[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2017212529A1 - 光学素子の製造方法、及び光学素子の製造装置 - Google Patents

光学素子の製造方法、及び光学素子の製造装置 Download PDF

Info

Publication number
JPWO2017212529A1
JPWO2017212529A1 JP2018522188A JP2018522188A JPWO2017212529A1 JP WO2017212529 A1 JPWO2017212529 A1 JP WO2017212529A1 JP 2018522188 A JP2018522188 A JP 2018522188A JP 2018522188 A JP2018522188 A JP 2018522188A JP WO2017212529 A1 JPWO2017212529 A1 JP WO2017212529A1
Authority
JP
Japan
Prior art keywords
discharge amount
nozzle
optical element
opening
opening area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018522188A
Other languages
English (en)
Inventor
花野 和成
和成 花野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2017212529A1 publication Critical patent/JPWO2017212529A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)

Abstract

光学素子の製造方法は、光を透過する透過性材料を第1の吐出量で吐出して光学素子(5)の曲面(43)を支える基部(41)を形成する基部形成工程と、前記第1の吐出量より少ない第2の吐出量で前記透過性材料を前記基部に対して吐出して、前記曲面を形成する曲面形成工程と、を具備する。

Description

本発明の実施形態は、光学素子の製造方法、及び光学素子の製造装置に関する。
例えば紫外線などが照射された場合に硬化する樹脂材料をノズルから吐出し、吐出された液滴に紫外線を照射することにより立体物を製造する所謂3Dプリンタが実用化されている。例えば、日本国特開2000−296561号公報には、3Dプリンタとしての造形装置が記載されている。
3Dプリンタにより例えば光学素子などの精細な形状が要求される立体物を製造することが想定される。例えば、ノズルからの液滴の吐出量を少なくすることにより、精細な形状が要求される立体物を製造することが可能になる。しかしながら、液滴の吐出量が少ない場合、立体物の形成に要する液滴の吐出回数が増える。この結果、立体物の製造に要する時間が増加するという課題がある。
本発明は、高い形状精度と製造に要する時間の短縮とを両立することが可能な光学素子の製造方法、及び光学素子の製造装置を提供することを目的とする。
一実施形態に係る光学素子の製造方法は、光を透過する透過性材料を第1の吐出量で吐出して光学素子の曲面を支える基部を形成する基部形成工程と、前記第1の吐出量より少ない第2の吐出量で前記透過性材料を前記基部に対して吐出して、前記曲面を形成する曲面形成工程と、を具備する。
本発明によれば、高い形状精度と製造に要する時間の短縮とを両立することが可能な光学素子の製造方法、及び光学素子の製造装置を提供することができる。
図1は、一実施形態に係る3Dプリンタの例について説明する為の図である。 図2は、一実施形態に係る可変ノズルの構成例について説明する為の図である。 図3は、一実施形態に係る可変ノズルの構成例について説明する為の図である。 図4は、一実施形態に係る光学素子の基部の一部を形成する工程の例について説明する為の図である。 図5は、一実施形態に係る光学素子の表層部の一部を形成する工程の例について説明する為の図である。 図6は、一実施形態に係る光学素子の例について説明する為の図である。 図7は、一実施形態に係る光学素子の樹脂構造の例について説明する為の図である。 図8は、一実施形態に係る光学素子の樹脂構造の例について説明する為の図である。 図9は、他の実施形態に係る3Dプリンタの例について説明する為の図である。 図10は、他の実施形態に係るノズルの構成例について説明する為の図である。 図11は、他の実施形態に係る光学素子の基部の一部を形成する工程の例について説明する為の図である。 図12は、他の実施形態に係る光学素子の表層部の一部を形成する工程の例について説明する為の図である。 図13は、他の実施形態に係る光学素子の例について説明する為の図である。
実施形態
以下、光学素子の製造方法、及び撮像装置の製造方法について詳細に説明する。
本実施形態では、3次元データに基づいて立体物を製造する所謂3Dプリンタにより撮像装置に用いられるレンズユニットの光学素子を形成する。なお、3Dプリンタの例として、光(例えば紫外線)により硬化する液体状の樹脂を吐出させ、紫外線により樹脂を硬化させて立体物を形成するインクジェット方式の3Dプリンタを例に挙げて説明するが、3Dプリンタはインクジェット方式に限定されない。3Dプリンタの造形の方式は、液体状の樹脂を吐出する方式であれば如何なるものであってもよい。
また、本実施形態では、3Dプリンタは、光を透過する樹脂材料(透過性材料)によってレンズユニットの光学素子の部分を形成する。
また、本実施形態における3次元データは、幅と奥行きと高さとを有する3次元空間内における形状データである。以下、例えば、幅方向をX方向とし、奥行き方向をY方向とし、高さ方向をZ方向とする。形状データは、X方向における位置と、Y方向における位置と、Z方向における位置とから定まる座標毎の材料に関する情報を含む。材料に関する情報は、例えば透過性材料の吐出量を示す情報である。なお、3次元データは、例えば3D−CAD、または3D−CGなどのデータを3Dプリンタの分解能に応じて変換されたデータであってもよい。
(第1の実施形態)
図1は、第1の実施形態に係る3Dプリンタ1の例について説明する為の説明図である。3Dプリンタ1は、光学素子を製造する光学素子の製造装置である。3Dプリンタ1は、プリントヘッド2、ステージ3、位置決め機構4、及び制御部6を備える。
プリントヘッド2は、液体状の樹脂を液滴として吐出する。プリントヘッド2は、可変ノズル11、及び紫外線ランプ13を備える。また、プリントヘッド2は、透過性材料が充填された図示されない圧力室を備える。例えばプリントヘッド2は、3次元データに応じて圧力室内の圧力を制御することにより、圧力室内の液体状の樹脂を可変ノズル11に送り出す。
可変ノズル11は、圧力室内の透過性材料を液滴として吐出する。可変ノズル11は、圧力室から押し出された樹脂を吐出する開口部と、開口部の面積を切り替える為の開閉機構を備える。可変ノズル11は、開閉機構によって開口部の形状を変形させることによって開口部の面積を切り替える。例えば、可変ノズル11は、開口部の面積を第1の開口面積と、第1の開口面積よりも小さい第2の開口面積とで切り替える。これによって、可変ノズル11は、開口部から吐出する液滴の吐出量を第1の吐出量と第2の吐出量とで切り替える。
紫外線ランプ13は、可変ノズル11から吐出された液滴に対して紫外線を照射することにより液滴を硬化させ、立体物の一部の構造(樹脂構造と称する)を形成する。紫外線ランプ13は、可変ノズル11から液滴を吐出した場合に紫外線を出力する構成であってもよいし、常時紫外線を出力する構成であってもよい。紫外線ランプ13は、ノズルから吐出した液滴に対して十分に紫外線が照射されるようにプリントヘッド2におけるレイアウトが決められている。
ステージ3は、プリントヘッド2から吐出された液滴を支持する部材である。ステージ3は、面一に形成された造形面を有する。
位置決め機構4は、プリントヘッド2を移動させることにより、プリントヘッド2から吐出された液滴の着弾位置を決める。例えば、位置決め機構4は、プリントヘッド2をステージ3の造形面と平行な幅方向(x方向に対応)及び奥行方向(y方向に対応)に移動させることにより、ステージ3の造形面と平行な面内における液滴の着弾位置を調整する。また、位置決め機構4は、プリントヘッド2をステージ3の造形面と直交する方向(z方向に対応)に移動させることにより、ステージ3の造形面とプリントヘッド2との距離を調整する。
制御部6は、3Dプリンタ1の各部の動作を制御する。例えば、制御部6は、プリントヘッド2及び位置決め機構4と通信可能に構成されており、プリントヘッド2及び位置決め機構4の動作を制御する。図1の例では、制御部6は、プリントヘッド2と一体に設けられているが、プリントヘッド2及び位置決め機構4と通信可能であれば如何なる場所に設けられていてもよい。
制御部6は、3次元データを取得し、取得した3次元データに応じて位置決め機構4によりプリントヘッド2を移動させつつプリントヘッド2から液滴を吐出させる。また、圧力室内の圧力を制御することにより、圧力室内の液体状の樹脂を可変ノズル11に送り出す。さらに、制御部6は、可変ノズル11から液滴を第1の吐出量で吐出させるか第2の吐出量で吐出させるか判定し、判定結果に応じて可変ノズル11から吐出させる液滴の吐出量を第1の吐出量と第2の吐出量とで切り替える。
上記した構成を備える3Dプリンタ1は、位置決め機構4によってX方向及びY方向にプリントヘッド2を移動させつつ、プリントヘッド2からステージ3に対して液滴を吐出することにより、樹脂構造の層を形成する。具体的には、3Dプリンタ1は、位置決め機構4によって3次元データの座標に応じた位置にプリントヘッド2を移動させる。さらに、3Dプリンタ1は、この座標の形状データに応じて、液滴の吐出量を決定する。例えば、3Dプリンタ1は、座標毎の形状データに応じて、液滴を吐出しないか、液滴を第1の吐出量で吐出するか、液滴を第2の吐出量で吐出するかを判定し、判定結果に応じてプリントヘッド2を動作させる。即ち、3Dプリンタ1は、3次元データに応じて吐出する液滴の量を第1の吐出量と前記第2の吐出量とで切り替えつつ層を形成する。さらに、3Dプリンタ1は、位置決め機構4によってZ方向にプリントヘッド2を移動させつつ樹脂の層の形成を行うことにより、上記の層が積層された積層構造の立体物を形成する。
なお、ステージ3の造形面からZ方向において離れた位置に樹脂構造を形成する為には、液滴を支える支持部材が必要になる。支持部材は、1つ下の層の樹脂構造であってもよいし、ステージ3の造形面に置かれた何らかの物体であってもよい。
図2は、可変ノズル11の先端の構成例を示す図である。図2(a)は、可変ノズル11の一例である可変ノズル11Aの構成例を示す。図2(b)は、可変ノズル11の一例である可変ノズル11Bの構成例を示す。
図2(a)に示されるように、可変ノズル11Aは、開閉機構としての一対の封止板23を備える。一対の封止板23は、開口部の少なくとも一部を形成する。一対の封止板23の開口部を形成する辺は、所定の曲率が形成されていてもよい。一対の封止板23は、図示されない駆動機構により互いに逆向きに駆動されることによって、開口部の面積を増減する。例えば、一対の封止板23は、互いに近づく方向に駆動機構により駆動されることによって、開口部の面積を減少させる。また、一対の封止板23は、互いに遠ざかる方向に駆動機構により駆動されることによって、開口部の面積を増加させる。具体的には、可変ノズル11Aは、一対の封止板23を互いに遠ざかる方向に駆動して、第1の開口面積の開口部21を形成する。また、可変ノズル11Aは、一対の封止板23を互いに近づく方向に駆動して、第2の開口面積の開口部22を形成する。
また、図2(b)に示されるように、可変ノズル11Bは、開閉機構としての複数枚の封止板24を備える。例えば、可変ノズル11Bは、4枚の封止板24を備える。4枚の封止板24は、開口部を形成する。封止板24は、図示されない駆動機構により回転軸25を中心にそれぞれ回転駆動されることによって、開口部の面積を増減する。例えば、4枚の封止板24は、それぞれが開口部を塞ぐ方向に駆動機構により回転駆動されることによって、開口部の面積を減少させる。また、4枚の封止板24は、それぞれが開口部を開放する方向に駆動機構により回転駆動されることによって、開口部の面積を増加させる。具体的には、可変ノズル11Bは、4枚の封止板24のそれぞれを開口部を塞ぐ方向に駆動して、第1の開口面積の開口部21を形成する。また、可変ノズル11Bは、4枚の封止板24のそれぞれを開口部を開放する方向に駆動して、第2の開口面積の開口部22を形成する。
図3は、プリントヘッド2の可変ノズル11の位置関係について説明する為の説明図である。図3(a)は、第1の開口面積の開口部21が形成された可変ノズル11とステージ3の造形面との位置関係について説明する為の説明図である。図3(b)は、第2の開口面積の開口部22が形成された可変ノズル11とステージ3の造形面との位置関係について説明する為の説明図である。
3Dプリンタ1は、位置決め機構4によってステージ3の造形面と平行な面内でプリントヘッド2の可変ノズル11を移動させる際の移動量を、液滴の吐出量に応じて変更する。また、3Dプリンタ1は、ステージ3の造形面に直交する方向におけるプリントヘッド2の可変ノズル11と液滴の着弾位置との距離を、液滴の吐出量に応じて位置決め機構4によって変更する。
例えば図3(a)に示されるように、3Dプリンタ1は、可変ノズル11に面積が第1の開口面積である開口部21が形成されている場合、可変ノズル11と液滴の着弾位置との距離が第1の距離L1になる位置に可変ノズル11を移動させる。さらに、3Dプリンタ1は、可変ノズル11に開口部の面積が第1の開口面積である開口部21が形成されている場合、第1の分解能に応じた第1の間隔P1ずつX方向またはY方向に可変ノズル11を移動させつつ、可変ノズル11から第1の吐出量の液滴31を吐出させる。即ち、3Dプリンタ1は、可変ノズル11から第1の吐出量の液滴31を吐出させる場合、可変ノズル11から吐出された液滴31の着弾位置の最小間隔が第1の分解能に応じた第1の間隔P1となるように、位置決め機構4によるプリントヘッド2の移動量を設定する。
また、例えば図3(b)に示されるように、3Dプリンタ1は、可変ノズル11に面積が第2の開口面積である開口部22が形成されている場合、可変ノズル11と液滴の着弾位置との距離が第1の距離L1よりも短い第2の距離L2になる位置に可変ノズル11を移動させる。さらに、3Dプリンタ1は、可変ノズル11に開口部の面積が第2の開口面積である開口部22が形成されている場合、第1の分解能よりも細かい第2の分解能に応じた第2の間隔P2ずつX方向またはY方向に可変ノズル11を移動させつつ、可変ノズル11から第2の吐出量の液滴32を吐出させる。即ち、3Dプリンタ1は、可変ノズル11から第2の吐出量の液滴32を吐出させる場合、可変ノズル11から吐出された液滴32の着弾位置の最小間隔が第2の分解能に応じ且つ第1の間隔P1よりも狭い第2の間隔P2となるように、位置決め機構4によるプリントヘッド2の移動量を設定する。
プリントヘッド2を移動させる場合の上下へのプリントヘッド2の変動は、X方向またはY方向への移動距離に応じて大きくなる。しかし上記のように、第2の間隔P2より大きな第1の間隔P1でプリントヘッド2を移動させる場合、可変ノズル11と液滴の着弾位置との距離が第2の距離L2よりも長い第1の距離L1になるようにプリントヘッド2の位置決めを行うことにより、プリントヘッド2の上下への変動によって可変ノズル11が樹脂構造に接触することを防ぐことができる。
なお、可変ノズル11に面積が第1の開口面積である開口部21が形成されている場合の第1の間隔P1及び第1の距離L1と、可変ノズル11に面積が第2の開口面積である開口部22が形成されている場合の第2の間隔P2及び第2の距離L2と、の関係は、0.5<(P1/L1)/(P2/L2)<2となることが望ましい。また、第1の開口面積は、例えば第2の開口面積に対して10倍程度大きいことが望ましい。第1の開口面積が第2の開口面積に対して10倍程度大きい場合、積層時間を重視する場合と、形状精度を重視する場合とでメリハリをつけることが可能になる。
次に、図4乃至図6を参照しつつ第1の実施形態に係る光学素子5の具体的な製造方法について説明する。3Dプリンタ1は、プリントヘッド2をX方向及びY方向に移動させつつ可変ノズル11から液滴を吐出させ、ステージ3上に透過性の樹脂構造の層を形成する。3Dプリンタ1は、プリントヘッド2をZ方向に移動させつつ樹脂構造の層を積層することにより、基部41と表層部42とを有する光学素子5を形成する。
基部41は、光学素子5の最も先端側に形成される曲面43を構成する表層部42を支持する部分である。表層部42は、光学素子5の基部41より先端側に形成され、表面が曲面43を構成する部分である。表層部42では、曲面43の形状精度が光学素子5の光学特性に影響を与える為、基部41に比べて高い形状精度が要求される。
樹脂構造の形状精度は、可変ノズル11からの液滴の吐出量に応じて定まる。即ち、吐出量を少なくした方が吐出量を多くするよりも微細な樹脂構造の形成が容易になる。この為、3Dプリンタ1は、第2の吐出量の液滴32により樹脂構造を形成する場合、第1の吐出量の液滴31により樹脂構造を形成する場合に比べてより高い形状精度で樹脂構造を形成することができる。
また、樹脂構造の形成速度も、可変ノズル11からの液滴の吐出量に応じて定まる。即ち、吐出量を少なくした場合、樹脂構造の形成に時間がかかる。この為、3Dプリンタ1は、第1の吐出量の液滴31により樹脂構造を形成する場合、第2の吐出量の液滴32により樹脂構造を形成する場合に比べてより速く樹脂構造を形成することができる。
そこで、3Dプリンタ1は、第1の吐出量の液滴31によって基部41を形成するようにプリントヘッド2及び位置決め機構4の動作を制御し、第2の吐出量の液滴32によって曲面43を有する表層部42を形成するように、プリントヘッド2及び位置決め機構4の動作を制御する。
具体的には、3Dプリンタ1は、プリントヘッド2を位置決め機構4によって移動させつつ、プリントヘッド2が光学素子5の基部41を形成すべき位置に達したときには、第1の吐出量の液滴31を可変ノズル11から吐出させる。また、3Dプリンタ1は、プリントヘッド2を位置決め機構4によって移動させつつ、プリントヘッド2が光学素子5の曲面43を有する表層部42を形成すべき位置に達したときには、第2の吐出量の液滴32を可変ノズル11から吐出させる。
図4乃至図6の例では、光学素子5の光軸を中心とした軸対称な形状の光学素子5を製造する。なお、光学素子5を被写体に向けたときに被写体側となる光学素子5の部位を先端側と称し、像側になる部位を後端側と称する。本実施形態では、樹脂構造を後端側から順に積層していくことにより光学素子5を製造する例について説明する。
図4は、樹脂材料により光学素子5の基部41の一部を形成する工程の例を示す説明図である。以降の図面では、形成した樹脂構造を光学素子5の光軸を含む面で切断した場合の断面として示す。
まず、3Dプリンタ1は、ステージ3の造形面に対して第1の吐出量の液滴31を吐出しつつ、紫外線ランプ13によって液滴31に紫外線を照射することによって、光学素子5の基部41の一部を形成する。
なお、基部41の後端側は、ステージ3の造形面に応じた形状で形成される。本例によると、基部41の後端側は、造形面と同じ面一状に形成される。例えば、造形面に曲面を有する基材を配置し、この基材の曲面上に樹脂構造を形成することにより、基部41の後端側に曲面を形成することができる。
図5は、樹脂材料により光学素子5の表層部42の一部を形成する工程の例を示す説明図である。3Dプリンタ1は、基部41の上面に対して第2の吐出量の液滴32を吐出しつつ、紫外線ランプ13によって液滴32に紫外線を照射することによって光学素子5の表層部42を形成する。
図6は、樹脂材料により形成された光学素子5の例を示す説明図である。3Dプリンタ1は、表層部42の表面に3次元データに応じた所定の曲率の曲面43を形成する。
図7及び図8は、基部41と表層部42との境界P付近の樹脂構造を拡大して示す図である。図7は、基部41と表層部42との境界Pが平面状に形成された樹脂構造51を拡大して示す図である。図8は、基部41と表層部42との境界Pが階段状に形成された樹脂構造52と曲面43とを拡大して示す図である。なお、図7及び図8における円状の二点鎖線は、それぞれ液滴を模式的に示すものである。実際には、液滴は、着弾後に着弾位置の樹脂構造と一体化して硬化する。
図7及び図8に示されるように、基部41は、表層部42に比べて吐出量が多い液滴31によって形成される為、表層部42に比べてより高速に樹脂構造が形成される。これに対し、表層部42は、基部41に比べて吐出量が少ない液滴32によって形成される為、基部41に比べてより微細な樹脂構造が形成される。これにより、表層部42は、基部41の1層分の高さと同じ高さの樹脂構造を形成する為に複数の層を重ねる必要があるものの、基部41に比べて形状精度が高い曲面43が表面に形成される。このように、3Dプリンタ1は、形状精度が要求されない基部41を第1の吐出量の液滴31により高速に形成し、形状精度が要求される表層部42を基部41上に第1の吐出量より少ない第2の吐出量の液滴32により高精度で形成する。この結果、3Dプリンタ1は、高い形状精度と製造に要する時間の短縮とを両立することが可能になる。
(第2の実施形態)
次に、図9乃至図13を参照しつつ第2の実施形態に係る光学素子5の具体的な製造方法について説明する。なお、第1の実施形態と同じ構成には同じ参照符号を付し詳細な説明を省略する。
図9は、第2の実施形態に係る3Dプリンタ1Aの例について説明する為の説明図である。3Dプリンタ1Aは、光学素子5を製造する光学素子の製造装置である。3Dプリンタ1Aは、プリントヘッド2A、ステージ3、位置決め機構4、及び制御部6を備える。
プリントヘッド2Aは、液体状の樹脂を液滴として吐出する。プリントヘッド2Aは、第1のノズル15、第2のノズル16、及び紫外線ランプ13を備える。第2のノズル16は、先端が第1のノズル15よりもステージ3の造形面に近い位置に設けられている。また、プリントヘッド2Aは、透過性材料が充填された図示されない圧力室を備える。圧力室は、ノズル毎に設けられていてもよいし、1つの圧力室に複数のノズルが連通していてもよい。例えばプリントヘッド2Aは、3次元データに応じて圧力室内の圧力を制御することにより、圧力室内の液体状の樹脂を第1のノズル15または第2のノズル16に送り出す。プリントヘッド2Aは、液滴の吐出量に応じて液滴を吐出するノズルを第1のノズル15と第2のノズル16とで切り替える。
3Dプリンタ1Aは、位置決め機構4によってX方向及びY方向にプリントヘッド2Aを移動させつつ、プリントヘッド2Aからステージ3に対して液滴を吐出することにより、樹脂構造の層を形成する。具体的には、3Dプリンタ1Aは、位置決め機構4によって3次元データの座標に応じた位置にプリントヘッド2Aを移動させる。さらに、3Dプリンタ1Aは、この座標の形状データに応じて、液滴の吐出量を決定する。例えば、3Dプリンタ1Aは、座標毎の形状データに応じて、液滴を吐出しないか、液滴を第1の吐出量で吐出するか、液滴を第2の吐出量で吐出するかを判定し、判定結果に応じてプリントヘッド2Aを動作させる。即ち、3Dプリンタ1は、3次元データに応じて吐出する液滴の量を第1の吐出量と前記第2の吐出量とで切り替えつつ層を形成する。さらに、3Dプリンタ1Aは、位置決め機構4によってZ方向にプリントヘッド2Aを移動させつつ樹脂の層の形成を行うことにより、上記の層が積層された積層構造の立体物を形成する。
図10は、第1のノズル15、及び第2のノズル16の先端の構成例と、それぞれのノズルの位置関係とについて説明する為の説明図である。図10(a)は、第1のノズル15の構成例と、第1のノズル15とステージ3の造形面との位置関係とを示す。図10(b)は、第2のノズル16の構成例と、第2のノズル16とステージ3の造形面との位置関係とを示す。
3Dプリンタ1Aは、位置決め機構4によってステージ3の造形面と平行な面内でプリントヘッド2Aの第1のノズル15及び第2のノズル16を移動させる際の移動量を、液滴の吐出量に応じて変更する。また、3Dプリンタ1Aは、ステージ3の造形面に直交する方向におけるプリントヘッド2Aの第1のノズル15及び第2のノズル16と液滴の着弾位置との距離を、液滴の吐出量に応じて位置決め機構4によって変更する。
図10(a)に示されるように、第1のノズル15は、開口部の面積が第1の開口面積である第1の開口部26を有する。第1の開口部26は、径がD1である円状の孔である。3Dプリンタ1Aは、第1の吐出量で液滴31を吐出する場合、第1のノズル15から液滴31を吐出させる。この場合、3Dプリンタ1Aは、第1のノズル15と液滴の着弾位置との距離が第1の距離L1になる位置に、第1のノズル15を移動させる。さらに、3Dプリンタ1Aは、第1の分解能に応じた第1の間隔P1ずつX方向またはY方向に第1のノズル15を移動させつつ、第1のノズル15から第1の吐出量の液滴31を吐出させる。
また、図10(b)に示されるように、第2のノズル16は、開口部の面積が第2の開口面積である第2の開口部27を有する。第2の開口部27は、径がD2である円状の孔である。3Dプリンタ1Aは、第2の吐出量で液滴32を吐出する場合、第2のノズル16から液滴32を吐出させる。この場合、3Dプリンタ1Aは、第2のノズル16と液滴の着弾位置との距離が第2の距離L2になる位置に、第2のノズル16を移動させる。さらに、3Dプリンタ1Aは、第2の分解能に応じた第2の間隔P2ずつX方向またはY方向に第2のノズル16を移動させつつ、第2のノズル16から第2の吐出量の液滴32を吐出させる。
プリントヘッド2を移動させる場合の上下へのプリントヘッド2Aの変動は、X方向またはY方向への移動距離に応じて大きくなる。しかし上記のように、第2の間隔P2より大きな第1の間隔P1でプリントヘッド2Aを移動させる場合に、第1のノズル15と液滴31の着弾位置との距離が第2の距離L2よりも長い第1の距離L1になるようにプリントヘッド2Aの位置決めを行うことにより、プリントヘッド2Aの上下への変動によって第1のノズル15が樹脂構造に接触することを防ぐことができる。
第1のノズル15の開口部26の径D1、第1のノズル15の移動の間隔である第1の間隔P1、及び第1のノズル15と着弾位置との距離である第1の距離L1と、第2のノズル16の開口部27の径D2、第2のノズル16の移動の間隔である第2の間隔P2、及び第2のノズル16と着弾位置との距離である第2の距離L2と、の関係は、0.5<(L1/D1)/(L2/D2)<2程度である第1の関係と、0.5<(P1/L1)/(P2/L2)<2程度である第2の関係とのいずれかを満たすことが望ましい。なお、より望ましくは第1の関係と第2の関係との両方を満たすことが望ましい。また、径D1は、径D2の4倍以上であることが望ましい。即ち、第1の開口面積は、例えば第2の開口面積に対して10倍程度大きいことが望ましい。第1の開口面積が第2の開口面積に対して10倍程度大きい場合、積層時間を重視する場合と、形状精度を重視する場合とでメリハリをつけることが可能になる。
次に、図11乃至図13を参照しつつ第2の実施形態に係る光学素子5の具体的な製造方法について説明する。3Dプリンタ1Aは、プリントヘッド2AをX方向及びY方向に移動させつつ第1のノズル15及び第2のノズル16から液滴を吐出させ、ステージ3上に透過性の樹脂構造の層を形成する。3Dプリンタ1Aは、プリントヘッド2AをZ方向に移動させつつ樹脂構造の層を積層することにより、基部41と表層部42とを有する光学素子5を形成する。
本実施形態における3Dプリンタ1Aも第1の実施形態と同様に、第1の吐出量の液滴31によって基部41を形成するようにプリントヘッド2A及び位置決め機構4の動作を制御し、第2の吐出量の液滴32によって曲面43を有する表層部42を形成するようにプリントヘッド2A及び位置決め機構4の動作を制御する。
具体的には、3Dプリンタ1Aは、プリントヘッド2Aを位置決め機構4によって移動させつつ、プリントヘッド2Aが光学素子5の基部41を形成すべき位置に達したときには、第1の吐出量の液滴31を第1のノズル15から吐出させる。また、3Dプリンタ1Aは、プリントヘッド2Aを位置決め機構4によって移動させつつ、プリントヘッド2Aが光学素子5の曲面43を有する表層部42を形成すべき位置に達したときには、第2の吐出量の液滴32を第2のノズル16から吐出させる。
図11乃至図13の例では、光学素子5の光軸を中心とした軸対称な形状の光学素子5を製造する。なお、光学素子5を被写体に向けたときに被写体側となる光学素子5の部位を先端側と称し、像側になる部位を後端側と称する。本実施形態では、樹脂構造を後端側から順に積層していくことにより光学素子5を製造する例について説明する。
図11は、樹脂材料により光学素子5の基部41の一部を形成する工程の例を示す説明図である。以降の図面では、形成した樹脂構造を光学素子5の光軸を含む面で切断した場合の断面として示す。
まず、3Dプリンタ1Aは、ステージ3の造形面に対して第1のノズル15から第1の吐出量の液滴31を吐出しつつ、紫外線ランプ13によって液滴31に紫外線を照射することによって、光学素子5の基部41の一部を形成する。
図12は、樹脂材料により光学素子5の表層部42の一部を形成する工程の例を示す説明図である。3Dプリンタ1Aは、基部41の上面に対して第2のノズル16から第2の吐出量の液滴32を吐出しつつ、紫外線ランプ13によって液滴32に紫外線を照射することによって、光学素子5の表層部42を形成する。
図13は、樹脂材料により形成された光学素子5の例を示す説明図である。3Dプリンタ1Aは、表層部42の表面に3次元データに応じた所定の曲率の曲面43を形成する。
上記の構成によっても、3Dプリンタ1は、形状精度が要求されない基部41を第1の吐出量の液滴31により高速に形成し、形状精度が要求される表層部42を基部41上に第1の吐出量より少ない第2の吐出量の液滴32により高精度で形成する。この結果、3Dプリンタ1は、高い形状精度と製造に要する時間の短縮とを両立することが可能になる。
なお、上記の実施形態では、光学素子5は、光軸を中心とした軸対象な形状であると説明したが、この構成に限定されない。従来の方法によるとレンズを製造する際のガラスまたは樹脂の研削研磨を容易にするためにレンズを円形に製造しているが、3Dプリンタ1を用いて光学素子5を製造する場合、如何なる形状でも同様の工程によって光学素子5を製造することができる。
例えば、撮像素子の形状によって定まる光学素子5の有効領域に応じた形状で撮像素子5を形成してもよい。このような構成によると、光学素子の有効領域外を通る光をカットすることができる為、不要光の発生を抑制することができる。また、円形のレンズを用いた光学素子5に比べてコンパクトに構成することができる。また、コンパクトに構成できる為、光学素子5の製造に要する樹脂材料を削減することができる。
なお、上記の実施形態では、樹脂構造を光学素子5の後端側から順に積層していくことにより光学素子5を製造する例について説明したがこの構成に限定されない。樹脂構造を積層する向きは、如何なる方向であってもよい。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。

Claims (11)

  1. 光を透過する透過性材料を第1の吐出量で吐出して光学素子の曲面を支える基部を形成する基部形成工程と、
    前記第1の吐出量より少ない第2の吐出量で前記透過性材料を前記基部に対して吐出して、前記曲面を形成する曲面形成工程と、
    を具備する光学素子の製造方法。
  2. 前記光学素子の形状を示す3次元データに応じて前記透過性材料を前記第1の吐出量で吐出するか前記第2の吐出量で吐出するかを判定し、判定結果に応じて前記第1の吐出量と前記第2の吐出量とを切り替える吐出量切替工程をさらに具備する請求項1に記載の光学素子の製造方法。
  3. 前記吐出量切替工程は、前記透過性材料を吐出するノズルの開口部の形状を変形して、前記開口部の面積を第1の開口面積と前記第1の開口面積よりも小さい第2の開口面積とに切り替えることにより、前記第1の吐出量と前記第2の吐出量とを切り替える請求項2に記載の光学素子の製造方法。
  4. 前記吐出量切替工程は、前記透過性材料を吐出するノズルを開口部の面積が第1の開口面積である第1のノズルと、開口部の面積が前記第1の開口面積よりも小さい第2の開口面積である第2のノズルとで切り替えることにより、前記第1の吐出量と前記第2の吐出量とを切り替える請求項2に記載の光学素子の製造方法。
  5. 前記3次元データに応じて前記透過性材料を吐出するノズルを移動させる位置決め工程をさらに具備し、
    前記位置決め工程は、前記ノズルの移動距離の分解能を前記透過性材料の吐出量に応じて変更する請求項2に記載の光学素子の製造方法。
  6. 前記3次元データに応じて前記透過性材料を吐出するノズルと、前記ノズルから吐出された前記透過性材料の液滴の着弾位置との距離を調整する位置決め工程をさらに具備し、
    前記位置決め工程は、前記ノズルと前記着弾位置との距離を前記透過性材料の吐出量に応じて変更する請求項2に記載の光学素子の製造方法。
  7. 3次元データを取得する取得部と、
    光を透過する透過性材料を、第1の吐出量と前記第1の吐出量より少ない第2の吐出量とのいずれかで吐出する吐出部と、
    前記3次元データに基づいて前記第1の吐出量で前記透過性材料を吐出して光学素子の曲面を支える基部を形成するように前記吐出部を制御し、前記3次元データに基づいて前記第2の吐出量で前記透過性材料を前記基部に対して吐出して、前記曲面を形成するように前記吐出部を制御する制御部と、
    を具備する光学素子の製造装置。
  8. 前記吐出部は、前記透過性材料を吐出するノズルの開口部の形状を変形して、前記開口部の面積を第1の開口面積と前記第1の開口面積よりも小さい第2の開口面積とに切り替えることにより、前記第1の吐出量と前記第2の吐出量とを切り替える請求項7に記載の光学素子の製造装置。
  9. 前記吐出部は、開口部の面積が第1の開口面積である第1のノズルと、開口部の面積が前記第1の開口面積よりも小さい第2の開口面積である第2のノズルと、を具備し、前記制御部の制御に基づいて、前記透過性材料を吐出するノズルを前記第1のノズルと前記第2のノズルとで切り替えることにより、前記第1の吐出量と前記第2の吐出量とを切り替える請求項7に記載の光学素子の製造装置。
  10. 前記3次元データに応じて前記透過性材料を吐出するノズルを移動させる位置決め機構をさらに具備し、
    前記制御部は、前記ノズルの移動距離の分解能を前記透過性材料の吐出量に応じて変更する請求項7に記載の光学素子の製造装置。
  11. 前記3次元データに応じて、前記透過性材料を吐出するノズルと前記ノズルから吐出された前記透過性材料の液滴の着弾位置との距離を調整する位置決め機構をさらに具備し、
    前記制御部は、前記ノズルと前記着弾位置との距離を前記透過性材料の吐出量に応じて変更する請求項7に記載の光学素子の製造装置。
JP2018522188A 2016-06-06 2016-06-06 光学素子の製造方法、及び光学素子の製造装置 Pending JPWO2017212529A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066784 WO2017212529A1 (ja) 2016-06-06 2016-06-06 光学素子の製造方法、及び光学素子の製造装置

Publications (1)

Publication Number Publication Date
JPWO2017212529A1 true JPWO2017212529A1 (ja) 2019-03-28

Family

ID=60578455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018522188A Pending JPWO2017212529A1 (ja) 2016-06-06 2016-06-06 光学素子の製造方法、及び光学素子の製造装置

Country Status (3)

Country Link
US (1) US11345085B2 (ja)
JP (1) JPWO2017212529A1 (ja)
WO (1) WO2017212529A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554530B2 (en) * 2017-03-24 2023-01-17 Luxexcel Holding B.V. Printed three-dimensional optical component with embedded functional foil and corresponding manufacturing method
EP3737993A4 (en) * 2018-01-11 2021-10-06 e-Vision Smart Optics Inc. THREE-DIMENSIONAL (3D) PRINTING OF ELECTRO-ACTIVE LENSES
JP7135409B2 (ja) * 2018-04-27 2022-09-13 セイコーエプソン株式会社 三次元造形装置および三次元造形物の製造方法
US20200238603A1 (en) * 2019-01-25 2020-07-30 Continuous Composites Inc. System for additively manufacturing composite structure
US20220111610A1 (en) * 2019-02-20 2022-04-14 Luxexcel Holding B.V. Method for printing a multifocal lens
WO2020169692A1 (en) * 2019-02-20 2020-08-27 Luxexcel Holding B.V. Method for printing an optical component
KR20210129133A (ko) * 2019-02-20 2021-10-27 럭섹셀 홀딩 비.브이. 3차원 광학 물품 프린팅 방법
EP4010173A4 (en) * 2019-08-09 2023-08-30 Saint-Gobain Performance Plastics Corporation ADDITIVE MANUFACTURING ASSEMBLIES AND METHODS
JP7447444B2 (ja) * 2019-11-27 2024-03-12 セイコーエプソン株式会社 三次元造形装置
EP4324630A1 (en) * 2022-08-17 2024-02-21 Meta Platforms Technologies, LLC Method for producing a three-dimensional optical structure and system for producing a three-dimensional optical structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168887B2 (ja) * 1995-09-27 2001-05-21 ブラザー工業株式会社 画像印刷装置
GB9611582D0 (en) * 1996-06-04 1996-08-07 Thin Film Technology Consultan 3D printing and forming of structures
KR100291953B1 (ko) 1999-03-15 2001-06-01 윤덕용 가변 용착 적층식 쾌속조형방법 및 쾌속조형장치
JP2002067174A (ja) 2000-08-30 2002-03-05 Minolta Co Ltd データ処理装置及び方法、並びに三次元造形装置及び方法
JP4346021B2 (ja) * 2001-08-16 2009-10-14 独立行政法人理化学研究所 V−cadデータを用いたラピッドプロトタイピング方法と装置
US7700020B2 (en) * 2003-01-09 2010-04-20 Hewlett-Packard Development Company, L.P. Methods for producing an object through solid freeform fabrication
JP2009083326A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 光学部材の製造方法およびこの製造方法により形成された光学部材
DE202009017825U1 (de) * 2009-02-14 2010-09-23 Luxexcel Holding Bv Vorrichtung zur Lenkung von Lichtstrahlen
US9156204B2 (en) * 2010-05-17 2015-10-13 Synerdyne Corporation Hybrid scanner fabricator
US20160311162A1 (en) * 2015-04-24 2016-10-27 Win-Hall Tech Sdn Bhd Novel color 3d printer based on energy-curable color coating on transparent or translucent base material

Also Published As

Publication number Publication date
US20190091928A1 (en) 2019-03-28
WO2017212529A1 (ja) 2017-12-14
US11345085B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JPWO2017212529A1 (ja) 光学素子の製造方法、及び光学素子の製造装置
JP5724317B2 (ja) 3次元造形装置
JP6233001B2 (ja) 造形装置および造形物の製造方法
JP6477500B2 (ja) 三次元造形装置および三次元造形方法
US8696344B2 (en) Molding method and molding apparatus
JP6510179B2 (ja) 3次元プリンタ、及び、3次元造形物製造方法
JP6378932B2 (ja) 三次元構造物の形成装置および形成方法
JP6444825B2 (ja) 三次元造形物の製造方法及び製造装置
JP2015208904A (ja) 三次元造形装置
US11260593B2 (en) Shaping device and shaping method
JP2018065308A (ja) 造形装置及び造形方法
JP7079085B2 (ja) インプリントリソグラフィのための液滴法および装置
JP5533304B2 (ja) 液滴吐出装置
JP4073014B2 (ja) 造形装置
JP2015104890A (ja) 三次元造形装置、三次元造形方法、三次元造形装置の制御用プログラムおよび記録媒体
JP5402278B2 (ja) 立体画像形成方法及び立体画像形成装置
JP5862724B2 (ja) 造形方法
JP5928631B2 (ja) 3次元造形装置及び3次元造形方法
JP2014184433A (ja) 液滴吐出装置
US11345079B2 (en) Liquid discharge apparatus, liquid discharge system, liquid discharge method, and recording medium
JP2012161920A (ja) 記録方法
JP2013128880A (ja) 描画方法
JP2012020222A (ja) 液滴吐出装置