[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2015046275A1 - Heat exchanger and air conditioner using the same - Google Patents

Heat exchanger and air conditioner using the same Download PDF

Info

Publication number
JPWO2015046275A1
JPWO2015046275A1 JP2015539281A JP2015539281A JPWO2015046275A1 JP WO2015046275 A1 JPWO2015046275 A1 JP WO2015046275A1 JP 2015539281 A JP2015539281 A JP 2015539281A JP 2015539281 A JP2015539281 A JP 2015539281A JP WO2015046275 A1 JPWO2015046275 A1 JP WO2015046275A1
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
row
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015539281A
Other languages
Japanese (ja)
Other versions
JP6120978B2 (en
Inventor
石橋 晃
晃 石橋
真哉 東井上
真哉 東井上
伊東 大輔
大輔 伊東
拓未 西山
拓未 西山
繁佳 松井
繁佳 松井
裕樹 宇賀神
裕樹 宇賀神
岡崎 多佳志
多佳志 岡崎
厚志 望月
厚志 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015046275A1 publication Critical patent/JPWO2015046275A1/en
Application granted granted Critical
Publication of JP6120978B2 publication Critical patent/JP6120978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

被熱交換媒体の通過方向である列方向に複数列配置され内部流路に熱媒体が流通する伝熱管と、列方向に隣接して配置された一対の伝熱管を接続する熱媒体流路としての列渡し部5と、伝熱管が接続されるヘッダー4と、を備えた熱交換器において、列渡し部5はヘッダー4内に設けられていると共に、列渡し部5内には、熱媒体流路に立設する冷媒仕切板7を設けた。As a heat medium flow path connecting a heat transfer tube arranged in a plurality of rows in the row direction, which is the passage direction of the heat exchange medium, and the heat transfer medium flowing through the internal flow channel, and a pair of heat transfer tubes arranged adjacent to each other in the row direction In the heat exchanger provided with the row transfer portion 5 and the header 4 to which the heat transfer tube is connected, the row transfer portion 5 is provided in the header 4 and the heat transfer medium is provided in the row transfer portion 5. A refrigerant partition plate 7 erected in the flow path was provided.

Description

本発明は、被熱交換流体(例えば空気)の流通方向に対して冷媒の流通する伝熱管を複数列有する熱交換器に関するものである。   The present invention relates to a heat exchanger having a plurality of rows of heat transfer tubes through which a refrigerant flows in the flow direction of a heat exchange fluid (for example, air).

従来、熱交換器を通過する被熱交換流体(例えば空気)の流通方向に対して冷媒の流通する伝熱管(例えば扁平管等)を2列設けた熱交換器において、伝熱管の一端部に設けたヘッダ内で冷媒を伝熱管の列間で流通させるものが知られている。このような熱交換器は、蒸発器として用いられる場合、流通する被熱交換流体と冷媒とは並行流となり、また、凝縮器として用いられる場合は、流通する被熱交換流体と冷媒とは対向流となるように構成され、熱交換器効率を改善したものである(特許文献1を参照)。   Conventionally, in a heat exchanger in which two rows of heat transfer tubes (for example, flat tubes) through which a refrigerant flows with respect to the flow direction of the heat exchange fluid (for example, air) passing through the heat exchanger, at one end of the heat transfer tube What distribute | circulates a refrigerant | coolant between the rows of a heat exchanger tube within the provided header is known. When such a heat exchanger is used as an evaporator, the circulating heat exchange fluid and the refrigerant flow in parallel, and when used as a condenser, the circulating heat exchange fluid and the refrigerant are opposed to each other. The heat exchanger efficiency is improved (refer to Patent Document 1).

特開2003−287390号公報(第4図等を参照)Japanese Patent Laid-Open No. 2003-287390 (see FIG. 4 etc.)

図8は、上記のような従来の熱交換器のヘッダー4の内部構造で、伝熱管の列間で冷媒を流通させる列渡し部分5を示した断面図である。図8(a)は列渡し部分5の断面形状が長方形の場合であり、図8(b)は、列渡し部分5の断面形状が概ね平行四辺形の場合の液冷媒の流れ3を示している。列渡し部分5内では被熱交換流体である空気の風上側の多孔扁平管2から乾き度0.5程度の気液二相冷媒が流出し、風下列の多孔扁平管2へ冷媒流れ3のように流入する。図8(a)及び図8(b)の両方の場合で気液二相冷媒中の液冷媒6は流出側伝熱管からの慣性力により風下列の多孔扁平管2近傍の風下側部に集中する。このため、列渡し部分5以降の伝熱管内で液冷媒の流量が不均一となり熱負荷の大きい風上側の多孔扁平管2の冷媒流路に液冷媒が流通せず、熱交換能力が低下するという問題があった。   FIG. 8 is a cross-sectional view showing a row transfer portion 5 through which refrigerant flows between rows of heat transfer tubes in the internal structure of the header 4 of the conventional heat exchanger as described above. FIG. 8A shows the case where the cross-sectional shape of the connecting portion 5 is rectangular, and FIG. 8B shows the flow 3 of the liquid refrigerant when the cross-sectional shape of the connecting portion 5 is a substantially parallelogram. Yes. In the line passing portion 5, a gas-liquid two-phase refrigerant having a dryness of about 0.5 flows out from the air flat porous tube 2 on the windward side of the air as the heat exchange fluid, and the refrigerant flow 3 flows to the porous flat tube 2 in the leeward row. Inflow. In both the cases of FIGS. 8A and 8B, the liquid refrigerant 6 in the gas-liquid two-phase refrigerant is concentrated on the leeward side near the porous flat tubes 2 in the leeward row due to the inertial force from the outflow side heat transfer pipe. To do. For this reason, the flow rate of the liquid refrigerant becomes uneven in the heat transfer tubes after the connecting portion 5, and the liquid refrigerant does not flow through the refrigerant flow path of the upwind porous flat tube 2 having a large heat load, so that the heat exchange capacity is reduced. There was a problem.

本発明は、上記のような課題を解決するためになされたもので、列方向に並んだ伝熱管を冷媒流路である列渡し部分にて接続する際に、列渡し部以降の伝熱管に流入する液冷媒が伝熱管内で均一な流量分布、もしくは熱負荷に対し適正な流量分布となるような構成とし、熱交換器性能が良好となる熱交換器を得ることを目的とする。   The present invention has been made to solve the above-described problems. When connecting the heat transfer tubes arranged in the row direction at the row transfer portion that is the refrigerant flow path, the heat transfer tubes after the row transfer portion are connected. An object of the present invention is to obtain a heat exchanger in which the inflowing liquid refrigerant has a uniform flow rate distribution in the heat transfer tube or an appropriate flow rate distribution with respect to the heat load, and the heat exchanger performance is good.

本発明に係る熱交換器は、被熱交換媒体の通過方向である列方向に複数列配置され内部流路に熱媒体が流通する伝熱管と、列方向に隣接して配置された一対の伝熱管を接続する熱媒体流路としての列渡し部と、伝熱管が接続されるヘッダーと、を備えた熱交換器において、列渡し部はヘッダー内に設けられていると共に、列渡し部内には、熱媒体流路に立設する冷媒仕切板を設けたものである。 The heat exchanger according to the present invention includes a heat transfer tube in which a plurality of rows are arranged in a row direction that is a passing direction of a heat exchange medium and the heat medium flows in an internal flow path, and a pair of heat transfer tubes that are arranged adjacent to each other in the row direction. In a heat exchanger having a transfer section as a heat medium flow path connecting a heat pipe and a header to which a heat transfer pipe is connected, the transfer section is provided in the header, and in the transfer section The refrigerant partition plate standing on the heat medium flow path is provided.

本発明に係る熱交換器によれば、列渡し部内に流通する熱媒体を案内する冷媒仕切板を設けたことで、列渡し部以降の伝熱管に流入する液冷媒が伝熱管内で均一な流量分布、もしくは熱負荷に対し適正な流量分布となり、熱交換器性能が良好となる熱交換器を得ることが可能となる。   According to the heat exchanger according to the present invention, by providing the refrigerant partition plate that guides the heat medium flowing in the transfer section, the liquid refrigerant flowing into the heat transfer tubes after the transfer section is uniform in the heat transfer tubes. It becomes possible to obtain a heat exchanger that has a flow rate distribution or a flow rate distribution that is appropriate for the heat load and that has good heat exchanger performance.

実施の形態1に係る熱交換器の部分正面図である。2 is a partial front view of the heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の多孔扁平管部断面図である。2 is a cross-sectional view of a porous flat tube portion of a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器が蒸発器として用いられる場合の列渡し部分5の断面図である。It is sectional drawing of the line transfer part 5 in case the heat exchanger which concerns on Embodiment 1 is used as an evaporator. 実施の形態1に係る熱交換器が凝縮器として用いられる場合の列渡し部分5の断面図である。It is sectional drawing of the line transfer part 5 in case the heat exchanger which concerns on Embodiment 1 is used as a condenser. 実施の形態2に係る、熱交換器が蒸発器として用いられる場合の列渡し部分5の断面図である。It is sectional drawing of the line transfer part 5 in case the heat exchanger based on Embodiment 2 is used as an evaporator. 実施の形態2に係る熱交換器が凝縮器として用いられる場合の列渡し部分5の断面図である。It is sectional drawing of the line transfer part 5 in case the heat exchanger which concerns on Embodiment 2 is used as a condenser. 実施の形態1、2に係る熱交換器を利用した空調調和機の冷媒回路図である。It is a refrigerant circuit diagram of the air-conditioning conditioner using the heat exchanger which concerns on Embodiment 1,2. 従来の熱交換器の列渡し部分5の断面図である。It is sectional drawing of the line transfer part 5 of the conventional heat exchanger.

以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below.

実施の形態1.
図1、2を用いて実施の形態1に係る熱交換器の構造の概要を説明する。
図1は、実施の形態1に係る熱交換器の部分正面図である。
図2は、実施の形態1に係る熱交換器の扁平管部断面図である。
Embodiment 1 FIG.
An outline of the structure of the heat exchanger according to the first embodiment will be described with reference to FIGS.
1 is a partial front view of a heat exchanger according to Embodiment 1. FIG.
FIG. 2 is a cross-sectional view of the flat tube portion of the heat exchanger according to the first embodiment.

本実施の形態1に係る熱交換器は、図1及び2に記載のようにフィンチューブ型の熱交換器である。熱交換器の伝熱管は水平方向に配置され、フィン1は垂直方向に配置されている。伝熱管の一端側にはヘッダー4が接続されている。ヘッダー4は、その軸方向が重力方向と平行となるように配置されている。伝熱管は多数の冷媒流路を平行に配置した多孔扁平管2であり、被熱交換流体である空気の流通方向に2列で配置されている。2列の多孔扁平管2は図2に示すように断面視において千鳥状に配置されている。   The heat exchanger according to the first embodiment is a fin tube type heat exchanger as shown in FIGS. The heat exchanger tubes of the heat exchanger are arranged in the horizontal direction, and the fins 1 are arranged in the vertical direction. A header 4 is connected to one end of the heat transfer tube. The header 4 is arranged so that its axial direction is parallel to the direction of gravity. The heat transfer tube is a porous flat tube 2 in which a large number of refrigerant flow paths are arranged in parallel, and is arranged in two rows in the flow direction of air that is a heat exchange fluid. The two rows of porous flat tubes 2 are arranged in a staggered manner in a sectional view as shown in FIG.

多孔扁平管2の内部には冷媒が流れ、多孔扁平管2の軸方向と直角にフィン1が設けられている。多孔扁平管2とフィン1は銅やアルミニウムなど伝熱性の高い金属等で形成されており、フィン1に切り欠かれた伝熱管挿入部に多孔扁平管2を挿入した状態でロー付けや半田付け、溶接等の工法で接合され互いに伝熱するようになっている。   A refrigerant flows inside the porous flat tube 2, and fins 1 are provided at right angles to the axial direction of the porous flat tube 2. The porous flat tube 2 and the fin 1 are made of a metal having high heat conductivity such as copper or aluminum, and brazed or soldered with the porous flat tube 2 inserted into the heat transfer tube insertion portion cut out in the fin 1. They are joined by a welding method or the like to transfer heat to each other.

フィン1は被熱交換流体である空気の流通方向の風上側に配置された第1フィン1aと風下側に配置された第2フィン1bとから構成されている。   The fin 1 is comprised from the 1st fin 1a arrange | positioned at the windward side of the distribution direction of the air which is a heat exchange fluid, and the 2nd fin 1b arrange | positioned at the leeward side.

多孔扁平管2の1つのパスは、4本の多孔扁平管2a、2b、2c、2dを1ユニットとして構成される。多孔扁平管2a、2bは空気の流通方向の風上側に配置された第1フィン1aを貫通し第1列を形成している。また、多孔扁平管2c、2dは空気の流通方向の風下側に配置された第2フィン1bを貫通し第2列を形成している。そして多孔扁平管2a、2bは、第1フィン1a上で複数段、ヘッダー4の軸方向に積層されて配置され、また、多孔扁平管2c、2dは、第2フィン1b上で複数段、ヘッダー4の軸方向に積層されて配置されている。   One path of the porous flat tube 2 is constituted by four porous flat tubes 2a, 2b, 2c, and 2d as one unit. The porous flat tubes 2a and 2b penetrate the first fins 1a arranged on the windward side in the air flow direction to form a first row. The porous flat tubes 2c and 2d penetrate the second fins 1b arranged on the leeward side in the air flow direction to form a second row. The porous flat tubes 2a and 2b are arranged in a plurality of stages on the first fin 1a and stacked in the axial direction of the header 4, and the porous flat tubes 2c and 2d are arranged in a plurality of stages on the second fin 1b and the header. 4 are stacked in the axial direction.

ヘッダー4は概ね長方形の断面を持つ中空構造となっており、内部に冷媒流路を有している。冷媒流路は、多孔扁平管2b、2cを列方向につなぐ列渡し部分5として形成されている。   The header 4 has a hollow structure having a substantially rectangular cross section, and has a coolant channel inside. The refrigerant flow path is formed as a row transfer portion 5 that connects the porous flat tubes 2b and 2c in the row direction.

この熱交換器を蒸発器として使用する場合、図1、2に記載された冷媒流れ3の矢印のように液冷媒が風上側の第1列である多孔扁平管2aの一端部から流入し、多孔扁平管2aの他端部からU字ベンド9を通って段間を移動し多孔扁平管2bの一端部に流入する。多孔扁平管2bの他端部はヘッダー4に接続されており、多孔扁平管2bから流出した冷媒はヘッダー4の列渡し部分5を通って列間を移動し第2列の多孔扁平管2cの一端部に流入する。多孔扁平管2cの一端部に流入した冷媒は、多孔扁平管2cの他端部からU字ベンド9を通って段間を移動し多孔扁平管2dの一端部に流入する。そして多孔扁平管2dの他端部から流出する。   When this heat exchanger is used as an evaporator, the liquid refrigerant flows from one end of the porous flat tube 2a, which is the first row on the windward side, as indicated by the arrows in the refrigerant flow 3 described in FIGS. From the other end of the porous flat tube 2a, it moves between the stages through the U-shaped bend 9, and flows into one end of the porous flat tube 2b. The other end of the porous flat tube 2b is connected to the header 4, and the refrigerant flowing out of the porous flat tube 2b moves between the rows through the row-passing portion 5 of the header 4, and the second flat porous tube 2c Flows into one end. The refrigerant flowing into one end portion of the porous flat tube 2c moves from the other end portion of the porous flat tube 2c through the U-shaped bend 9 and flows into one end portion of the porous flat tube 2d. Then, it flows out from the other end of the porous flat tube 2d.

また、この熱交換器を凝縮器として使用する場合は、ガス冷媒が第2列の多孔扁平管2dの他端部から流入し、蒸発器の場合とは逆の流路を辿り、第1列である多孔扁平管2aの一端部から流出する。
このように形成された1ユニットのパスを複数段、ヘッダー4の軸方向に積層し、熱交換器が構成されている。
When this heat exchanger is used as a condenser, the gas refrigerant flows in from the other end of the second row of porous flat tubes 2d and follows the flow path opposite to that in the case of the evaporator. It flows out from one end of the porous flat tube 2a.
A plurality of stages of 1-unit paths formed in this way are stacked in the axial direction of the header 4 to constitute a heat exchanger.

図3は、実施の形態1に係る熱交換器が蒸発器として用いられる場合の列渡し部分5の断面図である。
列渡し部分5は、略直方体形状の中空部としてヘッダー4内部に形成されている。この列渡し部分5には、多孔扁平管2bと多孔扁平管2cが接続されるとともに開口しており、第1列の多孔扁平管2bから流出した気液二相冷媒が列渡し部分5を通って多孔扁平管2b、2cの列間を移動し、第2列の多孔扁平管2cの一端部に流入する。
FIG. 3 is a cross-sectional view of the line transfer portion 5 when the heat exchanger according to Embodiment 1 is used as an evaporator.
The line passing portion 5 is formed inside the header 4 as a hollow portion having a substantially rectangular parallelepiped shape. A porous flat tube 2 b and a porous flat tube 2 c are connected to the connecting portion 5 and open, and the gas-liquid two-phase refrigerant flowing out from the first flat porous tube 2 b passes through the connecting portion 5. Then, it moves between the rows of the porous flat tubes 2b, 2c, and flows into one end of the porous flat tubes 2c in the second row.

多孔扁平管2bと多孔扁平管2cとの位置関係は、図3に示すように第1列目の多孔扁平管2bに対して第2列目の多孔扁平管2cがヘッダー4の軸方向にずれて配置されている。
そしてヘッダー4の軸方向における多孔扁平管2bと多孔扁平管2cとの間には列渡し部分5内を水平方向に仕切る冷媒仕切板7が設置されている。
The positional relationship between the porous flat tube 2b and the porous flat tube 2c is such that the second flat flat tube 2c is displaced in the axial direction of the header 4 with respect to the first flat flat tube 2b as shown in FIG. Are arranged.
A refrigerant partition plate 7 is provided between the porous flat tube 2b and the porous flat tube 2c in the axial direction of the header 4 to partition the inside of the connecting portion 5 in the horizontal direction.

この冷媒仕切板7は多孔扁平管2bと多孔扁平管2cとが開口している列渡し部分5の側壁と、該側壁に対向する側壁の2面に跨がって取り付けられ支持されている。そして多孔扁平管2bと多孔扁平管2cとが並んでいる列方向の中心位置に冷媒仕切板7が配置されることで多孔扁平管2bの下部に第1開口部7aが形成され、多孔扁平管2cの上部に第2開口部7bが形成された構成となっている。   The refrigerant partition plate 7 is attached and supported across the two sides of the side wall of the connecting portion 5 where the porous flat tube 2b and the porous flat tube 2c are open and the side wall facing the side wall. And the refrigerant | coolant partition plate 7 is arrange | positioned in the center position of the row direction where the porous flat tube 2b and the porous flat tube 2c are located in a line, The 1st opening part 7a is formed in the lower part of the porous flat tube 2b, and a porous flat tube The second opening 7b is formed in the upper part of 2c.

このように構成した冷媒仕切板7は、第1列の多孔扁平管2bから流出した気液二相冷媒が第2列の多孔扁平管2cの一端部に流入する最短ルートの邪魔をし、冷媒の流路を2分割する。
すると、列渡し部分5内で被熱交換流体の流通方向の風上側と風下側との2流路から多孔扁平管2cに気液二相冷媒中の液冷媒6が流入することとなり、多孔扁平管2cの冷媒流路に満遍なく液冷媒6が供給されることとなる。
したがって、多孔扁平管2cの各冷媒流路に十分な液冷媒6が均等に流入し蒸発することで、蒸発器としての熱交換性能が向上する。
The refrigerant partition plate 7 configured in this way obstructs the shortest route in which the gas-liquid two-phase refrigerant flowing out from the first row of porous flat tubes 2b flows into one end portion of the second row of flat porous tubes 2c. The flow path is divided into two.
Then, the liquid refrigerant 6 in the gas-liquid two-phase refrigerant flows into the porous flat tube 2c from the two flow paths in the flow direction of the heat exchange fluid in the circulation portion 5; The liquid refrigerant 6 is uniformly supplied to the refrigerant flow path of the pipe 2c.
Therefore, sufficient liquid refrigerant 6 flows evenly into each refrigerant flow path of the porous flat tube 2c and evaporates, thereby improving the heat exchange performance as an evaporator.

なお、実施の形態1において冷媒仕切板7は、板状のものを記載したが冷媒の流通抵抗になるものであればよく、例えば目の細かいメッシュ板や列渡し部分5の側壁に形成される突状部などでもよい。また、冷媒仕切板7はヘッダー4と一体として成形されても別体として取り付けられてもよい。さらに、その材質はヘッダー4と同一材料で形成されることが好ましく、例えば銅板、アルミニウム板、樹脂製の板などがあげられる。   In the first embodiment, the refrigerant partition plate 7 is a plate-like one, but any refrigerant flow resistance may be used. For example, the refrigerant divider plate 7 may be formed on a fine mesh plate or the side wall of the connecting portion 5. It may be a protrusion. Further, the refrigerant partition plate 7 may be formed integrally with the header 4 or may be attached as a separate body. Further, the material is preferably formed of the same material as the header 4, and examples thereof include a copper plate, an aluminum plate, and a resin plate.

次に、図4は、実施の形態1に係る熱交換器が凝縮器として用いられる場合の列渡し部分5の断面図である。
熱交換器が凝縮器としとして機能する場合、熱交換器の多孔扁平管2に流通する冷媒の流通方向は上記蒸発器とは逆方向となる。
すると、冷媒仕切板7は第2列の多孔扁平管2cから流出した冷媒が第1列の多孔扁平管2bの一端部に流入する最短ルートの邪魔をし、冷媒の流路を2分割する。
列渡し部分5内で被熱交換流体の流通方向の風上側と風下側との2流路から多孔扁平管2bに液冷媒6が流入することとなり、多孔扁平管2bの冷媒流路に均等にガス冷媒と液冷媒6が供給されることとなる。
そうすると、多孔扁平管2bの各冷媒流路にガス冷媒と液冷媒6が均等に流入しガス冷媒は凝縮することとなるので、各冷媒流路で均等に凝縮作用が起こり、凝縮器としての熱交換性能が向上する。
Next, FIG. 4 is a cross-sectional view of the line transfer portion 5 when the heat exchanger according to Embodiment 1 is used as a condenser.
When the heat exchanger functions as a condenser, the flow direction of the refrigerant flowing through the porous flat tube 2 of the heat exchanger is opposite to the evaporator.
Then, the refrigerant partition plate 7 obstructs the shortest route in which the refrigerant flowing out from the second row of flat flat tubes 2c flows into one end of the first row of flat flat tubes 2b, and divides the refrigerant flow path into two.
The liquid refrigerant 6 flows into the porous flat tube 2b from the two flow paths on the windward side and the leeward side in the flow direction of the heat exchange fluid in the connecting section 5, and is evenly supplied to the refrigerant flow path of the porous flat tube 2b. Gas refrigerant and liquid refrigerant 6 are supplied.
As a result, the gas refrigerant and the liquid refrigerant 6 uniformly flow into the refrigerant flow paths of the porous flat tube 2b and the gas refrigerant condenses. Exchange performance is improved.

実施の形態2.
実施の形態2に係る熱交換器のうち実施の形態1と相違する部分のみ説明する。
図5は、実施の形態2に係る、熱交換器が蒸発器として用いられる場合の列渡し部分5の断面図である。
Embodiment 2. FIG.
Only the portions of the heat exchanger according to Embodiment 2 that are different from Embodiment 1 will be described.
FIG. 5 is a cross-sectional view of the line transfer portion 5 when the heat exchanger is used as an evaporator according to the second embodiment.

列渡し部分5は、断面が略平行四辺形形状の中空部としてヘッダー4内部に形成されている。この列渡し部分5には、実施の形態1と同様に多孔扁平管2bと多孔扁平管2cが接続されるとともに開口しており、第1列の多孔扁平管2bから流出した気液二相冷媒が列渡し部分5を通って多孔扁平管2b、2cの列間を移動し、第2列の多孔扁平管2cの一端部に流入する構成となっている。   The connecting portion 5 is formed inside the header 4 as a hollow portion having a substantially parallelogram-shaped cross section. As in the first embodiment, a porous flat tube 2b and a porous flat tube 2c are connected to the connecting portion 5 and open, and the gas-liquid two-phase refrigerant that has flowed out of the first flat porous tube 2b. Moves between the rows of the porous flat tubes 2b and 2c through the row passing portion 5 and flows into one end of the second row of porous flat tubes 2c.

多孔扁平管2bと多孔扁平管2cとの位置関係は、図5に示すように第1列目の多孔扁平管2bは列渡し部分5の上辺近傍に設けられ、第2列目の多孔扁平管2cは列渡し部分5の下辺近傍に設けられている。
そして、多孔扁平管2bの周囲と多孔扁平管2cの周囲には列渡し部分5内を水平方向に仕切る第1冷媒仕切板8aと第2冷媒仕切板8bとが設置されている。
この第1冷媒仕切板8aと第2冷媒仕切板8bとは、多孔扁平管2bと多孔扁平管2cとが開口している列渡し部分5の側壁と、該側壁に対向する側壁の2面に跨がって取り付けられ支持されている。
The positional relationship between the porous flat tube 2b and the porous flat tube 2c is such that, as shown in FIG. 5, the first flat porous tube 2b is provided near the upper side of the connecting portion 5, and the second flat porous tube. 2c is provided in the vicinity of the lower side of the column passing portion 5.
A first refrigerant partition plate 8a and a second refrigerant partition plate 8b that partition the inside of the connecting portion 5 in the horizontal direction are installed around the porous flat tube 2b and the porous flat tube 2c.
The first refrigerant partition plate 8a and the second refrigerant partition plate 8b are provided on two surfaces of the side wall of the connecting portion 5 where the porous flat tube 2b and the porous flat tube 2c are opened, and the side wall facing the side wall. It is mounted and supported across.

第1冷媒仕切板8aは、多孔扁平管2bを囲うように設けられ、列渡し部分5内で被熱交換流体の流通方向の風上側で下方に開く第1開口部8cを有している。また、第2冷媒仕切板8bは、多孔扁平管2cを囲うように設けられ、列渡し部分5内で被熱交換流体の流通方向の風下側で上方に開く第2開口部8dを有している。   The first refrigerant partition plate 8a is provided so as to surround the perforated flat tube 2b, and has a first opening 8c that opens downward on the windward side in the flow direction of the heat exchange fluid in the connecting portion 5. Further, the second refrigerant partition plate 8b is provided so as to surround the porous flat tube 2c, and has a second opening 8d that opens upward on the leeward side in the flow direction of the heat exchange fluid in the connecting portion 5. Yes.

このように構成した第1冷媒仕切板8a、第2冷媒仕切板8bは、第1列の多孔扁平管2bから流出した気液二相冷媒が第2列の多孔扁平管2cの一端部に流入する最短ルートの邪魔をし、列渡し部分5内の冷媒流れ3の流路をS字状に形成する。   In the first refrigerant partition plate 8a and the second refrigerant partition plate 8b configured as described above, the gas-liquid two-phase refrigerant flowing out of the first row of porous flat tubes 2b flows into one end of the second row of porous flat tubes 2c. The flow path of the refrigerant flow 3 in the line transfer portion 5 is formed in an S shape.

すると、多孔扁平管2bから流出した気液二相冷媒中の液冷媒6は、第2冷媒仕切板8bの第2開口部8dから多孔扁平管2cの周囲に流入し、第2冷媒仕切板8bの最深部である、被熱交換流体の流通方向の風上側に集中して液だまりを形成する。蒸発器の場合、多孔扁平管2cの風上側は熱負荷が高く、液冷媒が多く供給される方が熱交換器性能は向上する。よって、上記の熱交換器の構成により多孔扁平管2cの風上側の液冷媒量が風下側よりも相対的に多くなり熱交換器性能を向上させることができる。   Then, the liquid refrigerant 6 in the gas-liquid two-phase refrigerant flowing out of the porous flat tube 2b flows into the periphery of the porous flat tube 2c from the second opening 8d of the second refrigerant partition plate 8b, and the second refrigerant partition plate 8b. A liquid pool is formed by concentrating on the windward side in the flow direction of the heat exchange fluid, which is the deepest part of the liquid. In the case of an evaporator, a heat load is higher on the windward side of the porous flat tube 2c, and the performance of the heat exchanger is improved when more liquid refrigerant is supplied. Therefore, with the configuration of the heat exchanger described above, the amount of liquid refrigerant on the windward side of the porous flat tube 2c is relatively larger than that on the leeward side, and the heat exchanger performance can be improved.

次に、図6は、実施の形態2に係る熱交換器が凝縮器として用いられる場合の列渡し部分5の断面図である。
熱交換器が凝縮器としとして機能する場合、熱交換器の多孔扁平管2に流通する冷媒の流通方向は上記蒸発器とは逆方向となる。
すると、第1冷媒仕切板8a、第2冷媒仕切板8bは、第2列の多孔扁平管2cから流出した気液二相冷媒が第1列の多孔扁平管2bの一端部に流入する最短ルートの邪魔をし、列渡し部分5内の冷媒流れ3をS字状に形成する。
Next, FIG. 6 is a cross-sectional view of the line transfer portion 5 when the heat exchanger according to Embodiment 2 is used as a condenser.
When the heat exchanger functions as a condenser, the flow direction of the refrigerant flowing through the porous flat tube 2 of the heat exchanger is opposite to the evaporator.
Then, the first refrigerant partition plate 8a and the second refrigerant partition plate 8b are the shortest route through which the gas-liquid two-phase refrigerant flowing out from the second row of flat flat tubes 2c flows into one end of the first row of flat flat tubes 2b. The refrigerant flow 3 in the line passing portion 5 is formed in an S shape.

多孔扁平管2cから流出した気液二相冷媒中の液冷媒6は、第1冷媒仕切板8aの第1開口部8cから多孔扁平管2bの周囲に流入し、第1冷媒仕切板8aの最深部である被熱交換流体の流通方向の風下側に集中し多孔扁平管2bに流入する。凝縮器の場合、多孔扁平管2bの風上側は熱負荷が高く、ガス冷媒が多く供給される方が熱交換器性能は向上する。よって、上記の熱交換器の構成により多孔扁平管2bの風上側のガス冷媒量が風下側よりも相対的に多くなり熱交換器性能を向上させることができる。   The liquid refrigerant 6 in the gas-liquid two-phase refrigerant flowing out of the porous flat tube 2c flows into the periphery of the porous flat tube 2b from the first opening 8c of the first refrigerant partition plate 8a, and reaches the deepest of the first refrigerant partition plate 8a. It concentrates on the leeward side in the flow direction of the heat exchange fluid that is the part and flows into the porous flat tube 2b. In the case of a condenser, the windward side of the porous flat tube 2b has a higher heat load, and the heat exchanger performance is improved when more gas refrigerant is supplied. Therefore, with the configuration of the heat exchanger described above, the amount of gas refrigerant on the windward side of the porous flat tube 2b is relatively larger than that on the leeward side, and the heat exchanger performance can be improved.

図7は、実施の形態1、2に係る熱交換器を利用した空調冷凍装置の冷媒回路図である。図7に示す冷媒回路は、圧縮機33、凝縮熱交換器34、絞り装置35、蒸発熱交換器36、送風機モータ38によって駆動される送風機37により構成されている。上述の実施の形態1、2に係る熱交換器を凝縮熱交換器34または蒸発熱交換器36、もしくは両方に用いることにより、エネルギ効率の高い空調冷凍装置を実現することが出来る。
ここで、エネルギ効率は、次式で構成されるものである。
暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
FIG. 7 is a refrigerant circuit diagram of an air-conditioning refrigeration apparatus using the heat exchanger according to the first and second embodiments. The refrigerant circuit shown in FIG. 7 includes a compressor 33, a condensing heat exchanger 34, an expansion device 35, an evaporating heat exchanger 36, and a blower 37 driven by a blower motor 38. By using the heat exchanger according to the above-described first and second embodiments for the condensation heat exchanger 34, the evaporating heat exchanger 36, or both, an air-conditioning refrigeration apparatus with high energy efficiency can be realized.
Here, energy efficiency is constituted by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input

なお、上述の実施の形態1、2で述べた熱交換器およびそれを用いた空調冷凍装置については、例えばR410A、R32、HFO1234yf等の冷媒においてその効果を達成することができる。   In addition, about the heat exchanger described in above-mentioned Embodiment 1, 2, and an air-conditioning refrigeration apparatus using the same, the effect can be achieved in refrigerant | coolants, such as R410A, R32, HFO1234yf, for example.

また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を作動流代として採用することが可能である。   Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, it is possible to employ | adopt other gas, a liquid, and a gas-liquid mixed fluid as a working flow allowance.

なお、上述の実施の形態1、2で述べた熱交換器およびそれを用いた空調冷凍装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、相溶性、非相溶性にかかわらずどんな冷凍機油についても採用が可能である。   For the heat exchangers described in the first and second embodiments and the air-conditioning refrigeration apparatus using the heat exchangers, compatibility such as mineral oil, alkylbenzene oil, ester oil, ether oil, fluorine oil, etc. Any refrigerating machine oil can be used regardless of incompatibility.

また、熱交換器のヘッダー4は、その軸方向が重力方向と平行となるように配置されているものを例としたが、軸方向を水平方向に平行に配置してもよい。
ヘッダー4の軸方向を水平方向に平行に配置することで液冷媒が重力の影響が無効化され、液冷媒がヘッダー4内で滞留する現象が少なくなる。すると、熱交換器が蒸発器として機能する場合に実施の形態1または2に係るヘッダー4の構成を採用することで、多孔扁平管2cの各冷媒流路に十分な液冷媒6が均等に流入する効果がより顕著になる。よって、蒸発器としての熱交換性能が向上する。
さらに熱交換器が凝縮器として機能する場合にも実施の形態1または2に係るヘッダー4の構成を採用することで、多孔扁平管2bの各冷媒流路にガス冷媒と液冷媒6とが均等に流入し凝縮器としての熱交換性能が向上する。
Moreover, although the header 4 of the heat exchanger is an example in which the axial direction is arranged so as to be parallel to the gravity direction, the axial direction may be arranged parallel to the horizontal direction.
By arranging the axial direction of the header 4 parallel to the horizontal direction, the influence of gravity of the liquid refrigerant is nullified, and the phenomenon that the liquid refrigerant stays in the header 4 is reduced. Then, when the heat exchanger functions as an evaporator, by adopting the configuration of the header 4 according to Embodiment 1 or 2, sufficient liquid refrigerant 6 flows evenly into each refrigerant flow path of the porous flat tube 2c. The effect of doing becomes more remarkable. Therefore, the heat exchange performance as an evaporator improves.
Furthermore, even when the heat exchanger functions as a condenser, by adopting the configuration of the header 4 according to Embodiment 1 or 2, the gas refrigerant and the liquid refrigerant 6 are evenly distributed in each refrigerant flow path of the porous flat tube 2b. The heat exchange performance as a condenser is improved.

1 フィン、1a 第1フィン、1b 第2フィン、2 多孔扁平管、2a 多孔扁平管、2b 多孔扁平管、2c 多孔扁平管、2d 多孔扁平管、3 冷媒の流れ、4 ヘッダー、5 列渡し部、6 液冷媒、7 冷媒仕切板、7a 第1開口部、7b 第2開口部、8a 第1冷媒仕切板、8b 第2冷媒仕切板、8c 第1開口部、8d 第2開口部、9 U字ベンド、33 圧縮機、34 凝縮熱交換器、35 絞り装置、36 蒸発熱交換器、37 送風機、38 送風機モータ。   1 fin, 1a 1st fin, 1b 2nd fin, 2 porous flat tube, 2a porous flat tube, 2b porous flat tube, 2c porous flat tube, 2d porous flat tube, 3 refrigerant flow, 4 header, 5 column passing part 6 liquid refrigerant, 7 refrigerant partition plate, 7a first opening portion, 7b second opening portion, 8a first refrigerant partition plate, 8b second refrigerant partition plate, 8c first opening portion, 8d second opening portion, 9U Bend, 33 Compressor, 34 Condensation heat exchanger, 35 Throttle device, 36 Evaporation heat exchanger, 37 Blower, 38 Blower motor.

本発明に係る熱交換器は、被熱交換媒体の通過方向である列方向に複数列配置され内部流路に熱媒体が流通する複数の伝熱管と、列方向に隣接して配置された一対の伝熱管を接続する熱媒体流路としての列渡し部と、複数の伝熱管が接続されるヘッダーと、を備えた熱交換器において、列渡し部はヘッダー内に設けられていると共に、列渡し部内には、熱媒体流路に立設する冷媒仕切板設けられたものである。 The heat exchanger according to the present invention is arranged in a plurality of rows in the row direction, which is a passing direction of the heat exchange medium, and is arranged adjacent to the plurality of heat transfer tubes in which the heat medium flows in the internal channel in the row direction. a column passing portion of the heating medium flow path connecting a pair of heat transfer tubes, and headers having a plurality of heat transfer tubes are connected, the heat exchanger having a column pass unit, together are provided in the header , in the column pass portion, in which the refrigerant partition plate erected on the heat medium channel is provided.

本発明に係る熱交換器は、被熱交換媒体の通過方向である列方向に複数列配置され、内部流路に熱媒体が流通する複数の伝熱管と、前記列方向に隣接して配置された一対の前記伝熱管を接続する熱媒体流路としての列渡し部と、複数の前記伝熱管が接続されるヘッダーと、を備えた熱交換器において、前記列渡し部は、前記ヘッダー内に設けられていると共に、前記列渡し部内には、熱媒体流路に立設する冷媒仕切板が設けられ、前記冷媒仕切板は前記列方向と平行になるように設けられ、前記冷媒仕切板における前記列方向の両端部に前記熱媒体が流通する開口部が設けられるものである。 The heat exchanger according to the present invention is arranged in a plurality of rows in a row direction that is a passing direction of the heat exchange medium, a plurality of heat transfer tubes through which the heat medium flows in an internal flow path, and arranged adjacent to the row direction. A heat exchanger comprising a row transfer section as a heat medium flow path connecting the pair of heat transfer tubes, and a header to which a plurality of the heat transfer tubes are connected, wherein the row transfer section is disposed in the header. In addition, a refrigerant partition plate standing in the heat medium flow path is provided in the row transfer section, and the refrigerant partition plate is provided so as to be parallel to the row direction. Openings through which the heat medium flows are provided at both ends in the row direction .

Claims (10)

被熱交換媒体の通過方向である列方向に複数列配置され内部流路に熱媒体が流通する伝熱管と、前記列方向に隣接して配置された一対の前記伝熱管を接続する熱媒体流路としての列渡し部と、前記伝熱管が接続されるヘッダーと、を備えた熱交換器において、
前記列渡し部は前記ヘッダー内に設けられていると共に、
前記列渡し部内には、熱媒体流路に立設する冷媒仕切板を設けたことを特徴とする熱交換器。
A heat medium flow connecting a heat transfer tube arranged in a plurality of rows in the row direction, which is a passing direction of the heat exchange medium, and the heat transfer medium flowing in an internal flow path, and a pair of the heat transfer tubes arranged adjacent to each other in the row direction In a heat exchanger comprising a line passing section as a path and a header to which the heat transfer tube is connected,
The row passing portion is provided in the header,
A heat exchanger characterized in that a refrigerant partition plate standing on the heat medium flow path is provided in the row transfer section.
前記一対の伝熱管は前記列方向に垂直な方向に離間して配置され、前記冷媒仕切板は前記列方向に垂直な方向において前記一対の伝熱管の間に設置されていることを特徴とする請求項1に記載の熱交換器。   The pair of heat transfer tubes are spaced apart from each other in a direction perpendicular to the row direction, and the refrigerant partition plate is disposed between the pair of heat transfer tubes in a direction perpendicular to the row direction. The heat exchanger according to claim 1. 前記冷媒仕切板は前記列方向と平行になるように設けられ、前記冷媒仕切板における前記列方向の両端部に前記熱媒体が流通する開口部が設けられることを特徴とする請求項1または2に記載の熱交換器。   The said refrigerant | coolant partition plate is provided so that it may become parallel to the said column direction, and the opening part which the said heat medium distribute | circulates is provided in the both ends of the said column direction in the said refrigerant | coolant partition plate. The heat exchanger as described in. 前記冷媒仕切板は平板形状であることを特徴とする請求項1〜3のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the refrigerant partition plate has a flat plate shape. 前記列渡し部は直方体形状であることを特徴とする請求項1〜4のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the row transfer portion has a rectangular parallelepiped shape. 前記冷媒仕切板は、前記一対の伝熱管のそれぞれの周囲に設けられ、前記列方向の両端側において前記熱媒体が流通する開口部をそれぞれ有することを特徴とする請求項1に記載の熱交換器。   2. The heat exchange according to claim 1, wherein the refrigerant partition plate is provided around each of the pair of heat transfer tubes and has openings through which the heat medium flows at both ends in the row direction. vessel. 前記列渡し部の断面形状は平行四辺形形状を含むことを特徴とする請求項1〜4、6のいずれか1項に記載の熱交換器。   7. The heat exchanger according to claim 1, wherein the cross-sectional shape of the row passing portion includes a parallelogram shape. 前記伝熱管の軸方向に対して垂直な方向にフィンが設置されたフィンチューブ型であることを特徴とする請求項1〜7のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 7, wherein the heat exchanger is a fin tube type in which fins are installed in a direction perpendicular to the axial direction of the heat transfer tube. 前記伝熱管は、前記熱媒体が流通する流路を複数備えた多孔扁平管であることを特徴とする請求項1〜8のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein the heat transfer tube is a porous flat tube including a plurality of channels through which the heat medium flows. 請求項1〜9のいずれか1項に記載の熱交換器を有することを特徴とする空気調和機。   An air conditioner comprising the heat exchanger according to any one of claims 1 to 9.
JP2015539281A 2013-09-27 2014-09-24 Heat exchanger and air conditioner using the same Active JP6120978B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/076298 2013-09-27
PCT/JP2013/076298 WO2015045105A1 (en) 2013-09-27 2013-09-27 Heat exchanger and air conditioner using same
PCT/JP2014/075328 WO2015046275A1 (en) 2013-09-27 2014-09-24 Heat exchanger and air conditioner using same

Publications (2)

Publication Number Publication Date
JPWO2015046275A1 true JPWO2015046275A1 (en) 2017-03-09
JP6120978B2 JP6120978B2 (en) 2017-04-26

Family

ID=52742309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539281A Active JP6120978B2 (en) 2013-09-27 2014-09-24 Heat exchanger and air conditioner using the same

Country Status (3)

Country Link
EP (1) EP3051244B1 (en)
JP (1) JP6120978B2 (en)
WO (2) WO2015045105A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094114A1 (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Refrigeration cycle device
US10436514B2 (en) 2015-12-21 2019-10-08 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP7078840B2 (en) * 2018-01-19 2022-06-01 ダイキン工業株式会社 Heat exchanger and air conditioner
JP6806187B2 (en) * 2019-06-13 2021-01-06 ダイキン工業株式会社 Heat exchanger
WO2022085067A1 (en) * 2020-10-20 2022-04-28 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2023032155A1 (en) * 2021-09-03 2023-03-09 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269289U (en) * 1988-11-10 1990-05-25
JPH06117783A (en) * 1992-10-01 1994-04-28 Showa Alum Corp Laminated heat-exchanger
JPH06213532A (en) * 1993-01-20 1994-08-02 Showa Alum Corp Laminate type heat exchanger
JP2003166797A (en) * 2001-11-30 2003-06-13 Toyo Radiator Co Ltd Heat exchanger
JP2003302183A (en) * 2002-04-09 2003-10-24 Toyo Radiator Co Ltd Heat exchanger for air-conditioner
JP2004108601A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner using heat exchanger
JP2006029653A (en) * 2004-07-14 2006-02-02 Calsonic Kansei Corp Heat exchanger
JP2007032993A (en) * 2005-07-29 2007-02-08 Showa Denko Kk Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733899A (en) * 1956-02-07 Lehmann
JP4055449B2 (en) 2002-03-27 2008-03-05 三菱電機株式会社 Heat exchanger and air conditioner using the same
SE528412C2 (en) * 2005-03-15 2006-11-07 Scania Cv Ab Cooling device in which a first tank is provided with outer surface magnifying elements and an inner field-conducting element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269289U (en) * 1988-11-10 1990-05-25
JPH06117783A (en) * 1992-10-01 1994-04-28 Showa Alum Corp Laminated heat-exchanger
JPH06213532A (en) * 1993-01-20 1994-08-02 Showa Alum Corp Laminate type heat exchanger
JP2003166797A (en) * 2001-11-30 2003-06-13 Toyo Radiator Co Ltd Heat exchanger
JP2003302183A (en) * 2002-04-09 2003-10-24 Toyo Radiator Co Ltd Heat exchanger for air-conditioner
JP2004108601A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner using heat exchanger
JP2006029653A (en) * 2004-07-14 2006-02-02 Calsonic Kansei Corp Heat exchanger
JP2007032993A (en) * 2005-07-29 2007-02-08 Showa Denko Kk Heat exchanger

Also Published As

Publication number Publication date
EP3051244A1 (en) 2016-08-03
EP3051244A4 (en) 2017-05-24
EP3051244B1 (en) 2018-12-19
JP6120978B2 (en) 2017-04-26
WO2015046275A1 (en) 2015-04-02
WO2015045105A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP6120978B2 (en) Heat exchanger and air conditioner using the same
US10309701B2 (en) Heat exchanger and air conditioner
US20120103583A1 (en) Heat exchanger and fin for the same
KR102634151B1 (en) Aluminum extruded flat perforated tube and heat exchanger
US10082344B2 (en) Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
US10041710B2 (en) Heat exchanger and air conditioner
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
US20150226498A1 (en) Heat exchanger
JPWO2015005352A1 (en) Heat pump equipment
KR20170067351A (en) Heat exchanger
JP2016095094A (en) Heat exchanger and refrigeration cycle device
JP2019052784A (en) Heat exchanger and air conditioner
JP2010112580A (en) Heat exchanger
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
JP2020112274A (en) Heat exchanger
JP2016176615A (en) Parallel flow type heat exchanger
JP6833042B2 (en) Heat exchanger and refrigeration cycle equipment
JP2020165578A (en) Heat exchanger flow divider
JP6537868B2 (en) Heat exchanger
JP7010958B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle device
WO2016092655A1 (en) Refrigeration cycle device
JP2013178052A (en) Heat exchanger
WO2019207806A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP2020085268A (en) Heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250