[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20120103583A1 - Heat exchanger and fin for the same - Google Patents

Heat exchanger and fin for the same Download PDF

Info

Publication number
US20120103583A1
US20120103583A1 US13/317,740 US201113317740A US2012103583A1 US 20120103583 A1 US20120103583 A1 US 20120103583A1 US 201113317740 A US201113317740 A US 201113317740A US 2012103583 A1 US2012103583 A1 US 2012103583A1
Authority
US
United States
Prior art keywords
micro
heat exchanger
slots
fin
channel tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/317,740
Inventor
Young Min Kim
Hayase Gaku
Kang Tae Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Gaku, Hayase, KIM, YOUNG MIN, SEO, KANG TAE
Publication of US20120103583A1 publication Critical patent/US20120103583A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • Embodiments of the present disclosure relate to a heat exchanger of an air conditioner having a structure capable of achieving enhancements in drainage and heat transfer performance.
  • Heat exchangers which implement one part of the refrigeration cycle, are used in equipment such as air conditioners and refrigerators.
  • Heat exchangers include a plurality of fins for heat exchange arranged to be spaced apart from one another, and a plurality of refrigerant tubes, which is installed to come into contact with the plural fins for heat exchange, to guide refrigerant.
  • air flowing into the heat exchanger from the outside undergoes heat exchange while passing through the fins for heat exchange, so that cooling operation or heating operation is achieved.
  • Heat exchangers are classified into fin & tube type and parallel flow type heat exchangers in accordance with shapes of the fin and tube and coupling relations therebetween.
  • the fin & tube type heat exchanger has a structure in which press-worked fins are layered, and a plurality of circular tubes is then fitted between adjacent ones of the layered fins through a press-fit process.
  • the parallel flow type heat exchanger has a structure in which a fin having a corrugated shape is joined between flat elliptical tubes through a brazing process.
  • the parallel flow type-heat exchanger is superior in terms of heat exchange efficiency, as compared to the fin & tube type heat exchanger.
  • drainage of condensed water from the parallel flow type heat exchanger may be troublesome.
  • FMC fin micro-channel heat exchanger
  • a heat exchanger includes a first header connected with an inflow tube and an outflow tube, a second header spaced apart from the first header by a desired distance and arranged parallel to the first header, a plurality of flat micro-channel tubes arranged in a front row and a rear row between the first header and the second header, and a plurality of plate type fins, each of the micro-channel tubes includes micro-channels, and each of the fins includes slots arranged in a front row and a rear row to respectively fit the front row and rear row micro-channel tubes into the slots.
  • Louvers or slits may be formed between vertically adjacent ones of the slots in each of the fins.
  • the louvers may have a pitch LP satisfying a range of about 0.8 mm ⁇ Lp ⁇ 1.2 mm.
  • a clearance D 1 between each slot and each louver or slit adjacent to each other may satisfy a range of about 0 mm ⁇ D 1 ⁇ 1 mm.
  • a clearance D 2 between the front row and rear row slots may satisfy a range of about D 2 ⁇ 2 mm.
  • a ratio R between an air-side heat transfer area A and a refrigerant-side heat transfer area C defined by equations below may satisfy a range of about 2.5 mm ⁇ R ⁇ 3.5 mm:
  • Lf represents an overall height of each fin
  • Wf represents a width of each fin
  • Wc represents a width of each micro-channel
  • Hc represents a height of each micro-channel
  • Lt represents a length of each micro-channel tube.
  • Openings arranged in the form of a lattice between vertically adjacent ones of the slots may be formed at each of the fins.
  • Each of the openings may have a square shape.
  • the first and second headers may extend vertically.
  • a fin assembly for a heat exchanger including a plurality of plate type fins into which flat micro-channel tubes are fitted, wherein each of the fins may include slots arranged in a front row and a rear row to receive the micro-channel tubes, respectively, and louvers or slits formed between vertically adjacent ones of the slots.
  • the louvers may have a pitch LP satisfying a range of about 0.8 mm ⁇ Lp ⁇ 1.2 mm.
  • a clearance D 1 between each slot and each louver or slit adjacent to each other may satisfy a range of about 0 mm ⁇ D 1 ⁇ 1 mm.
  • a clearance D 2 between the front row and rear row slots may satisfy a range of about D 2 ⁇ 2 mm.
  • a fin assembly for a heat exchanger including a plurality of plate type fins into which flat micro-channel tubes are fitted, wherein each of the fins may include slots arranged in a front row and a rear row to receive the micro-channel tubes, respectively, and openings arranged in a lattice form between the vertically adjacent ones of the slots.
  • Each of the openings may have a square shape.
  • FIG. 1 is a perspective view illustrating an external appearance of a heat exchanger according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a top view schematically illustrating a fin structure of the heat exchanger according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a sectional view taken along line I-I of FIG. 2 ;
  • FIG. 4 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure
  • FIG. 5 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure
  • FIG. 6 is a sectional view taken along line II-II of FIG. 5 ;
  • FIG. 7 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIG. 8 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a sectional view taken along line III-III of FIG. 8 ;
  • FIG. 10 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIG. 11 is a sectional view illustrating a cross section of a micro-channel tube included in the heat exchanger according to an exemplary embodiment of the present disclosure
  • FIG. 12 is a graph illustrating variation in heat exchange performance according to a ratio between an air-side heat transfer area and a refrigerant-side heat transfer area
  • FIGS. 13 and 14 are views explaining a method of joining the tubes and fins for the heat exchanger according to an exemplary embodiment of the present disclosure, respectively.
  • FIG. 15 is a perspective view illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIG. 1 is a perspective view illustrating an external appearance of a heat exchanger according to an exemplary embodiment of the present disclosure.
  • the heat exchanger 1 includes a first header 10 , a second header 20 , micro-channel tubes 30 , and fins 40 .
  • the first header 10 and the second header 20 extend vertically while being spaced apart from each other by a desired distance.
  • Tube coupling portions (not shown) are formed at facing walls of the first and second headers 10 and 20 .
  • Each tube coupling portion is formed by cutting the corresponding header wall to a size in accordance with a cross section of the corresponding micro-channel tube 30 to couple the micro-channel tube 30 to the tube coupling portion.
  • the first header 10 and the second header 20 include respective front tanks 11 and 21 and respective rear tanks 12 and 22 .
  • the front tanks 11 and 21 and the rear tanks 12 and 22 are partitioned by partition walls, respectively.
  • Each of the front tanks 11 and 21 and the rear tanks 12 and 22 may be further vertically partitioned by baffles 13 .
  • the micro-channel tubes 30 are installed between the first and second headers 10 and 20 , to guide refrigerant by communicating the first header 10 with the second header 20 .
  • Each of the micro-channel tubes 30 is a path through which refrigerant passes. Refrigerant is compressed or expanded while circulating in an air conditioner (not shown), so that cooling and heating may be achieved.
  • the micro-channel tubes 30 which are vertically spaced apart from one another by a desired clearance, are arranged in two rows, namely, a front row and a rear row. That is, the micro-channel tubes 30 include front row micro-channel tubes 31 and rear row micro-channel tubes 32 .
  • the front row and rear row micro-channel tubes 31 and 32 are alternately arranged in a zigzag formation.
  • the front row and rear row micro-channel tubes 31 and 32 may be arranged to be horizontally aligned with each other, as shown in FIG. 4 .
  • an inflow tube 14 into which refrigerant flows and an outflow tube 15 from which heat-exchanged refrigerant while passing through the micro-channel tubes 30 is discharged are connected to the first header 10 .
  • the inflow and outflow tubes 14 and 15 may be respectively connected to lower and upper sides of the first header 10 , in order to prevent accumulation of refrigerant droplets caused by gravity, even if refrigerant flowing into the first header 10 has both a gas phase and a liquid phase.
  • FIG. 2 is a top view schematically illustrating a fin structure of the heat exchanger according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a sectional view taken along line I-I of FIG. 2 .
  • FIGS. 2 and 3 A structure of fins and tubes for the heat exchanger according to the exemplary embodiments of the present disclosure will be described with reference to FIGS. 2 and 3 .
  • a fin body 43 in each fin 40 is formed to have a plate shape with a certain width Wf and height Hf.
  • the fin body 43 may be a rectangular thin plate.
  • Each fin 40 is installed to come into contact with the corresponding micro-channel tubes 30 , and may be formed as widely as possible so that the section thereof to radiate or absorb heat becomes wider.
  • Heat of refrigerant flowing inside the micro-channel tubes 30 is transferred to air flowing around the fins 40 via the micro-channel tubes 30 and fins 40 , thereby easily radiating heat to the outside.
  • front row slots 44 and rear row slots 45 are formed at each of the fins 40 so that the front row and rear row micro-channel tubes 31 and 32 are fitted into the front row slots 44 and the rear row slots 45 , respectively.
  • collars 47 perpendicular to the fin body 43 are formed respectively at peripheral areas of the front row and rear row slots 44 and 45 to easily fit the front row and rear row micro-channel tubes 31 and 32 into the corresponding front row and rear row slots 44 and 45 respectively, thereby securing a desired joining force.
  • the fins 40 are arranged to be evenly spaced in parallel with a flow direction of air. Thus, air may execute heat exchange while naturally flowing along surfaces of the fins 40 without greatly undergoing resistance caused by the fins 40 .
  • the front row and rear row slots 44 and 45 of each fin 40 are also arranged in a zigzag formation.
  • the front row and rear row slots 44 and 45 of each fin 40 are also arranged to be horizontally aligned with each other, of course.
  • front row and rear row louvers 41 and 42 are formed between the vertically adjacent slots 44 and between the vertically adjacent slots 45 respectively, to enhance heat transfer efficiency by increasing a contact area with air.
  • the louvers 41 are formed between the vertically adjacent front row slots 44
  • the louvers 42 are formed between the vertically adjacent rear row slots 45 .
  • each fin 40 the front row louvers 41 and the rear row louvers 42 are symmetrically arranged in a width direction of the fin 40 , and each of the front row louvers 41 and the rear row louvers 42 is formed so that a portion of the fin body 43 is slightly bent from a plane of the fin 40 in an upward or downward direction to be inclined at a desired angle. Accordingly, air flowing along the fins 40 is dispersed by the louvers 41 and 42 , and growth of a boundary layer is restrained, so that heat exchange efficiency may be enhanced.
  • the clearance D 1 between each slot 44 or 45 and each louver 41 or 42 may be 1 mm or less, in order to prevent an increase in air-side pressure loss and a deterioration in heat transfer performance due to formation of water droplets at lower ends of the micro-channel tubes 30 .
  • condensed water may be smoothly drained to lower ends of the fins 40 by capillary action.
  • each fin 40 drainage performance may be enhanced when the clearance D 2 between the front row slots 44 into which the front row micro-channel tubes 31 are respectively fitted and the rear row slots 45 into which the rear row micro-channel tubes 32 are respectively fitted may be 2 mm or more.
  • Drainage performance may be enhanced when the pitch LP of the louvers 41 and 42 satisfies a range of 0.8 mm ⁇ Lp ⁇ 1.2 mm.
  • FIG. 5 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIG. 6 is a sectional view taken along line II-II of FIG. 5 .
  • FIG. 7 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • slits 46 a and 46 b may be formed between vertically adjacent slots 44 and between vertically adjacent slots 45 , respectively.
  • the slits 46 a are formed between the vertically adjacent front row slots 44
  • the slits 46 b are formed between the vertically adjacent rear row slots 45 .
  • Air is changed into turbulent air while flowing into openings of the slits 46 a and 46 b, and the turbulent air circulates around the micro-channel tubes 30 , and thus heat exchange efficiency may be improved.
  • front row slots 44 and rear row slots 45 of each fin 40 may be arranged in a zigzag formation or to be horizontally aligned with each other.
  • FIG. 8 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a sectional view taken along line III-III of FIG. 8 .
  • FIG. 10 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • louvers 41 and 42 and slits 46 a and 46 b in each fin 40 may also be formed together, and front row slots 44 and rear row slots 45 in each fin 40 may be arranged in a zigzag formation or to be horizontally aligned with each other. Since the remaining components are the same as those according to another exemplary embodiment of the present disclosure, no description will be given.
  • each of the micro-channel tubes 30 has a flat shape, and a plurality of micro-channels 33 is formed in the micro-channel tube 30 to guide refrigerant in the micro-channel tube 30 .
  • each of the micro-channel tubes 30 may have a circular shape in a cross section, the micro-channel tube 30 may have a flat shape to expand a heat transfer area.
  • FIG. 12 is a graph illustrating variation in heat exchange performance according to a ratio between an air-side heat transfer area and a refrigerant-side heat transfer area.
  • the x-axis refers to the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C
  • the y-axis refers to the quantity of heat per frontal area Q/FA, heat transfer capacity per frontal area HA/FA, and pressure loss per unit length dP/L (however, numerical values of the y-axis are relative values).
  • performance characteristics according to the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C may be varied.
  • pressure loss increases as the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C increases. Therefore, when the ratio R satisfies a range of about 2.5 ⁇ R ⁇ 3.5, overall performance characteristics may be optimized.
  • the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C is 10 ⁇ R ⁇ 20 in the case of the fin & tube type heat exchanger, whereas the ratio R is 3 ⁇ R ⁇ 4 in the case of the parallel flow type heat exchanger.
  • the refrigerant-side heat transfer area C may be increased, in order to obtain an optimal performance characteristic.
  • FIGS. 13 and 14 are views explaining a method of joining the tubes and fins for the heat exchanger according to an exemplary embodiment of the present disclosure, respectively.
  • the joining of the micro-channel tubes 30 and fins 40 as described above may be achieved by welding wires 50 , in addition to a brazing process conventionally used to join aluminum clad fins and tubes.
  • the fin 40 and the front row and rear row micro-channel tubes 31 and 32 may be welded and joined together while the melted welding wires flow into the gaps between the micro-channel tubes and the corresponding slots, as shown in FIG. 14 .
  • joining defects may be greatly resolved in addition to easy welding.
  • FIG. 15 is a perspective view illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • the fin 140 may include a fin body 143 , slots 145 alternatively arranged in a zigzag formation to respectively fit the micro-channel tubes, and a plurality of openings 148 arranged in a lattice form between the vertically adjacent slots 145 .
  • Collars 147 may be formed respectively around the slots 145 so as to easily attach the micro-channel tubes to the slots 145 by fitting the micro-channel tubes into the slots 145 .
  • air F flowing in a thickness direction of the fins 140 may pass between a front surface and a rear surface of each fin 140 through the openings 148 while flowing between the fins 140 . Further, since a plurality of fins 140 is layered, the openings 148 arranged at corresponding positions between the layered fins 140 may form a channel. Thus, a reduction in air-side pressure loss and an enhancement in heat transfer performance may be achieved.
  • a fin micro-channel heat exchanger having a structure capable of achieving enhancements in drainage and heat transfer performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger having a structure in which micro-channel tubes are respectively fitted into both sides of corresponding flat fins for heat exchange, thereby achieving enhancements in drainage and heat transfer performance. The heat exchanger includes a first header connected with an inflow tube and an outflow tube, a second header spaced apart from the first header by a desired distance and arranged parallel to the first header, a plurality of flat micro-channel tubes arranged in a front row and a rear row between the first header and the second header, and a plurality of plate type fins. Each of the micro-channel tubes includes micro-channels. Each of the fins includes slots arranged in a front row and a rear row to respectively fit the front row and rear row micro-channel tubes into the slots.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of Korean Patent Application No. 10-2010-106368 filed on Oct. 28, 2010 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
  • BACKGROUND
  • 1. Field
  • Embodiments of the present disclosure relate to a heat exchanger of an air conditioner having a structure capable of achieving enhancements in drainage and heat transfer performance.
  • 2. Description of the Related Art
  • Heat exchangers, which implement one part of the refrigeration cycle, are used in equipment such as air conditioners and refrigerators. Heat exchangers include a plurality of fins for heat exchange arranged to be spaced apart from one another, and a plurality of refrigerant tubes, which is installed to come into contact with the plural fins for heat exchange, to guide refrigerant. In such a heat exchanger, air flowing into the heat exchanger from the outside undergoes heat exchange while passing through the fins for heat exchange, so that cooling operation or heating operation is achieved.
  • Heat exchangers are classified into fin & tube type and parallel flow type heat exchangers in accordance with shapes of the fin and tube and coupling relations therebetween.
  • Conventionally, the fin & tube type heat exchanger has a structure in which press-worked fins are layered, and a plurality of circular tubes is then fitted between adjacent ones of the layered fins through a press-fit process. On the other hand, the parallel flow type heat exchanger has a structure in which a fin having a corrugated shape is joined between flat elliptical tubes through a brazing process.
  • In general, the parallel flow type-heat exchanger is superior in terms of heat exchange efficiency, as compared to the fin & tube type heat exchanger. However, drainage of condensed water from the parallel flow type heat exchanger may be troublesome.
  • SUMMARY
  • Therefore, it is an aspect of the present disclosure to provide a fin micro-channel heat exchanger (FMC) having a structure capable of achieving enhancements in drainage and heat transfer performance.
  • It is another aspect of the present disclosure to provide a model capable of achieving an optimal design of FMC.
  • Additional aspects of the disclosure will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
  • In accordance with one aspect of the present disclosure, a heat exchanger includes a first header connected with an inflow tube and an outflow tube, a second header spaced apart from the first header by a desired distance and arranged parallel to the first header, a plurality of flat micro-channel tubes arranged in a front row and a rear row between the first header and the second header, and a plurality of plate type fins, each of the micro-channel tubes includes micro-channels, and each of the fins includes slots arranged in a front row and a rear row to respectively fit the front row and rear row micro-channel tubes into the slots.
  • Louvers or slits may be formed between vertically adjacent ones of the slots in each of the fins.
  • The louvers may have a pitch LP satisfying a range of about 0.8 mm≦Lp≦1.2 mm.
  • A clearance D1 between each slot and each louver or slit adjacent to each other may satisfy a range of about 0 mm<D1≦1 mm.
  • A clearance D2 between the front row and rear row slots may satisfy a range of about D2≧2 mm.
  • A ratio R between an air-side heat transfer area A and a refrigerant-side heat transfer area C defined by equations below may satisfy a range of about 2.5 mm≦R≦3.5 mm:

  • A=((Lf×Wf)−(sum of slot areas per fin))×2×total number of fins,

  • C=(Wc+Hc)×2×Lt×(total number of micro-channels per micro-channel tube)×(total number of micro-channel tubes), and

  • R=A/C,
  • where “Lf” represents an overall height of each fin, “Wf” represents a width of each fin, “Wc” represents a width of each micro-channel, “Hc” represents a height of each micro-channel, and “Lt” represents a length of each micro-channel tube.
  • Openings arranged in the form of a lattice between vertically adjacent ones of the slots may be formed at each of the fins.
  • Each of the openings may have a square shape.
  • The first and second headers may extend vertically.
  • In accordance with another aspect of the present disclosure, a fin assembly for a heat exchanger including a plurality of plate type fins into which flat micro-channel tubes are fitted, wherein each of the fins may include slots arranged in a front row and a rear row to receive the micro-channel tubes, respectively, and louvers or slits formed between vertically adjacent ones of the slots.
  • The louvers may have a pitch LP satisfying a range of about 0.8 mm≦Lp≦1.2 mm.
  • A clearance D1 between each slot and each louver or slit adjacent to each other may satisfy a range of about 0 mm≦D1÷1 mm.
  • A clearance D2 between the front row and rear row slots may satisfy a range of about D2≧2 mm.
  • In accordance with another aspect of the present disclosure, a fin assembly for a heat exchanger including a plurality of plate type fins into which flat micro-channel tubes are fitted, wherein each of the fins may include slots arranged in a front row and a rear row to receive the micro-channel tubes, respectively, and openings arranged in a lattice form between the vertically adjacent ones of the slots.
  • Each of the openings may have a square shape.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and/or other aspects of the disclosure will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
  • FIG. 1 is a perspective view illustrating an external appearance of a heat exchanger according to an exemplary embodiment of the present disclosure;
  • FIG. 2 is a top view schematically illustrating a fin structure of the heat exchanger according to an exemplary embodiment of the present disclosure;
  • FIG. 3 is a sectional view taken along line I-I of FIG. 2;
  • FIG. 4 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure;
  • FIG. 5 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure;
  • FIG. 6 is a sectional view taken along line II-II of FIG. 5;
  • FIG. 7 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure;
  • FIG. 8 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure;
  • FIG. 9 is a sectional view taken along line III-III of FIG. 8;
  • FIG. 10 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure;
  • FIG. 11 is a sectional view illustrating a cross section of a micro-channel tube included in the heat exchanger according to an exemplary embodiment of the present disclosure;
  • FIG. 12 is a graph illustrating variation in heat exchange performance according to a ratio between an air-side heat transfer area and a refrigerant-side heat transfer area;
  • FIGS. 13 and 14 are views explaining a method of joining the tubes and fins for the heat exchanger according to an exemplary embodiment of the present disclosure, respectively; and
  • FIG. 15 is a perspective view illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
  • Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings.
  • FIG. 1 is a perspective view illustrating an external appearance of a heat exchanger according to an exemplary embodiment of the present disclosure.
  • Referring to FIG. 1, the heat exchanger 1 according to the exemplary embodiment of the present disclosure includes a first header 10, a second header 20, micro-channel tubes 30, and fins 40.
  • The first header 10 and the second header 20 extend vertically while being spaced apart from each other by a desired distance. Tube coupling portions (not shown) are formed at facing walls of the first and second headers 10 and 20. Each tube coupling portion is formed by cutting the corresponding header wall to a size in accordance with a cross section of the corresponding micro-channel tube 30 to couple the micro-channel tube 30 to the tube coupling portion.
  • The first header 10 and the second header 20 include respective front tanks 11 and 21 and respective rear tanks 12 and 22. The front tanks 11 and 21 and the rear tanks 12 and 22 are partitioned by partition walls, respectively. Each of the front tanks 11 and 21 and the rear tanks 12 and 22 may be further vertically partitioned by baffles 13.
  • The micro-channel tubes 30 are installed between the first and second headers 10 and 20, to guide refrigerant by communicating the first header 10 with the second header 20.
  • Each of the micro-channel tubes 30 is a path through which refrigerant passes. Refrigerant is compressed or expanded while circulating in an air conditioner (not shown), so that cooling and heating may be achieved.
  • The micro-channel tubes 30, which are vertically spaced apart from one another by a desired clearance, are arranged in two rows, namely, a front row and a rear row. That is, the micro-channel tubes 30 include front row micro-channel tubes 31 and rear row micro-channel tubes 32. Here, the front row and rear row micro-channel tubes 31 and 32 are alternately arranged in a zigzag formation. However, the front row and rear row micro-channel tubes 31 and 32 may be arranged to be horizontally aligned with each other, as shown in FIG. 4.
  • Meanwhile, an inflow tube 14 into which refrigerant flows and an outflow tube 15 from which heat-exchanged refrigerant while passing through the micro-channel tubes 30 is discharged are connected to the first header 10. The inflow and outflow tubes 14 and 15 may be respectively connected to lower and upper sides of the first header 10, in order to prevent accumulation of refrigerant droplets caused by gravity, even if refrigerant flowing into the first header 10 has both a gas phase and a liquid phase.
  • FIG. 2 is a top view schematically illustrating a fin structure of the heat exchanger according to an exemplary embodiment of the present disclosure. FIG. 3 is a sectional view taken along line I-I of FIG. 2.
  • A structure of fins and tubes for the heat exchanger according to the exemplary embodiments of the present disclosure will be described with reference to FIGS. 2 and 3.
  • Referring to FIGS. 2 and 3, a fin body 43 in each fin 40 is formed to have a plate shape with a certain width Wf and height Hf. The fin body 43 may be a rectangular thin plate.
  • Each fin 40 is installed to come into contact with the corresponding micro-channel tubes 30, and may be formed as widely as possible so that the section thereof to radiate or absorb heat becomes wider.
  • Heat of refrigerant flowing inside the micro-channel tubes 30 is transferred to air flowing around the fins 40 via the micro-channel tubes 30 and fins 40, thereby easily radiating heat to the outside.
  • On the contrary, even when heat of air flowing around the fins 40 is transferred to refrigerant via the fins 40 and micro-channel tubes 30, the heat is also radiated to the outside in the same way as described above.
  • Meanwhile, front row slots 44 and rear row slots 45 are formed at each of the fins 40 so that the front row and rear row micro-channel tubes 31 and 32 are fitted into the front row slots 44 and the rear row slots 45, respectively. In each fin 40, collars 47 perpendicular to the fin body 43 are formed respectively at peripheral areas of the front row and rear row slots 44 and 45 to easily fit the front row and rear row micro-channel tubes 31 and 32 into the corresponding front row and rear row slots 44 and 45 respectively, thereby securing a desired joining force.
  • The fins 40 are arranged to be evenly spaced in parallel with a flow direction of air. Thus, air may execute heat exchange while naturally flowing along surfaces of the fins 40 without greatly undergoing resistance caused by the fins 40.
  • When the front row and rear row micro-channel tubes 31 and 32 are arranged in a zigzag formation, the front row and rear row slots 44 and 45 of each fin 40 are also arranged in a zigzag formation. However, when the front row and rear row micro-channel tubes 31 and 32 are arranged to be horizontally aligned with each other, as shown in FIG. 4, the front row and rear row slots 44 and 45 of each fin 40 are also arranged to be horizontally aligned with each other, of course.
  • In each fin 40, front row and rear row louvers 41 and 42 are formed between the vertically adjacent slots 44 and between the vertically adjacent slots 45 respectively, to enhance heat transfer efficiency by increasing a contact area with air.
  • The louvers 41 are formed between the vertically adjacent front row slots 44, and the louvers 42 are formed between the vertically adjacent rear row slots 45.
  • In each fin 40, the front row louvers 41 and the rear row louvers 42 are symmetrically arranged in a width direction of the fin 40, and each of the front row louvers 41 and the rear row louvers 42 is formed so that a portion of the fin body 43 is slightly bent from a plane of the fin 40 in an upward or downward direction to be inclined at a desired angle. Accordingly, air flowing along the fins 40 is dispersed by the louvers 41 and 42, and growth of a boundary layer is restrained, so that heat exchange efficiency may be enhanced.
  • In each fin 40, the clearance D1 between each slot 44 or 45 and each louver 41 or 42 may be 1 mm or less, in order to prevent an increase in air-side pressure loss and a deterioration in heat transfer performance due to formation of water droplets at lower ends of the micro-channel tubes 30. In accordance with such a structure, condensed water may be smoothly drained to lower ends of the fins 40 by capillary action.
  • In each fin 40, drainage performance may be enhanced when the clearance D2 between the front row slots 44 into which the front row micro-channel tubes 31 are respectively fitted and the rear row slots 45 into which the rear row micro-channel tubes 32 are respectively fitted may be 2 mm or more.
  • Drainage performance may be enhanced when the pitch LP of the louvers 41 and 42 satisfies a range of 0.8 mm≦Lp≦1.2 mm.
  • FIG. 5 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure. FIG. 6 is a sectional view taken along line II-II of FIG. 5. FIG. 7 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • In each fin 40 for the heat exchanger, instead of the louvers 41 and 42, slits 46 a and 46 b may be formed between vertically adjacent slots 44 and between vertically adjacent slots 45, respectively. The slits 46 a are formed between the vertically adjacent front row slots 44, and the slits 46 b are formed between the vertically adjacent rear row slots 45. Air is changed into turbulent air while flowing into openings of the slits 46 a and 46 b, and the turbulent air circulates around the micro-channel tubes 30, and thus heat exchange efficiency may be improved.
  • In the present embodiments, front row slots 44 and rear row slots 45 of each fin 40 may be arranged in a zigzag formation or to be horizontally aligned with each other.
  • FIG. 8 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure. FIG. 9 is a sectional view taken along line III-III of FIG. 8. FIG. 10 is a view schematically illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • As shown in FIGS. 8 to 10, louvers 41 and 42 and slits 46 a and 46 b in each fin 40 may also be formed together, and front row slots 44 and rear row slots 45 in each fin 40 may be arranged in a zigzag formation or to be horizontally aligned with each other. Since the remaining components are the same as those according to another exemplary embodiment of the present disclosure, no description will be given.
  • Meanwhile, as shown in FIG. 11, each of the micro-channel tubes 30 has a flat shape, and a plurality of micro-channels 33 is formed in the micro-channel tube 30 to guide refrigerant in the micro-channel tube 30.
  • Although each of the micro-channel tubes 30 may have a circular shape in a cross section, the micro-channel tube 30 may have a flat shape to expand a heat transfer area.
  • FIG. 12 is a graph illustrating variation in heat exchange performance according to a ratio between an air-side heat transfer area and a refrigerant-side heat transfer area. In the graph, the x-axis refers to the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C, whereas the y-axis refers to the quantity of heat per frontal area Q/FA, heat transfer capacity per frontal area HA/FA, and pressure loss per unit length dP/L (however, numerical values of the y-axis are relative values).
  • In the heat exchanger including the fins 40 and micro-channel tubes 30 having the structure as described above, performance characteristics according to the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C may be varied.
  • The air-side heat transfer area A is defined by A=((Lf×Wf)−(sum of slot areas per fin))×2× total number of fins, where “Lf” represents the length (or height) of each fin 40, and “Wf” represents the width of each fin 40. On the other hand, the refrigerant-side heat transfer area C is defined by C=(Wc+Hc)×2×Lt×(total number of micro-channels per micro-channel tube)×(total number of micro-channel tubes), where “Wc” represents the width of each micro-channel, “Hc” represents the height of each micro-channel, and “Lt” represents the length of each micro-channel tube. The ratio R is defined by R=air-side heat transfer area A/refrigerant-side heat transfer area C.
  • As shown in FIG. 12, pressure loss increases as the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C increases. Therefore, when the ratio R satisfies a range of about 2.5≦R≦3.5, overall performance characteristics may be optimized.
  • Conventionally, the ratio R between the air-side heat transfer area A and the refrigerant-side heat transfer area C is 10≦R≦20 in the case of the fin & tube type heat exchanger, whereas the ratio R is 3≦R≦4 in the case of the parallel flow type heat exchanger.
  • Accordingly, the refrigerant-side heat transfer area C may be increased, in order to obtain an optimal performance characteristic.
  • FIGS. 13 and 14 are views explaining a method of joining the tubes and fins for the heat exchanger according to an exemplary embodiment of the present disclosure, respectively.
  • The joining of the micro-channel tubes 30 and fins 40 as described above may be achieved by welding wires 50, in addition to a brazing process conventionally used to join aluminum clad fins and tubes.
  • When the welding wires 50 are respectively installed at inner sides of the slots 44 and 45 in each fin 40 so that the front row and rear row micro-channel tubes 31 and 32, which are respectively fitted into the corresponding slots 44 and 45, are welded to the slots 44 and 45 by the welding wires 50, as shown in FIG. 13, the fin 40 and the front row and rear row micro-channel tubes 31 and 32 may be welded and joined together while the melted welding wires flow into the gaps between the micro-channel tubes and the corresponding slots, as shown in FIG. 14. In accordance with such a method, joining defects may be greatly resolved in addition to easy welding.
  • FIG. 15 is a perspective view illustrating a fin structure of the heat exchanger according to another exemplary embodiment of the present disclosure.
  • In each plate type fin 140 for the heat exchanger into which the flat micro-channel tubes are fitted, the fin 140 may include a fin body 143, slots 145 alternatively arranged in a zigzag formation to respectively fit the micro-channel tubes, and a plurality of openings 148 arranged in a lattice form between the vertically adjacent slots 145. Collars 147 may be formed respectively around the slots 145 so as to easily attach the micro-channel tubes to the slots 145 by fitting the micro-channel tubes into the slots 145.
  • As shown in FIG. 15, air F flowing in a thickness direction of the fins 140 may pass between a front surface and a rear surface of each fin 140 through the openings 148 while flowing between the fins 140. Further, since a plurality of fins 140 is layered, the openings 148 arranged at corresponding positions between the layered fins 140 may form a channel. Thus, a reduction in air-side pressure loss and an enhancement in heat transfer performance may be achieved.
  • As is apparent from the above description, in accordance with aspects of the present disclosure, it may be possible to provide a fin micro-channel heat exchanger having a structure capable of achieving enhancements in drainage and heat transfer performance.
  • Although a few embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

Claims (17)

1. A heat exchanger comprising:
a first header connected with an inflow tube and an outflow tube;
a second header spaced apart from the first header by a defined distance and arranged parallel to the first header;
a plurality of micro-channel tubes arranged in a front row and a rear row between the first header and the second header, each of the micro-channel tubes comprising a plurality of micro-channels; and
a plurality of plate type fins, each of the plate type fins comprising slots arranged in a front row and a rear row to respectively receive the front row and rear row of the micro-channel tubes.
2. The heat exchanger according to claim 1, wherein each of the plate type fins comprises louvers or slits formed between vertically adjacent ones of the slots.
3. The heat exchanger according to claim 2, wherein the louvers have a pitch LP satisfying a range of about 0.8 mm≦Lp≦1.2 mm.
4. The heat exchanger according to claim 2, wherein a clearance D1 between each slot and each louver or slit adjacent to each other satisfies a range of about 0 mm<D1≦1 mm.
5. The heat exchanger according to claim 2, wherein a clearance D2 between the front row and rear row slots satisfies a range of about D2≧2 mm.
6. The heat exchanger according to claim 2, wherein a ratio R between an air-side heat transfer area A and a refrigerant-side heat transfer area C defined by equations below satisfies a range of about 2.5 mm≦R≦3.5 mm:

A=((Lf×Wf)−(sum of slot areas per fin))×2×total number of fins,

C=(Wc+Hc)×2×Lt×(total number of micro-channels per micro-channel tube)×(total number of micro-channel tubes), and

R=A/C,
where Lf represents an overall height of each fin, Wf represents a width of each fin, We represents a width of each micro-channel, Hc represents a height of each micro-channel, and Lt represents a length of each micro-channel tube.
7. The heat exchanger according to claim 1, wherein welding material, provided at inner sides of the slots arranged in each of the first row and rear row in each fin, is used to permanently attach the micro-channel tubes to the corresponding slots.
8. The heat exchanger according to claim 1, wherein openings arranged in the form of a lattice between vertically adjacent ones of the slots are formed at each of the fins.
9. The heat exchanger according to claim 8, wherein each of the openings has a square shape.
10. The heat exchanger according to claim 1, wherein the first and second headers extend vertically.
11. A fin assembly for a heat exchanger comprising:
a plurality of plate type fins into which micro-channel tubes are received,
wherein each of the plate type fins comprises slots arranged in a front row and a rear row to receive the micro-channel tubes, respectively, and louvers or slits formed between vertically adjacent ones of the slots.
12. The fin assembly according to claim 11, wherein the louvers have a pitch LP satisfying a range of about 0.8 mm≦Lp≦1.2 mm.
13. The fin assembly according to claim 11, wherein a clearance D1 between each slot and each louver or slit adjacent to each other satisfies a range of about 0 mm<D1≦1 mm.
14. The fin assembly according to claim 11, wherein a clearance D2 between the front row and rear row slots satisfies a range of about D2≧2 mm.
15. A fin assembly for a heat exchanger comprising:
a plurality of plate type fins into which flat micro-channel tubes are received,
wherein each of the plate type fins comprises slots arranged in a front row and a rear row to receive the micro-channel tubes, respectively, and openings arranged in a lattice form between the vertically adjacent ones of the slots.
16. The fin assembly according to claim 15, wherein each of the openings has a square shape.
17. The fin assembly according to claim 15, further comprising welding wires installed at inner sides of the slots arranged in each of the front row and rear row in each fin so that the micro-channel tubes, which are respectively fitted into the corresponding slots, are welded to the slots by the welding wires.
US13/317,740 2010-10-28 2011-10-27 Heat exchanger and fin for the same Abandoned US20120103583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100106368A KR20120044847A (en) 2010-10-28 2010-10-28 Heat exchanger and fin for the same
KR10-2010-0106368 2010-10-28

Publications (1)

Publication Number Publication Date
US20120103583A1 true US20120103583A1 (en) 2012-05-03

Family

ID=45001646

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/317,740 Abandoned US20120103583A1 (en) 2010-10-28 2011-10-27 Heat exchanger and fin for the same

Country Status (4)

Country Link
US (1) US20120103583A1 (en)
EP (1) EP2447659A3 (en)
KR (1) KR20120044847A (en)
CN (1) CN102706040A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888054A (en) * 2014-03-04 2014-06-25 苏州边枫电子科技有限公司 Solar connecting box with heat radiation structure
US20140182648A1 (en) * 2012-12-27 2014-07-03 Hyundai Motor Company Accumulated type thermoelectric generator for vehicle
US20140202442A1 (en) * 2013-01-21 2014-07-24 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
EP2886990A3 (en) * 2013-12-19 2015-07-01 Robert Bosch Gmbh Heat exchanger
USD749201S1 (en) * 2012-08-02 2016-02-09 Mitsubishi Electric Corporation Fin-plate for heat exchanger
US20160146552A1 (en) * 2013-06-28 2016-05-26 Schneider Electric It Corporation Indirect evaporator cooler heat exchanger manufacturing method
USD775315S1 (en) * 2012-08-02 2016-12-27 Mitsubishi Electric Corporation Fin-plate for heat exchanger
JPWO2015041216A1 (en) * 2013-09-20 2017-03-02 三菱電機株式会社 Heat exchanger, air conditioner using the heat exchanger, and method for manufacturing the heat exchanger
JP2017172956A (en) * 2016-03-25 2017-09-28 ユニゾン・インダストリーズ,エルエルシー Heat exchanger
US20170307305A1 (en) * 2015-03-02 2017-10-26 Mitsubishi Electric Corporation Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
US10443956B2 (en) * 2016-04-20 2019-10-15 Daikin Industries, Ltd. Heat exchanger
CN110345780A (en) * 2018-04-03 2019-10-18 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
US20200263937A1 (en) * 2019-02-20 2020-08-20 Caterpillar Inc. Bumper clip for tube type heat exchangers
US20220274216A1 (en) * 2019-08-07 2022-09-01 Danfoss A/S Method for producing heat exchanger
US20220290916A1 (en) * 2019-08-14 2022-09-15 Shell Oil Company Heat exchanger system and method
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038977B1 (en) * 2015-07-17 2019-08-30 Valeo Systemes Thermiques HEAT EXCHANGER WITH FINS COMPRISING IMPROVED PERSIANS
CN106802029B (en) * 2015-11-25 2020-04-07 杭州三花微通道换热器有限公司 Heat exchanger core and heat exchanger with same
JP2018071860A (en) * 2016-10-27 2018-05-10 株式会社富士通ゼネラル Heat exchanger
CN109237984A (en) * 2017-07-10 2019-01-18 美的集团股份有限公司 Heat exchanger and household electrical appliance
CN107702566A (en) * 2017-09-14 2018-02-16 华北电力大学 A kind of dot matrix heat exchanger
CN113357937B (en) * 2017-12-07 2024-06-11 浙江盾安机械有限公司 Fin and heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897821A (en) * 1973-08-03 1975-08-05 Barry Wehmiller Co Heat transfer coil
US4360141A (en) * 1980-09-02 1982-11-23 Kensrue Milo M Holder for welding seam back-up tape
US5975199A (en) * 1996-12-30 1999-11-02 Samsung Electronics Co., Ltd. Cooling fin for heat exchanger
US6382312B2 (en) * 2000-01-28 2002-05-07 Valeo Thermique Moteur Heat-exchange module, for a motor vehicle in particular
US6698508B2 (en) * 1999-12-15 2004-03-02 Lg Electronics Inc. Fin and tube type heat-exchanger
US20050109496A1 (en) * 2003-11-25 2005-05-26 Baolute Ren Heat exchanger tubing with connecting member and fins and methods of heat exchange
US6964296B2 (en) * 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
US20090308585A1 (en) * 2008-06-13 2009-12-17 Goodman Global, Inc. Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby
US7721794B2 (en) * 2007-02-09 2010-05-25 Lennox Industries Inc. Fin structure for heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089870A (en) * 1996-09-18 1998-04-10 Nippon Light Metal Co Ltd Manufacture of heat exchanger and heat exchanger
US6745827B2 (en) * 2001-09-29 2004-06-08 Halla Climate Control Corporation Heat exchanger
JP4300508B2 (en) * 2002-12-25 2009-07-22 株式会社ティラド Plate fin and heat exchanger core for heat exchanger
DE112005001009T5 (en) * 2004-05-11 2007-03-08 Showa Denko Kk heat exchangers
CN201476625U (en) * 2009-06-15 2010-05-19 浙江康盛股份有限公司 Micro-channel condenser
CN101619950B (en) * 2009-08-13 2011-05-04 三花丹佛斯(杭州)微通道换热器有限公司 Fin and heat exchanger with same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897821A (en) * 1973-08-03 1975-08-05 Barry Wehmiller Co Heat transfer coil
US4360141A (en) * 1980-09-02 1982-11-23 Kensrue Milo M Holder for welding seam back-up tape
US5975199A (en) * 1996-12-30 1999-11-02 Samsung Electronics Co., Ltd. Cooling fin for heat exchanger
US6698508B2 (en) * 1999-12-15 2004-03-02 Lg Electronics Inc. Fin and tube type heat-exchanger
US6382312B2 (en) * 2000-01-28 2002-05-07 Valeo Thermique Moteur Heat-exchange module, for a motor vehicle in particular
US6964296B2 (en) * 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
US20050109496A1 (en) * 2003-11-25 2005-05-26 Baolute Ren Heat exchanger tubing with connecting member and fins and methods of heat exchange
US7721794B2 (en) * 2007-02-09 2010-05-25 Lennox Industries Inc. Fin structure for heat exchanger
US20090308585A1 (en) * 2008-06-13 2009-12-17 Goodman Global, Inc. Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD775315S1 (en) * 2012-08-02 2016-12-27 Mitsubishi Electric Corporation Fin-plate for heat exchanger
USD749201S1 (en) * 2012-08-02 2016-02-09 Mitsubishi Electric Corporation Fin-plate for heat exchanger
US20140182648A1 (en) * 2012-12-27 2014-07-03 Hyundai Motor Company Accumulated type thermoelectric generator for vehicle
US20140202442A1 (en) * 2013-01-21 2014-07-24 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
US10006662B2 (en) * 2013-01-21 2018-06-26 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
US10072901B2 (en) * 2013-06-28 2018-09-11 Schneider Electric It Corporation Indirect evaporator cooler heat exchanger manufacturing method
US20160146552A1 (en) * 2013-06-28 2016-05-26 Schneider Electric It Corporation Indirect evaporator cooler heat exchanger manufacturing method
JPWO2015041216A1 (en) * 2013-09-20 2017-03-02 三菱電機株式会社 Heat exchanger, air conditioner using the heat exchanger, and method for manufacturing the heat exchanger
US10215503B2 (en) 2013-09-20 2019-02-26 Mistubishi Electric Corporation Heat exchanger, air-conditioning apparatus using the same and method of manufacturing the same
EP2886990A3 (en) * 2013-12-19 2015-07-01 Robert Bosch Gmbh Heat exchanger
CN103888054A (en) * 2014-03-04 2014-06-25 苏州边枫电子科技有限公司 Solar connecting box with heat radiation structure
US20170307305A1 (en) * 2015-03-02 2017-10-26 Mitsubishi Electric Corporation Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
US10082344B2 (en) * 2015-03-02 2018-09-25 Mitsubishi Electric Coporation Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
US20170276440A1 (en) * 2016-03-25 2017-09-28 Unison Industries, Llc Heat exchanger
JP2017172956A (en) * 2016-03-25 2017-09-28 ユニゾン・インダストリーズ,エルエルシー Heat exchanger
US10378835B2 (en) * 2016-03-25 2019-08-13 Unison Industries, Llc Heat exchanger with non-orthogonal perforations
US11215405B2 (en) * 2016-03-25 2022-01-04 Unison Industries, Llc Heat exchanger with non-orthogonal perforations
US10443956B2 (en) * 2016-04-20 2019-10-15 Daikin Industries, Ltd. Heat exchanger
CN110345780A (en) * 2018-04-03 2019-10-18 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger
US20200263937A1 (en) * 2019-02-20 2020-08-20 Caterpillar Inc. Bumper clip for tube type heat exchangers
US11047631B2 (en) * 2019-02-20 2021-06-29 Caterpillar Inc. Bumper clip for tube type heat exchangers
US20220274216A1 (en) * 2019-08-07 2022-09-01 Danfoss A/S Method for producing heat exchanger
US20220290916A1 (en) * 2019-08-14 2022-09-15 Shell Oil Company Heat exchanger system and method

Also Published As

Publication number Publication date
KR20120044847A (en) 2012-05-08
EP2447659A2 (en) 2012-05-02
EP2447659A3 (en) 2015-04-08
CN102706040A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US20120103583A1 (en) Heat exchanger and fin for the same
JP7026830B2 (en) Aluminum extruded flat multi-hole tube and heat exchanger
JP2006322698A (en) Heat exchanger
JP2010112695A (en) Evaporator
US20120103582A1 (en) Heat exchanger and micro-channel tube thereof
JP6120978B2 (en) Heat exchanger and air conditioner using the same
KR101748242B1 (en) Refrigerant evaporator
JP6584636B2 (en) Heat exchanger and air conditioner
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
US11346584B2 (en) Refrigerant evaporator and method for manufacturing same
JP4147731B2 (en) Heat exchanger for cooling
JP4786234B2 (en) Heat exchanger
CN111380394B (en) Heat exchanger
CN110094901B (en) Micro-channel heat exchanger
JP5574737B2 (en) Heat exchanger
JP5508818B2 (en) Evaporator
WO2020184315A1 (en) Heat exchanger
JP2007187435A (en) Heat exchanger
JP4731212B2 (en) Heat exchanger
KR101062650B1 (en) heat transmitter
JP7006376B2 (en) Heat exchanger
JP2011158130A (en) Heat exchanger
JP5589860B2 (en) Heat exchanger
WO2018008134A1 (en) Heat exchanger
JP2005083653A (en) Refrigerant evaporator

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, YOUNG MIN;GAKU, HAYASE;SEO, KANG TAE;REEL/FRAME:027281/0218

Effective date: 20110809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION