[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2018021356A1 - 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜 - Google Patents

多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜 Download PDF

Info

Publication number
JPWO2018021356A1
JPWO2018021356A1 JP2018530317A JP2018530317A JPWO2018021356A1 JP WO2018021356 A1 JPWO2018021356 A1 JP WO2018021356A1 JP 2018530317 A JP2018530317 A JP 2018530317A JP 2018530317 A JP2018530317 A JP 2018530317A JP WO2018021356 A1 JPWO2018021356 A1 JP WO2018021356A1
Authority
JP
Japan
Prior art keywords
film
polyamic acid
porous polyimide
porous
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018530317A
Other languages
English (en)
Other versions
JP6750679B2 (ja
Inventor
大矢 修生
修生 大矢
信 松尾
信 松尾
有一 藤井
有一 藤井
啓太 番場
啓太 番場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2018021356A1 publication Critical patent/JPWO2018021356A1/ja
Application granted granted Critical
Publication of JP6750679B2 publication Critical patent/JP6750679B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0544Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、ここで、熱処理後の膜の縦方向及び横方向の収縮率をそれぞれ8%以下に抑制して、かつ前記熱処理において200℃以上の温度域での昇温速度が25℃/分以上である、を含む、多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜に関する。

Description

本発明は、多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜に関する。
通気性が高く、内部にマクロボイドを有する多孔質ポリイミド膜の製造方法が報告されている(特許文献1及び2)。
国際公開第2010/038873号 国際公開第2011/125988号
特許文献1の方法では、テトラカルボン酸単位及びジアミン単位からなるポリアミック酸(A)及び安息香酸などの極性基を有する有機化合物(B)とを含む組成物から、所望の多孔質ポリイミド膜を製造している。
また、特許文献2の方法では、テトラカルボン酸単位及びジアミン単位からなるポリアミック酸(A)と、安息香酸などの極性基を有する有機化合物(B)又はポリアクリロニトリルなどの側鎖に極性基を有する高分子化合物(C)とを含む組成物から、所望の多孔質ポリイミド膜を製造している。
本発明は、特許文献1及び2の多孔質ポリイミド膜の製造において必須であった極性基を有する有機化合物や極性基を有する高分子化合物を添加することなく、通気性が高く、内部にマクロボイドを有する多孔質ポリイミド膜を、より簡便かつ効率的に製造することを目的とする。
本発明は、以下の態様を有する。
[1]
2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%である、多孔質ポリイミド膜の製造方法であって、
(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、ここで、熱処理後の膜の縦方向及び横方向の収縮率をそれぞれ8%以下に抑制して、かつ前記熱処理において200℃以上の温度域での昇温速度が25℃/分以上である、
を含む、多孔質ポリイミド膜の製造方法。
[2]
前記ポリアミック酸が、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種のテトラカルボン酸二無水物と、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンとから得られる、[1]に記載の多孔質ポリイミド膜の製造方法。
[3]
前記の水を必須成分とする凝固溶媒が、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液である、[1]又は[2]に記載の多孔質ポリイミド膜の製造方法。
[4]
前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程をさらに含む、[1]〜[3]のいずれか1つに記載の多孔質ポリイミド膜の製造方法。
[5]
2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%である、多孔質ポリイミド膜の製造方法であって、
(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、
(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、及び、
(3)前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程
を含む、多孔質ポリイミド膜の製造方法。
[6]
2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%であり、
以下の工程:
(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、ここで、熱処理後の膜の縦方向及び横方向の収縮率をそれぞれ8%以下に抑制して、かつ前記熱処理において200℃以上の温度域での昇温速度が25℃/分以上である、
を含む方法で製造される、多孔質ポリイミド膜。
[7]
2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%であり、
以下の工程:
(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、
(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、及び、
(3)前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程
を含む方法で製造される、多孔質ポリイミド膜。
[8]
[1]〜[5]のいずれか1つに記載の方法で製造される、多孔質ポリイミド膜。
上記[1]の製造方法を、以下で「本発明の製造方法A」とも呼ぶ。上記[5]の製造方法を、以下で「本発明の製造方法B」とも呼ぶ。両者を合わせて、「本発明の製造方法」とも呼ぶ。また、上記[6]〜[8]の多孔質ポリイミド膜を、以下で「本発明の多孔質ポリイミド膜」とも呼ぶ。
本発明の方法で製造される多孔質ポリイミド膜は、
1)膜の断面構造は大部分が対称構造であり、各種平膜材料として使う場合に非常に利用しやすく、
2)大きな空孔率を得ることができ、例えば絶縁基板として用いると誘電率を低くすることができ、
3)両表面及び支持層ともに、一方の表面から他方の表面に至る連通孔を有するために、物質の充填や移動が容易であり、
4)マクロボイドを有するために物質の充填量を大きくすることができ、
5)両表面の平滑性に優れ、
6)両表面層と支持部とが大部分がラダー構造であるため、かさ密度に比して相対的に強度が高く、高空孔率にもかかわらず膜厚み方向への圧縮応力に対して耐力があり寸法安定性が高く、250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率が小さい、などの優れた効果を有する。本発明の方法により、上記の優れた効果を有する多孔質ポリイミド膜を簡便かつ効率的に製造することができる。
図1(a)は、本発明の多孔質ポリイミド膜の好ましい一実施態様の平面断面図であり、図1(b)は、図1(a)のB−B線断面図である。 図2は、本発明の多孔質ポリイミド膜の好ましい一実施態様の拡大側面断面図である。 図3は、実施例3で得られた多孔質ポリイミド膜の表面層(a)、表面層(b)、及び断面の走査型電子顕微鏡写真である。 図4は、実施例6で得られた多孔質ポリイミド膜の表面層(a)、表面層(b)、及び断面の走査型電子顕微鏡写真である。 図5は、比較例3及び実施例7で得られた多孔質ポリイミド膜の表面層(a)及び表面層(b)の走査型電子顕微鏡写真である。
1.本発明の多孔質ポリイミド膜について
本発明の多孔質ポリイミド膜の好ましい実施態様について図面を参照しながら説明する。図1(a)は、本発明の多孔質ポリイミド膜の好ましい一実施態様の平面断面図であり、図1(b)は、図1(a)のB−B線断面図である。図2は、本発明の多孔質ポリイミド膜の好ましい一実施態様の拡大側面断面図である。
図1及び2に示すように、本発明の多孔質ポリイミド膜1は、2つの表面層2及び4(表面層(a)及び(b))と、当該表面層2及び4の間に挟まれたマクロボイド層3とを有する三層構造の多孔質ポリイミド膜である。
表面層2及び4の厚さはそれぞれ、0.1〜50μmであり、ポリイミド膜の強度の観点から、好ましくは0.5〜10μm、より好ましくは1〜9μm、更に好ましくは2〜8μm、特に好ましくは2〜7μmである。ポリイミド膜を各種平膜材料として使う観点からは、表面層2及び4の厚さは略同一であることが好ましい。
表面層2及び4はそれぞれ、複数の細孔25及び45を有する。本発明では、少なくとも一方の表面層における細孔の平均孔径は、5μmを超え200μm以下であり、好ましくは5.5〜200μm、より好ましくは7〜200μm、更に好ましくは10〜200μm、特に好ましくは10〜100μmである。このとき、他方の表面層における細孔の平均孔径は、0.01〜200μmであり、好ましくは1〜200μm、より好ましくは5.5〜200μm、更に好ましくは10〜100μm、特に好ましくは15〜70μmである。表面層2及び4がともに、平均孔径5μmを超え200μm以下の複数の細孔を有することが好ましい。
表面層2及び4のうち、一方の表面開口率は10%以上、好ましくは15%以上、更に好ましくは20%以上であり、他方の表面開口率は5%以上、好ましくは10%以上、更に好ましくは20%以上である。このような表面開口率は、多孔質ポリイミド膜の外部とマクロボイドとの間の物質移動を良好にする点で有利である。
また、細孔25及び45の最大孔径は、好ましくは500μm以下、より好ましくは0.1〜500μm、更に好ましくは0.1〜200μmである。細孔25及び45は、マクロボイド31に連通している。
このように、本発明のポリイミド膜は、一方の表面から他方の表面に至る連通孔を有するために物質の充填や移動が容易であり、気体等の物質透過性に優れる。その一方で、膜表面に形成された細孔の平均孔径が小さいため所定のサイズの物質のみを通過させることができ、本発明のポリイミド膜はフィルタリング機能を有する。また、膜表面に形成された細孔の平均孔径が小さいため、本発明のポリイミド膜の膜表面は平滑性が優れる。
マクロボイド層3は、複数のマクロボイド31と、隣接するマクロボイド31同士を隔てる隔壁32とを有する。マクロボイド31は、隔壁32並びに表面層2及び4によって囲まれた空間であり、膜平面方向の平均孔径は10〜500μmであり、好ましくは10〜100μm、より好ましくは10〜80μmである。マクロボイド層3を膜平面方向に対して平行に切断したときの断面は、図1(a)に模式的に示すように、ハニカム構造またはそれに類似する構造であり、所定の孔径を有する複数のマクロボイドが隔壁を挟んで密接して存在している。すなわち、本発明のポリイミド膜は、いわゆる「ハニカムサンドウィッチ構造」を有する。なお、本明細書における「ハニカム構造」とは、個々に区分された多数の空間部が密集している構造を意味するにすぎず、前記空間部が正確に断面六角形になった構造のみを意味するものではない。
マクロボイド31により、本発明のポリイミド膜は大きな空間を有し、空孔率が高い。そのため、例えば絶縁基板として用いた場合には誘電率を低くすることができ、また、物質をボイド中に充填する場合にはその充填量を大きくすることができる。
隣接するマクロボイド31同士を隔てる隔壁32の厚さは、0.1〜50μmであり、ポリイミド膜1の強度及び隣接するマクロボイド31同士の連通性の観点から、好ましくは1〜15μm、より好ましくは2〜12μm、更に好ましくは3〜10μm、特に好ましくは4〜8μmである。隔壁32と表面層2及び4との厚さは略同一であることが好ましい。
図1(b)に示される通り、本発明のポリイミド膜は複数の隔壁を有するが、少なくとも1つの隔壁は、1つまたは複数の孔35を有する。孔35の平均孔径は、特に限定されないが、好ましくは0.01〜100μmであり、より好ましくは0.01〜50μmであり、更に好ましくは0.01〜20μmであり、一層好ましくは0.01〜10μm、特に好ましくは0.02〜2μmである。
このように、本発明のポリイミド膜は、連通するマクロボイドを有しているので、物質の充填や膜平面方向への移動が容易であり、気体等の物質透過性に優れる。その一方で、隔壁に形成された細孔の平均孔径が小さいためマクロボイド中に物質を閉じ込めることができる。
図1(b)及び2に示すように、隔壁32は、表面層2及び4に結合している。隔壁32は、隣接するマクロボイド31同士を隔てる役割を有すると共に、表面層2及び4を支持する支持部としての役割を有する。このため、本発明のポリイミド膜は、高空孔率にもかかわらず膜厚み方向への圧縮応力に対して耐力があり、寸法安定性が高い。
本発明のポリイミド膜を膜平面方向に対して垂直に切断したときの断面において、隔壁32並びに表面層2及び4はラダー形状に構成されている。すなわち、隔壁32は、ほぼ一定の間隔で、膜平面方向に対してほぼ垂直方向に形成されて表面層2及び4に結合している。
物質透過性の観点から、本発明のポリイミド膜を膜平面方向に対して垂直に切断した断面において、膜平面方向の平均孔径が10〜500μmのマクロボイドの断面積は、膜断面積に対して好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは75%以上であり、また、好ましくは98%以下、より好ましくは95%以下、更に好ましくは90%以下、特に好ましくは85%以下である。
また、物質透過性、軽量性、及び膜の構造保持性の観点から、本発明のポリイミド膜を膜平面方向に対して垂直に切断した断面において、膜平面方向の平均孔径が10〜500μmのマクロボイドの膜平面方向の長さ(L)と膜厚み方向の長さ(d)との比(L/d)は、好ましくは0.5〜3、より好ましくはL/d=0.8〜3、更に好ましくはL/d=1〜3、特に好ましくはL/d=1.2〜3の範囲内である。そして、そのようなL/dを満たす前記マクロボイドの数が、60%以上であることが好ましく、70%以上であることがより好ましく、75〜100%であることが更に好ましい。なお、マクロボイドの膜厚み方向の長さ(d)は、マクロボイドの膜厚み方向の最大長さであり、マクロボイドの膜平面方向の長さ(L)は、マクロボイドの膜平面方向の最大長さである。
本発明のポリイミド膜の総膜厚は5〜500μmであり、力学強度の観点から、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは25μm以上であり、好ましくは300μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下である。
また、本発明のポリイミド膜の空孔率は60〜95%であり、物質透過性、力学強度、及び膜の構造保持性の観点から、好ましくは70〜92%、より好ましくは71〜85%、更に好ましくは71〜80%の範囲である。
また、通気性の観点から、本発明のポリイミド膜のガーレー値(0.879g/m2の圧力下で100ccの空気が膜を透過するのに要する秒数)は、好ましくは20秒/100cc以下、より好ましくは10秒/100cc以下、更に好ましくは5秒/100cc以下、一層好ましくは2秒/100cc以下であり、特に好ましくは0.5秒/100cc以下であり、下限値は特に限定されないが、好ましくは測定限界以上である。ガーレー値は、JIS P8117に準拠して測定することができる。本発明のポリイミド膜は、通気性が非常に優れる。
本発明のポリイミド膜は、250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率が、好ましくは5%以下、より好ましくは3%以下、更に好ましくは0〜1%である。また、ASTM D1204に準拠した200℃、2時間での膜平面方向における寸法安定性が、好ましくは±1%以内、より好ましくは±0.8%以内、更に好ましくは±0.5%以内である。
また、本発明のポリイミド膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が、240℃以上であるか、又は300℃以上で明確な転移点がないことが好ましい。
本発明の多孔質ポリイミド膜は、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを主たる成分とする多孔質ポリイミド膜であり、好ましくはテトラカルボン酸二無水物とジアミンとから得られるポリイミドからなる多孔質ポリイミド膜である。
テトラカルボン酸二無水物は、任意のテトラカルボン酸二無水物を用いることができ、所望の特性などに応じて適宜選択することができる。テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)などのビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン−3,4,3’,4’−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ビフェニル二無水物、2,2−ビス〔(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等を挙げることができる。また、2,3,3’,4’−ジフェニルスルホンテトラカルボン酸等の芳香族テトラカルボン酸を用いることも好ましい。これらは単独でも、2種以上を組み合わせて用いることもできる。
これらの中でも、特に、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種の芳香族テトラカルボン酸二無水物が好ましい。ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を好適に用いることができる。
ジアミンは、任意のジアミンを用いることができる。ジアミンの具体例として、以下のものを挙げることができる。
1)1,4−ジアミノベンゼン(パラフェニレンジアミン)、1,3−ジアミノベンゼン、2,4−ジアミノトルエン、2,6−ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン、
2)4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノベンズアニリド、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノ−4,4’−ジクロロベンゾフェノン、3,3’−ジアミノ−4,4’−ジメトキシベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン、
3)1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)−4−トリフルオロメチルベンゼン、3,3’−ジアミノ−4−(4−フェニル)フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジ(4−フェニルフェノキシ)ベンゾフェノン、1,3−ビス(3−アミノフェニルスルフィド)ベンゼン、1,3−ビス(4−アミノフェニルスルフィド)ベンゼン、1,4−ビス(4−アミノフェニルスルフィド)ベンゼン、1,3−ビス(3−アミノフェニルスルホン)ベンゼン、1,3−ビス(4−アミノフェニルスルホン)ベンゼン、1,4−ビス(4−アミノフェニルスルホン)ベンゼン、1,3−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(3−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン、
4)3,3’−ビス(3−アミノフェノキシ)ビフェニル、3,3’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス〔3−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(3−アミノフェノキシ)フェニル〕メタン、ビス〔3−(4−アミノフェノキシ)フェニル〕メタン、ビス〔4−(3−アミノフェノキシ)フェニル〕メタン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
これらの中でも、芳香族ジアミン化合物が好ましく、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。
多孔質ポリイミド膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が240℃以上であるか、又は300℃以上で明確な転移点がないテトラカルボン酸二無水物とジアミンとを組み合わせて得られるポリイミドから形成されていることが好ましい。
本発明の多孔質ポリイミド膜は、耐熱性、高温下での寸法安定性の観点から、以下の芳香族ポリイミドからなる多孔質ポリイミド膜であることが好ましい。(i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、(ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、及び/又は、(iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
本発明の多孔質ポリイミド膜は、気体などの物質透過性に優れるために、気体用フィルタ、液体用フィルタ、通気部品などの用途に好適に用いることができる。
また、ポリイミドは他のプラスチックに比べて耐熱性に優れるため、本発明の多孔質ポリイミド膜は250℃以上の使用温度領域でも使用することができる。具体例としては、携帯電話のマイク等の音響部品の保護膜が挙げられ、ハンダ加工時に熱履歴をかけても破壊されない。また、耐熱フィルタとしても利用することができる。従来用いられているアラミド不織布からなる耐熱フィルタは、使用により熱劣化し、中に含まれているバインダーが炭化して粉塵の発生源となりうるが、本発明の多孔質ポリイミド膜を用いた耐熱フィルタではそのような問題が生じることはない。また、車体塗装ブース内の熱風循環ラインに用の防塵耐熱フィルタにも用いることができる。
2.本発明の製造方法Aについて
本発明の多孔質ポリイミド膜の製造方法の一態様は、
(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、ここで、熱処理後の膜の縦方向及び横方向の収縮率をそれぞれ8%以下に抑制して、かつ前記熱処理において200℃以上の温度域での昇温速度が25℃/分以上である、
を含む、製造方法である。以下で「本発明の製造方法A」とも呼ぶ。
ポリアミック酸とは、テトラカルボン酸単位及びジアミン単位からなり、ポリイミド前駆体或いはその部分的にイミド化したポリイミド前駆体である。ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを重合することで得ることができる。ポリアミック酸を熱イミド化若しくは化学イミド化することにより、閉環してポリイミドとすることができる。本発明で使用されるポリアミック酸は、熱イミド化により作製することが好ましい。また、イミド化率が約80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上であることが好ましい。
テトラカルボン酸二無水物及びジアミンは、上記の1.で挙げたものを用いることができる。発明の多孔質ポリイミド膜の製造方法で使用されるポリアミック酸は、好ましくは、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種のテトラカルボン酸二無水物と、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンとから得られる。
ポリアミック酸を重合するための溶媒としては任意の有機極性溶媒を用いることができ、p−クロロフェノール、o−クロルフェノール、N−メチル−2−ピロリドン(NMP)、ピリジン、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、フェノール、クレゾールなどの有機極性溶媒などを用いることができ、特にN−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)を好ましく用いることができる。
ポリアミック酸は、テトラカルボン酸二無水物、ジアミン、及び上記の有機極性溶媒などを用いて任意の方法で製造することができる。例えば、テトラカルボン酸二無水物とジアミンと略等モルで、好ましくは約100℃以下、より好ましくは80℃以下、更に好ましくは0〜60℃、特に好ましくは20〜60℃の温度で、好ましくは約0.2時間以上、より好ましくは0.3〜60時間反応させることで、ポリアミック酸溶液を製造することができる。
ポリアミック酸溶液を製造するときに、分子量を調整する目的で、任意の分子量調整成分を反応溶液に加えてもよい。
本発明の製造方法Aで使用されるポリアミック酸の極限粘度数は、1.0〜3.0であり、好ましくは1.3〜2.8であり、より好ましくは1.4〜2.6である。極限粘度数が小さすぎると、膜の製造工程で力学強度の不足などにより膜が破壊することがあるので好ましくない。また、極限粘度数が高すぎると、熱イミド化工程において膜の収縮が大きすぎて破壊することがあるので、好ましくない。当該数値範囲の極限粘度数を有するポリアミック酸を用いることで、本発明の多孔質ポリイミド膜を良好に製造することができる。なお、ポリマー分子量と極限粘度数は因果関係があり、ポリマー分子量が増大すると極限粘度数は上昇する。
ポリアミック酸は、アミック酸の一部がイミド化していても、本発明に影響を及ぼさない範囲であればそれを用いることができる。
ポリアミック酸溶液は、ポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなる。ポリアミック酸の含有量が3質量%未満だと多孔質ポリイミド膜を作製した際のフィルム強度が低下し、60質量%を超えると多孔質ポリイミド膜の物質透過性が低下する。ポリアミック酸溶液におけるポリアミック酸の含有量は、好ましくは4〜40質量%、より好ましくは5〜20質量%、更に好ましくは6〜10質量%である。
ポリアミック酸溶液は、有機極性溶媒の存在下でテトラカルボン酸二無水物とジアミンを重合反応させて得られる溶液であってもよく、ポリアミック酸を有機極性溶媒に溶解させて得られる溶液であってもよい。
また、ポリアミック酸溶液の溶液粘度は、流延のしやすさ及びフィルム強度の観点から、好ましくは10〜10000ポアズ(1〜1000Pa・s)、より好ましくは100〜3000ポアズ(10〜300Pa・s)、更に好ましくは200〜2000ポアズ(20〜200Pa・s)、特に好ましくは300〜1000ポアズ(30〜100Pa・s)である。
(流延)
本発明の製造方法Aでは、まず、ポリアミック酸溶液を、フィルム状に流延する。流延方法は特に限定されず、例えば、ポリアミック酸溶液をドープ液として使用し、ブレードやTダイなどを用いてガラス板やステンレス板等の上に、ポリアミック酸溶液をフィルム状に流延することができる。また、連続の可動式のベルト又はドラム上に、ポリアミック酸溶液をフィルム状に断続的又は連続的に流延して、連続的に個片又は長尺状の流延物を製造することができる。ベルト又はドラムは、ポリアミック酸溶液及び凝固溶液に影響を受けないものであればよく、ステンレスなどの金属製、ポリテトラフルオロエチレンなどの樹脂製を用いることができる。また、Tダイからフィルム状に成形したポリアミック酸溶液をそのまま凝固浴に投入することもできる。また、必要に応じて流延物の片面又は両面を、水蒸気などを含むガス(空気、不活性ガスなど)と接触させてもよい。
(ポリアミック酸の多孔質膜の作製)
次に、流延物を、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸を析出させて多孔質化を行うことで、ポリアミック酸の多孔質膜を作製する。得られたポリアミック酸の多孔質膜は、必要に応じて洗浄及び/又は乾燥を行う。
水を必須成分とする凝固溶媒は、好ましくは、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液である。火災などの安全面、製造原価、及び得られる膜の均質性の確保の観点から、水と有機極性溶媒とを含む凝固溶媒を用いることがより好ましい。凝固溶媒に含有してもよい有機極性溶媒としては、ポリアミック酸の貧溶媒であるエタノール、メタノール等のアルコ−ル類、アセトン等が挙げられる。また、ポリマーを析出可能な範囲でポリアミック酸の良溶媒を加えても良い。具体的には、N−メチル−2−ピロリドン(NMP)、ピリジン、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミドを加えても良い。
凝固溶媒が水と有機極性溶媒との混合液である場合、凝固溶媒100質量%中の水の含有量は、好ましくは5質量%以上100質量%未満、より好ましくは20質量%以上100質量%未満、更に好ましくは30〜95質量%、特に好ましくは45〜90質量%である。凝固溶媒100質量%中の有機極性溶媒の含有量は、好ましくは0質量%を超え95質量%以下、より好ましくは0質量%を超え80質量%以下、更に好ましくは5〜70質量%、特に好ましくは10〜55質量%である。
凝固溶媒の温度は、目的に応じて適宜選択して用いればよく、例えば−30〜70℃、好ましくは0〜60℃、さらに好ましくは10〜50℃の範囲で行うことが好ましい。
(熱イミド化処理)
次に、得られたポリアミック酸の多孔質膜を熱処理してイミド化して多孔質ポリイミド膜を製造する。熱イミド化処理は、当該処理後の膜の縦方向(長手方向)及び横方向の収縮率をそれぞれ8%以下、好ましくは5%以下に抑制するように行われる。特に限定されないが、例えば、ポリアミック酸の多孔質膜を、ピン、チャック若しくはピンチロールなどを用いて支持体に固定し、大気中にて加熱することにより行うことができる。反応条件は、例えば280〜600℃、好ましくは300〜550℃の加熱温度で、1〜120分間、好ましくは2〜120分間、より好ましくは3〜90分間、さらに好ましくは5〜30分の加熱時間から適宜選択して行うことが好ましい。
本発明の製造方法Aでは、熱イミド化処理において200℃以上の温度域での昇温速度が、25℃/分以上、好ましくは50℃/分以上であり、昇温速度の上限値は特に限定する必要はないが、昇温速度の上限値を設定する場合は、50〜500℃/分、好ましくは50〜400/分、より好ましくは70〜300℃/分、さらに好ましくは120〜200℃/分である。イミド化反応が顕著に起こる200℃以上の温度域において上記の昇温速度で加熱することにより、表面開口率及び孔径が大幅に向上し、気体などの物質透過性が大幅に向上した本発明の多孔質ポリイミド膜を得ることができる。
本発明の多孔質ポリイミド膜は、用いるポリマーの種類、ポリマー溶液のポリマー濃度、粘度、有機溶液など、凝固条件(溶媒置換速度調整層の種類、温度、凝固溶媒など)などを適宜選択することにより、空孔率、膜厚、表面の平均孔径、最大孔径、中央部の平均孔径などを適宜設計することができる。
本発明の製造方法Aにおいて、上記のイミド化工程で得られた多孔質ポリイミド膜に対して、目的に応じて、少なくとも片面をコロナ放電処理、低温プラズマ放電或いは常圧プラズマ放電などのプラズマ放電処理、化学エッチングなどを施すことにより、膜の表面処理を行ってもよい。また、表面層(a)及び/又は(b)を面削りして用いてもよい。これらの処理は、当業者に周知の方法に従って行うことができる。表面開口径、表面開口率、及び親水性を向上させるために、多孔質ポリイミド膜の少なくとも片面にプラズマ放電処理を施すことが好ましい。
3.本発明の製造方法Bについて
本発明の多孔質ポリイミド膜の製造方法の別の態様は、
(1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、
(2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、及び、
(3)前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程
を含む、製造方法である。以下で「本発明の製造方法B」とも呼ぶ。
本発明の製造方法Bで使用される原料は、上記2.に記載したものを使用することができる。本発明の製造方法Bの工程(1)は、上記2.に記載した本発明の製造方法の工程(1)と同様に行うことができる。
(熱イミド化処理)
工程(1)の後、得られたポリアミック酸の多孔質膜を熱処理してイミド化して多孔質ポリイミド膜を製造する。特に限定されないが、熱イミド化処理は、当該処理後の膜の縦方向(長手方向)及び横方向の収縮率を、好ましくはそれぞれ40%以下、より好ましくは30%以下に抑制するように行われる。特に限定されないが、例えば、ポリアミック酸の多孔質膜を、ピン、チャック若しくはピンチロールなどを用いて支持体に固定し、大気中にて加熱することにより行っても良い。反応条件は、例えば280〜600℃、好ましくは300〜550℃の加熱温度で、1〜120分間、好ましくは2〜120分間、より好ましくは3〜90分間、さらに好ましくは5〜30分の加熱時間から適宜選択して行うことが好ましい。
本発明の製造方法Bの熱イミド化処理において、200℃以上の温度域での昇温速度は、特に限定されないが、例えば1℃/分以上であり、好ましくは、5℃/分以上、10℃/分以上、15℃/分以上、20℃/分以上、25℃/分以上、好ましくは50℃/分以上であり、昇温速度の上限値は特に限定する必要はないが、昇温速度の上限値を設定する場合は、例えば1〜500℃/分、好ましくは5〜400/分、より好ましくは5〜300℃/分、さらに好ましくは5〜200℃/分である。イミド化反応が顕著に起こる200℃以上の温度域において上記の昇温速度で加熱することにより、表面開口率及び孔径が大幅に向上し、気体などの物質透過性が大幅に向上した本発明の多孔質ポリイミド膜を得ることができる。
本発明の多孔質ポリイミド膜は、用いるポリマーの種類、ポリマー溶液のポリマー濃度、粘度、有機溶液など、凝固条件(溶媒置換速度調整層の種類、温度、凝固溶媒など)などを適宜選択することにより、空孔率、膜厚、表面の平均孔径、最大孔径、中央部の平均孔径などを適宜設計することができる。
本発明の製造方法Bにおいて、上記のイミド化工程で得られた多孔質ポリイミド膜に対して、少なくとも片面に、コロナ放電処理、低温プラズマ放電或いは常圧プラズマ放電などのプラズマ放電処理を施すことにより、膜の表面処理を行う。プラズマ放電処理は、当業者に周知の方法に従って行うことができる。
従来技術である特許文献1や2の方法では、所望の多孔質ポリイミド膜を製造するに当たり、極性基を有する有機化合物や極性基を有する高分子化合物を用いる。これらは、ポリアミック酸溶液組成物のフィルム状流延物への水の浸入を促進し、ポリイミド膜中のマクロボイドの形成を補助する。一方、本発明の製造方法では、フィルム状流延物への水の浸入を促進させるための物質を用いることなく、ポリアミック酸溶液中のポリアミック酸の分子量を一定の範囲とし、かつ熱イミド化工程における膜収縮を抑制することで所望の多孔質膜ポリイミド膜を製造することができる。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(多孔質ポリイミド膜の評価)
1)膜厚
膜厚みの測定は、接触式の厚み計で行った。
2)気体透過性
ガーレー値(0.879g/m2の圧力下で100ccの空気が膜を透過するのに要する秒数)の測定は、JIS P8117に準拠して行った。
3)寸法安定性
寸法安定性の測定は、200℃で2時間の条件で、ASTM D1204に準拠して行った。
4)表面の平均孔径
多孔質フィルム表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積の平均値から下式(1)に従って孔の形状が真円であるとした際の平均直径を計算より求めた。
(式中、Saは孔面積の平均値を意味する。)
5)表面の最大孔径
多孔質フィルム表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積から孔の形状が真円であるとした際の直径を計算し、その最大値を最大孔径とした。
6)空孔率
所定の大きさに切り取った多孔質フィルムの膜厚及び質量を測定し、目付質量から空孔率を下式(2)によって求めた。
(式中、Sは多孔質フィルムの面積、dは膜厚、wは測定した質量、Dはポリイミドの密度をそれぞれ意味する。ポリイミドの密度は1.37g/cm3とする。)
7)ガラス転移温度(℃)
固体粘弾性アナライザーを用いて、引張モード、周波数10Hz、ひずみ2%、窒素ガス雰囲気の条件で動的粘弾性測定を行い、その温度分散プロファイルにおいて損失正接が極大値を示す温度をガラス転移温度とした。
8)溶液粘度
溶液粘度の測定は、E型回転粘度計で行った。以下に測定手順を示す。
(i)製造例で調製したポリイミド溶液を密閉容器に入れ、30℃の恒温槽に10時間保持した。
(ii)E型粘度計(東京計器製、高粘度用(EHD型)円錐平板型回転式、コーンローター:1°34’)を用い、(i)で準備したポリイミド溶液を測定溶液として、温度30±0.1℃の条件で測定した。3回測定を行い、平均値を採用した。測定点に5%以上のばらつきがあった場合は、さらに2回の測定を行い5点の平均値を採用した。
9)ポリアミック酸の極限粘度数
極限粘度数(Limiting viscosity number)は、固有粘度(Intrinsic viscosity)と同義であり、重合体の無限希釈における還元粘度(Reduced viscosity:重合体の質量濃度c,に対する相対粘度の増加分ηrの比ηr/c)またはインヘレント粘度(Inherent viscosity : 相対粘度の自然対数の、重合体の質量濃度cに対する比)の極限値である。マーク−ホーウインク式(Mark-Houwink equation : ポリマーの固有粘度の分子量依存性を記述する以下の式、
を用いることにより、極限粘度数から分子量を求めることが出来る。
ここでは、ポリアミック酸が大気中で不安定な物質であること、GPC等の手段で分子量を求めることが困難であることから、分子量の指標として極限粘度数を用いた。
極限粘度数の測定は、厳密にはθ溶媒を用いてθ状態の希薄溶液を用いて行うべきだが、ポリアミック酸は溶媒分子との相互作用が大きくθ溶媒を作製する事が困難である。ポリアミック酸の場合は極限粘度数の測定に良溶媒を用いてもマーク−ホーウインク式で分子量を算出できるということが過去に報告されているため、本願実施例では、希釈溶媒としてN−メチル−2ピロリドン(以下NMPと記す)を用いた。
本願実施例では、以下の測定手順により極限粘度数を求めた。
(i)溶液濃度cが0.1,0.075,0.05,0.025,0.010〔g/dL〕になるように、測定対象のポリアミック酸のNMP溶液を調整した。溶液は、嫌気雰囲気中で1週間の間連続して攪拌操作を施した。
(ii)Ubbelohde型希釈粘度計を用いて30℃の恒温槽中で、NMPの流下時間を測定した。続けて(i)で作製した溶液についても各々流下時間を測定した。いずれの測定も3回行い、平均値を採用した。測定時間のばらつきが3%以上であった場合は、更に2回の追加測定を行い小さい値から3点の平均値を取り、採用値とした。
(iii)上記(ii)の測定値から比粘度ηspを算出し、y 軸をηsp/c、x 軸をcにしたグラフを作成した(Hugginsプロット)。プロット点をグラフソフトで直線回帰分析を行い回帰直線の切片から極限粘度数を求めた。回帰直線のR2が0.900以下であった場合は、再度溶液を作製し、再測定を行った。
10)熱イミド化時の膜の収縮率熱
イミド化時の収縮率は、以下の手順で測定した。
(i)熱イミド化前のポリアミック酸膜に顔料系黒インクで10cmの間隔で黒点を記す。
(ii)熱イミド化後に黒点間の距離を計測し(L1)、以下の式で収縮率を求めた。
調製例1
(ポリアミック酸溶液組成物Aの調製)
500mlのセパラブルフラスコに、N−メチル−2−ピロリドン(NMP)を溶媒として用いて、酸無水物として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)を、ジアミンとして4,4’−ジアミノジフェニルエーテルを、酸無水物/ジアミンのモル比0.992、ポリマー濃度が9質量%になる量を測り取って投入した。その後、撹拌羽、窒素導入管、排気管を取り付けたセパラブルカバーで蓋をし、撹拌操作を30時間継続した。撹拌を終了し、フラスコ内のドープを加圧ろ過器(濾紙:アドバンテック東洋(株)製:粘稠液用濾紙No.60)でろ過して、ポリアミック酸溶液組成物Aを得た。溶液組成物Aは粘稠な液体であり粘度は300ポイズであった。また、極限粘度数は1.4であった。
調製例2
(ポリアミック酸溶液組成物Bの調製)
酸無水物/ジアミンのモル比を0.995、ポリマー濃度を7質量%とした以外は、参考例1と同様の操作を行い、ポリアミック酸溶液組成物Bを得た。溶液組成物Bは粘稠な液体であり粘度は400ポイズであった。また、極限粘度数は2.5であった。
調製例3
(ポリアミック酸溶液組成物Cの調製)
酸無水物/ジアミンのモル比を0.999とした以外は参考例1と同様の操作を行い、ポリアミック酸溶液組成物Cを得た。溶液組成物Cは粘稠な液体であり粘度は950ポイズであった。また、極限粘度数は3.2であった。
実施例1〜3
ポリアミック酸溶液組成物Aを用いる多孔質ポリイミド膜の製造及びその特性
室温下で、卓上の自動コーターを用いて、表面に鏡面研磨を施したステンレス製の20cm角の基板上に、調製例1で調製したポリアミック酸溶液組成物Aを厚さ約100〜200μmで、均一に流延塗布した。その後、90秒間、温度23℃、湿度40%の大気中に放置し、その後、凝固浴(水80質量部/NMP20質量部、室温)中に基板全体を投入した。投入後、8分間静置し、基板上にポリアミック酸膜を析出させた。その後、基板を浴中から取りだし、基板上に析出したポリアミック酸膜を剥離した後に、純水中に3分間浸漬し、ポリアミック酸膜を得た。このポリアミック酸膜を温度23℃、湿度40%の大気中で乾燥させた後、10cm角のピンテンタ−に張りつけて四辺を拘束した。電気炉内にセットして約10℃/分の昇温速度で150℃まで加熱し、その後、表1に示す昇温速度で表1に示す最高温度まで加熱し、そのまま3分間保持する温度プロファイルで熱処理を行い、多孔質ポリイミド膜を得た。得られた多孔質ポリイミド膜の、膜厚み、空孔率、ガーレー値を表1に示す。熱イミド化時の収縮率はいずれも5%以下であった。
多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、いずれの膜も膜横方向の長さ10μm以上のマクロボイドが多数確認でき、
・横方向の長さ5μm以上のボイド中、横方向の長さ(L)と膜厚み方向の長さ(d)との比がL/d=0.5〜3の範囲に入るボイドの数が60%以上であることを確認した。
・膜横方向の長さ10μm以上のマクロボイドを多数有し、その断面積が総断面積の60%以上であること確認できた。
多孔質ポリイミド膜のガラス転移温度は、約280℃であり、寸法安定性は200℃で1%以内であった。250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率は、1%以下であった。
また、多孔質ポリイミド膜の表面を走査型電子顕微鏡で観察したところ、基板側の表面には連通する孔を多数有する多孔質構造であり、表面の平均孔径がいずれも5.0μm以上であり、表面開口率は10%以上であることを確認した。また、反対の面は、平均孔径が3.0μm以上であり表面開口率は15%以上であることを確認した。
実施例4〜6
ポリアミック酸溶液組成物Bを用いる多孔質ポリイミド膜の製造及びその特性
ポリアミック酸溶液組成物Aの代わりにポリアミック酸溶液組成物Bを用いた以外は実施例1と同様の操作を行った。熱処理条件は表2に従った。得られた多孔質ポリイミド膜の膜厚み、空孔率及びガーレー値を表2に示す。熱イミド化時の収縮率はいずれも7%以下であった。
多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、膜横方向の長さ10μm以上のマクロボイドが多数確認でき、
・横方向の長さ5μm以上のボイド中、横方向の長さ(L)と膜厚み方向の長さ(d)との比がL/d=0.5〜3の範囲に入るボイドの数が60%以上であることを確認した。
・膜横方向の長さ10μm以上のマクロボイドを多数有し、その断面積が総断面積の60%以上であること確認できた。
多孔質ポリイミド膜のガラス転移温度は、約280℃であり、寸法安定性は200℃で1%以内であった。250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率は、1%以下であった。
また、多孔質ポリイミド膜の表面を走査型電子顕微鏡で観察したところ、基板側の表面には連通する孔を多数有する多孔質構造であり、表面の平均孔径がいずれも6.0μm以上であり、表面開口率は12%以上であることを確認した。また、反対の面は、平均孔径が4.0μm以上であり表面開口率は17%以上であることを確認した。
実施例1、2及び5の表面開口率、表面開口径、及びマクロボイドの平面方向の平均孔径を表3に示す。
比較例1及び2
ポリアミック酸溶液組成物Cを用いる多孔質ポリイミド膜の製造及びその特性
ポリアミック酸溶液組成物Aの代わりにポリアミック酸溶液組成物Cを用いた以外は実施例1と同様の操作を行った。熱処理条件は表4に従った。その結果、熱イミド化工程において、膜の収縮が激しく、拘束していた四辺から膜に亀裂が入り、膜が破断してしまった。破断した膜をSEM観察した結果、表面の開口率が10%以下であることを確認した。
比較例3及び4
熱イミド化時にピンシートに膜を貼り付ける際に、10%のたるみを持たせて貼り付ける以外は実施例1と同様の操作を行って多孔質ポリイミド膜を得た。SEM観察した結果、いずれの表面の開口率も10%以下であることを確認した。水の接触角は70度以上であった。結果を表5に示す。熱イミド化時の収縮率はいずれも9%以上であった。
実施例7及び8
多孔質ポリイミド膜へのプラズマ処理
比較例3及び4の多孔質ポリイミド膜の片面に常圧プラズマ処理を60秒間施した。その結果、表面の開口率がそれぞれ10%以上、7%以上に向上した。また、水の接触角15度以下になった。プラズマ処理後の多孔質膜の特性を表6に示す。
本発明の多孔質ポリイミドは、気体などの物質透過性に優れ、気体用フィルタ、液体用フィルタ、通気部品などの用途に好適に用いることができる。本発明の方法は、そのような多孔質ポリイミドを簡便かつ効率的に製造することができる。
1 多孔質ポリイミド膜
2 表面層(a)
25 細孔
3 マクロボイド層
31 マクロボイド
32 隔壁(支持部)
35 孔
4 表面層(b)
45 細孔

Claims (7)

  1. 2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
    前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
    前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
    前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
    前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
    総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%である、多孔質ポリイミド膜の製造方法であって、
    (1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
    (2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、ここで、熱処理後の膜の縦方向及び横方向の収縮率をそれぞれ8%以下に抑制して、かつ前記熱処理において200℃以上の温度域での昇温速度が25℃/分以上である、
    を含む、多孔質ポリイミド膜の製造方法。
  2. 前記ポリアミック酸が、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種のテトラカルボン酸二無水物と、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンとから得られる、請求項1に記載の多孔質ポリイミド膜の製造方法。
  3. 前記の水を必須成分とする凝固溶媒が、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液である、請求項1又は2に記載の多孔質ポリイミド膜の製造方法。
  4. 前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程をさらに含む、請求項1〜3のいずれか1項に記載の多孔質ポリイミド膜の製造方法。
  5. 2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
    前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
    前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
    前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
    前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
    総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%である、多孔質ポリイミド膜の製造方法であって、
    (1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、
    (2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、及び、
    (3)前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程
    を含む、多孔質ポリイミド膜の製造方法。
  6. 2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
    前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
    前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
    前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
    前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
    総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%であり、
    以下の工程:
    (1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
    (2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、ここで、熱処理後の膜の縦方向及び横方向の収縮率をそれぞれ8%以下に抑制して、かつ前記熱処理において200℃以上の温度域での昇温速度が25℃/分以上である、
    を含む方法で製造される、多孔質ポリイミド膜。
  7. 2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
    前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10〜500μmである複数のマクロボイドとを有し、
    前記マクロボイド層の隔壁は、厚さが0.1〜50μmであり、ここで、少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する1つまたは複数の孔を有し、
    前記表面層(a)及び(b)はそれぞれ、厚さが0.1〜50μmであり、少なくとも一方の表面層が平均孔径5μmを超え200μm以下の複数の細孔を有し、他方の表面層は平均孔径0.01〜200μmの複数の細孔を有し、少なくとも一方の表面層の表面開口率が10%以上であり、他方の表面層の表面開口率が5%以上であり、
    前記の表面層(a)及び(b)における細孔が前記マクロボイドに連通しており、
    総膜厚が5〜500μmであり、ガーレー値が20秒/100cc以下であり、空孔率が60〜95%であり、
    以下の工程:
    (1)テトラカルボン酸単位及びジアミン単位からなる極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、
    (2)前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程、及び、
    (3)前記工程(2)で得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施す工程
    を含む方法で製造される、多孔質ポリイミド膜。
JP2018530317A 2016-07-25 2017-07-25 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜 Active JP6750679B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016145811 2016-07-25
JP2016145811 2016-07-25
PCT/JP2017/026935 WO2018021356A1 (ja) 2016-07-25 2017-07-25 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜

Publications (2)

Publication Number Publication Date
JPWO2018021356A1 true JPWO2018021356A1 (ja) 2019-05-16
JP6750679B2 JP6750679B2 (ja) 2020-09-02

Family

ID=61015983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530317A Active JP6750679B2 (ja) 2016-07-25 2017-07-25 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜

Country Status (8)

Country Link
US (1) US10968328B2 (ja)
EP (1) EP3489291B1 (ja)
JP (1) JP6750679B2 (ja)
KR (1) KR102189214B1 (ja)
CN (1) CN109563300B (ja)
CA (1) CA3031920C (ja)
SG (1) SG11201900719UA (ja)
WO (1) WO2018021356A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314524B2 (ja) * 2019-02-14 2023-07-26 富士フイルムビジネスイノベーション株式会社 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
JP7326785B2 (ja) * 2019-03-14 2023-08-16 Ube株式会社 多孔質ポリイミド膜及びその製造方法
KR20200132203A (ko) 2019-05-16 2020-11-25 최유경 폴리이미드 필름, 이의 제조방법 및 이를 포함하는 연성인쇄회로기판
CN112111219B (zh) * 2019-06-20 2023-04-14 东京应化工业株式会社 清漆组合物、聚酰亚胺多孔质膜的前体膜及其制造方法、以及聚酰亚胺多孔质膜的制造方法
KR102306950B1 (ko) 2021-02-05 2021-09-29 최유경 폴리이미드 필름, 이의 제조방법 및 이를 포함하는 연성인쇄회로기판
CN114316348B (zh) * 2021-12-01 2023-03-24 中国科学院化学研究所 一种长碳链聚酰胺多孔膜及其制备方法
CN118005921A (zh) * 2024-02-03 2024-05-10 大连理工大学盘锦产业技术研究院 一种可用于柔性显示的高透明聚酰亚胺膜材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205058A (ja) * 2000-01-21 2001-07-31 Korea Inst Of Science & Technology 非対称性ポリイミド分離膜の製造方法
JP2003080538A (ja) * 2001-09-10 2003-03-19 Nissan Chem Ind Ltd ポリイミド多孔質膜およびその製造法
JP2005038687A (ja) * 2003-07-14 2005-02-10 Nitto Denko Corp 高誘電体シート、その製造方法、配線回路基板およびその製造方法
WO2010038873A1 (ja) * 2008-10-02 2010-04-08 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP2011001434A (ja) * 2009-06-17 2011-01-06 Ube Industries Ltd ポリイミド多孔質体の製造方法、及びポリイミド多孔質体
WO2011043467A1 (ja) * 2009-10-09 2011-04-14 宇部興産株式会社 着色ポリイミド成形体及びその製造方法
WO2011125988A1 (ja) * 2010-04-07 2011-10-13 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP2011219586A (ja) * 2010-04-07 2011-11-04 Ube Industries Ltd 多孔質ポリイミド膜及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209608A (en) * 1981-06-22 1982-12-23 Ube Ind Ltd Preparation of composite polyimide separation film
US6565962B2 (en) 2001-07-23 2003-05-20 Ube Industries, Ltd. Polyimide porous film
JP2004359860A (ja) * 2003-06-05 2004-12-24 Ube Ind Ltd 微細貫通パスを有するポリイミド多孔質膜及びその製造方法
JP5223532B2 (ja) 2008-08-08 2013-06-26 株式会社Ihi 水柱観測装置及び水柱観測方法
JP2011125988A (ja) 2009-12-21 2011-06-30 Disco Abrasive Syst Ltd 研削装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205058A (ja) * 2000-01-21 2001-07-31 Korea Inst Of Science & Technology 非対称性ポリイミド分離膜の製造方法
JP2003080538A (ja) * 2001-09-10 2003-03-19 Nissan Chem Ind Ltd ポリイミド多孔質膜およびその製造法
JP2005038687A (ja) * 2003-07-14 2005-02-10 Nitto Denko Corp 高誘電体シート、その製造方法、配線回路基板およびその製造方法
WO2010038873A1 (ja) * 2008-10-02 2010-04-08 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP2011001434A (ja) * 2009-06-17 2011-01-06 Ube Industries Ltd ポリイミド多孔質体の製造方法、及びポリイミド多孔質体
WO2011043467A1 (ja) * 2009-10-09 2011-04-14 宇部興産株式会社 着色ポリイミド成形体及びその製造方法
WO2011125988A1 (ja) * 2010-04-07 2011-10-13 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP2011219586A (ja) * 2010-04-07 2011-11-04 Ube Industries Ltd 多孔質ポリイミド膜及びその製造方法

Also Published As

Publication number Publication date
WO2018021356A1 (ja) 2018-02-01
CA3031920C (en) 2021-04-13
CN109563300A (zh) 2019-04-02
SG11201900719UA (en) 2019-02-27
CA3031920A1 (en) 2018-02-01
KR20190029607A (ko) 2019-03-20
EP3489291B1 (en) 2024-04-03
EP3489291A1 (en) 2019-05-29
EP3489291A4 (en) 2020-03-04
KR102189214B1 (ko) 2020-12-09
JP6750679B2 (ja) 2020-09-02
US20190263997A1 (en) 2019-08-29
US10968328B2 (en) 2021-04-06
CN109563300B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
JP5641042B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5577804B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5577803B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5636960B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP6750679B2 (ja) 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜
JP5720574B2 (ja) 着色ポリイミド成形体及びその製造方法
JP6330261B2 (ja) ポリマー多孔質膜の製造方法及びポリマー多孔質膜
JP2011001434A (ja) ポリイミド多孔質体の製造方法、及びポリイミド多孔質体
JP7326785B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP2009162297A (ja) オイル供給部材
JP2008254937A (ja) 目的とする形状の炭素質フィルムを得るための製造方法
JP6286871B2 (ja) ポリイミド多孔質膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6750679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250