribs 331 of the second heat transfer plate 3 Is the exact opposite.

そして、第一伝熱プレート2においては、図3に示す如く、嵌合部21は伝熱部20の第一面Sa1側に延出する。これに対し、第二伝熱プレート3においては、図6に示す如く、嵌合部31は伝熱部30の第二面Sb2側に延出する。   Then, in the first heat transfer plate 2, as shown in FIG. 3, the fitting portion 21 extends to the first surface Sa1 side of the heat transfer portion 20. On the other hand, in the second heat transfer plate 3, as shown in FIG. 6, the fitting portion 31 extends to the second surface Sb2 side of the heat transfer portion 30.

複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、以上の通りである。複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、図2に示す如く、第一方向に重ね合わされる。本実施形態において、第一伝熱プレート2と第二伝熱プレート3とが、第一方向で交互に重ね合わされる。このとき、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させる。また、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させる。   Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is as described above. Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is superposed in the first direction as shown in FIG. 2. In this embodiment, the first heat transfer plate 2 and the second heat transfer plate 3 are alternately stacked in the first direction. At this time, each of the plurality of heat transfer plates 2 and 3 transfers heat in the heat transfer plates 2 and 3 in which the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 are arranged next to each other on one side in the first direction. The first surfaces Sa1 and Sb1 of the portions 20 and 30 are opposed to each other. In addition, each of the plurality of heat transfer plates 2 and 3 has the second surface Sa2 and Sb2 of its own heat transfer parts 20 and 30 arranged next to each other on the other side in the first direction. The second surfaces Sa2 and Sb2 of 20, 30 are opposed to each other.

これにより、図2及び図7に示す如く、第一流体Aを第二方向に流通させる第一流路Raと、第二流体B第二方向に流通させる第二流路Rbとが伝熱プレート2,3の伝熱部20,30を境にして交互に形成される。すなわち、第一流体Aに流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。   As a result, as shown in FIGS. 2 and 7, the first flow passage Ra that allows the first fluid A to flow in the second direction and the second flow passage Rb that allows the second fluid B to flow in the second direction have the heat transfer plate 2 , 3 are alternately formed with the heat transfer parts 20 and 30 as boundaries. That is, the first flow path Ra that circulates the first fluid A is formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3, and the second fluid B circulates. The second flow path Rb is formed between the second surfaces Sa2, Sb2 of the heat transfer portions 20, 30 of the adjacent heat transfer plates 2, 3.

また、この状態において、図2に示す如く、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が接触する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。   Further, in this state, as shown in FIG. 2, the openings 200, 201, 202, 203, 300, 301, 302, 303 at corresponding positions of the heat transfer parts 20, 30 are continuous in the first direction. In addition, portions around the openings 200, 201, 202, 203, 300, 301, 302, 303 facing each other and bulging toward the other side are in contact with each other. Thereby, the first inflow passage Pa1 for supplying the first fluid A to the first flow passage Ra, the first outflow passage Pa2 for flowing out the first fluid A from the first flow passage Ra, and the second fluid B for the second flow passage Rb. And a second outflow passage Pb2 for flowing out the second fluid B from the second flow passage Rb.

より具体的に説明すると、複数の伝熱プレート2,3を重ね合わせる際、一つの第一伝熱プレート2と一つの第二伝熱プレート3とを互いの裏側凹条222,322を対向させた状態で重ね合わせて一組とされる。この組を複数組重ね合わせるに際し、一組おきに第一方向に延びる仮想線周りで180度回転させて重ね合わされる。この状態において、第一方向で隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31は、第一方向で隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31に外嵌される。   More specifically, when stacking a plurality of heat transfer plates 2 and 3, one first heat transfer plate 2 and one second heat transfer plate 3 are made to face each other with their back side concaves 222 and 322 facing each other. It is set in a stacked state and overlapped. When superposing a plurality of sets, every other set is rotated by 180 degrees around an imaginary line extending in the first direction and is superposed. In this state, the fitting portions 21 and 31 of one of the heat transfer plates 2 and 3 (first heat transfer plate 2 or second heat transfer plate 3) of the heat transfer plates 2 and 3 that are adjacent to each other in the first direction are Of the heat transfer plates 2 and 3 adjacent to each other in the first direction are externally fitted to the fitting portions 21 and 31 of the other heat transfer plate 2 and 3 (the first heat transfer plate 2 or the second heat transfer plate 3). It

これにより、図8乃至図10に示す如く、隣り合う伝熱プレート2,3の第一面Sa1,Sb1側において、第一伝熱プレート2(伝熱部20)の第一凸条230は、第二伝熱プレート(伝熱部30)の第一凹条320と対向し、第一伝熱プレート2(伝熱部20)の第一凹条220は、第二伝熱プレート(伝熱部30)の第一凸条330と対向する。   As a result, as shown in FIGS. 8 to 10, on the first surfaces Sa1 and Sb1 sides of the adjacent heat transfer plates 2 and 3, the first protrusions 230 of the first heat transfer plate 2 (heat transfer section 20) are The first recessed ridge 220 of the first heat transfer plate 2 (heat transfer part 20) faces the first recessed ridge 320 of the second heat transfer plate (heat transfer part 30), and the second heat transfer plate (heat transfer part 20). 30) facing the first ridge 330.

第一伝熱プレート2において、障壁用凸条231が第一凸条230よりも低く、第二伝熱プレート3において、障壁用凸条331が第一凸条330よりも低いため、第一伝熱プレート2の障壁用凸条231は、第二伝熱プレート3の第一凸条330と交差衝合し、第二伝熱プレート3の障壁用凸条331は、第一伝熱プレート2の第一凸条230と交差衝合する。   In the first heat transfer plate 2, the barrier ribs 231 are lower than the first ribs 230, and in the second heat transfer plate 3, the barrier ribs 331 are lower than the first ribs 330. The barrier ridges 231 of the heat plate 2 cross-abut with the first ridges 330 of the second heat transfer plate 3, and the barrier ridges 331 of the second heat transfer plate 3 intersect the first heat transfer plate 2. It intersects with the first ridge 230.

本実施形態において、第一伝熱プレート2の障壁用凸条231と、第二伝熱プレート3の障壁用凸条331とは、第三方向に延びる仮想線を基準に互いに反転した態様で設けられているため、上記の通り配置された状態において、図11に示す如く、第一伝熱プレート2の障壁用凸条231と第二伝熱プレート3の障壁用凸条331とは、第一方向から見て交差した態様で配置される。   In the present embodiment, the barrier ridges 231 of the first heat transfer plate 2 and the barrier ridges 331 of the second heat transfer plate 3 are provided in an inverted manner with respect to an imaginary line extending in the third direction. Therefore, in the state of being arranged as described above, as shown in FIG. 11, the barrier ribs 231 of the first heat transfer plate 2 and the barrier ribs 331 of the second heat transfer plate 3 are They are arranged in an intersecting manner when viewed from the direction.

これに対し、隣り合う伝熱プレート2,3の第二面Sa2,Sb2側において、図8乃至図10に示す如く、第一伝熱プレート2(伝熱部20)の第二凸条233は、第二伝熱プレート(伝熱部30)の第二凸条333と対向し、第一伝熱プレート2(伝熱部20)の第二凹条221は、第二伝熱プレート(伝熱部30)の第二凹条321と対向する。すなわち、第一伝熱プレート2及び第二伝熱プレート3のそれぞれの伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置しているため、上記の通り、第一伝熱プレート2及び第二伝熱プレート3を180°回転させることで、隣り合う伝熱プレート2,3の第二凸条233,333同士が対向し、互いの丁部同士を接触させる。また、第一方向から見て隣り合う伝熱プレート2,3の裏側凹条222,322同士が対向した状態(一致した状態)となる(図12参照)。   On the other hand, on the second surface Sa2, Sb2 side of the adjacent heat transfer plates 2, 3, as shown in FIG. 8 to FIG. 10, the second ridge 233 of the first heat transfer plate 2 (heat transfer part 20) is The second recess 221 of the first heat transfer plate 2 (heat transfer part 20) faces the second protrusion 333 of the second heat transfer plate (heat transfer part 30). It faces the second groove 321 of the portion 30). That is, in the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the first heat transfer plate 2 and the second heat transfer plate 3, respectively, a specific first concave portion of the plurality of first concave grooves 220 and 320 is formed. First ridges 230, 330 adjacent to the first ridges 220, 320 and a particular first ridge 230, 330 of the plurality of first ridges 230, 330. Since the boundary with is located on the vertical center line CL, as described above, by rotating the first heat transfer plate 2 and the second heat transfer plate 3 by 180 °, the adjacent heat transfer plates 2, 3 The second ridges 233, 333 of the above are opposed to each other, and the ridges of the two are brought into contact with each other. Further, the back side recessed lines 222 and 322 of the heat transfer plates 2 and 3 which are adjacent to each other when viewed from the first direction are in a state of facing each other (matching state) (see FIG. 12).

これにより、図2に示す如く、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成される。また、第二流体Bを第二方向に流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。   Thereby, as shown in FIG. 2, the first surfaces of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 in which the first flow paths Ra for circulating the first fluid A in the second direction orthogonal to the first direction are adjacent to each other. It is formed between Sa1 and Sb1. Further, the second flow path Rb for circulating the second fluid B in the second direction is formed between the second surfaces Sa2, Sb2 of the heat transfer portions 20, 30 of the adjacent heat transfer plates 2, 3.

そして、上述の如く、複数の伝熱プレート2,3が第一方向に重ね合わされることで、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が接触する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。   Then, as described above, the plurality of heat transfer plates 2 and 3 are overlapped in the first direction, so that the openings 200, 201, 202, 203, 300, 301, at the corresponding positions of the heat transfer parts 20 and 30 are formed. 302 and 303 are connected in the first direction. In addition, portions around the openings 200, 201, 202, 203, 300, 301, 302, 303 facing each other and bulging toward the other side are in contact with each other. Thereby, the first inflow passage Pa1 for supplying the first fluid A to the first flow passage Ra, the first outflow passage Pa2 for flowing out the first fluid A from the first flow passage Ra, and the second fluid B for the second flow passage Rb. And a second outflow passage Pb2 for flowing out the second fluid B from the second flow passage Rb.

なお、本実施形態に係る熱交換器1において、隣り合う伝熱プレート2,3の接触した部分同士がロウ付けされる。これにより、複数の伝熱プレート2,3が一体的(機械的)に接続されるとともに、隣り合う伝熱プレート2,3の対向面間(接触部分)が封止される。   In the heat exchanger 1 according to this embodiment, the contacting portions of the adjacent heat transfer plates 2 and 3 are brazed to each other. As a result, the plurality of heat transfer plates 2 and 3 are integrally (mechanically) connected, and the opposing surfaces (contact portions) of the adjacent heat transfer plates 2 and 3 are sealed.

本実施形態に係る熱交換器1は、以上の通りである。第一流体Aは、図2、図7、及び図11に示す如く、第一流入路Pa1から複数の第一流路Raに流入する。第一流体Aは、複数の第一流路Raのぞれぞれで第二方向に流通し、第一流出路Pa2に流出する。これに対し、第二流体Bは、図2、図7、及び図12に示す如く、第二流入路Pb1から複数の第二流路Rbに流入する。第二流体Bは、該複数の第二流路Rbのぞれぞれで第二方向に流通し、第二流出路Pb2に流出する。   The heat exchanger 1 according to this embodiment is as described above. The first fluid A flows into the plurality of first flow paths Ra from the first inflow passage Pa1 as shown in FIGS. 2, 7, and 11. The first fluid A flows in the second direction in each of the plurality of first flow paths Ra and flows out to the first outflow path Pa2. On the other hand, the second fluid B flows into the plurality of second flow paths Rb from the second inflow path Pb1 as shown in FIGS. 2, 7, and 12. The second fluid B flows in the second direction in each of the plurality of second flow paths Rb and flows out to the second outflow path Pb2.

本実施形態において、第一流体Aは、図11に示す如く、第一流路Raにおいて、伝熱部20,30の対角を結ぶ対角線を中心として流通する。これに対し、第二流体Bは、図12に示す如く、第二流路Rbにおいて、伝熱部20,30の対角を結ぶ対角線であって、第一流体Aの流れの中心となる対角線とは別の対角線を中心に流通する。   In the present embodiment, as shown in FIG. 11, the first fluid A flows in the first flow path Ra with a diagonal line connecting the diagonals of the heat transfer parts 20, 30 as the center. On the other hand, as shown in FIG. 12, the second fluid B is a diagonal line that connects the diagonals of the heat transfer portions 20 and 30 in the second flow path Rb, and is a diagonal line that is the center of the flow of the first fluid A. Circulates around a different diagonal line.

このとき、第一流路Raを流通する第一流体A、及び第二流路Rbを流通する第二流体Bは、第一流路Raと第二流路Rbとを仕切る伝熱プレート2,3(伝熱部20,30)を介して熱交換する。これにより、第二流体Bは、第二流路Rb内で第二方向に流通する過程において、凝縮或いは蒸発する。   At this time, the first fluid A flowing through the first flow channel Ra and the second fluid B flowing through the second flow channel Rb are the heat transfer plates 2 and 3 (that partition the first flow channel Ra from the second flow channel Rb). Heat is exchanged via the heat transfer parts 20, 30). Accordingly, the second fluid B is condensed or evaporated in the process of flowing in the second direction in the second flow path Rb.

以上のように、本実施形態に係る熱交換器1は、凸条23,33及び凹条22,32の形成された第一面Sa1,Sb1と、該第一面Sa1,Sb1に対して反対側を向き、且つ第一面Sa1,Sb1の凸条23,33と表裏の関係にある凹条22,32及び第一面Sa1,Sb1の凹条22,32と表裏の関係にある凸条23,33の形成された第二面Sa2,Sb2とを有する伝熱部20,30を含む伝熱プレート2,3であって、それぞれの伝熱部20,30が第一方向に重ね合わされた複数の伝熱プレート2,3を備え、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させるとともに、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させ、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを第二方向に流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成され、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条230,330であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条230,330を含むとともに、第一面Sa1,Sb1に形成される凹条22,32として、第一方向及び第二方向と交差する方向で隣り合う第一凸条230,230,330,330間に形成される複数の第一凹条220,320を含み、且つ第二面Sa2,Sb2に形成される凹条22,32として、第一凸条230,330と表裏の関係にある複数の第二凹条221,321を含み、隣り合う伝熱プレート2,3のうちの少なくとも何れか一方の伝熱プレート2,3における伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、該第一面Sa1,Sb1に形成される第一凸条230,330よりも低い障壁用凸条231,331であって、第一凸条230,330と交差する方向に延びる少なくとも一つの障壁用凸条231,331を含み、隣り合う伝熱プレート2,3のそれぞれの第一凸条230,330は、相手方の伝熱プレート2,3の第一凸条230,330間に位置し、少なくとも何れか一方の伝熱プレート2,3の障壁用凸条231,331と、相手方の伝熱プレート2,3の第一凸条230,330とが交差衝合している。   As described above, the heat exchanger 1 according to the present embodiment is opposite to the first surfaces Sa1 and Sb1 on which the convex stripes 23 and 33 and the concave stripes 22 and 32 are formed and the first surfaces Sa1 and Sb1. The ridges 23 and 32 facing the side and having a front and back relationship with the ridges 23 and 33 of the first surfaces Sa1 and Sb1 and the ridge 23 having a front and back relationship with the recesses 22 and 32 of the first surfaces Sa1 and Sb1. , 33 having the second surfaces Sa2, Sb2 formed thereon, the heat transfer plates 2, 3 including a plurality of heat transfer parts 20, 30 stacked in the first direction. Heat transfer plates 2 and 3, and each of the plurality of heat transfer plates 2 and 3 has the first surfaces Sa1 and Sb1 of its own heat transfer portions 20 and 30 arranged next to each other on one side in the first direction. When facing the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30 in the plates 2 and 3, In addition, the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 of their own face the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 in the heat transfer plates 2, 3 arranged next to each other on the other side in the first direction. The first flow path Ra that allows the first fluid A to flow in the second direction orthogonal to the first direction is formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3. In addition, the second flow path Rb that allows the second fluid B to flow in the second direction is formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3, and the adjacent flow paths Rb and The heat transfer parts 20 and 30 of the heat plates 2 and 3 are arranged at intervals in the direction intersecting the first direction and the second direction as the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1. A plurality of first ridges 230 and 330, each of which is in the second direction or A direction that intersects the first direction and the second direction as the recessed ridges 22 and 32 formed on the first surfaces Sa1 and Sb1 while including the plurality of first ridges 230 and 330 extending in the composite direction including the direction as a component. And the plurality of first concave stripes 220, 320 formed between the adjacent first convex stripes 230, 230, 330, 330, and as the concave stripes 22, 32 formed on the second surfaces Sa2, Sb2. The heat transfer part in the heat transfer plates 2 and 3 of at least one of the adjacent heat transfer plates 2 and 3 including the plurality of second recessed parts 221 and 321 that are in front and back relation with the one ridge 230 and 330. The ribs 20 and 30 are, as the ribs 23 and 33 formed on the first surfaces Sa1 and Sb1, the barrier ribs 231 and 331 lower than the first ribs 230 and 330 formed on the first surfaces Sa1 and Sb1. And the first ridge 230 , 330 including at least one barrier ridge 231 or 331 extending in a direction intersecting with the heat transfer plates 2 and 3, the first ridges 230 and 330 of the adjacent heat transfer plates 2 and 3 of the heat transfer plates 2 and 3, respectively. Located between the first ridges 230 and 330, the barrier ridges 231 and 331 of at least one of the heat transfer plates 2 and 3 and the first ridges 230 and 330 of the partner heat transfer plates 2 and 3 Are crossing each other.

上記構成の熱交換器1によれば、図9及び図10に示す如く、隣り合う伝熱部20,30の第一面Sa1,Sb1間に形成される第一流路Raの途中位置において、障壁用凸条231,331が相手方の伝熱部20,30に向けて突出した状態で存在する。これに伴い、障壁用凸条231,331は、第一流路Ra内で第一流体Aの流通を阻害し、第一流路Ra内における第一流体Aの流通抵抗を増大させる。   According to the heat exchanger 1 configured as described above, as shown in FIGS. 9 and 10, the barrier is provided at an intermediate position of the first flow passage Ra formed between the first surfaces Sa1 and Sb1 of the adjacent heat transfer portions 20 and 30. The projecting ridges 231 and 331 exist in a state of protruding toward the heat transfer parts 20 and 30 of the other party. Along with this, the barrier ribs 231 and 331 impede the flow of the first fluid A in the first flow channel Ra and increase the flow resistance of the first fluid A in the first flow channel Ra.

特に、本実施形態に係る熱交換器1によれば、隣り合う伝熱プレート2,3のそれぞれの第一凸条230,330は、相手方の伝熱プレート2,3の第一凸条230,330間に位置し、伝熱プレート2,3の障壁用凸条231,331(第一凸条230,330よりも低い障壁用凸条231,331)と、相手方の伝熱プレート2,3の第一凸条230,330とが交差衝合している。   Particularly, according to the heat exchanger 1 according to the present embodiment, the first ridges 230 and 330 of the adjacent heat transfer plates 2 and 3 are the first ridges 230 and 330 of the opposite heat transfer plates 2 and 3, respectively. The barrier ribs 231 and 331 located between the heat transfer plates 2 and 3 (barrier ribs 231 and 331 lower than the first ribs 230 and 330) and the heat transfer plates 2 and 3 of the other party. The first ridges 230 and 330 are cross-butted.

そのため、隣り合う伝熱プレート2,3の第一面Sa1,Sb1の間隔が狭くなる。すなわち、障壁用凸条231,331の突出量が第一凸条230,330の突出量よりも少ない分、第一流路Raを画定する伝熱プレート2,3同士が接近した状態になる。これに伴い、第一流路Raの流路幅が狭くなる結果、第一流路Ra内における第一流体Aの流通抵抗を増大させる。   Therefore, the interval between the first surfaces Sa1 and Sb1 of the adjacent heat transfer plates 2 and 3 becomes narrow. That is, the heat transfer plates 2 and 3 defining the first flow path Ra are brought closer to each other by the protrusion amount of the barrier ribs 231 and 331 being smaller than the protrusion amount of the first ribs 230 and 330. As a result, the flow passage width of the first flow passage Ra becomes narrower, and as a result, the flow resistance of the first fluid A in the first flow passage Ra increases.

従って、本実施形態に係る熱交換器1は、障壁用凸条231,331の存在と第一流路Raの流路幅とによって、第一流体Aの流通抵抗を増大させる結果、第一流体Aが伝熱部20,30に対して熱的な影響を及ぼす機会が増え、第二流体B側への熱伝達性能が高くなる。   Therefore, the heat exchanger 1 according to the present embodiment increases the flow resistance of the first fluid A as a result of the existence of the barrier ribs 231 and 331 and the channel width of the first channel Ra, resulting in the first fluid A. The number of opportunities for heat to affect the heat transfer parts 20, 30 increases, and the heat transfer performance to the second fluid B side is improved.

これに対し、各伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2においては、第一凸条230,330と表裏の関係にある複数の第二凹条221,321が形成され、また、第一面Sa1,Sb1の障壁用凸条231,331と表裏の関係にある凹条が形成されるため、隣り合う伝熱プレート2,3の第二面Sa2,Sb2間に形成される第二流路Rb内には、第二流体Bの流通抵抗となるものがない。従って、第二流路Rbでの第二流体Bの流通抵抗が小さくなり、第二流体Bの流速を速めることができる。   On the other hand, on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3, a plurality of second recessed stripes 221 and 321 having a front and back relationship with the first protruding stripes 230 and 330. Is formed, and since the concave ridges having a front and back relationship with the convex ridges 231 and 331 for the barrier of the first surfaces Sa1 and Sb1 are formed, between the second surfaces Sa2 and Sb2 of the adjacent heat transfer plates 2 and 3. There is nothing that becomes a flow resistance of the second fluid B in the second flow path Rb formed in. Therefore, the flow resistance of the second fluid B in the second flow path Rb is reduced, and the flow velocity of the second fluid B can be increased.

これにより、相変化を起こす流体(液体と気体とを含む二相流となる流体)が第二流体Bとして採用されとしても、第二流体Bの流速により、伝熱部20,30の表面上に形成された第二流体Bの液膜の流れが乱される。   As a result, even if a fluid that causes a phase change (a fluid that becomes a two-phase flow containing a liquid and a gas) is adopted as the second fluid B, the flow velocity of the second fluid B causes the fluid to flow on the surfaces of the heat transfer portions 20 and 30. The flow of the liquid film of the second fluid B formed on the surface is disturbed.

従って、上記構成の熱交換器1では、第二流路Rbを流通する第二流体Bの伝熱部20,30(第一流体A側)に対する熱伝達性能が高まる。   Therefore, in the heat exchanger 1 configured as described above, the heat transfer performance of the second fluid B flowing through the second flow path Rb to the heat transfer portions 20, 30 (on the side of the first fluid A) is enhanced.

本実施形態において、図9乃至図11に示す如く、隣り合う伝熱プレート2,3のうちの少なくとも何れか一方の伝熱プレート2,3は、第一面Sa1,Sb1に形成される凸条23,33として、第二方向に間隔をあけて配置された複数の障壁用凸条231,331を含んでいるため、第一流路Raにおいて、複数の障壁用凸条231,331の数に応じて第一流体Aの流通抵抗を増大させることができる。   In this embodiment, as shown in FIGS. 9 to 11, at least one of the heat transfer plates 2 and 3 adjacent to each other has a ridge formed on the first surfaces Sa1 and Sb1. Since the plurality of barrier ribs 231 and 331 arranged at intervals in the second direction are included as 23 and 33, depending on the number of the plurality of barrier ribs 231 and 331 in the first channel Ra. Therefore, the flow resistance of the first fluid A can be increased.

また、本実施形態において、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第一凹条220,320と表裏の関係にある複数の第二凸条233,333を含み、隣り合う伝熱プレート2,3のそれぞれの第二凸条233,333は、相手方の伝熱プレート2,3の第二凸条233,333と重なり合い、該相手方の伝熱プレート2,3の第二凸条233,333の丁部と接触しているため、第一流路Ra内を流通する第一流体Aの流動圧が伝熱部20,30に作用しても、該伝熱部20,30が押し広げられることがない。従って、第二流路Rbを構成する空間が確保され、第二流体Bの流通の円滑性が確保される。   In addition, in the present embodiment, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 are the first ridges 220 and 320 as the ridges 23 and 33 formed on the second surfaces Sa2 and Sb2. The second convex ridges 233, 333 of the adjacent heat transfer plates 2, 3 include a plurality of second convex ridges 233, 333 having a front and back relationship with each other. Since it overlaps with the strips 233 and 333 and is in contact with the crests of the second convex strips 233 and 333 of the heat transfer plates 2 and 3 of the other side, the flow pressure of the first fluid A flowing in the first flow channel Ra is Even if it acts on the heat transfer parts 20 and 30, the heat transfer parts 20 and 30 are not expanded. Therefore, the space forming the second flow path Rb is secured, and the smoothness of the circulation of the second fluid B is secured.

本実施形態において、障壁用凸条231,331は、少なくとも一つの屈曲凸条部232,332を有し、屈曲凸条部232,332は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部232a,232bであって、第二方向に延びる中心線又は該中心線に対して平行な仮想線に対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部232a,232bを含んでいる。   In the present embodiment, the barrier ridges 231 and 331 have at least one bending ridge portion 232 and 332, and each of the bending ridge portions 232 and 332 is a base end and a tip opposite to the base end. And a pair of inclined ridges 232a and 232b each having an angle of inclination with respect to a center line extending in the second direction or an imaginary line parallel to the center line and having their tips connected to each other. It includes a pair of inclined ridges 232a and 232b that are formed.

これにより、障壁用凸条231,331全体が第一流体Aの流通抵抗になるだけでなく、障壁用凸条231,331の有する屈曲凸条部232,332(一対の傾斜凸条部232a,232b,332a,332b)が第一流体Aを第一流路Ra内で拡散させる。従って、伝熱部20,30における伝熱に寄与する領域が増える。これにより、第一流路Raにおける第一流体Aの熱伝達性能が向上する。   As a result, not only the barrier ribs 231 and 331 become the flow resistance of the first fluid A, but also the bent ribs 232 and 332 of the barrier ribs 231 and 331 (the pair of inclined ribs 232a, 232a, 232b, 332a, 332b) causes the first fluid A to diffuse in the first channel Ra. Therefore, the area | region which contributes to heat transfer in the heat transfer parts 20 and 30 increases. This improves the heat transfer performance of the first fluid A in the first flow channel Ra.

特に、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、屈曲凸条部232,332を有する障壁用凸条231,331を含み、隣り合う伝熱プレート2,3の障壁用凸条231,331の屈曲凸条部232,332は、互いに正反対に屈曲して形成されている。   In particular, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 include barrier ribs 231 and 331 having bent protrusion portions 232 and 332, respectively, and the barriers of the heat transfer plates 2 and 3 that are adjacent to each other. The bent ridges 232 and 332 of the projecting ridges 231 and 331 are formed by bending diametrically opposite to each other.

そのため、互いの屈曲凸条部232,332の傾斜凸条部232a,232b,332a,332b同士が交差した態様となる(図11参照)。これに伴い、第一流路Raにおける第一流体Aの流通抵抗が大きくなる上に、第一流体Aの拡散効果が大きくなる。これにより、第一流路Raにおける第一流体Aの熱伝達性能が向上する。   Therefore, the inclined ridge portions 232a, 232b, 332a, 332b of the bent ridge portions 232, 332 are in a state where they intersect with each other (see FIG. 11). Along with this, the flow resistance of the first fluid A in the first flow channel Ra increases, and the diffusion effect of the first fluid A also increases. This improves the heat transfer performance of the first fluid A in the first flow channel Ra.

次に、本発明の第二実施形態に係るプレート式熱交換器について説明する。なお、本実施形態において、第一実施形態における構成と同一或いは相当する構成については、第一実施形態における構成と同一名称とし、また、同一符号を付すこととする。   Next, a plate heat exchanger according to the second embodiment of the present invention will be described. In the present embodiment, configurations that are the same as or equivalent to the configurations in the first embodiment have the same names as the configurations in the first embodiment and are given the same reference numerals.

第二実施形態に係るプレート式熱交換器(以下、本実施形態において、単に熱交換器という)は、図13に示す如く、三つ以上の伝熱プレート2,3を備える。   The plate type heat exchanger according to the second embodiment (hereinafter, simply referred to as heat exchanger in the present embodiment) includes three or more heat transfer plates 2 and 3, as shown in FIG. 13.

三つ以上の伝熱プレート2,3は、第一方向に重ね合わされる。本実施形態に係る熱交換器1は、三つ以上の伝熱プレート2,3には、二種類の伝熱プレートが含まれる。二種類の伝熱プレート2,3は、第一方向において交互に配置される。   The three or more heat transfer plates 2 and 3 are stacked in the first direction. In the heat exchanger 1 according to this embodiment, the three or more heat transfer plates 2 and 3 include two types of heat transfer plates. The two types of heat transfer plates 2 and 3 are alternately arranged in the first direction.

これに伴い、熱交換器1には、伝熱プレート2,3を境にして、第一流体Aを流通させる第一流路Raと、第二流体Bを流通させる第二流路Rbとが第一方向において交互に形成される。   Along with this, the heat exchanger 1 has a first flow path Ra through which the first fluid A flows and a second flow path Rb through which the second fluid B flows, with the heat transfer plates 2 and 3 as a boundary. They are formed alternately in one direction.

ここで、二種類の伝熱プレート2,3について具体的に説明する。二種類の伝熱プレート2,3は、共通点と、相違点とを有する。まず、二種類の伝熱プレート2,3の共通点について説明する。   Here, the two types of heat transfer plates 2 and 3 will be specifically described. The two types of heat transfer plates 2 and 3 have common points and different points. First, the common points between the two types of heat transfer plates 2 and 3 will be described.

伝熱プレート2,3は、図14乃至図17に示す如く、第一面Sa1,Sb1と該第一面Sa1,Sb1に対して反対向きの第二面Sa2,Sb2とを有する伝熱部20,30と、伝熱部20,30の外周縁全周から該伝熱部20,30と面交差する方向に延出した環状の嵌合部21,31とを備える。   As shown in FIGS. 14 to 17, the heat transfer plates 2 and 3 have a heat transfer portion 20 having first surfaces Sa1 and Sb1 and second surfaces Sa2 and Sb2 opposite to the first surfaces Sa1 and Sb1. , 30 and annular fitting portions 21 and 31 extending from the entire outer peripheral edges of the heat transfer portions 20 and 30 in a direction that intersects the heat transfer portions 20 and 30 in a plane.

伝熱部20,30は、第一方向に厚みを有する。これに伴い、伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2は、第一方向に並ぶ。伝熱部20,30の外形(輪郭)は、第一方向と直交する第二方向に延びる一対の長辺と、第二方向に間隔をあけて配置される一対の短辺であって、それぞれが第一方向及び第二方向と直交する第三方向に延びて一対の長辺を繋ぐ一対の短辺とによって画定される。すなわち、第一方向から見た伝熱部20,30の外形は、第二方向に長手をなす長方形状である。   The heat transfer parts 20 and 30 have a thickness in the first direction. Along with this, the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 are arranged in the first direction. The outer shapes (contours) of the heat transfer parts 20 and 30 are a pair of long sides extending in a second direction orthogonal to the first direction and a pair of short sides arranged at intervals in the second direction. Is defined by a pair of short sides extending in a third direction orthogonal to the first direction and the second direction and connecting a pair of long sides. That is, the outer shape of the heat transfer parts 20 and 30 when viewed from the first direction is a rectangular shape that is long in the second direction.

伝熱部20,30は、第二方向に一端部と該一端部の反対側の他端部を有する。伝熱部20,30は、第二方向の一端部及び他端部のそれぞれに少なくとも二つの開口200,201,202,203,300,301,302,303を有する。本実施形態において、伝熱部20,30は、第二方向の一端部に二つの開口200,203,300,303を有し、第二方向の他端部に二つの開口201,202,301,302を有する。   The heat transfer parts 20 and 30 have one end in the second direction and the other end opposite to the one end. The heat transfer parts 20, 30 have at least two openings 200, 201, 202, 203, 300, 301, 302, 303 at one end and the other end in the second direction, respectively. In the present embodiment, the heat transfer parts 20, 30 have two openings 200, 203, 300, 303 at one end in the second direction and two openings 201, 202, 301 at the other end in the second direction. , 302.

第二方向における伝熱部20,30の一端部にある二つの開口200,203,300,303は、第三方向に並んでいる。また、第二方向における伝熱部20,30の他端部にある二つの開口201,202,301,302は、第三方向に並んでいる。   The two openings 200, 203, 300, 303 at one end of the heat transfer parts 20, 30 in the second direction are arranged in the third direction. Further, the two openings 201, 202, 301, 302 at the other ends of the heat transfer parts 20, 30 in the second direction are arranged in the third direction.

伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第一面Sa1,Sb1側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第二面Sa2,Sb2側において膨出している。   The periphery of one opening 200, 300 at one end of the heat transfer portion 20, 30 in the second direction and the periphery of one opening 201, 301 at the other end are recessed on the first surface Sa1, Sb1 side. . Along with this, the periphery of one opening 200, 300 at one end in the second direction and the periphery of one opening 201, 301 at the other end of the heat transfer parts 20, 30 are on the second surface Sa2, Sb2 side. Bulges out.

伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲の第二面Sa2,Sb2側への膨出量は、第一方向で隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口200,201,300,301(一端部の一方の開口200,300及び他端部の一方の開口201,301)の周囲と接触可能に設定される。   Amount of swelling to the second surface Sa2, Sb2 side around one opening 200, 300 at one end in the second direction and around one opening 201, 301 at the other end of the heat transfer section 20, 30. Are the openings 200, 201, 300, 301 of the heat transfer parts 20, 30 of the heat transfer plates 2, 3 arranged next to each other in the first direction (one opening 200, 300 at one end and one opening 201 at the other end). , 301) so that it can be contacted with the surroundings.

これに対し、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第二面Sa2,Sb2側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第一面Sa1,Sb1側において膨出している。   On the other hand, the periphery of the other opening 203, 303 at one end of the heat transfer portion 20, 30 in the second direction and the periphery of the other opening 202, 302 at the other end are on the second surface Sa2, Sb2 side. Is dented at. Accordingly, the periphery of the other opening 203, 303 at one end of the heat transfer portion 20, 30 in the second direction and the periphery of the other opening 202, 302 at the other end are on the first surface Sa1, Sb1 side. Bulges out.

伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲の第一面Sa1,Sb1側への膨出量は、第一方向で隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口202,203,302,303(一端部の他方の開口202,302及び他端部にある他方の開口203,303)の周囲(膨出した部分)と接触可能に設定される。なお、図14乃至図17において、第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおける凹凸関係を明確にすべく、開口200,201,202,203,300,301,302,303の周囲で窪んでいる領域、及び後述する凹条22,32の底部分に対してドットを付している。   Amount of swelling toward the first surface Sa1, Sb1 side around the other opening 203, 303 at one end in the second direction and the other opening 202, 302 at the other end of the heat transfer section 20, 30. Are the openings 202, 203, 302, 303 of the heat transfer portions 20, 30 of the heat transfer plates 2, 3 arranged next to each other in the first direction (the other opening 202, 302 at one end and the other opening at the other end). 203, 303) is set so as to be able to come into contact with the periphery (bulged portion). 14 to 17, the openings 200, 201, 202, 203, 300, 301, 302, 303 of the openings 200, 201, 202, 203, 300, 301, 302, 303 are formed in order to clarify the concave-convex relationship on each of the first surface Sa1, Sb1 and the second surface Sa2, Sb2. Dots are attached to the region that is recessed in the periphery and the bottom portions of the recesses 22 and 32 described below.

本実施形態において、伝熱プレート2,3を重ね合わせる態様との関係で、伝熱部20,30における第二方向の一端部にある一方の開口200,300と他端部にある一方の開口201,301とは、対角位置にある。また、伝熱部20,30における第二方向の一端部にある他方の開口203,303と他端部にある他方の開口202,302とは、対角位置にある。   In the present embodiment, in relation to the aspect in which the heat transfer plates 2 and 3 are overlapped, one opening 200, 300 at one end in the second direction and one opening at the other end in the heat transfer section 20, 30. 201 and 301 are in diagonal positions. Further, the other openings 203, 303 at one end of the heat transfer parts 20, 30 in the second direction and the other openings 202, 302 at the other end are at diagonal positions.

伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれには、凹条22,32及び凸条23,33が形成されている。伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおいて、凹条22,32及び凸条23,33のそれぞれは、複数(多数)ある。   Grooves 22, 32 and ridges 23, 33 are formed on the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30, respectively. In each of the first surfaces Sa1 and Sb1 and the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30, there are a plurality (a large number) of the recessed ridges 22 and 32 and the protruding ridges 23 and 33, respectively.

より具体的には、伝熱プレート2,3は、金属プレートをプレス成形することで成形される。これに伴い、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32と、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33とは、表裏の関係にある。また、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33と、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32とは、表裏の関係にある。すなわち、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32は、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33と対応した位置に形成される。また、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33は、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32と対応した位置に形成される。   More specifically, the heat transfer plates 2 and 3 are formed by press forming a metal plate. Along with this, the concave stripes 22 and 32 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the convex stripes 23 and 33 formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. And have a two-sided relationship. The convex stripes 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the concave stripes 22 and 32 formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are , There is a front and back relationship. That is, the recessed strips 22, 32 formed on the first surfaces Sa1, Sb1 of the heat transfer portions 20, 30 due to the deformation of the metal plate associated with the press forming are formed on the second surfaces Sa2, Sb2 of the heat transfer portions 20, 30. It is formed at a position corresponding to the formed ridges 23 and 33. In addition, the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 due to the deformation of the metal plate associated with the press forming are transferred to the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. It is formed at a position corresponding to the formed concave lines 22 and 32.

図14及び図16に示す如く、伝熱部20,30は、第一面Sa1,Sb1に形成される凹条22,32として、それぞれが第二方向に延びる複数の第一凹条220,320であって、第三方向に間隔をあけて配置された複数の第一凹条220,320を含む。また、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第三方向で隣り合う第一凹条220,320間で第二方向に延びる複数の第一凸条230,330を含む。すなわち、伝熱部20,30の第一面Sa1,Sb1において、第一凹条220,320及び第一凸条230,330は、第三方向で交互に配置される。   As shown in FIGS. 14 and 16, the heat transfer portions 20 and 30 are a plurality of first recessed stripes 220 and 320 that extend in the second direction as the recessed stripes 22 and 32 formed on the first surfaces Sa1 and Sb1. And includes a plurality of first recessed strips 220, 320 arranged at intervals in the third direction. Moreover, the heat transfer parts 20 and 30 are a plurality of first ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 and extending in the second direction between the first ridges 220 and 320 adjacent in the third direction. Includes one ridge 230, 330. That is, on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30, the first concave stripes 220 and 320 and the first convex stripes 230 and 330 are alternately arranged in the third direction.

さらに、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、該第一面Sa1,Sb1に形成される第一凸条230,330よりも低い障壁用凸条231,331であって、複数の第一凸条230,330と交差する方向に延びる少なくとも一つの障壁用凸条231,331を含む。   Further, the heat transfer portions 20 and 30 are used as barrier ribs 23 and 33 formed on the first surfaces Sa1 and Sb1 for barriers lower than the first ribs 230 and 330 formed on the first surfaces Sa1 and Sb1. The ridges 231 and 331 include at least one barrier ridge 231 and 331 extending in a direction intersecting with the plurality of first ridges 230 and 330.

複数の第一凹条220,320のそれぞれにおける第三方向の幅、及び複数の第一凸条230,330のそれぞれの第三方向の幅は、同一又は略同一である。第一凹条220,320を画定する内面と第一凸条230,330を画定する外面とは連続している。これにより、伝熱部20,30の第一面Sa1,Sb1は、第一方向に起伏した波形状に形成される。   The width in the third direction of each of the plurality of first concave stripes 220 and 320 and the width of each of the plurality of first convex stripes 230 and 330 in the third direction are the same or substantially the same. The inner surface defining the first concave stripes 220, 320 and the outer surface defining the first convex stripes 230, 330 are continuous. As a result, the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are formed in a wavy shape that undulates in the first direction.

これを前提に、伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置している。   On the premise of this, on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30, a specific first concave stripe 220, 320 of the plurality of first concave stripes 220, 320 and a plurality of first convex stripes 230 are provided. , 330 of the first first ridges 230, 330 adjacent to the first first ridges 230, 330 adjacent to the first first ridges 220, 320 of the first ridges 230, 330 of ing.

すなわち、特定の第一凹条220,320又は特定の第一凸条230,330は、一つの第一凹条220,320を挟んで隣り合う第一凸条230,330同士の間隔、又は一つの第一凸条230,330を挟んで隣り合う第一凹条220,320同士の間隔の1/4の距離だけ縦中心線CLから第三方向にずれて配置される。   That is, the specific first concave stripes 220, 320 or the specific first convex stripes 230, 330 are the intervals between the adjacent first convex stripes 230, 330 with one first concave stripe 220, 320 interposed therebetween, or The first concave stripes 230, 330 are sandwiched between the first concave stripes 220, 320, and the first concave stripes 220, 320 are arranged so as to be displaced from the vertical center line CL in the third direction by a distance ¼ of the distance between the adjacent first concave stripes 220, 320.

本実施形態において、伝熱部20,30の第一面Sa1,Sb1には、複数の障壁用凸条231,331がある。複数の障壁用凸条231,331は、第二方向に間隔をあけて配置される。複数の障壁用凸条231,331のそれぞれは、上述の如く、第一凸条230,330よりも低い。具体的には、第二面Sa2,Sb2上に形成される後述する複数の第二凸条233,333の丁部を通る仮想面(第二方向及び第三方向に広がる仮想面)からの突出量が、第一凸条230,330よりも障壁用凸条231,331の方が少ない。これに伴い、障壁用凸条231,331の丁部は、第一凸条230,330の丁部よりも第一方向において第二面側に位置する。すなわち、障壁用凸条231,331の丁部は、第一凸条230,330の丁部と第一凹条220,320の底部との間に位置する。   In the present embodiment, the plurality of barrier ribs 231 and 331 are provided on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, respectively. The plurality of barrier ribs 231 and 331 are arranged at intervals in the second direction. Each of the plurality of barrier ribs 231 and 331 is lower than the first ribs 230 and 330, as described above. Specifically, protrusion from a virtual surface (a virtual surface that spreads in the second direction and the third direction) that passes through the claws of a plurality of second protrusions 233 and 333 described below that are formed on the second surfaces Sa2 and Sb2. The amount of the barrier ribs 231 and 331 is smaller than that of the first ribs 230 and 330. Along with this, the claw portions of the barrier ribs 231 and 331 are located closer to the second surface in the first direction than the claw portions of the first ribs 230 and 330. That is, the claws of the barrier ribs 231, 331 are located between the claws of the first ribs 230, 330 and the bottoms of the first recesses 220, 320.

詳細については後述するが、本実施形態において、複数の伝熱プレート2,3が重ね合わされた状態において、隣り合う伝熱プレート2,3の一方の伝熱プレート2,3の第一凸条230,330間(第一凹条220,320と対応する位置)に、隣り合う伝熱プレート2,3の他方の伝熱プレート2,3の第一凸条230,330が位置する。   Although details will be described later, in the present embodiment, the first ridges 230 of one of the heat transfer plates 2 and 3 adjacent to each other in the state where the plurality of heat transfer plates 2 and 3 are stacked. , 330 (positions corresponding to the first recessed strips 220, 320), the first ridges 230, 330 of the other heat transfer plate 2, 3 of the adjacent heat transfer plates 2, 3 are located.

これに伴い、第一方向における第一凸条230,330の丁部と障壁用凸条231,331の丁部との間隔(距離)は、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330と、他方の伝熱プレート2,3の第一凹条220,320との間隔が第一流体Aの流通を確保できる間隔となるように、設定される。   Accordingly, the distance (distance) between the claws of the first ridges 230 and 330 and the claws of the barrier ridges 231 and 331 in the first direction is one of the adjacent heat transfer plates 2 and 3. The distance between the first ridges 230 and 330 of the heat transfer plates 2 and 3 and the first ridges 220 and 320 of the other heat transfer plates 2 and 3 is such that the flow of the first fluid A can be secured. , Set.

具体的に説明すると、本実施形態において、各伝熱プレート2,3において、複数の第一凹条220,320が同幅に設定されるとともに、複数の第一凸条230,330が同幅に設定される。また、各伝熱プレート2,3において、第一凹条220,320と第一凸条230,330とが略同幅に設定される。   More specifically, in the present embodiment, in each of the heat transfer plates 2 and 3, the plurality of first recesses 220 and 320 are set to have the same width, and the plurality of first protrusions 230 and 330 have the same width. Is set to. In addition, in each heat transfer plate 2 and 3, the first concave stripes 220 and 320 and the first convex stripes 230 and 330 are set to have substantially the same width.

これに伴い、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330が、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3の第一凹条220,320に近づきすぎると、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間の隙間が無くなるか、或いは、第一凸条230,330の丁部と第一凹条220,320の底部との間にできる隙間に比して極端に狭くなってしまう。   Along with this, the first ridges 230 and 330 of the heat transfer plates 2 and 3 of one of the heat transfer plates 2 and 3 that are adjacent to each other cause the heat transfer plate 2 of the other of the heat transfer plates 2 and 3 that is adjacent to , 3 of the first concave stripes 220, 320 too close to each other, the gap between the both sides of the first convex stripes 230, 330 in the width direction and the both sides of the first concave stripes 220, 320 in the width direction disappears, or The gap between the claws of the first ridges 230 and 330 and the bottoms of the first ridges 220 and 320 is extremely narrow.

そのため、本実施形態において、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間隔が、第一流体Aの流通性を確保できる間隔になるように、第一方向における第一凸条230,330の丁部と障壁用凸条231,331の丁部との間隔(距離)が設定される。   Therefore, in the present embodiment, the distance between both sides in the width direction of the first ridges 230, 330 and the both sides in the width direction of the first ridges 220, 320 is the distance at which the fluidity of the first fluid A can be ensured. As described above, the distance (distance) between the claws of the first ridges 230 and 330 and the claws of the barrier ridges 231 and 331 in the first direction is set.

本実施形態において、障壁用凸条231,331は、複数の第一凸条230,330及び第一凹条220,320と交差する。本実施形態において、障壁用凸条231,331は、第三方向に延びている。障壁用凸条231,331は、伝熱部20,30の第三方向の全長よりも短い長さに設定される。すなわち、伝熱部20,30の第三方向の全長に亘って並ぶ複数の複数の第一凸条230,330及び第一凹条220,320の総数よりも少ない数の第一凸条230,330及び第一凹条220,320と交差する長さに設定される。   In the present embodiment, the barrier ribs 231 and 331 intersect the plurality of first ribs 230 and 330 and the first recesses 220 and 320. In this embodiment, the barrier ribs 231 and 331 extend in the third direction. The barrier ribs 231 and 331 are set to a length shorter than the total length of the heat transfer portions 20 and 30 in the third direction. That is, the number of the first ridges 230, which is smaller than the total number of the plurality of first ridges 230, 330 and the first ridges 220, 320 arranged along the entire length of the heat transfer parts 20, 30 in the third direction. The length is set to intersect with 330 and the first recessed strips 220 and 320.

より具体的に説明すると、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/2以下に設定される。本実施形態においては、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定される。   More specifically, the length of the barrier ribs 231 and 331 in the extending direction (longitudinal direction) is set to ½ or less of the total length of the heat transfer portions 20 and 30 in the third direction. In the present embodiment, the length in the extending direction (longitudinal direction) of the barrier ribs 231 and 331 is set to 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction.

このように、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定されるに伴い、伝熱部20,30の第一面Sa1,Sb1において、第二方向に間隔をあけて並ぶ複数の障壁用凸条231,331の列が第三方向に間隔をあけて複数列設けられる。すなわち、伝熱部20,30の第一面Sa1,Sb1において複数の障壁用凸条231,331がマトリックス状に配置されている。   As described above, the length of the barrier ribs 231 and 331 in the extending direction (longitudinal direction) is set to be ⅓ or less of the total length of the heat transfer portions 20 and 30 in the third direction. On the first surfaces Sa1 and Sb1 of 20, 30, a plurality of rows of barrier ridges 231 and 331 arranged at intervals in the second direction are provided at intervals in the third direction. That is, the plurality of barrier ribs 231 and 331 are arranged in a matrix on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30.

各列の障壁用凸条231,331の数及び位置は対応している。これに伴い、異なる列同士の対応する障壁用凸条231,331は、第三方向で一列に並んでいる。   The numbers and positions of the barrier ribs 231 and 331 in each row correspond to each other. Along with this, the corresponding barrier ridges 231 and 331 in different rows are aligned in the third direction.

ここで隣り合う障壁用凸条231,331の列の間隔(第三方向で隣り合う障壁用凸条231,331の間隔)は、単一の障壁用凸条231,331の延びる方向(長手方向)の長さ以下に設定される。本実施形態において、隣り合う障壁用凸条231,331の列の間隔(第三方向で隣り合う障壁用凸条231,331の間隔)は、単一の障壁用凸条231,331の延びる方向(長手方向)の長さよりも小さく設定される。   Here, the spacing between the rows of the adjacent barrier ridges 231 and 331 (the spacing between the adjacent barrier ridges 231 and 331 in the third direction) is the direction in which the single barrier ridges 231 and 331 extend (longitudinal direction). ) Is less than or equal to the length. In the present embodiment, the spacing between the rows of the adjacent barrier ridges 231 and 331 (the spacing between the adjacent barrier ridges 231 and 331 in the third direction) is the direction in which the single barrier ridges 231 and 331 extend. It is set smaller than the length (longitudinal direction).

このように、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下(本実施形態においては1/2以下)に設定されるに伴い、伝熱部20,30の第一面Sa1,Sb1上の第一凹条220,320及び第一凸条230,330には、第二方向で連続したものと、障壁用凸条231,331によって第二方向の複数個所で分断されたものとが含まれる。分断された第一凹条220,320及び第一凸条230,330の少なくとも一端は、障壁用凸条231,331に繋がる。   As described above, the length of the barrier ribs 231 and 331 in the extending direction (longitudinal direction) is 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction (1/2 or less in the present embodiment). ), The first concave lines 220, 320 and the first convex lines 230, 330 on the first surfaces Sa1, Sb1 of the heat transfer parts 20, 30 are continuous in the second direction, And those divided at a plurality of positions in the second direction by the barrier ribs 231 and 331. At least one ends of the divided first concave lines 220 and 320 and the first convex lines 230 and 330 are connected to the barrier convex lines 231 and 331.

本実施形態において、分断された第一凹条220,320は、第二方向で整列している。これに伴い、分断された第一凸条230,330も、第二方向で整列している。   In the present embodiment, the divided first concave lines 220 and 320 are aligned in the second direction. Along with this, the divided first ridges 230 and 330 are also aligned in the second direction.

図15及び図17に示す如く、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、それぞれが第二方向に延びる複数の第二凹条221,321であって、第三方向に間隔をあけて配置された複数の第二凹条221,321を含む。また、伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第三方向で隣り合う第二凹条221,321間で第二方向に延びて形成された複数の第二凸条233,333を含む。すなわち、伝熱部20,30の第二面Sa2,Sb2において、第二凹条221,321及び第二凸条233,333は、第三方向で交互に配置される。   As shown in FIGS. 15 and 17, the heat transfer parts 20 and 30 are a plurality of second recessed strips 221 and 321 each extending in the second direction as the recessed strips 22 and 32 formed on the second surfaces Sa2 and Sb2. In addition, the plurality of second recessed strips 221 and 321 arranged at intervals in the third direction are included. In addition, the heat transfer portions 20 and 30 are formed as the convex stripes 23 and 33 formed on the second surfaces Sa2 and Sb2 and extend in the second direction between the second concave stripes 221 and 321 that are adjacent to each other in the third direction. A plurality of second ridges 233 and 333. That is, on the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30, the second concave stripes 221, 321 and the second convex stripes 233, 333 are alternately arranged in the third direction.

さらに、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、第一面Sa1,Sb1上の障壁用凸条231,331の裏側に形成される凹条(以下、裏側凹条という)222,322を含む。   Furthermore, the heat transfer parts 20 and 30 are recessed stripes 22 and 32 formed on the second surfaces Sa2 and Sb2, and are recessed stripes formed on the back side of the barrier ribs 231 and 331 on the first surfaces Sa1 and Sb1. It includes 222 and 322 (hereinafter referred to as the back side concave streaks).

第二凹条221,321は、第一面Sa1,Sb1上の第一凸条230,330の裏側に形成される凹条22,32である。これに伴い、第二凹条221,321は、第二方向に延びている。第二凸条233,333は、第一面Sa1,Sb1上の第一凹条220,320の裏側に形成される凸条23,33である。これに伴い、第二凸条233,333は、第二方向に延びている。   The second concave stripes 221 and 321 are concave stripes 22 and 32 formed on the back side of the first convex stripes 230 and 330 on the first surfaces Sa1 and Sb1. Along with this, the second recessed strips 221 and 321 extend in the second direction. The second ridges 233, 333 are the ridges 23, 33 formed on the back side of the first ridges 220, 320 on the first surfaces Sa1, Sb1. Along with this, the second ridges 233 and 333 extend in the second direction.

第二凹条221,321を画定する内面と第二凸条233,333を画定する外面とは連続している。これにより、伝熱部20,30の第二面Sa2,Sb2は、第三方向に起伏した波形状に形成される。   The inner surface that defines the second concave stripes 221 and 321 and the outer surface that defines the second convex stripes 233 and 333 are continuous. As a result, the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 are formed in a wavy shape undulating in the third direction.

裏側凹条222,322は、障壁用凸条231,331と凹凸関係を逆にする以外は同形態で形成される。   The back side concave lines 222 and 322 are formed in the same form as that of the barrier convex lines 231 and 331 except that the concave-convex relationship is reversed.

本実施形態において、裏側凹条222,322は、複数の第二凸条233,333及び第二凹条221,321と交差する。本実施形態において、裏側凹条222,322は、伝熱部20,30の第三方向の全長よりも短い長さに設定される。すなわち、伝熱部20,30の第三方向の全長に亘って並ぶ複数の複数の第二凸条233,333及び第二凹条221,321の総数よりも少ない数の第二凸条233,333及び第二凹条221,321と交差する長さに設定される。   In this embodiment, the back recessed lines 222 and 322 intersect the plurality of second protruding lines 233 and 333 and the second recessed lines 221 and 321. In this embodiment, the back recessed lines 222, 322 are set to a length shorter than the total length of the heat transfer parts 20, 30 in the third direction. That is, the number of the second ridges 233 is smaller than the total number of the plurality of second ridges 233 and 333 and the second ridges 221 and 321 arranged along the entire length of the heat transfer portions 20 and 30 in the third direction. The length is set to intersect with 333 and the second recesses 221 and 321.

より具体的に説明すると、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/2以下に設定される。本実施形態においては、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定される。   More specifically, the length in the extending direction (longitudinal direction) of the back recessed lines 222, 322 is set to ½ or less of the total length of the heat transfer parts 20, 30 in the third direction. In the present embodiment, the length in the extending direction (longitudinal direction) of the back side recessed lines 222, 322 is set to 1/3 or less of the total length of the heat transfer parts 20, 30 in the third direction.

このように、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定されるに伴い、伝熱部20,30の第二面Sa2,Sb2において、第二方向に間隔をあけて並ぶ複数の裏側凹条222,322の列が第三方向に間隔をあけて複数列設けられる。すなわち、伝熱部20,30の第二面Sa2,Sb2において複数の裏側凹条222,322がマトリックス状に配置されている。   As described above, the length of the back side recessed lines 222, 322 in the extending direction (longitudinal direction) is set to ⅓ or less of the total length of the heat transfer units 20, 30 in the third direction. , 30 on the second surfaces Sa2, Sb2, a plurality of rows of back side recessed lines 222, 322 arranged at intervals in the second direction are provided at intervals in the third direction. That is, on the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30, a plurality of back recessed lines 222, 322 are arranged in a matrix.

各列の裏側凹条222,322の数及び位置は対応している。これに伴い、異なる列同士の対応する裏側凹条222,322は、第三方向で一列に並んでいる。   The numbers and positions of the back side concave lines 222 and 322 in each row correspond. Along with this, the corresponding back recessed lines 222 and 322 in different rows are aligned in the third direction.

ここで隣り合う裏側凹条222,322の列の間隔(第三方向で隣り合う裏側凹条222,322の間隔)は、単一の裏側凹条222,322の延びる方向(長手方向)の長さ以下に設定される。本実施形態において、隣り合う裏側凹条222,322の列の間隔(第三方向で隣り合う裏側凹条222,322の間隔)は、単一の裏側凹条222,322の延びる方向(長手方向)の長さよりも小さく設定される。   Here, the interval between the rows of the back side recesses 222, 322 adjacent to each other (the interval between the back side recesses 222, 322 adjacent in the third direction) is the length in the extending direction (longitudinal direction) of the single back side recesses 222, 322. Is set below. In the present embodiment, the spacing between the rows of the back side recesses 222 and 322 that are adjacent to each other (the spacing between the back side recesses 222 and 322 that are adjacent in the third direction) is the direction in which the single back side recesses 222 and 322 extend (longitudinal direction). ) Is set smaller than the length.

このように、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下(本実施形態においては1/2以下)に設定されるに伴い、伝熱部20,30の第二面Sa2,Sb2上の第二凹条221,321及び第二凸条233,333には、第二方向で連続したものと、裏側凹条222,322によって第二方向の複数個所で分断されたものとが含まれる。分断された第二凹条221,321及び第二凸条233,333の少なくとも一端は、裏側凹条222,322に繋がる。すなわち、分断された第二凹条221,321は、裏側凹条222,322内に向けて開放している。   In this way, the length in the extending direction (longitudinal direction) of the back side recessed lines 222, 322 is 1/3 or less of the total length of the heat transfer parts 20, 30 in the third direction (1/2 or less in the present embodiment). The second concave lines 221 and 321 and the second convex lines 233 and 333 on the second surfaces Sa2 and Sb2 of the heat transfer parts 20 and 30 are continuous in the second direction and the back side. It is divided by the concave lines 222 and 322 at a plurality of positions in the second direction. At least one ends of the divided second concave lines 221 and 321 and the second convex lines 233 and 333 are connected to the back side concave lines 222 and 322. That is, the divided second recessed strips 221 and 321 are open toward the inside of the back side recessed strips 222 and 322.

本実施形態において、分断された第二凹条221,321は、第二方向で整列している。これに伴い、分断された第二凸条233,333も、第二方向で整列している。   In this embodiment, the divided second recessed strips 221 and 321 are aligned in the second direction. Along with this, the divided second ridges 233 and 333 are also aligned in the second direction.

二種類の伝熱プレート2,3の共通点は、以上の通りである。次に、二種類の伝熱プレート2,3の相違点について説明する。   The common points between the two types of heat transfer plates 2 and 3 are as described above. Next, the difference between the two types of heat transfer plates 2 and 3 will be described.

図14及び図16に示す如く、二種類の伝熱プレート2,3のうちの一方の伝熱プレート(以下、第一伝熱プレートという)2の第一面Sa1上の第一凸条230と、二種類の伝熱プレート2,3のうちの他方の伝熱プレート(以下、第二伝熱プレートという)3の第一面Sb1上の第一凸条330とは、第三方向において位置ずれして配置される。すなわち、第一伝熱プレート2の伝熱部20の第一面Sa1と第二伝熱プレート3の伝熱部30の第一面Sb1とが対向した状態で、第一伝熱プレート2の第一凸条230が第二伝熱プレート3の第一凹条320と対応するとともに、第二伝熱プレート3の第一凸条330が第一伝熱プレート2の第一凹条220と対応するように、それぞれの第一凹条220,320及び第一凸条230,330の配置が設定されている。   As shown in FIG. 14 and FIG. 16, the first ridge 230 on the first surface Sa1 of the heat transfer plate (hereinafter, referred to as the first heat transfer plate) 2 of one of the two types of heat transfer plates 2 and 3. , The first ridge 330 on the first surface Sb1 of the other heat transfer plate (hereinafter referred to as the second heat transfer plate) 3 of the two kinds of heat transfer plates 2 and 3 is displaced in the third direction. Are placed. That is, the first surface Sa1 of the heat transfer portion 20 of the first heat transfer plate 2 and the first surface Sb1 of the heat transfer portion 30 of the second heat transfer plate 3 are opposed to each other in the first heat transfer plate 2 The one convex line 230 corresponds to the first concave line 320 of the second heat transfer plate 3, and the first convex line 330 of the second heat transfer plate 3 corresponds to the first concave line 220 of the first heat transfer plate 2. As described above, the arrangement of the respective first concave stripes 220 and 320 and the first convex stripes 230 and 330 is set.

そして、本実施形態において、第一伝熱プレート2及び第二伝熱プレート3は、第一面Sa1,Sb1上の障壁用凸条231,331の数及び配置を異にする。すなわち、第一伝熱プレート2及び第二伝熱プレート3は、第一面Sa1,Sb1上の障壁用凸条231,331の列数と、各列における障壁用凸条231,331の配置を異にする。   Then, in the present embodiment, the first heat transfer plate 2 and the second heat transfer plate 3 have different numbers and arrangements of the barrier ribs 231 and 331 on the first surfaces Sa1 and Sb1. That is, in the first heat transfer plate 2 and the second heat transfer plate 3, the number of rows of the barrier ribs 231 and 331 on the first surfaces Sa1 and Sb1 and the arrangement of the barrier ribs 231 and 331 in each row are determined. Different.

具体的には、第一伝熱プレート2の第一面Sa1において、第三方向に間隔をあけて並ぶ障壁用凸条231の列数よりも、第二伝熱プレート3の第一面Sb1において、第三方向に間隔をあけて並ぶ障壁用凸条331の列数の方が一列少ない。また、第一伝熱プレート2の第一面Sa1における各列の障壁用凸条231の数よりも、第二伝熱プレート3の第一面Sb1における各列の障壁用凸条231の数の方が一つ少ない。   Specifically, in the first surface Sa1 of the first heat transfer plate 2, in the first surface Sb1 of the second heat transfer plate 3 rather than the number of rows of the barrier ribs 231 arranged in the third direction at intervals. The number of rows of the barrier ribs 331 arranged at intervals in the third direction is smaller by one row. In addition, the number of barrier ribs 231 in each row on the first surface Sb1 of the second heat transfer plate 3 is greater than the number of barrier ribs 231 in each row on the first surface Sa1 of the first heat transfer plate 2. There is one less.

これに伴い、第一伝熱プレート2の第一面Sa1の障壁用凸条231の列の位置は、第二伝熱プレート3の第一面Sb1の障壁用凸条331の列間の位置と対応し、第二伝熱プレート3の第一面Sb1の障壁用凸条331の列の位置は、第一伝熱プレート2の第一面Sa1の障壁用凸条231の列間の位置と対応している。また、第一伝熱プレート2の第一面Sa1の各列の障壁用凸条231は、第二伝熱プレート3の第一面Sb1の各列の障壁用凸条331間(第二方向で隣り合う障壁用凸条331の中間位置)と対応し、第二伝熱プレート3の第一面Sb1の各列の障壁用凸条331は、第一伝熱プレート2の第一面Sa1の各列の障壁用凸条231間(第二方向で隣り合う障壁用凸条231の中間位置)と対応している。   Along with this, the positions of the rows of the barrier ribs 231 on the first surface Sa1 of the first heat transfer plate 2 are the positions between the rows of the barrier ribs 331 on the first surface Sb1 of the second heat transfer plate 3. Correspondingly, the positions of the rows of the convex ridges 331 for barrier on the first surface Sb1 of the second heat transfer plate 3 correspond to the positions between the rows of the convex ridges 231 for barrier of the first surface Sa1 of the first heat transfer plate 2. is doing. In addition, the barrier ribs 231 on each row of the first surface Sa1 of the first heat transfer plate 2 are arranged between the barrier ribs 331 on each row of the first surface Sb1 of the second heat transfer plate 3 (in the second direction. Corresponding to the intermediate position between the adjacent barrier ribs 331), the barrier ribs 331 in each row of the first surface Sb1 of the second heat transfer plate 3 correspond to the first surface Sa1 of the first heat transfer plate 2. It corresponds to between the barrier ribs 231 in a row (the intermediate position between the barrier ribs 231 adjacent in the second direction).

そして、第一伝熱プレート2においては、図14に示す如く、嵌合部21は伝熱部20の第一面Sa1側に延出する。これに対し、第二伝熱プレート3においては、図17に示す如く、嵌合部31は伝熱部30の第二面Sb2側に延出する。   Then, in the first heat transfer plate 2, as shown in FIG. 14, the fitting portion 21 extends to the first surface Sa1 side of the heat transfer portion 20. On the other hand, in the second heat transfer plate 3, as shown in FIG. 17, the fitting part 31 extends to the second surface Sb2 side of the heat transfer part 30.

複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、以上の通りである。複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、図13に示す如く、第一方向に重ね合わされる。本実施形態において、第一伝熱プレート2と第二伝熱プレート3とが、第一方向で交互に重ね合わされる。このとき、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させる。また、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させる。   Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is as described above. Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is superposed in the first direction as shown in FIG. 13. In this embodiment, the first heat transfer plate 2 and the second heat transfer plate 3 are alternately stacked in the first direction. At this time, each of the plurality of heat transfer plates 2 and 3 transfers heat in the heat transfer plates 2 and 3 in which the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 are arranged next to each other on one side in the first direction. The first surfaces Sa1 and Sb1 of the portions 20 and 30 are opposed to each other. In addition, each of the plurality of heat transfer plates 2 and 3 has the second surface Sa2 and Sb2 of its own heat transfer parts 20 and 30 arranged next to each other on the other side in the first direction. The second surfaces Sa2 and Sb2 of 20, 30 are opposed to each other.

これにより、図13及び図18に示す如く、第一流体Aを第二方向に流通させる第一流路Raと、第二流体B第二方向に流通させる第二流路Rbとが伝熱プレート2,3の伝熱部20,30を境にして交互に形成される。すなわち、第一流体Aに流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。   As a result, as shown in FIGS. 13 and 18, the heat transfer plate 2 includes the first flow passage Ra that allows the first fluid A to flow in the second direction and the second flow passage Rb that allows the second fluid B to flow in the second direction. , 3 are alternately formed with the heat transfer parts 20 and 30 as boundaries. That is, the first flow path Ra that circulates the first fluid A is formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3, and the second fluid B circulates. The second flow path Rb is formed between the second surfaces Sa2, Sb2 of the heat transfer portions 20, 30 of the adjacent heat transfer plates 2, 3.

また、この状態において、図13に示す如く、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が接触する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。   Further, in this state, as shown in FIG. 13, the openings 200, 201, 202, 203, 300, 301, 302, 303 at corresponding positions of the heat transfer parts 20, 30 are continuous in the first direction. In addition, portions around the openings 200, 201, 202, 203, 300, 301, 302, 303 facing each other and bulging toward the other side are in contact with each other. Thereby, the first inflow passage Pa1 for supplying the first fluid A to the first flow passage Ra, the first outflow passage Pa2 for flowing out the first fluid A from the first flow passage Ra, and the second fluid B for the second flow passage Rb. And a second outflow passage Pb2 for flowing out the second fluid B from the second flow passage Rb.

より具体的に説明すると、複数の伝熱プレート2,3を重ね合わせる際、一つの第一伝熱プレート2と一つの第二伝熱プレート3とを重ね合わせて一組とされる。この組を複数組重ね合わせるに際し、一組おきに第一方向に延びる仮想線周りで180度回転させて重ね合わされる。この状態において、第一方向で隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31は、第一方向で隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31に外嵌される。   More specifically, when stacking the plurality of heat transfer plates 2 and 3, one first heat transfer plate 2 and one second heat transfer plate 3 are stacked to form a set. When superposing a plurality of sets, every other set is rotated by 180 degrees around an imaginary line extending in the first direction and is superposed. In this state, the fitting portions 21 and 31 of one of the heat transfer plates 2 and 3 (first heat transfer plate 2 or second heat transfer plate 3) of the heat transfer plates 2 and 3 that are adjacent to each other in the first direction are Of the heat transfer plates 2 and 3 adjacent to each other in the first direction are externally fitted to the fitting portions 21 and 31 of the other heat transfer plate 2 and 3 (the first heat transfer plate 2 or the second heat transfer plate 3). It

これにより、図19乃至図22に示す如く、隣り合う伝熱プレート2,3の第一面Sa1,Sb1側において、第一伝熱プレート2(伝熱部20)の第一凸条230は、第二伝熱プレート(伝熱部30)の第一凹条320と対向し、第一伝熱プレート2(伝熱部20)の第一凹条220は、第二伝熱プレート(伝熱部30)の第一凸条330と対向する。   Thereby, as shown in FIGS. 19 to 22, the first protrusions 230 of the first heat transfer plate 2 (heat transfer section 20) on the first surfaces Sa1 and Sb1 sides of the adjacent heat transfer plates 2 and 3 are The first recessed ridge 220 of the first heat transfer plate 2 (heat transfer part 20) faces the first recessed ridge 320 of the second heat transfer plate (heat transfer part 30), and the second heat transfer plate (heat transfer part 20). 30) facing the first ridge 330.

第一伝熱プレート2において、障壁用凸条231が第一凸条230よりも低く、第二伝熱プレート3において、障壁用凸条331が第一凸条330よりも低いため、第一伝熱プレート2の障壁用凸条231は、第二伝熱プレート3の第一凸条330と交差衝合し、第二伝熱プレート3の障壁用凸条331は、第一伝熱プレート2の第一凸条230と交差衝合する。   In the first heat transfer plate 2, the barrier ribs 231 are lower than the first ribs 230, and in the second heat transfer plate 3, the barrier ribs 331 are lower than the first ribs 330. The barrier ridges 231 of the heat plate 2 cross-abut with the first ridges 330 of the second heat transfer plate 3, and the barrier ridges 331 of the second heat transfer plate 3 intersect the first heat transfer plate 2. It intersects with the first ridge 230.

これに対し、隣り合う伝熱プレート2,3の第二面Sa2,Sb2側において、第一伝熱プレート2(伝熱部20)の第二凸条233は、第二伝熱プレート(伝熱部30)の第二凸条333と対向し、第一伝熱プレート2(伝熱部20)の第二凹条221は、第二伝熱プレート(伝熱部30)の第二凹条321と対向する。すなわち、第一伝熱プレート2及び第二伝熱プレート3のそれぞれの伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置しているため、上記の通り、第一伝熱プレート2及び第二伝熱プレート3を180°回転させることで、隣り合う伝熱プレート2,3の第二凸条233,333同士が対向し、互いの丁部同士を接触させる。   On the other hand, on the second surface Sa2, Sb2 side of the adjacent heat transfer plates 2 and 3, the second ridge 233 of the first heat transfer plate 2 (heat transfer section 20) has the second heat transfer plate (heat transfer plate). The second recessed portion 221 of the first heat transfer plate 2 (heat transfer portion 20) faces the second protruding portion 333 of the portion 30) and the second recessed portion 321 of the second heat transfer plate (heat transfer portion 30). To face. That is, in the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the first heat transfer plate 2 and the second heat transfer plate 3, respectively, a specific first concave portion of the plurality of first concave grooves 220 and 320 is formed. First ridges 230, 330 adjacent to the first ridges 220, 320 and a particular first ridge 230, 330 of the plurality of first ridges 230, 330. Since the boundary with is located on the vertical center line CL, as described above, by rotating the first heat transfer plate 2 and the second heat transfer plate 3 by 180 °, the adjacent heat transfer plates 2, 3 The second ridges 233, 333 of the above are opposed to each other, and the ridges of the two are brought into contact with each other.

これにより、図13に示す如く、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成される。また、第二流体Bを第二方向に流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。   As a result, as shown in FIG. 13, the first surfaces of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 adjacent to each other in the first flow passage Ra that allows the first fluid A to flow in the second direction orthogonal to the first direction. It is formed between Sa1 and Sb1. Further, the second flow path Rb for circulating the second fluid B in the second direction is formed between the second surfaces Sa2, Sb2 of the heat transfer portions 20, 30 of the adjacent heat transfer plates 2, 3.

そして、上述の如く、複数の伝熱プレート2,3が第一方向に重ね合わされることで、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が接触する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。   Then, as described above, the plurality of heat transfer plates 2 and 3 are overlapped in the first direction, so that the openings 200, 201, 202, 203, 300, 301, at the corresponding positions of the heat transfer parts 20 and 30 are formed. 302 and 303 are connected in the first direction. In addition, portions around the openings 200, 201, 202, 203, 300, 301, 302, 303 facing each other and bulging toward the other side are in contact with each other. Thereby, the first inflow passage Pa1 for supplying the first fluid A to the first flow passage Ra, the first outflow passage Pa2 for flowing out the first fluid A from the first flow passage Ra, and the second fluid B for the second flow passage Rb. And a second outflow passage Pb2 for flowing out the second fluid B from the second flow passage Rb.

なお、本実施形態に係る熱交換器1において、隣り合う伝熱プレート2,3の接触した部分同士がロウ付けされる。これにより、複数の伝熱プレート2,3が一体的(機械的)に接続されるとともに、隣り合う伝熱プレート2,3の対向面間(接触部分)が封止される。   In the heat exchanger 1 according to this embodiment, the contacting portions of the adjacent heat transfer plates 2 and 3 are brazed to each other. As a result, the plurality of heat transfer plates 2 and 3 are integrally (mechanically) connected, and the opposing surfaces (contact portions) of the adjacent heat transfer plates 2 and 3 are sealed.

本実施形態に係る熱交換器1は、以上の通りである。第一流体Aは、図13、図18、及び図23に示す如く、第一流入路Pa1から複数の第一流路Raに流入する。第一流体Aは、複数の第一流路Raのぞれぞれで第二方向に流通し、第一流出路Pa2に流出する。これに対し、第二流体Bは、図13、図18、及び図24に示す如く、第二流入路Pb1から複数の第二流路Rbに流入する。第二流体Bは、該複数の第二流路Rbのぞれぞれで第二方向に流通し、第二流出路Pb2に流出する。   The heat exchanger 1 according to this embodiment is as described above. The first fluid A flows into the plurality of first flow paths Ra from the first inflow path Pa1 as shown in FIGS. 13, 18, and 23. The first fluid A flows in the second direction in each of the plurality of first flow paths Ra and flows out to the first outflow path Pa2. On the other hand, the second fluid B flows into the plurality of second flow passages Rb from the second inflow passage Pb1 as shown in FIGS. 13, 18, and 24. The second fluid B flows in the second direction in each of the plurality of second flow paths Rb and flows out to the second outflow path Pb2.

本実施形態において、第一流体Aは、図23に示す如く、第一流路Raにおいて、伝熱部20,30の対角を結ぶ対角線を中心として流通する。これに対し、第二流体Bは、図24に示す如く、第二流路Rbにおいて、伝熱部20,30の対角を結ぶ対角線であって、第一流体Aの流れの中心となる対角線とは別の対角線を中心に流通する。   In the present embodiment, as shown in FIG. 23, the first fluid A circulates in the first flow passage Ra with a diagonal line connecting the diagonals of the heat transfer portions 20, 30 as the center. On the other hand, as shown in FIG. 24, the second fluid B is a diagonal line that connects the diagonals of the heat transfer portions 20 and 30 in the second flow path Rb, and is a diagonal line that is the center of the flow of the first fluid A. Circulates around a different diagonal line.

このとき、第一流路Raを流通する第一流体A、及び第二流路Rbを流通する第二流体Bは、第一流路Raと第二流路Rbとを仕切る伝熱プレート2,3(伝熱部20,30)を介して熱交換する。これにより、第二流体Bは、第二流路Rb内で第二方向に流通する過程において、凝縮或いは蒸発する。   At this time, the first fluid A flowing through the first flow channel Ra and the second fluid B flowing through the second flow channel Rb are the heat transfer plates 2 and 3 (that partition the first flow channel Ra from the second flow channel Rb). Heat is exchanged via the heat transfer parts 20, 30). Accordingly, the second fluid B is condensed or evaporated in the process of flowing in the second direction in the second flow path Rb.

以上のように、本実施形態に係る熱交換器1は、凸条23,33及び凹条22,32の形成された第一面Sa1,Sb1と、該第一面Sa1,Sb1に対して反対側を向き、且つ第一面Sa1,Sb1の凸条23,33と表裏の関係にある凹条22,32及び第一面Sa1,Sb1の凹条22,32と表裏の関係にある凸条23,33の形成された第二面Sa2,Sb2とを有する伝熱部20,30を含む伝熱プレート2,3であって、それぞれの伝熱部20,30が第一方向に重ね合わされた複数の伝熱プレート2,3を備え、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させるとともに、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させ、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを第二方向に流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成され、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条230,330であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条230,330を含むとともに、第一面Sa1,Sb1に形成される凹条22,32として、第一方向及び第二方向と交差する方向で隣り合う第一凸条230,230,330,330間に形成される複数の第一凹条220,320を含み、且つ第二面Sa2,Sb2に形成される凹条22,32として、第一凸条230,330と表裏の関係にある複数の第二凹条221,321を含み、隣り合う伝熱プレート2,3のうちの少なくとも何れか一方の伝熱プレート2,3における伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、該第一面Sa1,Sb1に形成される第一凸条230,330よりも低い障壁用凸条231,331であって、第一凸条230,330と交差する方向に延びる少なくとも一つの障壁用凸条231,331を含み、隣り合う伝熱プレート2,3のそれぞれの第一凸条230,330は、相手方の伝熱プレート2,3の第一凸条230,330間に位置し、少なくとも何れか一方の伝熱プレート2,3の障壁用凸条231,331と、相手方の伝熱プレート2,3の第一凸条230,330とが交差衝合している。   As described above, the heat exchanger 1 according to the present embodiment is opposite to the first surfaces Sa1 and Sb1 on which the convex stripes 23 and 33 and the concave stripes 22 and 32 are formed and the first surfaces Sa1 and Sb1. The ridges 23 and 32 facing the side and having a front and back relationship with the ridges 23 and 33 of the first surfaces Sa1 and Sb1 and the ridge 23 having a front and back relationship with the recesses 22 and 32 of the first surfaces Sa1 and Sb1. , 33 having the second surfaces Sa2, Sb2 formed thereon, the heat transfer plates 2, 3 including a plurality of heat transfer parts 20, 30 stacked in the first direction. Heat transfer plates 2 and 3, and each of the plurality of heat transfer plates 2 and 3 has the first surfaces Sa1 and Sb1 of its own heat transfer portions 20 and 30 arranged next to each other on one side in the first direction. When facing the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30 in the plates 2 and 3, In addition, the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 of their own face the second surfaces Sa2, Sb2 of the heat transfer parts 20, 30 in the heat transfer plates 2, 3 arranged next to each other on the other side in the first direction. The first flow path Ra that allows the first fluid A to flow in the second direction orthogonal to the first direction is formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3. In addition, the second flow path Rb that allows the second fluid B to flow in the second direction is formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3, and the adjacent flow paths Rb and The heat transfer parts 20 and 30 of the heat plates 2 and 3 are arranged at intervals in the direction intersecting the first direction and the second direction as the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1. A plurality of first ridges 230 and 330, each of which is in the second direction or A direction that intersects the first direction and the second direction as the recessed ridges 22 and 32 formed on the first surfaces Sa1 and Sb1 while including the plurality of first ridges 230 and 330 extending in the composite direction including the direction as a component. And the plurality of first concave stripes 220, 320 formed between the adjacent first convex stripes 230, 230, 330, 330, and as the concave stripes 22, 32 formed on the second surfaces Sa2, Sb2. The heat transfer part in the heat transfer plates 2 and 3 of at least one of the adjacent heat transfer plates 2 and 3 including the plurality of second recessed parts 221 and 321 that are in front and back relation with the one ridge 230 and 330. The ribs 20 and 30 are, as the ribs 23 and 33 formed on the first surfaces Sa1 and Sb1, the barrier ribs 231 and 331 lower than the first ribs 230 and 330 formed on the first surfaces Sa1 and Sb1. And the first ridge 230 , 330 including at least one barrier ridge 231 or 331 extending in a direction intersecting with the heat transfer plates 2 and 3, the first ridges 230 and 330 of the adjacent heat transfer plates 2 and 3 of the heat transfer plates 2 and 3, respectively. Located between the first ridges 230 and 330, the barrier ridges 231 and 331 of at least one of the heat transfer plates 2 and 3 and the first ridges 230 and 330 of the partner heat transfer plates 2 and 3 Are crossing each other.

上記構成の熱交換器1によれば、図20乃至図22に示す如く、隣り合う伝熱部20,30の第一面Sa1,Sb1間に形成される第一流路Raの途中位置において、障壁用凸条231,331が相手方の伝熱部20,30に向けて突出した状態で存在する。これに伴い、障壁用凸条231,331は、第一流路Ra内で第一流体Aの流通を阻害し、第一流路Ra内における第一流体Aの流通抵抗を増大させる。   According to the heat exchanger 1 configured as described above, as shown in FIGS. 20 to 22, the barrier is provided at an intermediate position of the first flow path Ra formed between the first surfaces Sa1 and Sb1 of the adjacent heat transfer portions 20 and 30. The projecting ridges 231 and 331 exist in a state of protruding toward the heat transfer parts 20 and 30 of the other party. Along with this, the barrier ribs 231 and 331 impede the flow of the first fluid A in the first flow channel Ra and increase the flow resistance of the first fluid A in the first flow channel Ra.

特に、本実施形態に係る熱交換器1によれば、隣り合う伝熱プレート2,3のそれぞれの第一凸条230,330は、相手方の伝熱プレート2,3の第一凸条230,330間に位置し、伝熱プレート2,3の障壁用凸条231,331(第一凸条230,330よりも低い障壁用凸条231,331)と、相手方の伝熱プレート2,3の第一凸条230,330とが交差衝合している。   Particularly, according to the heat exchanger 1 according to the present embodiment, the first ridges 230 and 330 of the adjacent heat transfer plates 2 and 3 are the first ridges 230 and 330 of the opposite heat transfer plates 2 and 3, respectively. The barrier ribs 231 and 331 located between the heat transfer plates 2 and 3 (barrier ribs 231 and 331 lower than the first ribs 230 and 330) and the heat transfer plates 2 and 3 of the other party. The first ridges 230 and 330 are cross-butted.

そのため、隣り合う伝熱プレート2,3の第一面Sa1,Sb1の間隔が狭くなる。すなわち、障壁用凸条231,331の突出量が第一凸条230,330の突出量よりも少ない分、第一流路Raを画定する伝熱プレート2,3同士が接近した状態になる。これに伴い、第一流路Raの流路幅が狭くなる結果、第一流路Ra内における第一流体Aの流通抵抗を増大させる。   Therefore, the interval between the first surfaces Sa1 and Sb1 of the adjacent heat transfer plates 2 and 3 becomes narrow. That is, the heat transfer plates 2 and 3 defining the first flow path Ra are brought closer to each other by the protrusion amount of the barrier ribs 231 and 331 being smaller than the protrusion amount of the first ribs 230 and 330. As a result, the flow passage width of the first flow passage Ra becomes narrower, and as a result, the flow resistance of the first fluid A in the first flow passage Ra increases.

従って、本実施形態に係る熱交換器1は、障壁用凸条231,331の存在と第一流路Raの流路幅とによって、第一流体Aの流通抵抗を増大させる結果、第一流体Aが伝熱部20,30に対して熱的な影響を及ぼす機会が増え、第二流体B側への熱伝達性能が高くなる。   Therefore, the heat exchanger 1 according to the present embodiment increases the flow resistance of the first fluid A as a result of the existence of the barrier ribs 231 and 331 and the channel width of the first channel Ra, resulting in the first fluid A. The number of opportunities for heat to affect the heat transfer parts 20, 30 increases, and the heat transfer performance to the second fluid B side is improved.

これに対し、各伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2においては、第一凸条230,330と表裏の関係にある複数の第二凹条221,321が形成され、また、第一面Sa1,Sb1の障壁用凸条231,331と表裏の関係にある凹条が形成されるため、隣り合う伝熱プレート2,3の第二面Sa2,Sb2間に形成される第二流路Rb内には、第二流体Bの流通抵抗となるものがない。従って、第二流路Rbでの第二流体Bの流通抵抗が小さくなり、第二流体Bの流速を速めることができる。   On the other hand, on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3, a plurality of second recessed stripes 221 and 321 having a front and back relationship with the first protruding stripes 230 and 330. Is formed, and since the concave ridges having a front and back relationship with the convex ridges 231 and 331 for the barrier of the first surfaces Sa1 and Sb1 are formed, between the second surfaces Sa2 and Sb2 of the adjacent heat transfer plates 2 and 3. There is nothing that becomes a flow resistance of the second fluid B in the second flow path Rb formed in. Therefore, the flow resistance of the second fluid B in the second flow path Rb is reduced, and the flow velocity of the second fluid B can be increased.

これにより、相変化を起こす流体(液体と気体とを含む二相流となる流体)が第二流体Bとして採用されとしても、第二流体Bの流速により、伝熱部20,30の表面上に形成された第二流体Bの液膜の流れが乱される。   As a result, even if a fluid that causes a phase change (a fluid that becomes a two-phase flow containing a liquid and a gas) is adopted as the second fluid B, the flow velocity of the second fluid B causes the fluid to flow on the surfaces of the heat transfer portions 20 and 30. The flow of the liquid film of the second fluid B formed on the surface is disturbed.

従って、上記構成の熱交換器1では、第二流路Rbを流通する第二流体Bの伝熱部20,30(第一流体A側)に対する熱伝達性能が高まる。   Therefore, in the heat exchanger 1 configured as described above, the heat transfer performance of the second fluid B flowing through the second flow path Rb to the heat transfer portions 20, 30 (on the side of the first fluid A) is enhanced.

本実施形態において、図20乃至図23に示す如く、隣り合う伝熱プレート2,3のうちの少なくとも何れか一方の伝熱プレート2,3は、第一面Sa1,Sb1に形成される凸条23,33として、第二方向に間隔をあけて配置された複数の障壁用凸条231,331を含んでいるため、第一流路Raにおいて、複数の障壁用凸条231,331の数に応じて第一流体Aの流通抵抗を増大させることができる。   In this embodiment, as shown in FIG. 20 to FIG. 23, at least one of the heat transfer plates 2 and 3 adjacent to each other has at least one heat transfer plate formed on the first surfaces Sa1 and Sb1. Since the plurality of barrier ribs 231 and 331 arranged at intervals in the second direction are included as 23 and 33, depending on the number of the plurality of barrier ribs 231 and 331 in the first channel Ra. Therefore, the flow resistance of the first fluid A can be increased.

また、本実施形態において、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第一凹条220,320と表裏の関係にある複数の第二凸条233,333を含み、隣り合う伝熱プレート2,3のそれぞれの第二凸条233,333は、相手方の伝熱プレート2,3の第二凸条233,333と重なり合い、該相手方の伝熱プレート2,3の第二凸条233,333の丁部と接触しているため、第一流路Ra内を流通する第一流体Aの流動圧が伝熱部20,30に作用しても、該伝熱部20,30が押し広げられることがない。従って、第二流路Rbを構成する空間が確保され、第二流体Bの流通の円滑性が確保される。   In addition, in the present embodiment, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 are the first ridges 220 and 320 as the ridges 23 and 33 formed on the second surfaces Sa2 and Sb2. The second convex ridges 233, 333 of the adjacent heat transfer plates 2, 3 include a plurality of second convex ridges 233, 333 having a front and back relationship with each other. Since it overlaps with the strips 233 and 333 and is in contact with the crests of the second convex strips 233 and 333 of the heat transfer plates 2 and 3 of the other side, the flow pressure of the first fluid A flowing in the first flow channel Ra is Even if it acts on the heat transfer parts 20 and 30, the heat transfer parts 20 and 30 are not expanded. Therefore, the space forming the second flow path Rb is secured, and the smoothness of the circulation of the second fluid B is secured.

本実施形態において、伝熱部20,30の第一面Sa1,Sb1において、第三方向に延びる複数の障壁用凸条231,331が第二方向に間隔をあけて配置され、複数の障壁用凸条231,331が伝熱部20,30の第三方向の全長よりも短くされていているため、第一流路Raにおいて、第一流体Aは、抵抗となる障壁用凸条231,331を避けて流通しようとする。これにより、第一流体Aが第一流路Ra内で拡散する。従って、伝熱部20,30における伝熱に寄与する領域が増える。これにより、第一流路Raにおける第一流体Aの熱伝達性能が向上する。   In the present embodiment, on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30, a plurality of barrier ribs 231 and 331 extending in the third direction are arranged at intervals in the second direction, and a plurality of barrier ribs are formed. Since the ridges 231 and 331 are shorter than the total length of the heat transfer parts 20 and 30 in the third direction, the first fluid A causes the barrier ridges 231 and 331 to become resistance in the first flow path Ra. Try to avoid distribution. As a result, the first fluid A diffuses in the first flow channel Ra. Therefore, the area | region which contributes to heat transfer in the heat transfer parts 20 and 30 increases. This improves the heat transfer performance of the first fluid A in the first flow channel Ra.

特に、隣り合う伝熱プレート2,3の第一面Sa1,Sb1のそれぞれに障壁用凸条231,331が設けられ、この隣り合う伝熱プレート2,3の障壁用凸条231,331が第二方向でずれた位置に配置されるため、第一流路Raが障壁用凸条231,331によって閉じられることがなく、第一流路Ra内での第一流体Aの拡散性が高まる。   In particular, barrier ribs 231 and 331 are provided on the first surfaces Sa1 and Sb1 of the adjacent heat transfer plates 2 and 3, respectively, and the barrier ribs 231 and 331 of the adjacent heat transfer plates 2 and 3 are the first Since the first flow path Ra is disposed at the position shifted in the two directions, the first flow path Ra is not closed by the barrier ribs 231 and 331, and the diffusibility of the first fluid A in the first flow path Ra is enhanced.

また、隣り合う伝熱プレート2,3の第一面Sa1,Sb1のそれぞれに複数の障壁用凸条231,331がマトリックス状に配置され、隣り合う伝熱プレート2,3の障壁用凸条231,331同士が第二方向及び第三方向でずれた位置に配置されるため、第一流路Raが障壁用凸条231,331によって閉じられることがなく、第一流路Ra内での第一流体Aの拡散性がより高まる。   Further, a plurality of barrier ribs 231 and 331 are arranged in a matrix on each of the first surfaces Sa1 and Sb1 of the adjacent heat transfer plates 2 and 3, and the barrier ribs 231 of the adjacent heat transfer plates 2 and 3 are arranged. , 331 are arranged at positions displaced from each other in the second direction and the third direction, the first flow path Ra is not closed by the barrier ribs 231 and 331, and the first fluid in the first flow path Ra is prevented. The diffusivity of A is further enhanced.

なお、本発明は、上記何れの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、適宜変更を加え得ることは勿論のことである。   The present invention is not limited to any of the above-mentioned embodiments, and it goes without saying that appropriate changes can be made without departing from the scope of the present invention.

上記各実施形態において、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれが、第一面Sa1,Sb1上の凸条として、障壁用凸条231,331を含んだが、これに限定されない。例えば、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のうちの何れか一方の伝熱プレート2,3のみが、第一面Sa1,Sb1上の凸条として、障壁用凸条231,331を含んでいてもよい。   In each of the above-described embodiments, the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) are barrier ridges 231 as ridges on the first surfaces Sa1 and Sb1. , 331, but is not limited to this. For example, only one of the heat transfer plates 2 and 3 adjacent to each other (the first heat transfer plate 2 and the second heat transfer plate 3) is convex on the first surfaces Sa1 and Sb1. The ribs may include barrier ribs 231 and 331.

上記各実施形態において、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の丁部同士が接触乃至接続されたが、これに限定されない。例えば、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の丁部同士が第一方向或いは第二方向で離間していてもよい。但し、第一流路Ra内の流動圧の上昇等に対抗し得る剛性を得るには、上記実施形態と同様に、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の丁部同士が接触乃至接続されることが好ましい。   In each of the above-described embodiments, the joints of the second ridges 233 and 333 of the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) are contacted or connected to each other. Not limited to. For example, the claw portions of the second ridges 233 and 333 of the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) are separated from each other in the first direction or the second direction. Good. However, in order to obtain rigidity that can counter the rise in the flow pressure in the first flow path Ra and the like, as in the above embodiment, the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 2) are provided. It is preferable that the ridges of the second ridges 233 and 333 of the plate 3) contact or be connected to each other.

上記各実施形態において、第一凹条220,320、第一凸条230,330、第二凹条221,321、及び第二凸条233,333が第二方向に真っ直ぐに延びて形成されたが、これに限定されない。例えば、第二凹条221,321は、裏側凹条222,322と連続していることを前提に、第二方向を成分に含む合成方向(第二方向に延びる仮想線に対して傾斜する方向)に延びていてもよい。但し、第二流体Bの流速を速めるためには、第二方向に延びる仮想線に対する傾き成分(角度)が第三方向に延びる仮想線に対する傾き成分(角度)よりも小さい状態で傾斜することが条件である。   In each of the above-described embodiments, the first concave stripes 220 and 320, the first convex stripes 230 and 330, the second concave stripes 221 and 321, and the second convex stripes 233 and 333 are formed to extend straight in the second direction. However, it is not limited to this. For example, assuming that the second recessed lines 221 and 321 are continuous with the back side recessed lines 222 and 322, a combined direction including the second direction as a component (direction inclined with respect to an imaginary line extending in the second direction). ) May be extended to. However, in order to increase the flow velocity of the second fluid B, the inclination component (angle) with respect to the virtual line extending in the second direction may be smaller than the inclination component (angle) with respect to the virtual line extending in the third direction. It is a condition.

上記各実施形態において、障壁用凸条231,331が第二方向に間隔をあけて二つ以上設けられが、これに限定されない。例えば、一つの伝熱部20,30に対して一つの障壁用凸条231,331が設けられてもよい。また、上記第二実施形態において、伝熱部20,30の第一面Sa1,Sb1に対し、第二方向に間隔をあけた複数の障壁用凸条231,331の列が、第三方向に間隔をあけて二列以上設けられたが、これに限定されない。例えば、伝熱部20,30の第一面Sa1,Sb1に対し、第二方向に間隔をあけた複数の障壁用凸条231,331の列が一列設けられてもよい。さらに、上記第二実施形態において、伝熱部20,30の第一面Sa1,Sb1に対し、第二方向に間隔をあけた複数の障壁用凸条231,331が第二方向において整列したが、これに限定されない。例えば、第二方向に間隔をあけて配置された複数の障壁用凸条231,331は、第三方向において位置ずれして配置されていてもよい。   In each of the above embodiments, two or more barrier ribs 231 and 331 are provided at intervals in the second direction, but the invention is not limited to this. For example, one barrier ridge 231, 331 may be provided for one heat transfer part 20, 30. Moreover, in the said 2nd embodiment, with respect to the 1st surface Sa1 and Sb1 of the heat transfer parts 20 and 30, the row | line | column of the some convex ribs 231 and 331 for barriers which space | intervaled in the 2nd direction was set to the 3rd direction. Two or more rows are provided at intervals, but the invention is not limited to this. For example, a row of a plurality of barrier ridges 231 and 331 may be provided on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 at intervals in the second direction. Furthermore, in the second embodiment, the plurality of barrier ribs 231 and 331 spaced in the second direction are aligned in the second direction with respect to the first surfaces Sa1 and Sb1 of the heat transfer units 20 and 30. , But is not limited to this. For example, the plurality of barrier ribs 231 and 331 arranged at intervals in the second direction may be arranged so as to be displaced in the third direction.

上記各実施形態において、伝熱部20,30の第一面Sa1,Sb1上に形成される複数の障壁用凸条231,331が同一形態にされたが、これに限定されない。例えば、伝熱部20,30の第一面Sa1,Sb1上に形態を異にする複数の障壁用凸条231,331が形成されてもよい。   In each of the above embodiments, the plurality of barrier ribs 231 and 331 formed on the first surfaces Sa1 and Sb1 of the heat transfer parts 20 and 30 have the same shape, but the invention is not limited thereto. For example, a plurality of barrier ribs 231 and 331 having different shapes may be formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30.

上記各実施形態において、第一凹条220,320及び第一凸条230,330の幅寸法(長手方向と直交する方向の寸法)が同一に設定されたが、これに限定されない。例えば、図25乃至図27に示す如く、第一凸条230,330の幅寸法よりも第一凹条220,320の幅寸法が大きく設定されてもよい。具体的には、図25に示す如く、第一凹条220,320及び第一凸条230,330を断面円弧状に形成することを前提に、第一凹条220,320の曲率半径を第一凸条230,330の曲率半径よりも大きく設定してもよい。また、図26及び図27に示す如く、第一凹条220,320の底部を平坦状に形成し、第一凹条220,320の幅寸法を第一凸条230,330の幅寸法よりも大きく設定してもよい。この場合、図26に示す如く、第一凸条230,330を断面円弧状にしてもよいし、図27に示す如く、第一凸条230,330の丁部を平坦状にしてもよい。このようにすれば、第一凸条230,330よりも低い障壁用凸条231,331に対して相手方の伝熱プレート2,3の第一凸条230,330が交差衝合することで、第一凹条220,320に対して第一凸条230,330が接近或いは入り込んだ状態になっても、第一凹条220,320と第一凸条230,330との間に極端に間隔の狭まった部分が形成されることがなく、第一流体Aの流通性が確保される。   In each of the above-described embodiments, the width dimensions (dimensions in the direction orthogonal to the longitudinal direction) of the first concave stripes 220, 320 and the first convex stripes 230, 330 are set to be the same, but the present invention is not limited to this. For example, as shown in FIGS. 25 to 27, the width dimensions of the first concave stripes 220 and 320 may be set larger than the width dimensions of the first convex stripes 230 and 330. Specifically, as shown in FIG. 25, the radius of curvature of the first recessed ridges 220, 320 is set to the first radius, assuming that the first recessed ridges 220, 320 and the first ridges 230, 330 are formed in an arc cross section. It may be set to be larger than the radius of curvature of the one ridge 230, 330. Further, as shown in FIGS. 26 and 27, the bottoms of the first recessed strips 220 and 320 are formed flat so that the width dimension of the first recessed strips 220 and 320 is smaller than the width dimension of the first protruding strips 230 and 330. It may be set large. In this case, as shown in FIG. 26, the first ridges 230 and 330 may have an arcuate cross section, or, as shown in FIG. 27, the ridges of the first ridges 230 and 330 may have a flat shape. By doing so, the first ridges 230, 330 of the heat transfer plates 2, 3 of the other party cross-butt against the barrier ridges 231, 331 lower than the first ridges 230, 330, Even when the first ridges 230, 330 approach or enter the first ridges 220, 320, there is an extreme gap between the first ridges 220, 320 and the first ridges 230, 330. The flowability of the first fluid A is ensured without forming a narrowed portion.

上記各実施形態において、第一流路Raが第一流入路Pa1と第一流出路Pa2とを直接連通させるとともに、第二流路Rbが第二流入路Pb1と第二流出路Pb2とを直接連通させたが、これに限定されない。例えば、図28及び図29に示す如く、第二流入路Pb1及び第二流出路Pb2と異なる位置で第一方向に延びる接続流路PJによって少なくとも二つの第二流路Rb同士を連通させ、接続流路PJを含む第二流体Bの流通経路の最上流に位置する第二流路Rbを第二流入路Pb1に接続するとともに、接続流路PJを含む第二流体Bの流通経路の最下流に位置する第二流路Rbを第二流出路Pb2に接続してもよい。   In each of the above embodiments, the first flow path Ra directly connects the first inflow path Pa1 and the first outflow path Pa2, and the second flow path Rb directly connects the second inflow path Pb1 and the second outflow path Pb2. However, it is not limited to this. For example, as shown in FIGS. 28 and 29, at least two second flow paths Rb are communicated with each other by a connection flow path PJ extending in the first direction at a position different from the second inflow path Pb1 and the second outflow path Pb2. The second flow path Rb located in the uppermost stream of the flow path of the second fluid B including the flow path PJ is connected to the second inflow path Pb1, and the most downstream of the flow path of the second fluid B including the connection flow path PJ. The second flow path Rb located at may be connected to the second outflow path Pb2.

より詳しくは、伝熱プレート2,3の重ね合わせ方向(第一方向)の途中位置で隣り合う伝熱プレート2,3間に分岐基準空間Ds1が形成される。これを前提に、第一方向において分岐基準空間Ds1よりも一方側にある第二流路Rbと分岐基準空間Ds1とが接続流路PJを介して接続され、第一方向において分岐基準空間Ds1よりも他方側にある第二流路Rbと分岐基準空間Ds1とが接続流路PJを介して接続されてもよい。このようにすれば、第二流体Bの流通経路が、分岐基準空間Ds1から第一方向の一方側で連続する少なくとも一つの第一系統S1と、分岐基準空間Ds1から第一方向の他方側で連続する少なくとも一つの第二系統S2とに分岐される。   More specifically, the branch reference space Ds1 is formed between the heat transfer plates 2 and 3 adjacent to each other at an intermediate position in the stacking direction (first direction) of the heat transfer plates 2 and 3. On the premise of this, the second flow path Rb on the one side of the branch reference space Ds1 in the first direction and the branch reference space Ds1 are connected via the connection flow path PJ, and in the first direction from the branch reference space Ds1. Alternatively, the second flow path Rb on the other side and the branch reference space Ds1 may be connected via the connection flow path PJ. With this configuration, the distribution path of the second fluid B is at least one first system S1 that is continuous from the branch reference space Ds1 on one side in the first direction, and on the other side in the first direction from the branch reference space Ds1. It is branched into at least one continuous second system S2.

また、第二流体Bの流通経路が第一系統S1と第二系統S2とを含む場合、第一系統S1及び第二系統S2のそれぞれにおいて、第一方向の途中位置にある少なくとも一つの第二流路Rbであって、接続流路PJを介して上流の分岐基準空間Ds1と直接的又は間接的に接続された第二流路Rbを画定する伝熱プレート2,3間に分岐基準空間(下流側の分岐基準空間)Ds2を形成してもよい。この場合、第一方向において分岐基準空間Ds2よりも一方側にある第二流路Rbと下流側の分岐基準空間Ds2とが接続流路PJを介して接続され、第一方向において分岐基準空間Ds2よりも他方側にある第二流路Rbと下流側の分岐基準空間Ds2とが接続流路PJを介して接続される。これにより、第一系統S1及び第二系統S2のそれぞれにおける第二流体Bの流通経路が、さらに少なくとも二系統S1a,S1b,S2a,S2bに分岐し、その系統S1a,S1b,S2a,S2bにおける最下流にある第二流路Rbが第二流出路Pb2に接続される。なお、各系統S1a,S1b,S2a,S2bにおける最下流にある第二流路Rb(第二流出路Pb2に接続される第二流路Rb)は、一つに限らず、複数であってもよい。   Moreover, when the distribution path of the second fluid B includes the first system S1 and the second system S2, at least one second system located at an intermediate position in the first direction in each of the first system S1 and the second system S2. The branch reference space (between the heat transfer plates 2 and 3 that defines the second flow path Rb that is the flow path Rb and is directly or indirectly connected to the upstream branch reference space Ds1 via the connection flow path PJ ( The downstream reference space (Ds2) may be formed. In this case, the second flow path Rb on one side of the branch reference space Ds2 in the first direction and the downstream branch reference space Ds2 are connected via the connection flow path PJ, and the branch reference space Ds2 in the first direction. The second flow path Rb on the other side of the branch flow path and the branch reference space Ds2 on the downstream side are connected via the connection flow path PJ. As a result, the distribution path of the second fluid B in each of the first system S1 and the second system S2 further branches into at least two systems S1a, S1b, S2a, S2b, and the most of the systems S1a, S1b, S2a, S2b. The downstream second flow path Rb is connected to the second outflow path Pb2. In addition, the 2nd flow path Rb (the 2nd flow path Rb connected to the 2nd outflow path Pb2) in the most downstream in each system | strain S1a, S1b, S2a, S2b is not limited to one, and even if there is more than one. Good.

上記第一実施形態において、屈曲凸条部232,332を有する障壁用凸条231,331が伝熱部20,30の第三方向の全長に亘って形成されたが、これに限定されない。例えば、例えば、障壁用凸条231,331は、複数(二つ以上)の屈曲凸条部232,332を含んでいてもよい。また、障壁用凸条231,331は、第一方向から見て湾曲した形状にされてもよい。また、障壁用凸条231,331は、第一方向から見て複数の湾曲部が繋がった波形状に形成されてもよい。   In the first embodiment, the barrier ribs 231 and 331 having the bent ribs 232 and 332 are formed over the entire length of the heat transfer portions 20 and 30 in the third direction, but the present invention is not limited thereto. For example, the barrier ribs 231 and 331 may include a plurality (two or more) of bent rib portions 232 and 332. Further, the barrier ribs 231 and 331 may have a curved shape when viewed from the first direction. Further, the barrier ribs 231 and 331 may be formed in a corrugated shape in which a plurality of curved portions are connected when viewed from the first direction.

さらに、全長に亘って直線状をなす障壁用凸条231,331が伝熱部20,30の第三方向の全長に亘って形成されてもよい。但し、隣り合う伝熱プレート2,3の両方に障壁用凸条231,331を設ける場合、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の障壁用凸条231,331は、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3の障壁用凸条231,331に対して第二方向で位置ずれして配置される。このようにすることで、障壁用凸条231,331同士が全長に亘って接触し、第一流路Raを閉じてしまうことを防止した上で、上記実施形態と同様の作用及び効果を奏することができる。   Further, the barrier ribs 231 and 331 that are linear over the entire length may be formed over the entire length in the third direction of the heat transfer portions 20 and 30. However, when the barrier ribs 231 and 331 are provided on both of the adjacent heat transfer plates 2 and 3, the barrier ribs 231 of one of the heat transfer plates 2 and 3 that are adjacent to each other are provided. 331 is displaced in the second direction with respect to the barrier ribs 231 and 331 of the other heat transfer plate 2 or 3 of the adjacent heat transfer plates 2 and 3. By doing so, it is possible to prevent the barrier ribs 231 and 331 from contacting each other over the entire length and closing the first flow path Ra, and also to achieve the same operation and effect as the above embodiment. You can

上記第二実施形態において、複数の障壁用凸条231,331のそれぞれが、第三方向に真っすぐに延びたが、これに限定されない。例えば、複数の障壁用凸条231,331のそれぞれが、第一実施形態と同様に、屈曲凸条部232,332を含んでいてもよい。
この場合において、隣り合う伝熱プレート2,3の障壁用凸条231,331同士が第一方向から見て交差した態様であってもよい。
In the second embodiment, each of the plurality of barrier ribs 231 and 331 extends straight in the third direction, but the present invention is not limited to this. For example, each of the plurality of barrier ribs 231 and 331 may include the bent ribs 232 and 332 as in the first embodiment.
In this case, the barrier ribs 231 and 331 of the adjacent heat transfer plates 2 and 3 may intersect with each other when viewed from the first direction.

上記第二実施形態において、障壁用凸条231,331が複数の第一凸条230,330と交差して設けられたが、これに限定されない。障壁用凸条231,331は、第一凸条230,330と交差する方向に延びていればよい。すなわち、隔壁用凸条231,331は、第一凸条230,330と交差する方向に延びること(隔壁用凸条231,331の丁部(稜線)が第一凸条230,330と交差する方向に延びること)を前提に、極端に短く形成され、単一の第一凸条230,330のみと交差したり、隣り合う第一凸条230,230,330,330間(単一の第一凹条220,320内)に存在したりしてもよい。   In the second embodiment, the barrier ribs 231 and 331 are provided to intersect the plurality of first ribs 230 and 330, but the invention is not limited to this. The barrier ribs 231 and 331 may extend in a direction intersecting with the first ribs 230 and 330. That is, the ribs 231 and 331 for partition walls extend in a direction intersecting with the first ribs 230 and 330 (the claw portion (ridge line) of the ribs 231 and 331 for partition wall intersects with the first ribs 230 and 330. It is formed to be extremely short on the assumption that it extends in the direction) and intersects only the single first ridge 230, 330, or between the adjacent first ridges 230, 230, 330, 330 (the single first ridge 230, 330). It may be present in one recessed line 220, 320).

1…プレート式熱交換器(熱交換器)、2…第一伝熱プレート(伝熱プレート)、3…第二伝熱プレート(伝熱プレート)、20,30…伝熱部、21,31…嵌合部、22,32…凹条、23,33…凸条、200,201,202,203,300,301,302,303…開口、220,320…第一凹条、221,321…第二凹条、222,322…裏側凹条、223,323…屈曲凹条部、223a,223b,323a,323b…傾斜凹条部、230,330…第一凸条、231,331…障壁用凸条、232,332…屈曲凸条部、232a,232b,332a,332b…傾斜凸条部、233,333…第二凸条、A…第一流体、B…第二流体、CL…縦中心線、Pa1…第一流入路、Pa2…第一流出路、Pb1…第二流入路、Pb2…第二流出路、Ra…第一流路、Rb…第二流路、Sa1,Sb1…第一面、Sa2,Sb2…第二面   1 ... Plate heat exchanger (heat exchanger), 2 ... 1st heat transfer plate (heat transfer plate), 3 ... 2nd heat transfer plate (heat transfer plate), 20, 30 ... Heat transfer part, 21, 31 ... Fitting part, 22, 32 ... Recessed line, 23, 33 ... Convex line, 200, 201, 202, 203, 300, 301, 302, 303 ... Opening, 220, 320 ... First recessed line, 221, 321 ... Second groove, 222, 322 ... Back groove, 223, 323 ... Bent groove, 223a, 223b, 323a, 323b ... Inclined groove, 230, 330 ... First ridge, 231, 331 ... For barrier Ridge, 232, 332 ... bent ridge, 232a, 232b, 332a, 332b ... inclined ridge, 233, 333 ... second ridge, A ... first fluid, B ... second fluid, CL ... longitudinal center Line, Pa1 ... first inflow path, Pa2 ... first outflow path, Pb1 Second inlet passage, Pb2 ... second outlet channel, Ra ... first passage, Rb ... second channel, Sa1, Sb1 ... first surface, Sa2, Sb2 ... second surface

本発明の他態様として、隣り合う伝熱プレートのそれぞれの伝熱部は、第二面に形成される凸条として、第一凹条と表裏の関係にある複数の第二凸条を含み、隣り合う伝熱プレートのそれぞれの第二凸条は、相手方の伝熱プレートの第二凸条と重なり合い、該相手方の伝熱プレートの第二凸条の部と接触していてもよい。
As another aspect of the present invention, each heat transfer portion of the adjacent heat transfer plates includes a plurality of second ridges in front and back relation with the first ridge, as the ridges formed on the second surface. The second ridges of the adjacent heat transfer plates may overlap the second ridges of the partner heat transfer plate and may be in contact with the tops of the second ridges of the partner heat transfer plate.

本実施形態において、伝熱部20,30の第一面Sa1,Sb1には、複数の障壁用凸条231,331がある。複数の障壁用凸条231,331は、第二方向に間隔をあけて配置される。複数の障壁用凸条231,331のそれぞれは、上述の如く、第一凸条230,330よりも低い。具体的には、第二面Sa2,Sb2上に形成される後述する複数の第二凸条233,333の部を通る仮想面(第二方向及び第三方向に広がる仮想面)からの突出量が、第一凸条230,330よりも障壁用凸条231,331の方が少ない。これに伴い、障壁用凸条231,331の部は、第一凸条230,330の部よりも第一方向において第二面側に位置する。すなわち、障壁用凸条231,331の部は、第一凸条230,330の部と第一凹条220,320の底部との間に位置する。
In the present embodiment, the plurality of barrier ribs 231 and 331 are provided on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, respectively. The plurality of barrier ribs 231 and 331 are arranged at intervals in the second direction. Each of the plurality of barrier ribs 231 and 331 is lower than the first ribs 230 and 330, as described above. Specifically, a protrusion from a virtual surface (a virtual surface that spreads in the second direction and the third direction) that passes through the tops of a plurality of second protrusions 233 and 333 described below that are formed on the second surfaces Sa2 and Sb2. The amount of the barrier ribs 231 and 331 is smaller than that of the first ribs 230 and 330. Accordingly, the tops of the barrier ribs 231 and 331 are located closer to the second surface in the first direction than the tops of the first ribs 230 and 330. That is, the tops of the barrier ribs 231 and 331 are located between the tops of the first ribs 230 and 330 and the bottoms of the first recesses 220 and 320.

これに伴い、第一方向における第一凸条230,330の部と障壁用凸条231,331の部との間隔(距離)は、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330と、他方の伝熱プレート2,3の第一凹条220,320との間隔が第一流体Aの流通を確保できる間隔となるように、設定される。
Accordingly, the distance (distance) between the tops of the first ridges 230 and 330 and the tops of the barrier ridges 231 and 331 in the first direction is one of the adjacent heat transfer plates 2 and 3. The distance between the first ridges 230 and 330 of the heat transfer plates 2 and 3 and the first ridges 220 and 320 of the other heat transfer plates 2 and 3 is such that the flow of the first fluid A can be secured. , Set.

これに伴い、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330が、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3の第一凹条220,320に近づきすぎると、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間の隙間が無くなるか、或いは、第一凸条230,330の部と第一凹条220,320の底部との間にできる隙間に比して極端に狭くなってしまう。
Along with this, the first ridges 230 and 330 of the heat transfer plates 2 and 3 of one of the heat transfer plates 2 and 3 that are adjacent to each other cause the heat transfer plate 2 of the other of the heat transfer plates 2 and 3 that is adjacent to each other. , 3 of the first concave stripes 220, 320 too close to each other, the gap between the both sides of the first convex stripes 230, 330 in the width direction and the both sides of the first concave stripes 220, 320 in the width direction disappears, or The gap between the top of the first ridges 230 and 330 and the bottom of the first ridges 220 and 320 is extremely narrow.

そのため、本実施形態において、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間隔が、第一流体Aの流通性を確保できる間隔になるように、第一方向における第一凸条230,330の部と障壁用凸条231,331の部との間隔(距離)が設定される。
Therefore, in the present embodiment, the distance between both sides in the width direction of the first ridges 230, 330 and the both sides in the width direction of the first ridges 220, 320 is the distance at which the fluidity of the first fluid A can be ensured. Thus, the distance (distance) between the tops of the first protrusions 230 and 330 and the tops of the barrier protrusions 231 and 331 in the first direction is set.

これに対し、隣り合う伝熱プレート2,3の第二面Sa2,Sb2側において、図8乃至図10に示す如く、第一伝熱プレート2(伝熱部20)の第二凸条233は、第二伝熱プレート(伝熱部30)の第二凸条333と対向し、第一伝熱プレート2(伝熱部20)の第二凹条221は、第二伝熱プレート(伝熱部30)の第二凹条321と対向する。すなわち、第一伝熱プレート2及び第二伝熱プレート3のそれぞれの伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置しているため、上記の通り、第一伝熱プレート2及び第二伝熱プレート3を180°回転させることで、隣り合う伝熱プレート2,3の第二凸条233,333同士が対向し、互いの部同士を接触させる。また、第一方向から見て隣り合う伝熱プレート2,3の裏側凹条222,322同士が対向した状態(一致した状態)となる(図12参照)。
On the other hand, on the second surface Sa2, Sb2 side of the adjacent heat transfer plates 2, 3, as shown in FIG. 8 to FIG. 10, the second ridge 233 of the first heat transfer plate 2 (heat transfer part 20) is The second recess 221 of the first heat transfer plate 2 (heat transfer part 20) faces the second protrusion 333 of the second heat transfer plate (heat transfer part 30). It faces the second groove 321 of the portion 30). That is, in the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the first heat transfer plate 2 and the second heat transfer plate 3, respectively, a specific first concave portion of the plurality of first concave grooves 220 and 320 is formed. First ridges 230, 330 adjacent to the first ridges 220, 320 and a particular first ridge 230, 330 of the plurality of first ridges 230, 330. Since the boundary with is located on the vertical center line CL, as described above, by rotating the first heat transfer plate 2 and the second heat transfer plate 3 by 180 °, the adjacent heat transfer plates 2, 3 The second ridges 233, 333 of the above are opposed to each other, and their tops are brought into contact with each other. Further, the back side recessed lines 222 and 322 of the heat transfer plates 2 and 3 which are adjacent to each other when viewed from the first direction are in a state of facing each other (matching state) (see FIG. 12).

また、本実施形態において、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第一凹条220,320と表裏の関係にある複数の第二凸条233,333を含み、隣り合う伝熱プレート2,3のそれぞれの第二凸条233,333は、相手方の伝熱プレート2,3の第二凸条233,333と重なり合い、該相手方の伝熱プレート2,3の第二凸条233,333の部と接触しているため、第一流路Ra内を流通する第一流体Aの流動圧が伝熱部20,30に作用しても、該伝熱部20,30が押し広げられることがない。従って、第二流路Rbを構成する空間が確保され、第二流体Bの流通の円滑性が確保される。
In addition, in the present embodiment, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 are the first ridges 220 and 320 as the ridges 23 and 33 formed on the second surfaces Sa2 and Sb2. The second convex ridges 233, 333 of the adjacent heat transfer plates 2, 3 include a plurality of second convex ridges 233, 333 having a front and back relationship with each other. Since it overlaps with the strips 233, 333 and is in contact with the tops of the second convex strips 233, 333 of the heat transfer plates 2, 3 of the other side, the flow pressure of the first fluid A flowing in the first flow channel Ra is Even if it acts on the heat transfer parts 20 and 30, the heat transfer parts 20 and 30 are not expanded. Therefore, the space forming the second flow path Rb is secured, and the smoothness of the circulation of the second fluid B is secured.

本実施形態において、伝熱部20,30の第一面Sa1,Sb1には、複数の障壁用凸条231,331がある。複数の障壁用凸条231,331は、第二方向に間隔をあけて配置される。複数の障壁用凸条231,331のそれぞれは、上述の如く、第一凸条230,330よりも低い。具体的には、第二面Sa2,Sb2上に形成される後述する複数の第二凸条233,333の部を通る仮想面(第二方向及び第三方向に広がる仮想面)からの突出量が、第一凸条230,330よりも障壁用凸条231,331の方が少ない。これに伴い、障壁用凸条231,331の部は、第一凸条230,330の部よりも第一方向において第二面側に位置する。すなわち、障壁用凸条231,331の部は、第一凸条230,330の部と第一凹条220,320の底部との間に位置する。
In the present embodiment, the plurality of barrier ribs 231 and 331 are provided on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, respectively. The plurality of barrier ribs 231 and 331 are arranged at intervals in the second direction. Each of the plurality of barrier ribs 231 and 331 is lower than the first ribs 230 and 330, as described above. Specifically, a protrusion from a virtual surface (a virtual surface that spreads in the second direction and the third direction) that passes through the tops of a plurality of second protrusions 233 and 333 described below that are formed on the second surfaces Sa2 and Sb2. The amount of the barrier ribs 231 and 331 is smaller than that of the first ribs 230 and 330. Accordingly, the tops of the barrier ribs 231 and 331 are located closer to the second surface in the first direction than the tops of the first ribs 230 and 330. That is, the tops of the barrier ribs 231 and 331 are located between the tops of the first ribs 230 and 330 and the bottoms of the first recesses 220 and 320.

これに伴い、第一方向における第一凸条230,330の部と障壁用凸条231,331の部との間隔(距離)は、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330と、他方の伝熱プレート2,3の第一凹条220,320との間隔が第一流体Aの流通を確保できる間隔となるように、設定される。
Accordingly, the distance (distance) between the tops of the first ridges 230 and 330 and the tops of the barrier ridges 231 and 331 in the first direction is one of the adjacent heat transfer plates 2 and 3. The distance between the first ridges 230 and 330 of the heat transfer plates 2 and 3 and the first ridges 220 and 320 of the other heat transfer plates 2 and 3 is such that the flow of the first fluid A can be secured. , Set.

これに伴い、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330が、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3の第一凹条220,320に近づきすぎると、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間の隙間が無くなるか、或いは、第一凸条230,330の部と第一凹条220,320の底部との間にできる隙間に比して極端に狭くなってしまう。
Along with this, the first ridges 230 and 330 of the heat transfer plates 2 and 3 of one of the heat transfer plates 2 and 3 that are adjacent to each other cause the heat transfer plate 2 of the other of the heat transfer plates 2 and 3 that is adjacent to each other. , 3 of the first concave stripes 220, 320 too close to each other, the gap between the both sides of the first convex stripes 230, 330 in the width direction and the both sides of the first concave stripes 220, 320 in the width direction disappears, or The gap between the top of the first ridges 230 and 330 and the bottom of the first ridges 220 and 320 is extremely narrow.

そのため、本実施形態において、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間隔が、第一流体Aの流通性を確保できる間隔になるように、第一方向における第一凸条230,330の部と障壁用凸条231,331の部との間隔(距離)が設定される。
Therefore, in the present embodiment, the distance between both sides in the width direction of the first ridges 230, 330 and the both sides in the width direction of the first ridges 220, 320 is the distance at which the fluidity of the first fluid A can be ensured. Thus, the distance (distance) between the tops of the first protrusions 230 and 330 and the tops of the barrier protrusions 231 and 331 in the first direction is set.

これに対し、隣り合う伝熱プレート2,3の第二面Sa2,Sb2側において、第一伝熱プレート2(伝熱部20)の第二凸条233は、第二伝熱プレート(伝熱部30)の第二凸条333と対向し、第一伝熱プレート2(伝熱部20)の第二凹条221は、第二伝熱プレート(伝熱部30)の第二凹条321と対向する。すなわち、第一伝熱プレート2及び第二伝熱プレート3のそれぞれの伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置しているため、上記の通り、第一伝熱プレート2及び第二伝熱プレート3を180°回転させることで、隣り合う伝熱プレート2,3の第二凸条233,333同士が対向し、互いの部同士を接触させる。
On the other hand, on the second surface Sa2, Sb2 side of the adjacent heat transfer plates 2 and 3, the second ridge 233 of the first heat transfer plate 2 (heat transfer section 20) has the second heat transfer plate (heat transfer plate). The second recessed portion 221 of the first heat transfer plate 2 (heat transfer portion 20) faces the second protruding portion 333 of the portion 30) and the second recessed portion 321 of the second heat transfer plate (heat transfer portion 30). To face. That is, in the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the first heat transfer plate 2 and the second heat transfer plate 3, respectively, a specific first concave portion of the plurality of first concave grooves 220 and 320 is formed. First ridges 230, 330 adjacent to the first ridges 220, 320 and a particular first ridge 230, 330 of the plurality of first ridges 230, 330. Since the boundary with is located on the vertical center line CL, as described above, by rotating the first heat transfer plate 2 and the second heat transfer plate 3 by 180 °, the adjacent heat transfer plates 2, 3 The second ridges 233, 333 of the above are opposed to each other, and their tops are brought into contact with each other.

また、本実施形態において、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第一凹条220,320と表裏の関係にある複数の第二凸条233,333を含み、隣り合う伝熱プレート2,3のそれぞれの第二凸条233,333は、相手方の伝熱プレート2,3の第二凸条233,333と重なり合い、該相手方の伝熱プレート2,3の第二凸条233,333の部と接触しているため、第一流路Ra内を流通する第一流体Aの流動圧が伝熱部20,30に作用しても、該伝熱部20,30が押し広げられることがない。従って、第二流路Rbを構成する空間が確保され、第二流体Bの流通の円滑性が確保される。
In addition, in the present embodiment, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 are the first ridges 220 and 320 as the ridges 23 and 33 formed on the second surfaces Sa2 and Sb2. The second convex ridges 233, 333 of the adjacent heat transfer plates 2, 3 include a plurality of second convex ridges 233, 333 having a front and back relationship with each other. Since it overlaps with the strips 233, 333 and is in contact with the tops of the second convex strips 233, 333 of the heat transfer plates 2, 3 of the other side, the flow pressure of the first fluid A flowing in the first flow channel Ra is Even if it acts on the heat transfer parts 20 and 30, the heat transfer parts 20 and 30 are not expanded. Therefore, the space forming the second flow path Rb is secured, and the smoothness of the circulation of the second fluid B is secured.

上記各実施形態において、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の部同士が接触乃至接続されたが、これに限定されない。例えば、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の部同士が第一方向或いは第二方向で離間していてもよい。但し、第一流路Ra内の流動圧の上昇等に対抗し得る剛性を得るには、上記実施形態と同様に、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の部同士が接触乃至接続されることが好ましい。
In each of the above-described embodiments, the tops of the second ridges 233 and 333 of the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) are in contact with or connected to each other. Not limited to. For example, the tops of the second ridges 233 and 333 of the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) are separated from each other in the first direction or the second direction. Good. However, in order to obtain rigidity that can counter the rise in the flow pressure in the first flow path Ra and the like, as in the above embodiment, the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 2) are provided. The tops of the second ridges 233 and 333 of the plate 3) are preferably in contact with or connected to each other.

上記各実施形態において、第一凹条220,320及び第一凸条230,330の幅寸法(長手方向と直交する方向の寸法)が同一に設定されたが、これに限定されない。例えば、図25乃至図27に示す如く、第一凸条230,330の幅寸法よりも第一凹条220,320の幅寸法が大きく設定されてもよい。具体的には、図25に示す如く、第一凹条220,320及び第一凸条230,330を断面円弧状に形成することを前提に、第一凹条220,320の曲率半径を第一凸条230,330の曲率半径よりも大きく設定してもよい。また、図26及び図27に示す如く、第一凹条220,320の底部を平坦状に形成し、第一凹条220,320の幅寸法を第一凸条230,330の幅寸法よりも大きく設定してもよい。この場合、図26に示す如く、第一凸条230,330を断面円弧状にしてもよいし、図27に示す如く、第一凸条230,330の部を平坦状にしてもよい。このようにすれば、第一凸条230,330よりも低い障壁用凸条231,331に対して相手方の伝熱プレート2,3の第一凸条230,330が交差衝合することで、第一凹条220,320に対して第一凸条230,330が接近或いは入り込んだ状態になっても、第一凹条220,320と第一凸条230,330との間に極端に間隔の狭まった部分が形成されることがなく、第一流体Aの流通性が確保される。
In each of the above-described embodiments, the width dimensions (dimensions in the direction orthogonal to the longitudinal direction) of the first concave stripes 220 and 320 and the first convex stripes 230 and 330 are set to be the same, but the present invention is not limited thereto. For example, as shown in FIGS. 25 to 27, the width dimensions of the first concave stripes 220 and 320 may be set larger than the width dimensions of the first convex stripes 230 and 330. Specifically, as shown in FIG. 25, the radius of curvature of the first recessed ridges 220, 320 is set to the first radius, assuming that the first recessed ridges 220, 320 and the first ridges 230, 330 are formed in an arc cross section. It may be set to be larger than the radius of curvature of the one ridge 230, 330. Further, as shown in FIGS. 26 and 27, the bottoms of the first recessed strips 220 and 320 are formed flat so that the width dimension of the first recessed strips 220 and 320 is smaller than the width dimension of the first protruding strips 230 and 330. It may be set large. In this case, as shown in FIG. 26, the first ridges 230 and 330 may have an arcuate cross section, or as shown in FIG. 27, the tops of the first ridges 230 and 330 may have a flat shape. By doing this, the first protrusions 230, 330 of the heat transfer plates 2, 3 of the other party cross-butt against the barrier protrusions 231, 331 lower than the first protrusions 230, 330. Even when the first ridges 230, 330 approach or enter the first ridges 220, 320, there is an extreme gap between the first ridges 220, 320 and the first ridges 230, 330. The flowability of the first fluid A is ensured without forming a narrowed portion.

上記第二実施形態において、障壁用凸条231,331が複数の第一凸条230,330と交差して設けられたが、これに限定されない。障壁用凸条231,331は、第一凸条230,330と交差する方向に延びていればよい。すなわち、隔壁用凸条231,331は、第一凸条230,330と交差する方向に延びること(隔壁用凸条231,331の部(稜線)が第一凸条230,330と交差する方向に延びること)を前提に、極端に短く形成され、単一の第一凸条230,330のみと交差したり、隣り合う第一凸条230,230,330,330間(単一の第一凹条220,320内)に存在したりしてもよい。 In the second embodiment, the barrier ribs 231 and 331 are provided to intersect the plurality of first ribs 230 and 330, but the invention is not limited to this. The barrier ribs 231 and 331 may extend in a direction intersecting with the first ribs 230 and 330. That is, the ribs for partition wall 231 and 331 extend in a direction intersecting with the first ribs 230 and 330 (the tops (ridge lines) of the ribs for partition wall 231 and 331 intersect the first ribs 230 and 330). It is formed to be extremely short on the assumption that it extends in the direction) and intersects only the single first ridge 230, 330, or between the adjacent first ridges 230, 230, 330, 330 (the single first ridge 230, 330). It may be present in one recessed line 220, 320).

Claims (5)

凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する伝熱部を含む伝熱プレートであって、それぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、
複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、
第一流体を第一方向と直交する第二方向に流通させる第一流路が隣り合う伝熱プレートの伝熱部の第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣り合う伝熱プレートの伝熱部の第二面間に形成され、
隣り合う伝熱プレートのそれぞれの伝熱部は、第一面に形成される凸条として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条を含むとともに、第一面に形成される凹条として、第一方向及び第二方向と交差する方向で隣り合う第一凸条間に形成される複数の第一凹条を含み、且つ第二面に形成される凹条として、第一凸条と表裏の関係にある複数の第二凹条を含み、
隣り合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートにおける伝熱部は、第一面に形成される凸条として、該第一面に形成される第一凸条よりも低い障壁用凸条であって、第一凸条と交差する方向に延びる少なくとも一つの障壁用凸条を含み、
隣り合う伝熱プレートのそれぞれの第一凸条は、相手方の伝熱プレートの第一凸条間に位置し、少なくとも何れか一方の伝熱プレートの障壁用凸条と、相手方の伝熱プレートの第一凸条とが交差衝合している、
プレート式熱交換器。
The first surface on which the ridges and the ridges are formed, and the recessed ridges facing the opposite side to the first surface and having a front and back relationship with the ridges on the first surface and the ridges and the front and back of the first surface A heat transfer plate including a heat transfer part having a second surface on which a ridge is formed, each heat transfer part comprising a plurality of heat transfer plates superposed in a first direction,
Each of the plurality of heat transfer plates makes the first surface of its own heat transfer section face the first surface of the heat transfer section of the heat transfer plate arranged next to one side in the first direction, and The second surface of the second surface of the heat transfer plate in the heat transfer plate next to each other on the other side of the first direction,
A first flow path that allows the first fluid to flow in a second direction orthogonal to the first direction is formed between the first surfaces of the heat transfer portions of the adjacent heat transfer plates, and causes the second fluid to flow in the second direction. A second flow path is formed between the second surfaces of the heat transfer parts of the adjacent heat transfer plates,
Each heat transfer portion of the adjacent heat transfer plates is a plurality of first ridges arranged at intervals in a direction intersecting the first direction and the second direction as a ridge formed on the first surface. And includes a plurality of first ridges each extending in a second direction or a composite direction including the second direction as a component, and as a ridge formed on the first surface, intersects the first direction and the second direction. A plurality of first concave lines formed between the first convex lines adjacent to each other in the direction of, and as a concave line formed on the second surface, a plurality of second concave lines having a front and back relationship with the first convex line. Including articles,
The heat transfer portion of at least one heat transfer plate of the adjacent heat transfer plates is a barrier formed on the first surface and is lower than the first protrusion formed on the first surface. A ridge, including at least one barrier ridge extending in a direction intersecting with the first ridge,
The first ridges of the adjacent heat transfer plates are located between the first ridges of the other heat transfer plate, and the barrier ridges of at least one of the heat transfer plates and the other heat transfer plate of the other party. The first ridge is cross-collision,
Plate heat exchanger.
隣り合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートは、第一面に形成される凸条として、第二方向に間隔をあけて配置された複数の障壁用凸条を含む、
請求項1に記載のプレート式熱交換器。
At least one of the adjacent heat transfer plates has a plurality of barrier ribs arranged at intervals in the second direction as the ribs formed on the first surface.
The plate heat exchanger according to claim 1.
隣り合う伝熱プレートのそれぞれの伝熱部は、第二面に形成される凸条として、第一凹条と表裏の関係にある複数の第二凸条を含み、
隣り合う伝熱プレートのそれぞれの第二凸条は、相手方の伝熱プレートの第二凸条と重なり合い、該相手方の伝熱プレートの第二凸条の丁部と接触している、
請求項1又は2に記載のプレート式熱交換器。
Each heat transfer portion of the adjacent heat transfer plate includes a plurality of second ridges in front and back relation with the first ridge, as the ridges formed on the second surface.
Each of the second ridges of the adjacent heat transfer plates overlaps with the second ridge of the partner heat transfer plate and is in contact with the second ridge of the partner heat transfer plate.
The plate heat exchanger according to claim 1.
障壁用凸条は、少なくとも一つの屈曲凸条部を有し、
屈曲凸条部は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部であって、第二方向に延びる中心線又は該中心線に対して平行な仮想線に対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部を含んでいる、
請求項1乃至3の何れか1項に記載のプレート式熱交換器。
The barrier rib has at least one bent rib portion,
The bent ridge portions are a pair of inclined ridge portions each having a base end and a tip opposite to the base end, and are center lines extending in the second direction or virtual lines parallel to the center line. With respect to each other, including a pair of inclined ridges, which are inclined in opposite directions and whose tips are connected to each other.
The plate heat exchanger according to any one of claims 1 to 3.
隣り合う伝熱プレートのそれぞれの伝熱部は、屈曲凸条部を有する障壁用凸条を含み、
隣り合う伝熱プレートの障壁用凸条の屈曲凸条部は、互いに正反対に屈曲して形成されている、
請求項4に記載のプレート式熱交換器。
Each heat transfer portion of the adjacent heat transfer plates includes a barrier rib having a bent rib.
The bent ridges of the barrier ribs of the adjacent heat transfer plates are formed by bending diametrically opposite each other.
The plate heat exchanger according to claim 4.
JP2019519902A 2017-05-25 2017-05-25 Plate heat exchanger Active JP6799681B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019550 WO2018216166A1 (en) 2017-05-25 2017-05-25 Plate type heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2018216166A1 true JPWO2018216166A1 (en) 2020-04-23
JP6799681B2 JP6799681B2 (en) 2020-12-16

Family

ID=64396295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519902A Active JP6799681B2 (en) 2017-05-25 2017-05-25 Plate heat exchanger

Country Status (4)

Country Link
EP (1) EP3627087B1 (en)
JP (1) JP6799681B2 (en)
CN (1) CN110662937B (en)
WO (1) WO2018216166A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294126B2 (en) * 2019-12-26 2023-06-20 トヨタ自動車株式会社 Cooler
JP2021134987A (en) * 2020-02-27 2021-09-13 三菱重工業株式会社 Heat exchange core and heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580368A (en) * 1944-01-01 1946-09-05 Separator Ab Improvements in or relating to plate heat exchangers
JPS4985649A (en) * 1972-12-21 1974-08-16
JPS55107898A (en) * 1979-02-12 1980-08-19 Union Carbide Corp Heat exchanger wall member and heat exchanger using same
JPS5699293U (en) * 1979-12-22 1981-08-05
JPH05280883A (en) * 1992-03-30 1993-10-29 Hisaka Works Ltd Plate type heat exchanger
JP2000121279A (en) * 1998-10-13 2000-04-28 Honda Motor Co Ltd Multi-plate type heat exchanger
US20130299146A1 (en) * 2011-04-07 2013-11-14 Alfa Laval Corporate Ab Plate heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182411A (en) * 1975-12-19 1980-01-08 Hisaka Works Ltd. Plate type condenser
JPS5664292A (en) * 1979-10-30 1981-06-01 Hisaka Works Ltd Plate type heat exchanger
JPS625097A (en) * 1985-06-28 1987-01-12 Nippon Denso Co Ltd Lamination type heat exchanger
CN1109232C (en) * 1993-12-28 2003-05-21 昭和电工株式会社 Plate heat exchanger
US5899261A (en) * 1997-09-15 1999-05-04 Abb Air Preheater, Inc. Air preheater heat transfer surface
JP2001099588A (en) 1999-09-29 2001-04-13 Hisaka Works Ltd Plate type heat exchanger
CN2529188Y (en) * 2002-03-08 2003-01-01 崔凤翎 Plate heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580368A (en) * 1944-01-01 1946-09-05 Separator Ab Improvements in or relating to plate heat exchangers
JPS4985649A (en) * 1972-12-21 1974-08-16
JPS55107898A (en) * 1979-02-12 1980-08-19 Union Carbide Corp Heat exchanger wall member and heat exchanger using same
JPS5699293U (en) * 1979-12-22 1981-08-05
JPH05280883A (en) * 1992-03-30 1993-10-29 Hisaka Works Ltd Plate type heat exchanger
JP2000121279A (en) * 1998-10-13 2000-04-28 Honda Motor Co Ltd Multi-plate type heat exchanger
US20130299146A1 (en) * 2011-04-07 2013-11-14 Alfa Laval Corporate Ab Plate heat exchanger

Also Published As

Publication number Publication date
CN110662937A (en) 2020-01-07
EP3627087A4 (en) 2021-01-20
EP3627087B1 (en) 2023-08-23
EP3627087C0 (en) 2023-08-23
WO2018216166A1 (en) 2018-11-29
CN110662937B (en) 2021-05-14
EP3627087A1 (en) 2020-03-25
JP6799681B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6407454B2 (en) Plate heat exchanger
US6823934B2 (en) Heat transfer plate and plate pack for use in a plate heat exchanger
JP6987074B2 (en) Plate heat exchanger with heat transfer plate and multiple such heat transfer plates
JP2019530845A (en) Heat exchange plate and heat exchanger
JP2012508863A (en) Heat exchanger
JP2021528625A (en) Heat transfer plate and gasket
JPWO2018216165A1 (en) Plate heat exchanger
JPWO2018216166A1 (en) Plate heat exchanger
JP4504092B2 (en) Plate heat exchanger
JP5085723B2 (en) Plate heat exchanger
JP2006064281A (en) Plate type heat exchanger
JP6069425B2 (en) Plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
JP6235645B2 (en) Plate heat exchanger
JP5244162B2 (en) Plate heat exchanger
WO2023095349A1 (en) Heat exchanger
JP2019095124A (en) Plate type heat exchanger
JP2019066052A (en) Plate type heat exchanger
KR20050073424A (en) Plate for heat exchange and heat exchange unit
JP2019027733A (en) Plate type heat exchanger
JP2015064146A (en) Plate type heat exchanger
JP2015102280A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6799681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250