JPWO2003000997A1 - 建設機械の遠隔制御システム及び遠隔設定システム - Google Patents
建設機械の遠隔制御システム及び遠隔設定システム Download PDFInfo
- Publication number
- JPWO2003000997A1 JPWO2003000997A1 JP2003507367A JP2003507367A JPWO2003000997A1 JP WO2003000997 A1 JPWO2003000997 A1 JP WO2003000997A1 JP 2003507367 A JP2003507367 A JP 2003507367A JP 2003507367 A JP2003507367 A JP 2003507367A JP WO2003000997 A1 JPWO2003000997 A1 JP WO2003000997A1
- Authority
- JP
- Japan
- Prior art keywords
- coordinate system
- construction machine
- setting information
- remote control
- machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
- E02F3/437—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2033—Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/205—Remotely operated machines, e.g. unmanned vehicles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/28—Small metalwork for digging elements, e.g. teeth scraper bits
- E02F9/2808—Teeth
- E02F9/2816—Mountings therefor
- E02F9/2833—Retaining means, e.g. pins
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
- H04Q9/08—Calling by using continuous ac
- H04Q9/10—Calling by using continuous ac using single different frequencies
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- General Physics & Mathematics (AREA)
- Operation Control Of Excavators (AREA)
Abstract
油圧ショベル1に目標作業面を形成するようフロント作業機の動作を制御する領域制限掘削制御機能を搭載し、管理事務所に油圧ショベル1を無線操縦する遠隔操作端末102を設け、目標掘削面の設定情報の入力と無線操縦を遠隔操作端末102側で行えるようにし、かつ遠隔操作端末に油圧ショベル1と目標掘削面との位置関係を表示する表示装置71bを設ける。オペレータは表示装置71bの画面を見ながら遠隔で目標掘削面の設定を行うことができるとともに、ジョイスティック72により遠隔でフロント作業機7を操縦し、領域制限掘削制御装置の制御機能を利用して目標掘削面を形成することができ、これにより目標掘削面の遠隔設定と油圧ショベル1の遠隔操縦を容易に行うことができる。
Description
技術分野
本発明は、油圧ショベル等の多関節型のフロント作業機を有する建設機械の遠隔制御システム及び遠隔設定システムに係わり、特に、目標作業面の設定情報を用いてその目標作業面を形成するようフロント作業機の動作を制御する領域制限掘削制御等のフロント制御手段を備えた建設機械の遠隔制御システム及び遠隔設定システムに関する。
背景技術
建設機械の代表例として、油圧ショベルがある。油圧ショベルでは、フロント作業機を構成するブーム、アームなどのフロント部材を、それぞれの手動操作レバーによって操作しているが、それぞれが関節部によって連結され回動運動を行うものであるため、これらフロント部材を操作して所定の領域、特に直線状に設定された領域を掘削することは非常に困難な作業である。そこで、このような作業を自動化して行うためのものとして、例えば国際公開番号WO95/30059号公報の提案がある。この提案は、車体基準で掘削可能領域を設定し、フロント作業機の一部、例えば、バケットが掘削可能領域の境界に近づくと、バケットの当該境界に向かう方向の動きのみを減速し、バケットが掘削可能領域の境界に達すると、バケットは掘削可能領域の外には出ないが掘削可能領域の境界に沿っては動けるようにしている。
また、そのような作業を自動化して行う場合、車体が移動すると作業現場の地形の変化で油圧ショベル自身の姿勢、高さが変化し、車体基準で設定していた領域を車体が移動するごとに設定し直さなくてはならない。そこで、このような不具合を解決するものとして特開平3−295933号公報や特開2000−204580号公報の提案がある。この提案は、掘削地表面に設置したレーザ発振器のレーザ光により車体に設置したセンサにて車体の高さを検出し、その検出した車体高さに基づいて掘削深さ(前者の例の制限領域に相当する)を決定して車体を停止した状態で所定長さだけ直線掘削し、その後に車体を所定距離走行させて停止状態で再び直線掘削する際に前記レーザ光により車体高さ変位量を検出し、その高さ変位量によって掘削深さを補正するものである。
更に、そのような自動掘削制御でレーザ光などの外部基準を用い目標掘削面の設定を容易に行えるようにしたものとして国際公開番号WO01/25549号公報に記載の設定装置がある。この設定装置では、車体に制御ユニットと表示装置を搭載し、表示装置に車体と外部基準と目標掘削面の位置関係を表示し、この画面を見ながら外部基準に対する位置関係で目標掘削面を設定できるようにするものである。
一方、油圧ショベル等の建設機械の遠隔操作に関する従来技術として特許番号第2628004号公報や特開昭58−26130号公報に記載にものがある。特許番号第2628004号公報では、油圧ショベルの動作状況を監視カメラで撮影し、現場事務所に設置したコンピュータのモニタテレビにその画像を表示すると共に、溝や法面の設計線をそのカメラ画像に重ねて表示できるようにしており、操作員はその画像を見ながら油圧ショベルを遠隔操作し掘削することができる。特開昭58−26130号公報では、建設機械の位置を基準点との情報交換によって検出し、建設機械を全自動で運転する技術を開示している。この場合、自動運転の制御プログラムは遠隔設置のコンピュータ側に記憶し、自動制御が開始されるとそのプログラムに基づく指令信号を建設機械に無線で送信し、建設機械から種々のセンサ情報を無線で受信する。制御プログラムには、作業現場や地域によりその都度変更される作業仕様プログラムが含まれる。
発明の開示
建設機械は、近年、遠隔操縦に対する要望が大きく、例えば、災害地域の復旧作業には安全性の観点から遠隔操縦のできる建設機械を用いて、土砂の除去や泥流ダムの造成を行わなければならない場合が多々ある。このような作業を行う場合、建設機械が今いる場所はもちろんのこと、どこをどの程度掘削しなければならないかを計画して作業を行わなければならない。従来は、作業する建設機械を遠くからカメラ等で監視するか、建設機械にカメラ等を装着し、そのカメラ画像等で掘削作業位置を確認して作業を行っていた。しかし、災害地域は道路はもとよりほとんど土砂で埋もれているため、掘削作業位置を正確に特定することは困難であった。また、遠隔で建設機械を操縦するため、水平引きや法面形成作業等は特に熟練が必要であり、またカメラ画像を見ての作業であるため作業効率の低いものであった。
WO95/30059号公報や特開平3−295933号公報、特開2000−204580号公報及びWO01/25549号公報に記載の技術は、全て建設機械にオペレータが乗車して操作を行うものであり、遠隔操作で建設機械を操縦したり、遠隔操作で目標掘削面を設定することはできなかった。
特許番号第2628004号公報に記載の技術は、溝や法面の設計線を作業現場のカメラ画像に重ねて表示することによりオペレータはそれを見ながら遠隔で掘削作業を行うことができる。しかし、油圧ショベルの操作は手動で行われるため、設計線通りに掘削するようオペレータは注意深く作業を行わなければならず、オペレータの負担が大きいという問題があった。
特開昭58−26130号公報に記載の技術は、全自動であるためオペレータに負担はかからない。しかし、全自動であるため種々の作業現場にきめ細かく迅速に対応するのは困難であり、実用化は難しい。
また、近年、建設CALS(Continuous Acquisition & Lifecycle Support;生産・調達・運用支援統合情報システム)が叫ばれる中、電子データを持って施工図面が管理され、更にこの電子データを持って車体の制御に応用しようとする動きが見られる。具体的には、施工現場における車体の位置を計測し、車体に持たせた施工図面を参照して自動的に車体を制御しようするものである。しかし、施工現場によって状況は異なるが、一般に施工データは車体に記憶させるには膨大なデジタルデータであり、車体に記憶できる施工データは全体のほんの一部である場合がほとんどである。よって、上記のような制御を行う場合、頻繁に施工データを車体に記憶させる必要がある。また、CD−Rのような記憶メディアを車体に設置し、施工データを随時読み込み更新する手段もあるが、CD−Rを駆動する装置を車体に設置せねばならず、高価なものになってしまう。更に、建設機械のように衝撃や温度・湿度などに対する環境性も問われるため、決して有効な方法とは言えない。
本発明の第1の目的は、種々の作業現場における目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことのできる建設機械の遠隔制御システムを提供することである。
本発明の第2の目的は、膨大な電子データである施工データを利用した目標作業面の遠隔設定を容易に行うことのできる建設機械の遠隔制御システム及び遠隔設定システムを提供することである。
(1)上記第1の目的を達成するために、本発明は、多関節型のフロント作業機を構成する上下方向に回動可能な複数のフロント部材を含む複数の被駆動部材と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、前記複数の油圧アクチュエータに供給される圧油の流量を制御する複数の油圧制御弁と、この複数の油圧制御弁を制御し予め設定された目標作業面を形成するよう前記フロント作業機の動作を制御するフロント制御手段とを備えた建設機械の遠隔制御システムにおいて、前記建設機械に搭載された機体側制御手段と、前記建設機械を無線操縦する遠隔操作端末とを備え、前記遠隔操作端末は、前記複数の被駆動部材の動作を指示する無線操縦信号を出力する遠隔操作手段と、前記目標作業面の設定情報を入力する入力手段と、前記無線操縦信号と設定情報を前記建設機械に送信する第1無線通信手段と、前記建設機械と目標作業面との位置関係を表示する表示手段とを有し、前記機体側制御手段は、前記遠隔操作端末から前記無線操縦信号と設定情報を受信する第2無線通信手段を有し、前記フロント制御手段は、前記無線操縦信号と設定情報に基づき前記油圧制御弁を制御し前記目標作業面を形成するよう前記フロント作業機の動作を制御するものとする。
このように目標作業面を形成するようフロント作業機の動作を制御するフロント制御手段を備えた建設機械に対し、機体側制御手段と遠隔操作端末を設け、その目標作業面の設定情報の入力と無線操縦を遠隔操作端末側で行えるようにし、かつ遠隔操作端末に建設機械と目標作業面との位置関係を表示する表示手段を設けることにより、オペレータは表示手段の画面を見ながら遠隔で目標作業面の設定を行うことができるとともに、遠隔でフロント作業機を操縦し、フロント制御手段の制御機能を利用して目標作業面を形成することができ、これにより目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
また、フロント制御手段は、遠隔操作手段の無線操縦信号と設定情報に基づいてフロント作業機の動作を制御する半自動制御方式であるので、手動方式に比べオペレータの負担は格段に減り、かつ設定情報を変えるだけで種々の作業現場に容易に対応することができる。
(2)上記(1)において、好ましくは、前記遠隔操作端末の入力手段は、前記建設機械の外部基準に関連付けられた設定情報を入力する手段であり、前記表示手段は、前記建設機械と目標作業面との位置関係を前記外部基準に関連付けて表示する手段であり、前記機体側制御手段と遠隔操作端末のいずれか一方は、前記建設機械の外部基準に関連付けられた目標作業面の設定情報を、建設機械と目標作業面の位置関係に変換する設定情報変換手段を更に有し、前記フロント制御手段は、前記無線操縦信号と、前記建設機械と目標作業面の位置関係に変換された設定情報とに基づき前記油圧制御弁を制御し前記目標作業面を形成するよう前記フロント作業機の動作を制御する。
このように遠隔操作端末側での目標作業面の設定情報の入力を建設機械の外部基準に関連付けられたデータにより行い、機体側制御手段と遠隔操作端末のいずれか一方で、目標作業面の設定情報を建設機械と目標作業面の位置関係に変換することにより、外部基準を用いて目標作業面を設定することができる。また、このとき遠隔操作端末の表示手段に建設機械と目標掘削面との位置関係を外部基準に関連付けて表示するので、オペレータは表示手段の画面を見ながら容易に目標作業面を設定することができる。
(3)上記(2)において、好ましくは、前記外部基準はレーザ燈台が発するレーザ光により形成されるレーザ基準面であり、前記入力手段は、前記設定情報として前記レーザ基準面と目標作業面の位置関係を入力する手段であり、前記設定情報変換手段は、前記建設機械と前記レーザ基準面の位置関係を計測する計測手段と、前記設定手段で入力したレーザ基準面と目標作業面の位置関係と前記計測手段で計測した建設機械とレーザ基準面の位置関係とを用いて建設機械と目標作業面の位置関係を求める演算手段とを有する。
これにより外部基準としてレーザ基準面を用い、目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
(4)上記(2)において、好ましくは、前記遠隔操作端末の表示手段は、設定モードと遠隔操作モードに切り換え可能であり、前記設定モードにあるときは、前記外部基準と目標作業面と建設機械の位置関係を表示し、前記遠隔操作モードに切り換えられると、前記目標作業面と前記フロント作業機の位置関係を表示するものとする。
これにより遠隔操作時は表示手段を遠隔操作モードに切り換えることにより、遠隔操作時も表示手段の画面を見ながら遠隔操縦でき、遠隔操作時の操作性が一層良好となる。
(5)また、上記第2の目的を達成するために、本発明は、上記(2)において、前記外部基準は、前記建設機械の外側に設定され、位置及び姿勢が既知である外部座標系であり、前記入力手段は、前記設定情報として前記外部座標系に関連付けられた施工データを入力する手段であり、前記設定情報変換手段は前記遠隔操作端末に備えられ、前記施工データから前記外部座標系での目標作業面の設定情報を生成し、この設定情報を前記建設機械に設定された機体座標系での目標作業面の設定情報に変換する手段であるものとする。
これにより外部座標系に関連付けられた施工データを用い、建設機械に設定された機体座標系での目標作業面の設定情報を生成することができる。また、設定手段と設定情報変換手段は遠隔操作端末に備えられるので、施工データが膨大な電子データであっても、その施工データを機体側制御手段に記憶する必要がなくなり、膨大な電子データである施工データを利用した目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
(6)上記(5)において、好ましくは、前記外部座標系は、地球の準拠楕円体の中心を原点とする直交座標系である。
これにより地球の緯度、経度、高さ情報を用いて作成した施工データを外部座標系(地球の準拠楕円体の中心を原点とする直交座標系)に関連付けられた施工データとして利用することができ、地球の緯度、経度、高さ情報を用いて作成した施工データを利用した目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
(7)上記(5)において、好ましくは、前記設定情報変換手段は、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める機体座標計測演算手段と、この機体座標計測演算手段で求めた外部座標系での機体座標系の位置及び姿勢に基づき、前記外部座標系での目標作業面の設定情報を前記機体座標系での目標作業面の設定情報に変換する設定情報演算手段とを有する。
これにより建設機械が移動しても、その都度、機体座標系の位置及び姿勢を外部座標系の値として求めることにより外部座標系に対する建設機械の位置及び姿勢を特定し、機体座標系での目標作業面の設定情報を生成することができる。
(8)上記(7)において、好ましくは、前記設定情報変換手段は、前記外部座標系での機体座標系の位置及び姿勢と前記施工データとを比較して、前記機体座標系の位置及び姿勢における施工データ部分を抽出し、その施工データ部分から前記外部座標系での目標作業面の設定情報を生成する手段を更に有する。
これにより膨大な電子データである施工データから必要なデータのみ抽出し、外部座標系での目標作業面の設定情報を生成することができる。
(9)上記(7)において、好ましくは、前記機体座標計測演算手段は、前記建設機械の異なる位置に設置された少なくとも2個のGPS受信手段と、前記2個のGPS受信手段の受信情報に基づき、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める座標位置演算手段とを有する。
これにより少なくとも2個のGPS受信手段を用いて機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求め、機体座標系での目標作業面の設定情報を生成することができる。
(10)上記(9)において、好ましくは、前記機体座標計測演算手段は、前記建設機械の傾斜量を計測する傾斜量計測手段を更に有し、前記座標位置演算手段は、前記2個のGPS受信手段の受信情報と前記傾斜量計測手段の計測結果とに基づき、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める。
これにより建設機械が傾斜していても機体座標系の位置及び姿勢を外部座標系の値として精度良く求めることができる。
(11)上記(9)において、好ましくは、前記建設機械は、下部走行体と、この下部走行体上に旋回可能に搭載された上部旋回体とを有し、前記フロント作業機は前記上部旋回体上下方向に回動可能に取り付けられており、前記2個のGPS受信手段は前記上部旋回体上の異なる位置に設置された2個のGPSアンテナを有し、前記機体座標系は、前記上部旋回体の回転軸近傍の位置で前記下部走行体に固定して設定された直交座標系であり、前記機体座標計測演算手段は、前記下部走行体に対する上部旋回体の回転角を計測する角度計測手段を更に有し、前記座標位置演算手段は、前記2個のGPS受信手段の受信情報と前記角度計測手段の計測結果とに基づき、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める。
これによりGPS受信手段が上部旋回体に設置されていても、下部走行体に固定して設定された機体座標系の位置及び姿勢を外部座標系の値として求めることができる。
(12)上記(7)において、好ましくは、前記機体座標計測演算手段は、前記外部座標系に対する位置関係が既知である地上の特定位置に設置され、その特定位置から前記建設機械の特定位置までの距離と方位を計測する3次元位置計測手段と、前記建設機械に設置されたレーザ受光器と、前記レーザ受光器に向けてレーザ光を発するレーザ灯台と、前記レーザ受光器が前記レーザ灯台の発するレーザ光を受光したことをトリガーとして前記地上の特定位置に対する前記レーザ光の位置関係を演算し、この演算結果と前記3次元位置計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求める座標位置演算手段とを有する。
これによりGPSを直接用いずに、機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求め、機体座標系での目標作業面の設定情報を生成することができる。
また、直接GPSを用いずに機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができるので、建設機械が地下、ビル内、山間部などGPS衛星を捕捉できないような作業現場にあっても、またGPSでは衛星からの電波が受信できないような気象条件であっても、それらに左右されず機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができる。
(13)上記(12)において、好ましくは、前記機体座標計測演算手段は、前記建設機械の傾斜量を計測する傾斜量計測手段を更に有し、前記座標位置演算手段は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段の計測結果と前記傾斜量計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求めるものである。
これにより建設機械が傾斜していても、直接GPSを用いずに機体座標系の位置及び姿勢を外部座標系の値として精度良く求めることができる。
(14)上記(12)において、好ましくは、前記建設機械は、下部走行体と、この下部走行体上に旋回可能に搭載された上部旋回体とを有し、前記フロント作業機は前記上部旋回体上下方向に回動可能に取り付けられており、前記機体座標系が設定される建設機械の特定位置は前記上部旋回体の回転軸近傍の位置であり、前記機体座標系は前記下部走行体に固定して設定された直交座標系であり、前記機体座標計測演算手段は、前記下部走行体に対する上部旋回体の回転角を計測する角度計測手段を更に有し、前記座標位置演算手段は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段の計測結果と前記角度計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求めるものである。
これによりGPS受信手段が上部旋回体に設置されていても、直接GPSを用いずに下部走行体に固定して設定された機体座標系の位置及び姿勢を外部座標系の値として求めることができる。
(15)上記(14)において、好ましくは、前記レーザ受光器は前記フロント作業機に設置され、前記機体座標計測演算手段は、前記フロント作業機を構成する複数のフロント部材の位置と姿勢を計測する位置・姿勢計測手段を更に有し、前記座標位置演算手段は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段の計測結果と前記角度計測手段の計測結果と前記位置・姿勢計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求めるものである。
これにより多関節型のフロント作業機が上部旋回体上下方向に回動可能に取り付けられ、レーザ受光器がそのフロント作業機に設置されていても、下部走行体に固定して設定された機体座標系の位置及び姿勢を外部座標系の値として求めることができる。
(16)上記(12)において、好ましくは、前記3次元位置計測手段は、前記建設機械の特定位置に設置されたリフレクタを追尾しその距離と方位を計測するレーザ追尾装置である。
これにより自動追尾トータルステーションシステムとして知られている既存のシステムを用いて3次元位置計測手段を構成することができる。
(17)また、上記第2の目的を達成するために、本発明は、多関節型のフロント作業機を構成する上下方向に回動可能な複数のフロント部材を含む複数の被駆動部材と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、前記複数の油圧アクチュエータに供給される圧油の流量を制御する複数の油圧制御弁と、この複数の油圧制御弁を制御し予め設定された目標作業面を形成するよう前記フロント作業機の動作を制御するフロント制御手段とを備えた建設機械の遠隔設定システムにおいて、前記建設機械に搭載された機体側制御手段と、遠隔操作端末とを備え、前記遠隔操作端末は、前記目標作業面の設定情報として、建設機械の外側に設定された位置及び姿勢が既知である外部座標系に関連付けられた施工データを入力する入力手段と、前記施工データから前記外部座標系での目標作業面の設定情報を生成し、この設定情報を前記建設機械に設定された機体座標系での目標作業面の設定情報に変換する設定情報変換手段と、前記機体座標系での目標作業面の設定情報を前記建設機械に送信する第1無線通信手段と、前記建設機械と目標作業面との位置関係を前記外部座標系に関連付けて表示する表示手段とを有し、前記機体側制御手段は、前記遠隔操作端末から前記機体座標系での目標作業面の設定情報を受信する第2無線通信手段を有し、前記フロント制御手段は、前記機体座標系での目標作業面の設定情報に基づき前記油圧制御弁を制御し前記目標作業面を形成するよう前記フロント作業機の動作を制御するものとする。
これにより外部座標系に関連付けられた施工データを用い、建設機械に設定された機体座標系での目標作業面の設定情報を生成することができる。また、設定手段と設定情報変換手段は遠隔操作端末に備えられるので、施工データが膨大な電子データであっても、その施工データを機体側制御手段に記憶する必要がなくなり、膨大な電子データである施工データを利用した目標作業面の遠隔設定を容易に行うことができる。
(18)上記(17)において、好ましくは、前記外部座標系は、地球の準拠楕円体の中心を原点とする直交座標系である。
これにより地球の緯度、経度、高さ情報を用いて作成した施工データを外部座標系(地球の準拠楕円体の中心を原点とする直交座標系)に関連付けられた施工データとして利用することができ、地球の緯度、経度、高さ情報を用いて作成した施工データを利用した目標作業面の遠隔設定を容易に行うことができる。
(19)上記(17)において、好ましくは、前記設定情報変換手段は、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める機体座標計測演算手段と、この機体座標計測演算手段で求めた外部座標系での機体座標系の位置及び姿勢に基づき、前記外部座標系での目標作業面の設定情報を前記機体座標系での目標作業面の設定情報に変換する設定情報演算手段とを有する。
これにより建設機械が移動しても、その都度、機体座標系の位置及び姿勢を外部座標系の値として求めることにより外部座標系に対する建設機械の位置及び姿勢を特定し、機体座標系での目標作業面の設定情報を生成することができる。
(20)上記(19)において、好ましくは、前記設定情報変換手段は、前記外部座標系での機体座標系の位置及び姿勢と前記施工データとを比較して、前記機体座標系の位置及び姿勢における施工データ部分を抽出し、その施工データ部分から前記外部座標系での目標作業面の設定情報を生成する手段を更に有する。
これにより膨大な電子データである施工データから必要なデータのみ抽出し、外部座標系での目標作業面の設定情報を生成することができる。
発明を実施するための最良の形態
以下、本発明の実施の形態を図面を用いて説明する。
図1は本発明の第1の実施の形態である建設機械の遠隔制御システムの全体構成を示す図である。
図1において、1は油圧ショベルであり、100は油圧ショベル1から離れた場所に設置された管理事務所である。
油圧ショベル1は下部走行体2、上部旋回体3、フロント作業機7を有し、上部旋回体3は下部走行体に対して旋回可能に搭載され、フロント作業機7は上部旋回体3の前部に上下動可能に取り付けられている。上部旋回体3は収納室4、カウンタウェイト5、運転室6等から構成されている。フロント作業機7はブーム8、アーム9、バケット10を有する多関節構造であり、ブーム8はブームシリンダ11により、アーム9はアームシリンダ12により、バケット10はバケットシリンダ13によりそれぞれ回転駆動される。下部走行体2は図示しない左右走行モータ走行駆動され、上部旋回体3は図示しない旋回モータにより旋回駆動される。
ブームシリンダ11、アームシリンダ12、バケットシリンダ13はそれぞれ制御弁24,25,26を介して油圧ポンプ19に接続され、流量制御弁24,25,26によって油圧ポンプ19から各シリンダ11,12,13に供給される圧油の流量及び方向が調整される。ここで、図の簡単のため省略したが、上記左右走行モータ及び旋回モータに対しても同様に左右走行制御弁、旋回制御弁が設けられている。
制御弁24,25,26及び旋回用制御弁に対しては操作レバー装置303L,303Rが設けられ、操作レバー303L,303Rはそれぞれ操作レバー31,32とポテンショメータ31a,31b,32a,32bとを有し、操作レバー31が前後方向Aに操作されるとその操作量をポテンショメータ31aが検出し、当該操作量に応じた電気的な操作信号X1を出力し、操作レバー31が左右方向Bに操作されるとその操作量をポテンショメータ31bが検出し、当該操作量に応じた電気的な操作信号X2出力し、操作レバー32が前後方向Cに操作されるとその操作量をポテンショメータ32aが検出し、当該操作量に応じた電気的な操作信号X3を出力し、操作レバー32が左右方向Dに操作されるとその操作量をポテンショメータ32bが検出し、当該操作量に応じた電気的な操作信号X4を出力する。
ポテンショメータ31a,31b,32a,32bから出力された操作信号X1,X2,X3,X4は制御ユニット52に送られ、この制御ユニット52は操作信号X1,X2,X3,X4に基づいて所定の演算を行い、電磁比例弁24L,24R,25L,25R,26L,26R及び図示しない旋回用制御弁に設けられた電磁比例弁に制御信号を出力する。電磁比例弁24L,24R,25L,25R,26L,26Rは制御弁24,25,26のそれぞれの油圧駆動に対応して設けられ、制御弁24,25,26は電磁比例弁24L,24R,25L,25R,26L,26Rにより指示されるパイロット圧力により応じて切り替え方向及び開度を調整し、旋回用制御弁の電磁比例弁も同様であり、これにより油圧ポンプ19からブームシリンダ11、アームシリンダ12、バケットシリンダ13、及び図示しない旋回モータへ供給される圧油の方向及び流量が制限される。
図示しない左右走行制御弁に対してはそれぞれ操作レバーと操作ペダルが設けられ、操作レバーと操作ペダルの一方が操作されると同様に左右走行制御弁の切り替え方向及び開度が調整される。
以上のような油圧ショベル1に本発明の遠隔制御システムが備えられている。この遠隔制御システムは、油圧ショベル1に装備された機体側制御装置101と事務所100に設置された遠隔操作端末102とで構成されている。まず、機体側制御装置101について説明する。
ブーム8にはブーム8の回転角度を検出する角度センサ34が、アーム9にはアーム9の回転角度を検出する角度センサ35が、バケット10にはバケット10の回転角度を検出する角度センサ36がそれぞれ設けられており、角度センサ34,35,36は、それぞれフロント作業機7の姿勢に応じて電気的な角度信号α、β、γを出力する。
更に、運転室6内には車体の左右傾斜角度を検出する傾斜センサ37が備えられており、車体の左右傾斜角度に応じて電気的な角度信号σを出力する。
油圧ショベル1の外部にはレーザ光を発するレーザ灯台51が設置され、油圧ショベル1のアーム9の側面にはレーザ光Rを受光するとパルス信号τを発生するレーザ受光器52が取り付けられている。レーザ灯台51が発するレーザ光は外部基準となるレーザ基準面Rを形成する。
角度センサ34,35,36、傾斜センサ37から出力された角度信号α、β、γ、σ及びレーザ受光器52から出力されたパルス信号τは、制御ユニット53に入力される。制御ユニット53は無線通信装置54を備え、各角度信号α、β、γ、σ及びパルス信号τと、管理事務所Gから送信され無線通信装置54により受信する目標掘削面の設定情報に基づき、バケット10の先端位置や車体に対する目標掘削面の位置関係などを演算し、自動制御の設定値として記憶すると共に表示情報を無線通信装置54により管理事務所100の遠隔操作端末102に送信する。また、制御ユニット53は、管理事務所100の遠隔操作端末102から送信され無線通信装置54により受信する設定情報や自動制御の開始指示(後述)及び無線操縦信号に従い、フロント作業機7が設定された範囲を出ないように制御する範囲制限制御、フロント作業機7が設定された範囲から出そうになるとその範囲に沿って動作させる領域制限掘削制御、あるいは設定された軌跡に沿ってフロント作業機7を動作させる軌跡制御などを行う。
管理事務所100において、遠隔操作端末102はパソコン71とジョイスティック72と無線通信装置73,74とを有している。パソコン71は制御装置71a、表示装置71b、操作装置71cからなり、油圧ショベル1の自動制御の設定手段として用いられる。表示装置71bは例えばLCDからなる画像表示部71dを備えている。操作装置71cは、公知の如く、文字入力キー、カーソル移動キー(上下左右)、リターンキー、数値入力キー(テンキー)等を備えたキーボード及びマウスである。ジョイスティック72は油圧ショベル1の無線操縦を行うための遠隔操作手段であり、油圧ショベル1に設けられた上述の操作レバー装置303L,303R及び図示しない走行用の操作レバーと同等の機能を有し、ジョイスティック72を操作するとフロント作業機7に係わる制御弁24,25,26及び図示しない旋回制御弁、左右走行制御弁に対する操作信号が出力される。
無線通信装置73はパソコン71の制御装置71aに接続され、制御装置71aはこの無線通信装置73を介して油圧ショベル1の制御ユニット53と情報のやりとりを行う。無線通信装置74はジョイスティック72に接続され、ジョイスティック72は操作信号をこの無線通信装置74を介して油圧ショベル1の制御ユニット53に送信する。
無線通信装置54,73,74は、それぞれ、無線通信装置本体54a,73a,74aとアンテナ54b,73b,74bを備えている。
図2に制御ユニット53及び無線通信装置54の構成を示す。制御ユニット53は、角度センサ34,35,36、傾斜センサ37からそれぞれ入力される角度信号α,β,γ,σ、レーザ受光器52から入力されるパルス信号τ、及びポテンショメータ31a,31b,32a,32bから入力される操作信号X1,X2,X3,X4をディジタル信号に変換するA/D変換器110、中央演算処理装置(CPU)120、制御手順のプログラムや制御に必要な定数を格納するリードオンリーメモリー(ROM)130、演算結果あるいは演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)140、無線通信装置54の本体54aと通信を行うためのシリアルコミュニケーションインターフェース(SCI)150、ディジタル信号をアナログ信号に変換するD/A変換器160を含むシングルチップマイコン165と、機種別あるいはグレード別の制御定数、寸法データなどを記憶しておく不揮発性メモリ(EEPROM)170と、増幅器180とで構成されている。
無線通信装置54の本体54aは、中央演算処理装置(CPU)310、演算のプログラムや演算に必要な定数を格納するリードオンリーメモリー(ROM)320、演算結果あるいは演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)330、制御ユニット53と通信を行うためのシリアルコミュニケーションインターフェース(SCI)340、無線通信用アンテナ54bで受信した信号を増幅する増幅器350とで構成されている。
図3にパソコン71の制御装置71a及び無線通信装置73の構成を示す。制御装置71aは、操作装置71cからの操作信号を取り込むインターフェース(I/O)210、中央演算処理装置(CPU)220、制御手順のプログラムや制御に必要な定数を格納するリードオンリーメモリー(ROM)230、演算結果あるいは演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)240、無線通信装置73の本体73aと通信を行うためのシリアルコミュニケーションインターフェース(SCI)250を含むシングルチップマイコン255と、不揮発性メモリ(EEPROM)260と、表示装置71bに表示する表示内容を描画したり加工するためのメモリ270と、表示装置71bに表示させるための演算を行う表示演算部280と、表示演算部280で作成された表示内容を表示装置71bに出力するためのインターフェース290とで構成されている。
無線通信装置73の本体73aは、無線通信装置本体54aと同様、中央演算処理装置(CPU)410、リードオンリーメモリー(ROM)420、ランダムアクセスメモリ(RAM)430、シリアルコミュニケーションインターフェース(SCI)440、増幅器450とで構成されている。ジョイスティック72の無線通信装置74の本体74aも同様に構成されている。
図4に、制御ユニット53のROM130に記憶された制御プログラムの概要を機能ブロック図で示す。制御ユニット53は、目標掘削面を設定すると共に遠隔操作端末102に送信する表示情報の演算を行う設定・表示処理部55と、領域制限掘削制御を行う掘削制御部56とを有している。
設定・表示処理部55は、角度センサ34,35,36、傾斜センサ37の角度信号α,β,γ,σ、レーザ受光器52のパルス信号τと遠隔操作端末102からの設定情報(後述)を入力し、油圧ショベル1の下部走行体2と上部旋回体3からなる車体に関して設定されたx−z座標系により目標掘削面及びレーザ基準面を演算し、目標掘削面を設定すると共に、遠隔操作端末102の表示装置71bに表示される表示情報を演算する。
掘削制御部56は、設定・表示処理部55で設定された目標掘削面に基づき、公知の領域制限掘削制御を行うよう制御弁26,27,28に対する指令信号を生成する処理を行う。
図5に設定・表示処理部55の処理機能をブロック線図で示す。設定・表示処理部55は、バケット爪先の座標演算部55aと、車体とレーザ基準面の位置関係演算部55bと、レーザ基準面と目標掘削面の位置関係(深さ)記憶部55cと、車体と目標掘削面の位置関係演算・記憶部55dと、バケットの爪先深さなどの数値データ演算部55eと、目標掘削面とバケットの位置関係演算部55fと、レーザ基準面と目標掘削面と車体との位置関係演算部55gの各機能を有している。
バケット爪先の座標演算部55aは、油圧ショベル1の車体に関して設定されたx−z座標系及び各部寸法と角度センサ34,35,36の角度信号α,β,γに基づいて、バケット爪先のx−z座標系の座標値(Pvx,Pvz)を演算する。
車体とレーザ基準面の位置関係演算部55bは、レーザ受光器52によってレーザ光を受光した際のレーザ受光器52のx−z座標系の座標値(PLx,PLz)と、傾斜センサ37の角度信号σと遠隔操作端末102で設定された目標掘削面の勾配εとから、x−z座標系におけるレーザ基準面Rの一次式を演算する。
レーザ基準面と目標掘削面の位置関係(深さ)記憶部55cは、遠隔操作端末102で設定されたレーザ基準面Rに対する目標掘削面の深さ(位置関係)LdをRAM140に記憶する。
車体と目標掘削面の位置関係演算・記憶部55dは演算部55bによって演算された車体とレーザ基準面との位置関係と、記憶部55cに記憶された深さ設定値Ldとから、x−z座標系における目標掘削面の一次式を演算する。この目標掘削面の一次式はRAM140に記憶され、掘削制御部56において領域制限掘削制御の目標掘削面の設定値として用いられる。
数値データ演算部55eは、演算部55aによって演算されたバケット爪先の座標値と、演算部55bによって演算された車体とレーザ基準面の位置関係と、演算部55dによって演算された車体と目標掘削面の位置関係とからバケットの爪先深さ、バケット勾配、目標掘削面の設定深さ、勾配などの数値を演算し表示情報とする。
目標掘削面とバケットの位置関係演算部55fは、演算部55aによって演算されたバケット爪先の座標値と、演算部55dによって演算された車体と目標掘削面の位置関係とから目標掘削面とバケットの位置関係を演算し表示情報とする。
レーザ基準面と目標掘削面と車体との位置関係演算部55gは、演算部55bによって演算された車体とレーザ基準面の位置関係と、演算部55dによって演算された車体と目標掘削面の位置関係とからレーザ基準面と目標掘削面と車体との位置関係を演算し表示情報とする。
演算部55e,55f,55gで演算された数値及び位置関係は表示情報として遠隔操作端末102に送信される。
図6に掘削制御部56の処理機能をブロック線図で示す。掘削制御部56は、操作信号の最大値選択部56aと領域制限掘削制御演算部56bの各機能を有している。最大値選択部56aでは操作レバー装置303L,303Rからの操作信号X1〜X3と遠隔操作端末102のジョイスティック72からの無線操縦のための操作信号の対応するものを比較し最大値を選択する。領域制限掘削制御演算部56bでは、その最大値として選択された操作信号と、角度センサ34,35,36の角度信号α,β,γと遠隔操作端末102の操作装置71cからの制御開始・終了信号と上記演算・記憶部55で記憶した目標掘削面の設定情報を入力し、領域制限掘削制御を行うよう演算処理を行い、流量制御弁24,25,26に制御信号を出力する。
ここで、領域制限掘削制御とは、車体基準で目標掘削面を設定し、操作レバーを操作しフロント作業機7の一部、例えば、バケット10が目標掘削面に近づくと、バケットの目標掘削面に向かう方向の動きのみを減速し、バケット10が目標掘削面に達すると、バケット10は目標掘削面の外には出ないが目標掘削面に沿っては動けるようにフロント作業機7を半自動で制御するものであり、その一例が国際公開番号WO95/30059号公報に開示されている。また、領域制限掘削制御演算部56bは油圧制御弁24,25,26を制御し目標掘削面を形成するようフロント作業機7の動作を制御するフロント制御手段を構成する。
図7に、パソコン71の制御装置71aのROM230に記憶された制御プログラムの概要を機能ブロック図で示す。制御ユニット71aは、パソコン71の操作装置71cにより入力した目標掘削面の深さ・勾配及び制御の開始・終了指示情報を送信可能な信号に処理する通信処理部81と、油圧ショベル1から送信された表示情報と操作装置71cからの操作信号に基づき表示演算処理を行い、その処理データを表示装置71bに表示させる表示演算処理部82とを有している。
表示演算処理部82の処理内容を図8〜図16により説明する。
まず、表示装置71bの画像表示部71dに表示する内容を説明する。
図8及び図9は画像表示部71dに選択的に表示する2種類の画面を示すものであり、図8は自動制御のための目標掘削面の深さ、勾配の設定状態を表示する掘削設定画面61を、図9は掘削設定画面で設定した目標掘削面とバケットの相対位置を拡大表示する掘削モニタ画面62をそれぞれ示している。これら画面61,62はそれぞれ目的とする情報を表示する主画面領域63と、その右側に位置する副画面領域としてのメニュー領域64とを有し、メニュー領域64にはそれぞれの画面情報に応じて複数の項目が設定されている。また、メニュー領域64の各項目の選択・実行は、例えばパソコン71の操作装置(キーボード)71cのカーソル移動キー(上下左右)とリターンキーを用いて行う。つまり、メニュー領域64には各項目を反転表示するカーソルが表示されており、操作装置71cの上下のカーソル移動キーを操作してカーソルを上下に移動し、メニュー領域64上の希望する項目を選び、リターンキーを押すことで反転表示した項目の内容を決定し実行する。これらのキーを用いる代わりにマウスを用い項目を選択し、クリックすることで決定・実行を行ってもよい。
掘削設定画面61及び掘削モニタ画面62の詳細を説明する。
図8において、掘削設定画面61の主画面領域63は、車体をシンボルで表示すると共に、自動制御のための目標掘削面の深さ、勾配の設定状態を数値と設定値に応じて動く直線で表示する。また、レーザ基準面を外部基準として用いた場合は、当該レーザ基準面を上下に動く破線で表示する。
また、掘削設定画面61のメニュー領域64には「制御ON/OFF」、「勾配]、「深さ」、「画面切換」の各項目がある。操作装置71cの上下のカーソル移動キーを用いてメニュー領域64の「勾配」を選択し、数値入力キーを操作して数値を入力することで目標掘削面の勾配を設定することができる。このとき、数値を入力すると画面上の勾配の数値が変更され、かつ目標掘削面を示す直線の傾きが変化する。また、レーザ基準面を用いるときは、目標掘削面はレーザ基準面に平行に表示され、数値入力キーを操作するとレーザ基準面を示す破線の傾きも変化する。レーザ基準面は、前述したようにフロント作業機のアームに取り付けたレーザ受光器52がレーザ基準面一致したときに、レーザ受光器52がパルス信号を出力することにより設定・表示される。レーザ基準面を用いないときは、目標掘削面の勾配は例えば車体下面の中心を基準として設定・表示される。
また、同様に上下のカーソル移動キーを用いて「深さ」を選択し、数値入力キーを操作して数値を入力することで目標掘削面の深さを設定することができる。このとき、数値を入力すると画面上の設定深さの数値が変更され、かつ目標掘削面を示す直線が上下に移動する。また、レーザ基準面を用いるときは、目標掘削面の深さはレーザ基準面からの値として設定され、レーザ基準面に対して上下に移動する。レーザ基準面を用いないときは、目標掘削面の深さは例えば地面を基準として設定・表示される。
操作装置71cの上下のカーソル移動キーとリターンキーを用いてメニュー領域64の「制御ON/OFF」を選択・実行すると自動制御が開始される。制御中は画面中に図示の如く「制御中」の表示を行う。この「制御中」の表示は他画面、つまりこれから説明する図9に示す掘削モニタ画面62に切り換えたときにも行う。また、上記の目標掘削面の設定は制御のON/OFFに係わらず行える。再度、「制御ON/OFF」を選択・実行すると自動制御を終了させる。
メニュー領域64の「画面切換」を選択・実行すると、掘削設定画面61から掘削モニタ画面62に切り替わる。
掘削モニタ画面62の主画面領域63は、掘削設定画面61で設定した目標掘削面とバケット10の位置関係を数値と動くイラストで拡大表示する。目標掘削面の表示は、掘削設定画面61と同様、設定状態に応じて動く直線を表示することにより行う。バケット10のイラスト表示は、油圧ショベル1側の制御ユニット53で計算されたバケット10の姿勢及び目標掘削面との位置関係に応じて移動、回転するバケットのシンボルを表示することにより行う。管理事務所のオペレータはこの画面を見ることでバケット先端の位置と目標掘削面との位置を常時確認しながら作業することができる。また、自動制御がOFFでもこの画面でジョイスティック72を用いてそのような作業を行うことができる。
掘削モニタ画面62のメニュー領域64には「角度単位」、「画面切換」の各項目がある。操作装置71cの上下のカーソル移動キーとリターンキーを用いて、メニュー領域64の「角度単位」を選択・実行すると、主画面領域63に表示される左右傾斜角度とバケット角の角度単位を「°」→「%」→「割分」表示に順次切り替えることができる。
メニュー領域64の「画面切換」を選択・実行すると、掘削モニタ画面62から掘削設定画面61に切り替わる。
図10は前述した「掘削設定画面61」と「掘削モニタ画面62」の画面遷移を示す。オペレータは操作装置71cの上下のカーソル移動キーとリターンキーを用い、上述したように各画面でメニュー領域64の「画面切換」を選択し実行することで、自由に表示内容を切り換えることができる。
図11〜図16に上記のような表示制御を行う表示演算処理部82の処理手順をフローチャートで示す。
図11はパソコン71の制御装置71aに電源が投入されたときの処理手順を示すフローチャートである。制御装置71aの電源が投入されると、初期画面として掘削設定画面61を表示し、メニュー領域64のカーソル初期位置を「画面切換」に設定する(ステップS104)。次いで、操作装置71cのリターンキーが押され決定操作がなされたかどうか(ステップS141)、あるいは上下のカーソル移動キーが押されメニュー(上)又は(下)操作がなされたかかどうかを判断する(ステップS142、143)。このとき、メニュー領域のカーソルは「画面切換」にあり、操作装置71cのリターンキーが押されると、掘削モニタ画面62に切り換え(ステップS144)、上カーソル移動キーが押されるとカーソルを「深さ」に移動し(ステップS145)、下カーソル移動キーが押されるとカーソルを「制御ON/OFF」に移動する(ステップS146)。
図12は、図11に示したフローチャートのステップS145で、掘削設定画面61のメニュー領域64のカーソルを「深さ」に移動したときの処理手順を示すフローチャートである。操作装置71cの上下のカーソル移動キーが押されたかどうか(ステップS151、1512)、あるいは数値入力キーが押された数値が入力されたかどうかを判断する(ステップS153)。上カーソル移動キーが押されるとカーソルを「勾配」に移動させ(ステップS155)、下カーソル移動キーが押されるとカーソルを「画面切換」に移動させる(ステップS156)。また、数値入力キーが押されると深さ設定値の数値を入力した数値に変更する(ステップS157)。
図13は、図12に示したフローチャートのステップS155で、掘削設定画面61のメニュー領域64のカーソルを「勾配」に移動したときの処理手順を示すフローチャートである。操作装置71cの上下のカーソル移動キーが押されたかどうか(ステップS161、162)、あるいは数値入力キーが押され数値が入力されたかどうかを判断する(ステップS163)。上カーソル移動キーが押されるとカーソルを「制御ON/OFF」に移動させ(ステップS165)、下カーソル移動キーが押されるとカーソルを「深さ」に移動させる(ステップS166)。また、数値入力キーが押されると勾配設定値の数値を入力した数値に変更する(ステップS167)。
図14は、図13に示したフローチャートのステップS165で、掘削設定画面61のメニュー領域64のカーソルを「制御ON/OFF」に移動させたときの処理手順を示すフローチャートである。操作装置71cの上下のカーソル移動キーが押されたかどうか(ステップS171、172)、あるいはリターンキーが押されたかどうかを判断する(ステップS172)。上カーソル移動キーが押されるとカーソルを「画面切換」に移動させ(ステップS174)、下カーソル移動キーが押されるとカーソルを「勾配」に移動させる(ステップS175)。リターンキーが押されると、制御状態で「制御中」が表示されているかどうかを判断し(ステップS176)、制御状態であると「制御中」の表示をOFFにし、かつ制御ユニットに制御OFF指令のコマンドを送る(ステップS177)。制御状態でないと「制御中」を表示し、かつ制御ユニット52に制御ON指令のコマンドを送る(ステップS178)。
図15は、図11に示したフローチャートのステップS144で、掘削モニタ画面62に切り換えたときの処理手順を示すフローチャートである。このとき、カーソルは「画面切換」位置にある。また、掘削モニタ画面62に表示されるバケット角の角度の単位の初期値は「°」を表示する。次いで、操作装置71cのリターンキーが押されたかどうか(ステップS181)、あるいは上下のカーソル移動キーが押されたかどうかを判断する(ステップS182,183)。リターンキーが押されると掘削設定画面61に切り換える(ステップS182)。上カーソル移動キーまたはしたカーソル移動キーが押されるとカーソルを「角度単位」に移動させ(ステップS184)。
図16は、図15に示したフローチャートのステップS184で、カーソルを「角度単位」に移動させたときの処理手順を示すフローチャートである。操作装置71cのリターンキーが押されたかどうか(ステップS111)、あるいは上下のカーソル移動キーが押されたかどうかを判断する(ステップS112、113)。リターンキーが押されると、現在の角度単位が「°」であるかどうか(ステップS114)、あるいは「%」であるかどうか(ステップS116)が判断され、その判断結果に応じて角度単位を「%」(ステップS115)、「割分」(ステップS117)、「°」(ステップS118)に設定する。掘削モニタ画面62にはバケット角の角度単位の初期値として「°」が表示されており、電源投入後、始めてリターンキーが押された場合は、現在の角度単位が「°」であるのでステップS114で肯定され、ステップS115で角度単位を「%」に変更する。その後、再度リターンキーが押されると、ステップS114で否定され、ステップS115で肯定され、ステップS117で角度単位を「割分」に変更する。その後、更にリターンキーが押されると、ステップS114,S115で否定され、ステップS118で角度単位を「°」に変更する。
また、上カーソル移動キー又は下カーソル移動キーが押されるとカーソルを「画面切換」に移動する(ステップS120)。
以上の遠隔制御システムを用いた作業例を説明する。
まず、作業現場において、これから掘削しようとする目標掘削面の近くに油圧ショベル1を移動設置し、かつレーザ灯台51を適所に設置する。レーザ灯台51の設置箇所としては、目標掘削面に平行にレーザ基準面(外部基準)Rを形成できかつ油圧ショベル1のアーム9に取り付けたレーザ受光器52がそのレーザ基準面のレーザ光を受光できる場所を選択する。次いで、レーザ基準面Rの角度をこれから掘削しようとする目標掘削面の角度に合わせるようレーザ灯台51のレーザ光の発射方向を調整するとともに、制御ユニット53の電源を入れ、作業現場での準備作業を完了する。作業員は準備作業の完了を携帯電話などで管理事務所100側のオペレータに知らせる。
一方、遠隔操作端末102を設置した管理事務所100においては、パソコン71の電源を入れ、表示装置71bの表示部に掘削設定画面61を表示する。ここで、制御ユニット53の電源ON時、目標掘削面の深さ及びレーザ基準面の一次式の初期値としてはそれらが掘削設定画面61に表示されない値が設定されるようにしておく。これにより掘削設定画面61の初期画面では建設機械1の車体は表示されるが、目標掘削面及びレーザ基準面は表示されない。また、目標掘削面の勾配としては0°を設定しておく。
作業現場から準備作業が完了したことを知らされると、管理事務所のオペレータはジョイスティック71を操作して油圧ショベル1のフロント作業機7を遠隔で操縦し、レーザ受光器52にレーザ灯台51のレーザ光を受光させる。レーザ受光器52がレーザ光を受光すると、前述したように油圧ショベル1に搭載された制御ユニット53の設定・表示処理部55において、演算部55bにて車体とレーザ基準面の位置関係が演算され、演算部55gにてレーザ基準面と目標掘削面と車体との位置関係が演算される。演算部55gの演算結果は表示情報として管理事務所側に無線で送信され、表示装置71bの掘削設定画面61には油圧ショベル1の車体とレーザ基準面が表示される。このとき、目標掘削面の設定情報としては上述した初期値が用いられるので、掘削設定画面61ではレーザ基準面は水平に表示される。
次いで、管理事務所側では、オペレータはパソコン71の操作装置71cを用いて目標掘削面の深さと勾配(設定情報)を入力する。この操作は、掘削設定画面61のメニュー領域64の「深さ」又は「勾配」の項目を選択し、主画面領域63を見ながら行う。オペレータが入力した設定情報は無線で油圧ショベル1の制御ユニット53に送信され、演算部55b,55dにてその設定情報を用いて車体とレーザ基準面の位置関係、車体と目標掘削面の位置関係が演算され、演算部55gにてレーザ基準面と目標掘削メント車体の位置関係が演算される。その演算結果は表示情報として管理事務所側に無線で送り戻され、表示装置71bの掘削設定画面61にオペレータの入力値に応じてレーザ基準面と目標掘削面が表示される。例えば、目標掘削面の勾配を入力すれば、それに応じて掘削設定画面61に表示されるレーザ基準面の角度が変わり、目標掘削面の深さを入力すれば、それに応じた位置にレーザ基準面と平行に目標掘削面が表示され、目標掘削面の深さの数値を変えれば、それに応じて目標掘削面はレーザ基準面に対し平行移動する。このようにオペレータは、掘削設定画面61を見ながら最適の位置に目標掘削面を設定することができる。
一方、油圧ショベル1側では、その目標掘削面は、制御ユニット53の演算部55dにて車体と目標掘削面の位置関係(車体のx−z座標系における一次式)として記憶される。
なお、このように設定操作を行うとき、作業現場の作業員と携帯電話で連絡を取り合ったり、作業現場をカメラで撮影し、その画像情報を管理事務所100側のモニタテレビに表示できるようにしておくことが好ましく、管理事務所100のオペレータはその携帯電話による連絡やモニタテレビの画像を通じて現場の地形情報を把握し、これにより一層適切に目標掘削面を設定することができる。
以上のように目標掘削面が設定されると、管理事務所100側のオペレータは、掘削設定画面61のメニュー領域64で「制御ON/OFF」の項目を選択実行し、油圧ショベル1の領域制限掘削制御を開始する。この領域制限掘削制御では、オペレータはジョイスティック72を操作し、油圧ショベル1のフロント作業機7を無線操縦することで、油圧ショベル1はバケット先端が目標掘削面を超えないように半自動で制御され、目標掘削面を容易に形成することができる。
また、この無線操縦による半自動制御では、表示装置71bの画面を掘削モニタ画面62に切り換えてもよい。掘削モニタ画面62では、バケットシンボルと目標掘削面の位置関係が拡大表示されているので、オペレータはその画面を見ながらバケットと目標掘削面の位置関係を常時確認しながら作業を行うことができる。
以上のように構成した本実施の形態によれば次の効果が得られる。
1)油圧ショベル1にフロント作業機7の動作を半自動で制御する領域制限掘削制御機能を搭載し、この油圧ショベル1に対し遠隔操作端末102を設け、目標掘削面の設定情報の入力と無線操縦を遠隔操作端末102側で行えるようにし、かつ遠隔操作端末102に油圧ショベル1と目標掘削面との位置関係を表示する表示装置71bを設けたので、オペレータは表示装置71bの画面を見ながら遠隔で目標掘削面の設定を行うことができるとともに、遠隔でフロント作業機7を操縦し、領域制限掘削制御の半自動制御機能を利用して目標掘削面を形成することができ、これにより目標掘削面の遠隔設定と油圧ショベル1の遠隔操縦を容易に行うことができる。
2)領域制限掘削制御は、ジョイスティック72の無線操縦信号と操作装置71cの設定情報に基づいてフロント作業機の動作を制御する半自動制御であるので、手動方式に比べオペレータの負担は格段に減り、かつ設定情報を変えるだけで種々の作業現場に容易に対応することができる。
3)遠隔操作端末102側での目標掘削面の設定情報の入力は、油圧ショベル1のレーザ基準面に対する目標掘削面の位置関係を入力することにより行い、油圧ショベル1側でその設定情報を油圧ショベル1に対する位置関係に変換するので、オペレータは外部基準であるレーザ基準面を用いて目標掘削面を設定することができる。また、このとき、遠隔操作端末102の表示装置71bにレーザ基準面と目標掘削面と油圧ショベル1の位置関係を表示するので、オペレータは表示装置の画面を見ながら容易に目標掘削面を設定することができる。
なお、上記実施の形態では、油圧ショベル1側の制御ユニット53の設定・表示処理部55にバケットの爪先深さなどの数値データ演算部55eと、目標掘削面とバケットの位置関係演算部55fと、レーザ基準面と目標掘削面と車体との位置関係演算部55gを設けたが、これらの演算部は遠隔操作端末102側の制御装置71aに設けてもよい。
また、遠隔操作端末102のパソコン71とジョイスティック72を離れた場所に設置してもよい。
また、遠隔操作端末102ではパソコン71用の無線通信装置73とジョイスティック72用の無線通信装置74とを別個に構成したが、これらの無線通信装置は1つにまとめてもよい。
更に、上記実施の形態では、管理事務所100側のみに表示装置71bと操作装置71cを設置したが、油圧ショベル1側にも表示装置と操作装置を設置してもよく、この場合は、状況に応じ、油圧ショベル1にオペレータが搭乗し、有人で設定及び制御操作を行うことができる。
更に、上記の実施の形態では、自動制御に係わる作業の目標となる面や領域の設定状態を数値と動くイラストで表示する画面(掘削設定画面61)以外の画面として掘削モニタ画面62を設けたが、これに代え、或いはこれに加え、別の画面を表示するようにしてもよい。別の画面としては、例えば燃料計、油圧温度計、エンジン冷却水温時計等の計器情報を表示する計器情報画面や、水温異常や油温異常を表示する異常警告情報画面、エンジン回転数、掘削負荷、走行負荷、旋回負荷等の稼動情報を表示する稼動情報画面等が考えられる。
本発明の他の実施の形態を説明する。
上記の実施の形態では、外部基準としてレーザ基準面を用いたが、位置及び姿勢が既知である外部座標系を外部基準として用いることができる。位置及び姿勢が既知である外部座標系の代表例としてはGPS(grobal positioning system)で用いるグローバル座標系がある。グローバル座標系とは地球の準拠楕円体の中心に原点を持つ直交座標系である。GPSによりグローバル座標系を外部基準として油圧ショベル1の位置・方向を計測・把握するとともに、表示装置にGPS情報と関連づけられた地形データと設計データを表示することにより、その設計データを目標作業面として用いることができる。
つまり、車体にGPSアンテナを一個若しくは複数個設置し、複数のGPS衛星からの信号を用いてGPSアンテナの位置を地球上の緯度・経度・海抜高さ情報として検出し、その情報をグローバル座標系の値に変換し、所定の演算処理を行うことにより油圧ショベルの位置や車体の方向を把握する。この演算処理は油圧ショベルに設置した制御装置で行ってもよいが、好ましくは管理事務所に設置したパソコンの制御装置で行う。パソコンの制御装置には地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを設定しておく。この施工データには地形データと施工計画線(設計データ)が含まれる。パソコンの表示装置は油圧ショベルの位置・方向情報と三次元の施工データを入力し、それらを表示する。また、パソコンの制御装置は油圧ショベルの位置・方向情報と三次元の施工データとを比較して、現在の車体位置・方向における目標の掘削面を演算し、この目標掘削面の設定情報を油圧ショベルの車体基準の設定情報に変換し、油圧ショベルに送信する。油圧ショベルはその設定情報を記憶し、自動制御に使用する。施工データから得た目標掘削面の設定情報は油圧ショベルに送信し、油圧ショベル1でその設定情報を車体基準の設定情報に変換してもよい。
図17〜図20は、グローバル座標系における油圧ショベルの位置・方向を特定する方法として2個のGPSアンテナを用いるものを本発明の第2の実施の形態として示すものである。図中、図1に示した部材と同等のものには同じ符号を付している。
図17は本実施の形態に係わる油圧ショベルの外観を示す図である。油圧ショベル1Aには、ブーム回転角検出器34、アーム回転角検出器35、バケット回転角検出器36に加え、下部走行体2と上部旋回体3の回転角(旋回角度)を検出する角度センサ520、上部旋回体3の前後方向の傾斜角(ピッチ角度)と左右方向の傾斜角(ロール角度)を検出する傾斜センサ524が設けられている。
また、油圧ショベル1Aには、GPS衛星からの位置信号を受信する2個のGPSアンテナ531,532、受信した位置信号を管理事務所100に送信するための無線アンテナ533、各種センサ34〜36,520,524の信号を管理事務所100に送信し、管理事務所100から無線操縦信号や目標掘削面の設定情報及び表示情報(後述)の各種データを受信する無線アンテナ535が設けられている。2個のGPSアンテナ531,532は上部旋回体3の旋回中心から外れた旋回体後部の左右に設置されている。
図18は本実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
機体側制御装置101Aは、車体コントローラ633と、表示装置634と、無線アンテナ535及び無線機635からなる無線通信装置54Aと、GPSアンテナ531,532及びGPS受信機543,544と、無線アンテナ533及び無線機547からなる無線通信装置548とを備えている。
遠隔操作端末102Aは、制御装置643、表示装置644、操作装置645からなるパソコン71Aと、無線アンテナ641及び無線機642からなる無線通信装置73Aと、ジョイスティック72と、無線機74a及び無線アンテナ74bからなる無線通信装置74と、GPSアンテナ552、無線アンテナ553及び無線機556からなる無線通信装置554と、GPSアンテナ552、GPS受信機555及びGPSコンピュータ557とを備えている。
機体側制御装置101A側の動作は、車体コントローラ633がセンサ34〜36,520,524の信号を入力しアンテナ535及び無線機635を介して遠隔操作端末102Aに送信する点、アンテナ535及び無線機635を介して遠隔操作端末102Aから表示情報を受信し表示装置634に表示させる点、GPS受信機543,544が受信したGPSアンテナ531,532の位置情報をアンテナ533及び無線機547を介して遠隔操作端末102Aに送信する点を除いて、第1の実施の形態と実質的に同じである。
遠隔操作端末102A側では、機体側制御装置101Aから送信されたセンサ34〜36,520,524の信号をアンテナ641及び無線機642で受信し、パソコン71Aの制御装置643に入力するとともに、機体側制御装置101Aから送信されたGPSアンテナ531,532の位置情報をアンテナ553及び無線機556で受信し、GPSコンピュータ557で補正した後、パソコン71Aの制御装置643に入力する。
本実施の形態では高精度での位置計測を行うため、RTK(リアルタイムキネマティック)計測を行う。GPSアンテナ552、GPS受信機555及びGPSコンピュータ557はそのための基準局としての役割も持つものであり、GPSコンピュータ557は予め計測したアンテナ52の3次元位置データと、GPSアンテナ552により受信されるGPS衛星からの位置信号とに基づき、RTK計測のための補正データを生成し、この補正データを用いてGPSアンテナ531,532により受信したGPS衛星からの位置情報を補正し、GPSアンテナ531,532の3次元位置のRTK計測を行う。このRTK計測によって、GPSアンテナ531,532の3次元位置が約±1〜2cmの精度で計測される。そして、計測された3次元位置データはパソコン71Aの制御装置643に入力される。
制御装置643には、地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを入力し、記憶装置に記憶しておく。施工データの入力は操作装置645を用いて行う。この場合、操作装置645により施工データを作成し、記憶させてもよいし、外部で作成した施工データをMO等の記録メディアを用いて制御装置643にインストールし、記憶させてもよい。このとき、その施工データを更に加工してもよい。この施工データには地形データと施工計画線(設計データ)が含まれるのが好ましいが、施工計画線(設計データ)だけであってもよい。制御装置643は、無線機642及びGPSコンピュータ557から入力した情報に基づき、グローバル座標系にて現在の車体位置・方向における目標の掘削面を演算し、その目標掘削面を油圧ショベルのイラスト及び該当する施工データ部分とともに表示装置644に表示させる。また、制御装置643は、その目標掘削面の設定情報を油圧ショベルの車体基準の設定情報に変換し、機体側制御装置101Aに送信する。機体側制御装置101Aではその設定情報を制御ユニット643に記憶し、フロント作業機7の制御に使用する。
また、油圧ショベルの作業状態や施工状態を監視するため、制御装置643はフロント作業機7のバケット先端位置をグローバル座標系にて演算し、表示装置644に表示させるとともに、その表示情報を目標掘削面、油圧ショベルのイラストの表示情報とともに機体側制御装置101Aに送信する。機体側制御装置101Aではその表示情報を制御ユニット643を介して表示装置634に表示させる。これにより、状況に応じ、油圧ショベル1Aにオペレータが搭乗し、有人で制御操作を行うことができる。
図19はグローバル座標系の概念を説明する図である。
図19において、Gは地球の準拠楕円体であり、グローバル座標系ΣG原点O0は準拠楕円体Gの中心に設定されている。また、グローバル座標系ΣGのx0軸方向は赤道Aと子午線Bの交点Cと準拠楕円体Gの中心とを通る線上に位置し、z0軸方向は準拠楕円体Gの中心から南北に延ばした線上に位置し、y0軸方向はx0軸とz0軸に直交する線上に位置している。GPSでは、地球上の位置を緯度及び経度と、準拠楕円体Gに対する高さ(深さ)で表現するので、このようにグローバル座標系ΣGを設定することで、GPSの位置情報をグローバル座標系ΣGの値に容易に変換することができる。
図20は制御装置643の演算処理手順の一例を示すフローチャートである。
まず、GPSコンピュータ557で求めたGPSアンテナ531の3次元位置(緯度、経度、高さ)をグローバル座標系ΣGの値GP1に変換する(ステップS510)。このための演算式は一般的によく知られているものなので、ここでは省略する。同様に、GPSコンピュータ557で求めたGPSアンテナ532の3次元位置をグローバル座標系ΣGの値GP2に変換する(ステップS520)。次いで、そのようにして求めたGPSアンテナ531,532のグローバル座標系ΣGでの3次元位置GP1,GP2と、旋回角度センサ520で検出した旋回角度、傾斜センサ524で検出した傾斜角度(ピッチ角度及びロール角度)と、記憶装置に記憶したショベルベース座標系ΣSBの原点に対するGPSアンテナ531,532の位置関係とからショベルベース座標系ΣSBの位置及び姿勢(下部走行体2の方向)をグローバル座標系ΣGの値GΣSBで求める(ステップS530)。この演算は座標変換であり、一般的な数学的手法により行うことができる。
ここで、ショベルベース座標系ΣSBとは、油圧ショベルの下部走行体2に固定して設定され、3軸のうちの1軸が上部旋回体3の回転軸上或いはその近傍に位置する直交座標系をいう。
次いで、制御装置643の記憶装置に記憶した施工データを読みだし、それをグローバル座標系ΣGのデータに変換し、この施工データをグローバル座標系でのショベルベース座標系GΣSBと比較して、ショベルベース座標系GΣSBの位置・方向における2次元データとしての施工データ部分を抽出し、この施工データ部分から目標掘削面(ΣG)を演算する(ステップS540)。次いで、ショベルベース座標系GΣSBの座標データを用いてその目標掘削面(ΣG)をショベルベース座標系ΣSBの値に変換する(ステップS550)。この演算も座標変換であり、一般的な数学的手法により行うことができる。ショベルベース座標系ΣSBの値に変換した目標掘削面(ΣSB)はアンテナ641及び無線機642を介して機体側制御装置101Aに送信する(ステップS560)。機体側制御装置101Aでは、その設定情報を制御ユニット643に記憶し、フロント作業機7の制御に使用する。
次いで、角度センサ34〜36で検出したブーム角度、アーム角度、バケット角度と、旋回角度センサ520で検出した旋回角度と、記憶装置に記憶したショベルベース座標系ΣSBの原点とブーム8の基端との位置関係及びブーム8、アーム9、バケット10の寸法とからショベルベース座標系ΣBにてバケット先端位置BPBKを求める(ステップS570)。この演算も座標変換であり、一般的な数学的手法により行うことができる。次いで、ステップS530で求めたグローバル座標系ΣGでのショベルベース座標系の値GΣSBとステップS570で求めたショベルベース座標系でのバケット先端位置BPBKとからグローバル座標系ΣGでのバケット先端位置GPBKを求める(ステップS580)。そして、ステップS540で求めたグローバル座標系での目標掘削面(ΣG)及びステップS580で求めたグローバル座標系でのバケット先端位置GPBKを経度、緯度、高さの3次元データに変換する(ステップS590)。このための演算式は一般的によく知られているものなので、ここでは省略する。
次いで、経度、緯度、高さの3次元データに変換した目標掘削面及びバケット先端位置を表示装置644に表示させ(ステップS600)、更にその目標掘削面及びバケット先端位置の情報をアンテナ641及び無線機642を介して機体側制御装置101Aに送信する(ステップS610)。機体側制御装置101Aでは、その情報を制御ユニット643を介して表示装置634に表示させる。なお、このとき、ステップS540で抽出したショベルベース座標系GΣSBの位置・方向における2次元データとしての施工データ部分に含まれる地形データも経度、緯度、高さの3次元データに変換し、表示装置644,634に表示してもよい。
以上のように構成した本実施の形態においては、油圧ショベル1Aの車体の一部である上部旋回体3に搭載した2個のGPSアンテナ531,532を用いてグローバル座標系での油圧ショベル1Aの車体(下部走行体2)の位置及び方向(グローバル座標系でのショベルベース座標系GΣSBの位置及び姿勢)を特定するので、地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦を容易に行うことができる。また、油圧ショベルが走行し移動しても、車体の位置及び方向を特定することができるので、油圧ショベルの移動に係わらず施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦が可能となる。
更に、作業装置であるバケット7の先端(モニタポイント)の位置を計測するので、作業状態や施工状態を監視することができる。
また、本実施の形態によれば、油圧ショベルが目標とする掘削面の設定情報が管理事務所の遠隔操作端末102Aから無線を通じて送られてくるので、膨大な電子データである施工データを機体側制御装置101Aに記憶する必要が無く、かつ管理事務所で現在の車体位置における目標の掘削面を表示装置634を見ながら把握することが可能となる。また、CD−Rのように車体に記録メディアを駆動する装置を必要としないので、安価なシステムであり、耐環境性も良く信頼性に優れる。
なお、上記の実施の形態では、2個のGPSアンテナ531,532と上部旋回体3の傾斜角を検出する傾斜センサ524とを用いてグローバル座標系でのショベルベース座標系の位置及び姿勢を求めたが、傾斜センサを設けずに、上部旋回体3の旋回中心から外れた3カ所に3個のGPSアンテナを設けてもよく、この場合も3個のGPSアンテナの位置情報でグローバル座標系でのショベルベース座標系の位置及び姿勢を求めることができる。
また、油圧ショベル1Aにオペレータが搭乗し、有人で制御操作を行う方式に特化する場合は、遠隔操作手段であるジョイスティック72及び無線通信装置74は無くてもよい。
既知の外部座標系における油圧ショベルの位置・方向を特定する方法として直接GPSを用いない方法を本発明の第3の実施の形態として図21〜図27により説明する。図中、図1及び図17に示した部材と同等のものには同じ符号を付している。
図21は本実施の形態に係わる油圧ショベルの外観を示す図である。油圧ショベル1Bの上部旋回体3の上部にはレーザ光のリフレクタ761が設けられ、フロント作業機7のアーム9の側面にはレーザ受光器725が設けられている。リフレクタ761は上部旋回体3の旋回中心である旋回軸近傍の位置に立てた柱の上端に設けられている。アンテナ類としては、各種センサ34〜36,520,524の信号及びレーザ受光器725の信号を管理事務所100に送信し、管理事務所100から無線操縦信号や目標掘削面の設定情報及び表示情報(後述)の各種データを受信する無線アンテナ535が設けられているだけである。
また、油圧ショベル1Bの外部には、リフレクタ761の位置をリアルタイムに追尾し、その距離と方位を計測するレーザ追尾装置762と、レーザ受光器725に対してレーザ光波面763を投影するレーザ灯台764が設置されている。レーザ追尾装置762とレーザ灯台764は共に地上に設置されている。リフレクタ761とレーザ追尾装置762は自動追尾トータルステーションシステムとして知られているものである。なお、レーザ追尾装置762の設置位置にワールド座標系が設定される(後述)。
ここで、レーザ追尾装置762の設置位置は事前に計測し、その位置を緯度、経度、高さの3次元データとして把握しておく。これによりその位置と前述したグローバル座標系との位置関係は既知となり、その位置に設定されたワールド座標系とグローバル座標系との位置関係も既知となる。
図22は本実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
機体側制御装置101Bは、車体コントローラ633Bにレーザ受光器725の受光信号が更に入力され、その受光信号もアンテナ535及び無線機635を介して送信される点、図18に示したGPS受信システムが無い点を除いて、図18に示した実施の形態のものと実質的に同じである。
遠隔操作端末102Bは、アンテナ641及び無線機642で機体側制御装置101Bから送信されたレーザ受光器725の受光信号を更に受信し、パソコン71Bの制御装置643Bに入力する点、図18に示したGPS受信処理システムの代わりに、レーザ追尾装置762で追尾している油圧ショベル1B上のリフレクタ761の位置信号を有線又は無線によりパソコン71Bの制御装置643Bに入力する点を除いて、図18に示した実施の形態のものと実質的に同じである。
レーザ追尾装置762の設置位置(ワールド座標系)に対する下部走行体2の位置と方向(姿勢)を同定する方法の詳細を図23及び図24を用いて説明する。
図21に示した法面掘削では、レーザ灯台764の発光するレーザ光波面763を、掘削動作を行うフロント作業機7の適当な位置でレーザ受光器725がよぎるように設置することができる。機体側制御装置101Bでは、各種角度センサ34〜36,520の信号、傾斜計524の信号及びレーザ受光器25の信号を車体コントローラ633Bに取り込み、全ての入力データを遠隔操作端末102B側に送信する。遠隔操作端末102Bの制御装置643Bではこれらのデータを受信する。オペレータの操作によりフロント作業機7を動かし、レーザ受光器725がレーザ灯台764の発するレーザ光波面763を受光したとき、遠隔操作端末102Bの制御装置643Bでは、そのことをトリガーとしてそのときの受信データを用いて下部走行体2の位置と方向を特定するための演算を開始する。
油圧ショベル1Bが水平に位置していると仮定すると、受信データのうちブーム角度計34とアーム角度計35の値から、リフレクタ761を基準点としてレーザ受光器725までの水平距離(水平面に対する投影長さ)lBKと、水平面に対する仰角αが求まる。実際には、油圧ショベル1Bは水平面に対し微少に傾斜して位置することが多い。このため、更に傾斜計524も用い、上記の値を補正してリフレクタ761を基準点としたレーザ受光器725の水平距離lBKと仰角αを求める。
レーザ追尾装置762を設置した位置とグローバル座標系との位置関係は既知であり、グローバル座標系の位置と方向は既知であるため、前述したようにその設置位置に便宜的な指標としてワールド座標系ΣWを設定する。リフレクタ761の位置は、レーザ追尾装置762による計測結果により既知である。これをワールド座標系で表現しWPrfとする。ここでPは位置ベクトルであることを、左上付き添え宇Wはワールド座標系であることを、右下付き添え宇rfはリフレクタを表すものとする。
上記lBKとαとWPrfとからレーザ受光器725が存在する可能性がある水平面内の領域をワールド座標系による円の方程式で表すことができる。これを受光器存在可能円と呼ぶことにする。
一方、レーザ光波面763とレーザ追尾装置762との位置関係は予め設定可能であり、既知であり、面の方程式で表現できる。例えば、油圧ショベル1Bが水平に位置していると仮定すると、レーザ光波面763を垂直方向に設定した場合は、レーザ追尾装置762とレーザ灯台764の距離(ワールド座標系のyW座標値)でレーザ光波面763を表現できる。レーザ光波面763とレーザ追尾装置762との位置関係の一般的な同定方法については後述する。
上記受光器存在可能円とレーザ光波面の方程式よりそれらの交点であるWPL,WPL′の2点が求まる。油圧ショベル1Bの作業状況は、作業進行計画或いは監視カメラ等により把握でき、その作業状況に応じてWPL,WPL′のうちの一方であるWPLを選択することで、レーザ受光器25の位置を特定できる。
ここで、リフレクタ761の位置WPrfはワールド座標系での上部旋回体3の位置に該当し、レーザ受光器725の位置WPLはワールド座標系での上部旋回体3の方向に該当する。つまり、WPrfとWPLによりワールド座標系での上部旋回体3の位置と方向を特定できる。
このようにしてワールド座標系での上部旋回体3の位置と方向を特定できれば、角度センサ520で検出した旋回角度の値θSWと傾斜センサ524で検出したピッチ角とロール角の値から、ワールド座標系での下部走行体2の位置と方向を特定できる。またこれにより、油圧ショベル1Bの下部走行体2に固定して設定した、油圧ショベル1Bの動作を表現するベースとなる座標系であるショベルベース座標系WΣSBが特定できる。
また、一度ショベルベース座標系が特定できれば、走行操作をしないか、あるいは下部走行体2が位置ずれを起こさない限り、再度、ショベルベース座標系を演算する必要はない。図21に示した法面掘削作業では、前述したように、上部旋回体3を旋回させることではバケット10の先端が掘削したい位置に届かなくなると、油圧ショベル1Bを走行移動するので、このように油圧ショベルを移動させた場合は、再度、オペレータはフロント作業機7を動かし、受光器725の受光信号をトリガーとして上記の演算を行わせ、ショベルベース座標系WΣSBを特定する。
以上のような演算を行うことによって、油圧ショベル1Bの位置が変わっても常にワールド座標系でのショベルベース座標系WΣSBを求めることができる。
ここで、ワールド座標系ΣWを設定したレーザ追尾装置762の設置位置とグローバル座標系との位置関係は既知であるため、ワールド座標系でのショベルベース座標系WΣSBは容易にグローバル座標系での値GΣSBに変換することができ、このグローバル座標系ΣGでのショベルベース座標系GΣSBを用いることにより、地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用することが可能となる。
図25及び図26は、上記の考え方に基づく遠隔操作端末102Bの制御装置643B内での演算処理手順の一例を示すフローチャートである。
図25において、まず、各種角度センサ34〜36,520、傾斜センサ524の値、レーザ受光器725が受光状態であるかどうかを示す信号、リフレクタ761の位置WPrfの入力を行う(ステップS710)。角度センサ34〜36,520、傾斜センサ524の値とレーザ受光器725が受光状態であるかどうかを示す信号に関しては、機体側制御装置101Bからアンテナ641、無線機642を介して入力する。リフレクタ761の位置WPrfはレーザ追尾装置762より入力する。
次に、レーザ受光器725が受光状態であるかどうかを判定し(ステップS720)、受光状態ならステップS730へ進み、受光状態でなければステップS767へ飛ぶ。ステップS730では、受光器存在可能円の方程式を求める(ステップS730)。つまり、まず、角度センサ34,35のブーム角度、アーム角度と傾斜センサ524のピッチ角及びロール角とから上述したようにレーザ受光器725のリフレクタ761に対する水平距離lBKと水平面からの傾きαを求める。次に、この演算値lBK,αとリフレクタ761の位置WPrfとから水平面と平行な受光器存在可能円の方程式を求める。
次に、予め設定されているレーザ光波面の方程式とステップS730で求めた受光器存在可能円の方程式から、それらの交点WPL,WPL′を演算する(ステップS740)。そして、作業現場の条件(この例では、レーザ追尾装置762に近い側)により、レーザ受光器725の位置としてWPLを選択する(ステップS750)。
以上のようにして求めたWPrfとWPLによりワールド座標系での上部旋回体3の位置と方向を特定し、角度センサ520の旋回角度、傾斜センサ524のピッチ角及びロール角の値より、ワールド座標系におけるショベルベース座標系ΣSBの値WΣSB(位置と方向)を求める(ステツプS760)。
次いで、制御装置643Bの記憶装置に記憶したグローバル座標系でのワールド座標系の値GΣWを読みだし、ステップS760で求めたワールド座標系でのショベルベース座標系値WΣSBとそのグローバル座標系でのワールド座標系GΣWとからショベルベース座標系ΣSBの位置及び姿勢(下部走行体2の方向)をグローバル座標系の値GΣSBで求める(ステップS770)。
次いで、図20に示したステップS540,S550,S560と同様の処理を行う。つまり、制御装置643Bの記憶装置に記憶した緯度・経度・海抜高さ情報に加工した施工データを読みだし、それをグローバル座標系ΣGのデータに変換し、この施工データをグローバル座標系でのショベルベース座標系GΣSBと比較して、ショベルベース座標系GΣSBの位置・方向における2次元データとしての施工データ部分を抽出し、この施工データ部分から目標掘削面(ΣG)を演算する(ステップS780)。次いで、ショベルベース座標系GΣSBの座標データを用いてその目的掘削面(ΣG)をショベルベース座標系ΣSBの値に変換する(ステップS790)。ショベルベース座標系ΣSBの値に変換した目標掘削面(ΣSB)はアンテナ641及び無線機642を介して機体側制御装置101Bに送信する(ステップS800)。機体側制御装置101Bでは、その設定情報を制御ユニット643Bに記憶し、フロント作業機7の制御に使用する。
次いで、計算不可能状態が設定されていればそれをクリアし(ステップS810)、ステップS820に進む。ステップS820では、図26に示す表示データの演算とその出力処理を行う。
図26において、まず、計算不可能状態であるかどうかを判断し(ステップS830)、計算不可能状態であればステップS840に飛び、計算不可能状態でなければ、更にオペレータが走行操作中であるかどうか判断し(ステップS850)、走行操作中であればステップS840に飛ぶ。ステップS840では、計算不可能状態であることを表示装置644に表示して、ステップS710に戻る。
ステップS850で走行操作中で無ければステップS860に行く。ステップS860では、油圧ショベル1Bの旋回中心が一定以上ずれたかどうか判定する。このためリフレクタ761の前回の位置と今回の位置を比較し、その差分がΔX以上であればステップS840へ飛ぶ。差分がΔX以下であればステップS870〜S910へ進む。
ステップS870〜S910の処理は図20に示したステップS570〜S610の処理と実質的に同じである。つまり、角度センサ34〜36で検出したブーム角度、アーム角度、バケット角度と、旋回角度センサ520で検出した旋回角度と、記憶装置に記憶したショベルベース座標系ΣSBの原点とブーム8の基端との位置関係及びブーム8、アーム9、バケット10の寸法とからショベルベース座標系ΣBにてバケット先端位置BPBKを求める(ステップS870)。次いで、ステップS770で求めたグローバル座標系ΣGでのショベルベース座標系の値GΣSBとステップS870で求めたショベルベース座標系でのバケット先端位置BPBKとからグローバル座標系ΣGでのバケット先端位置GPBKを求める(ステップS880)。そして、ステップS780で求めたグローバル座標系での目標掘削面(ΣG)及びステップS880で求めたグローバル座標系でのバケット先端位置GPBKを経度、緯度、高さの3次元データに変換する(ステップS890)。
次いで、経度、緯度、高さの3次元データに変換した目標掘削面及びバケット先端位置を表示装置644Bに表示させ(ステップS900)、更にその目標掘削面及びバケット先端位置の情報をアンテナ641及び無線機642を介して機体側制御装置101Bに送信する(ステップS910)。機体側制御装置101Bでは、その情報を制御ユニット643Bを介して表示装置634に表示させる。なお、この場合も、ステップS780で抽出したショベルベース座標系GΣS Bの位置・方向における2次元データとしての施工データ部分に含まれる地形データも経度、緯度、高さの3次元データに変換し、表示装置644,634に表示してもよい。
以上の処理が終了したらステップS710に戻り、処理を繰り返す。
レーザ灯台764から出力するレーザ光波面763とレーザ追尾装置762との位置関係(レーザ光波面763のワールド座標系での方程式)を同定する方法及び装置の一例を、図27により説明する。
レーザ灯台764には、レーザ灯台764の位置を特定するための代表点としてリフレクタ761Aを装着する。このときリフレクタ761Aの位置とレーザ灯台764の発光の中心点の位置関係は、リフレクタ761Aの取付部材の寸法等から既知である。一方、2つの地上設置型のレーザ受光器765,766を用意する。レーザ受光器765にはリフレクタ761Bが、レーザ受光器766にはリフレクタ761Cがそれぞれ装着されている。レーザ受光器765の受光部とリフレクタ761Bの位置関係、レーザ受光器766の受光部とリフレクタ761Cの位置関係は、リフレクタ761B,761Cの取付部材の寸法等から既知である。
レーザ灯台764から発光するレーザ光波面763を受光できる位置にレーザ受光器765とレーザ受光器766とを設置する。この状態でレーザ追尾装置762を使用して、リフレクタ761A、リフレクタ761B、リフレクタ761Cそれぞれの位置を計測する。計測した3点より、レーザ灯台764の発光の中心点の位置、レーザ受光器765の受光部の位置、レーザ受光器766の受光部の位置が演算でき、この演算した3点の位置を含む平面の方程式を求めることができる。これによりレーザ灯台764から出力するレーザ光波面763の方程式を同定することができる。
上記の例では2つのレーザ受光器765,766を用いたが、レーザ受光器が1つだげの場合でも位置をずらし、それぞれの位置でリフレクタの位置を計測することにより、上記と同じくレーザ光波面763上の3点の位置を計測でき、同様にレーザ光波面763の方程式を同定することができる。
以上のように構成した本実施の形態においては、第2の実施の形態と同様、油圧ショベルの位置に係わらず地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦を容易にかつ安価な構成で行うことができる。
また、本実施の形態では、直接GPS情報を用いずに、グローバル座標系での油圧ショベル1Aの車体(下部走行体2)の位置及び方向(グローバル座標系でのショベルベース座標系GΣSBの位置及び姿勢)を常に演算することができるので、油圧ショベルが地下、ビル内、山間部などGPS衛星を捕捉できないような作業現場にあっても、またGPSでは衛星からの電波が受信できないような気象条件であっても、それらに左右されず地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦を行うことができる。
なお、本実施の形態においても、油圧ショベル1Bにオペレータが搭乗し、有人で制御操作を行う方式に特化する場合は、遠隔操作手段であるジョイスティック72及び無線通信装置74は無くてもよい。
以上、本発明の幾つかの実施の形態を説明したが、本発明はそれに制限されるものではなく、本発明の精神の範囲内で種々の変更、追加が可能である。例えば、上記実施の形態では、油圧ショベル1で目標作業面として目標掘削面を形成する場合について説明したが、油圧ショベル1のフロント作業機7にハンドリング装置を取り付け、コンクリートブロックを敷設する作業に本発明を適用しても良く、この場合はコンクリートブロック敷設面が目標作業面となる。
産業上の利用可能性
本発明によれば、オペレータは表示手段の画面を見ながら遠隔で目標作業面の設定を行うことができるとともに、遠隔でフロント作業機を操縦し、フロント制御手段の制御機能を利用して目標作業面を形成することができるので、目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
また、フロント制御手段は、遠隔操作手段の無線操縦信号と設定情報に基づいてフロント作業機の動作を制御する半自動制御方式であるので、手動方式に比べオペレータの負担は格段に減り、かつ設定情報を変えるだけで種々の作業現場に容易に対応することができる。
また、本発明によれば、遠隔操作端末側での目標作業面の設定情報の入力を建設機械の外部基準に関連付けられたデータにより行い、機体側制御手段と遠隔操作端末のいずれか一方で、目標作業面の設定情報を建設機械と目標作業面の位置関係に変換するので、オペレータは外部基準を用いて目標作業面を設定することができる。また、このとき隔操作端末の表示手段に外部基準と目標作業面と建設機械の位置関係を表示するので、オペレータは表示手段の画面を見ながら容易に目標作業面を設定することができる。
また、本発明によれば、外部座標系に関連付けられた施工データが膨大な電子データであっても、その施工データを用いて建設機械に設定された機体座標系での目標作業面の設定情報を設定手段と設定情報変換手段は遠隔操作端末に備えられるので、施工データが膨大な電子データであっても、その施工データを機体側制御手段に記憶する必要がなくなり、膨大な電子データである施工データを利用した目標作業面の遠隔設定を容易に行うことができ、更にその設定情報を用いて建設機械の遠隔操縦を容易に行うことができる。また、CD−Rのように建設機械の車体に記録メディアを駆動する装置を必要としないので、安価なシステムであり、耐環境性も良く信頼性に優れる。
更に、本発明によれば、建設機械が移動しても、外部座標系に対する建設機械の位置及び姿勢を特定し、機体座標系での目標作業面の設定情報を生成することができる。
また、本発明によれば、直接GPSを用いずに機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができるので、建設機械が地下、ビル内、山間部などGPS衛星を捕捉できないような作業現場にあっても、またGPSでは衛星からの電波が受信できないような気象条件であっても、それらに左右されず機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができる。
【図面の簡単な説明】
図1は、本発明の一実施の形態に係わるよる建設機械の遠隔制御システムの全体構成を示す図である。
図2は、油圧ショベルに搭載された制御ユニット及び無線通信装置の構成を示す図である。
図3は、遠隔操作端末側に設置されたパソコンの制御装置及び無線通信装置の構成を示す図である。
図4は、油圧ショベルに搭載された制御ユニットのROMに記憶された制御プログラムの概要を示す機能ブロック図である。
図5は、制御ユニットの設定・表示処理部の処理機能を示すブロック線図である。
図6は、制御ユニットの掘削制御部の処理機能を示すブロック線図である。
図7は、遠隔操作端末側に設置されたパソコンの制御装置のROMに記憶された制御プログラムの概要を示す機能ブロック図である。
図8は、上側にパソコンの表示装置に表示される掘削設定画面を示し、下側にその表示内容を説明する図である。
図9は、上側に同表示装置の掘削モニタ画面を示し、下側にその表示内容を説明する図である。
図10は、同表示装置に表示される画面の遷移を示す図である。
図11は、パソコンの制御装置に電源が投入されたときの処理手順を示すフローチャートである。
図12は、掘削設定画面のメニュー領域のカーソルを「深さ」に移動したときの処理手順を示すフローチャートである。
図13は、掘削設定画面のメニュー領域のカーソルを「勾配」に移動したときの処理手順を示すフローチャートである。
図14は、掘削設定画面のメニュー領域のカーソルを「制御ON/OFF」に移動させたときの処理手順を示すフローチャートである。
図15は、掘削設定画面から掘削モニタ画面に切り換えたときの処理手順を示すフローチャートである。
図16は、掘削モニタ画面のメニュー領域のカーソルを「角度単位」に移動したときの処理手順を示すフローチャートである。
図17は、本発明の第2の実施の形態に係わる油圧ショベルの外観を示す図である。
図18は、第2の実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
図19は、グローバル座標系の概要を説明する図である。
図20は、演算処理手順を示すフローチャートである。
図21は、本発明の第3の実施の形態に係わる油圧ショベルの外観とその周辺の作業状況及び装置を示す図である。
図22は、第3の実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
図23は、第3の実施の形態における計測原理を説明するための各部材の幾何学的関係を示す図である。
図24は、第3の実施の形態における計測原理を説明するための各部材の幾何学的関係を示す図である。
図25は、演算処理手順を示すフローチャートである。
図26は、演算処理手順を示すフローチャートである。
図27は、レーザ灯台から出力するレーザ光波面とレーザ追尾装置との位置関係(レーザ光波面のワールド座標系での方程式)を同定する方法及び装置の一例を示す図である。
本発明は、油圧ショベル等の多関節型のフロント作業機を有する建設機械の遠隔制御システム及び遠隔設定システムに係わり、特に、目標作業面の設定情報を用いてその目標作業面を形成するようフロント作業機の動作を制御する領域制限掘削制御等のフロント制御手段を備えた建設機械の遠隔制御システム及び遠隔設定システムに関する。
背景技術
建設機械の代表例として、油圧ショベルがある。油圧ショベルでは、フロント作業機を構成するブーム、アームなどのフロント部材を、それぞれの手動操作レバーによって操作しているが、それぞれが関節部によって連結され回動運動を行うものであるため、これらフロント部材を操作して所定の領域、特に直線状に設定された領域を掘削することは非常に困難な作業である。そこで、このような作業を自動化して行うためのものとして、例えば国際公開番号WO95/30059号公報の提案がある。この提案は、車体基準で掘削可能領域を設定し、フロント作業機の一部、例えば、バケットが掘削可能領域の境界に近づくと、バケットの当該境界に向かう方向の動きのみを減速し、バケットが掘削可能領域の境界に達すると、バケットは掘削可能領域の外には出ないが掘削可能領域の境界に沿っては動けるようにしている。
また、そのような作業を自動化して行う場合、車体が移動すると作業現場の地形の変化で油圧ショベル自身の姿勢、高さが変化し、車体基準で設定していた領域を車体が移動するごとに設定し直さなくてはならない。そこで、このような不具合を解決するものとして特開平3−295933号公報や特開2000−204580号公報の提案がある。この提案は、掘削地表面に設置したレーザ発振器のレーザ光により車体に設置したセンサにて車体の高さを検出し、その検出した車体高さに基づいて掘削深さ(前者の例の制限領域に相当する)を決定して車体を停止した状態で所定長さだけ直線掘削し、その後に車体を所定距離走行させて停止状態で再び直線掘削する際に前記レーザ光により車体高さ変位量を検出し、その高さ変位量によって掘削深さを補正するものである。
更に、そのような自動掘削制御でレーザ光などの外部基準を用い目標掘削面の設定を容易に行えるようにしたものとして国際公開番号WO01/25549号公報に記載の設定装置がある。この設定装置では、車体に制御ユニットと表示装置を搭載し、表示装置に車体と外部基準と目標掘削面の位置関係を表示し、この画面を見ながら外部基準に対する位置関係で目標掘削面を設定できるようにするものである。
一方、油圧ショベル等の建設機械の遠隔操作に関する従来技術として特許番号第2628004号公報や特開昭58−26130号公報に記載にものがある。特許番号第2628004号公報では、油圧ショベルの動作状況を監視カメラで撮影し、現場事務所に設置したコンピュータのモニタテレビにその画像を表示すると共に、溝や法面の設計線をそのカメラ画像に重ねて表示できるようにしており、操作員はその画像を見ながら油圧ショベルを遠隔操作し掘削することができる。特開昭58−26130号公報では、建設機械の位置を基準点との情報交換によって検出し、建設機械を全自動で運転する技術を開示している。この場合、自動運転の制御プログラムは遠隔設置のコンピュータ側に記憶し、自動制御が開始されるとそのプログラムに基づく指令信号を建設機械に無線で送信し、建設機械から種々のセンサ情報を無線で受信する。制御プログラムには、作業現場や地域によりその都度変更される作業仕様プログラムが含まれる。
発明の開示
建設機械は、近年、遠隔操縦に対する要望が大きく、例えば、災害地域の復旧作業には安全性の観点から遠隔操縦のできる建設機械を用いて、土砂の除去や泥流ダムの造成を行わなければならない場合が多々ある。このような作業を行う場合、建設機械が今いる場所はもちろんのこと、どこをどの程度掘削しなければならないかを計画して作業を行わなければならない。従来は、作業する建設機械を遠くからカメラ等で監視するか、建設機械にカメラ等を装着し、そのカメラ画像等で掘削作業位置を確認して作業を行っていた。しかし、災害地域は道路はもとよりほとんど土砂で埋もれているため、掘削作業位置を正確に特定することは困難であった。また、遠隔で建設機械を操縦するため、水平引きや法面形成作業等は特に熟練が必要であり、またカメラ画像を見ての作業であるため作業効率の低いものであった。
WO95/30059号公報や特開平3−295933号公報、特開2000−204580号公報及びWO01/25549号公報に記載の技術は、全て建設機械にオペレータが乗車して操作を行うものであり、遠隔操作で建設機械を操縦したり、遠隔操作で目標掘削面を設定することはできなかった。
特許番号第2628004号公報に記載の技術は、溝や法面の設計線を作業現場のカメラ画像に重ねて表示することによりオペレータはそれを見ながら遠隔で掘削作業を行うことができる。しかし、油圧ショベルの操作は手動で行われるため、設計線通りに掘削するようオペレータは注意深く作業を行わなければならず、オペレータの負担が大きいという問題があった。
特開昭58−26130号公報に記載の技術は、全自動であるためオペレータに負担はかからない。しかし、全自動であるため種々の作業現場にきめ細かく迅速に対応するのは困難であり、実用化は難しい。
また、近年、建設CALS(Continuous Acquisition & Lifecycle Support;生産・調達・運用支援統合情報システム)が叫ばれる中、電子データを持って施工図面が管理され、更にこの電子データを持って車体の制御に応用しようとする動きが見られる。具体的には、施工現場における車体の位置を計測し、車体に持たせた施工図面を参照して自動的に車体を制御しようするものである。しかし、施工現場によって状況は異なるが、一般に施工データは車体に記憶させるには膨大なデジタルデータであり、車体に記憶できる施工データは全体のほんの一部である場合がほとんどである。よって、上記のような制御を行う場合、頻繁に施工データを車体に記憶させる必要がある。また、CD−Rのような記憶メディアを車体に設置し、施工データを随時読み込み更新する手段もあるが、CD−Rを駆動する装置を車体に設置せねばならず、高価なものになってしまう。更に、建設機械のように衝撃や温度・湿度などに対する環境性も問われるため、決して有効な方法とは言えない。
本発明の第1の目的は、種々の作業現場における目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことのできる建設機械の遠隔制御システムを提供することである。
本発明の第2の目的は、膨大な電子データである施工データを利用した目標作業面の遠隔設定を容易に行うことのできる建設機械の遠隔制御システム及び遠隔設定システムを提供することである。
(1)上記第1の目的を達成するために、本発明は、多関節型のフロント作業機を構成する上下方向に回動可能な複数のフロント部材を含む複数の被駆動部材と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、前記複数の油圧アクチュエータに供給される圧油の流量を制御する複数の油圧制御弁と、この複数の油圧制御弁を制御し予め設定された目標作業面を形成するよう前記フロント作業機の動作を制御するフロント制御手段とを備えた建設機械の遠隔制御システムにおいて、前記建設機械に搭載された機体側制御手段と、前記建設機械を無線操縦する遠隔操作端末とを備え、前記遠隔操作端末は、前記複数の被駆動部材の動作を指示する無線操縦信号を出力する遠隔操作手段と、前記目標作業面の設定情報を入力する入力手段と、前記無線操縦信号と設定情報を前記建設機械に送信する第1無線通信手段と、前記建設機械と目標作業面との位置関係を表示する表示手段とを有し、前記機体側制御手段は、前記遠隔操作端末から前記無線操縦信号と設定情報を受信する第2無線通信手段を有し、前記フロント制御手段は、前記無線操縦信号と設定情報に基づき前記油圧制御弁を制御し前記目標作業面を形成するよう前記フロント作業機の動作を制御するものとする。
このように目標作業面を形成するようフロント作業機の動作を制御するフロント制御手段を備えた建設機械に対し、機体側制御手段と遠隔操作端末を設け、その目標作業面の設定情報の入力と無線操縦を遠隔操作端末側で行えるようにし、かつ遠隔操作端末に建設機械と目標作業面との位置関係を表示する表示手段を設けることにより、オペレータは表示手段の画面を見ながら遠隔で目標作業面の設定を行うことができるとともに、遠隔でフロント作業機を操縦し、フロント制御手段の制御機能を利用して目標作業面を形成することができ、これにより目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
また、フロント制御手段は、遠隔操作手段の無線操縦信号と設定情報に基づいてフロント作業機の動作を制御する半自動制御方式であるので、手動方式に比べオペレータの負担は格段に減り、かつ設定情報を変えるだけで種々の作業現場に容易に対応することができる。
(2)上記(1)において、好ましくは、前記遠隔操作端末の入力手段は、前記建設機械の外部基準に関連付けられた設定情報を入力する手段であり、前記表示手段は、前記建設機械と目標作業面との位置関係を前記外部基準に関連付けて表示する手段であり、前記機体側制御手段と遠隔操作端末のいずれか一方は、前記建設機械の外部基準に関連付けられた目標作業面の設定情報を、建設機械と目標作業面の位置関係に変換する設定情報変換手段を更に有し、前記フロント制御手段は、前記無線操縦信号と、前記建設機械と目標作業面の位置関係に変換された設定情報とに基づき前記油圧制御弁を制御し前記目標作業面を形成するよう前記フロント作業機の動作を制御する。
このように遠隔操作端末側での目標作業面の設定情報の入力を建設機械の外部基準に関連付けられたデータにより行い、機体側制御手段と遠隔操作端末のいずれか一方で、目標作業面の設定情報を建設機械と目標作業面の位置関係に変換することにより、外部基準を用いて目標作業面を設定することができる。また、このとき遠隔操作端末の表示手段に建設機械と目標掘削面との位置関係を外部基準に関連付けて表示するので、オペレータは表示手段の画面を見ながら容易に目標作業面を設定することができる。
(3)上記(2)において、好ましくは、前記外部基準はレーザ燈台が発するレーザ光により形成されるレーザ基準面であり、前記入力手段は、前記設定情報として前記レーザ基準面と目標作業面の位置関係を入力する手段であり、前記設定情報変換手段は、前記建設機械と前記レーザ基準面の位置関係を計測する計測手段と、前記設定手段で入力したレーザ基準面と目標作業面の位置関係と前記計測手段で計測した建設機械とレーザ基準面の位置関係とを用いて建設機械と目標作業面の位置関係を求める演算手段とを有する。
これにより外部基準としてレーザ基準面を用い、目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
(4)上記(2)において、好ましくは、前記遠隔操作端末の表示手段は、設定モードと遠隔操作モードに切り換え可能であり、前記設定モードにあるときは、前記外部基準と目標作業面と建設機械の位置関係を表示し、前記遠隔操作モードに切り換えられると、前記目標作業面と前記フロント作業機の位置関係を表示するものとする。
これにより遠隔操作時は表示手段を遠隔操作モードに切り換えることにより、遠隔操作時も表示手段の画面を見ながら遠隔操縦でき、遠隔操作時の操作性が一層良好となる。
(5)また、上記第2の目的を達成するために、本発明は、上記(2)において、前記外部基準は、前記建設機械の外側に設定され、位置及び姿勢が既知である外部座標系であり、前記入力手段は、前記設定情報として前記外部座標系に関連付けられた施工データを入力する手段であり、前記設定情報変換手段は前記遠隔操作端末に備えられ、前記施工データから前記外部座標系での目標作業面の設定情報を生成し、この設定情報を前記建設機械に設定された機体座標系での目標作業面の設定情報に変換する手段であるものとする。
これにより外部座標系に関連付けられた施工データを用い、建設機械に設定された機体座標系での目標作業面の設定情報を生成することができる。また、設定手段と設定情報変換手段は遠隔操作端末に備えられるので、施工データが膨大な電子データであっても、その施工データを機体側制御手段に記憶する必要がなくなり、膨大な電子データである施工データを利用した目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
(6)上記(5)において、好ましくは、前記外部座標系は、地球の準拠楕円体の中心を原点とする直交座標系である。
これにより地球の緯度、経度、高さ情報を用いて作成した施工データを外部座標系(地球の準拠楕円体の中心を原点とする直交座標系)に関連付けられた施工データとして利用することができ、地球の緯度、経度、高さ情報を用いて作成した施工データを利用した目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
(7)上記(5)において、好ましくは、前記設定情報変換手段は、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める機体座標計測演算手段と、この機体座標計測演算手段で求めた外部座標系での機体座標系の位置及び姿勢に基づき、前記外部座標系での目標作業面の設定情報を前記機体座標系での目標作業面の設定情報に変換する設定情報演算手段とを有する。
これにより建設機械が移動しても、その都度、機体座標系の位置及び姿勢を外部座標系の値として求めることにより外部座標系に対する建設機械の位置及び姿勢を特定し、機体座標系での目標作業面の設定情報を生成することができる。
(8)上記(7)において、好ましくは、前記設定情報変換手段は、前記外部座標系での機体座標系の位置及び姿勢と前記施工データとを比較して、前記機体座標系の位置及び姿勢における施工データ部分を抽出し、その施工データ部分から前記外部座標系での目標作業面の設定情報を生成する手段を更に有する。
これにより膨大な電子データである施工データから必要なデータのみ抽出し、外部座標系での目標作業面の設定情報を生成することができる。
(9)上記(7)において、好ましくは、前記機体座標計測演算手段は、前記建設機械の異なる位置に設置された少なくとも2個のGPS受信手段と、前記2個のGPS受信手段の受信情報に基づき、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める座標位置演算手段とを有する。
これにより少なくとも2個のGPS受信手段を用いて機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求め、機体座標系での目標作業面の設定情報を生成することができる。
(10)上記(9)において、好ましくは、前記機体座標計測演算手段は、前記建設機械の傾斜量を計測する傾斜量計測手段を更に有し、前記座標位置演算手段は、前記2個のGPS受信手段の受信情報と前記傾斜量計測手段の計測結果とに基づき、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める。
これにより建設機械が傾斜していても機体座標系の位置及び姿勢を外部座標系の値として精度良く求めることができる。
(11)上記(9)において、好ましくは、前記建設機械は、下部走行体と、この下部走行体上に旋回可能に搭載された上部旋回体とを有し、前記フロント作業機は前記上部旋回体上下方向に回動可能に取り付けられており、前記2個のGPS受信手段は前記上部旋回体上の異なる位置に設置された2個のGPSアンテナを有し、前記機体座標系は、前記上部旋回体の回転軸近傍の位置で前記下部走行体に固定して設定された直交座標系であり、前記機体座標計測演算手段は、前記下部走行体に対する上部旋回体の回転角を計測する角度計測手段を更に有し、前記座標位置演算手段は、前記2個のGPS受信手段の受信情報と前記角度計測手段の計測結果とに基づき、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める。
これによりGPS受信手段が上部旋回体に設置されていても、下部走行体に固定して設定された機体座標系の位置及び姿勢を外部座標系の値として求めることができる。
(12)上記(7)において、好ましくは、前記機体座標計測演算手段は、前記外部座標系に対する位置関係が既知である地上の特定位置に設置され、その特定位置から前記建設機械の特定位置までの距離と方位を計測する3次元位置計測手段と、前記建設機械に設置されたレーザ受光器と、前記レーザ受光器に向けてレーザ光を発するレーザ灯台と、前記レーザ受光器が前記レーザ灯台の発するレーザ光を受光したことをトリガーとして前記地上の特定位置に対する前記レーザ光の位置関係を演算し、この演算結果と前記3次元位置計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求める座標位置演算手段とを有する。
これによりGPSを直接用いずに、機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求め、機体座標系での目標作業面の設定情報を生成することができる。
また、直接GPSを用いずに機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができるので、建設機械が地下、ビル内、山間部などGPS衛星を捕捉できないような作業現場にあっても、またGPSでは衛星からの電波が受信できないような気象条件であっても、それらに左右されず機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができる。
(13)上記(12)において、好ましくは、前記機体座標計測演算手段は、前記建設機械の傾斜量を計測する傾斜量計測手段を更に有し、前記座標位置演算手段は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段の計測結果と前記傾斜量計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求めるものである。
これにより建設機械が傾斜していても、直接GPSを用いずに機体座標系の位置及び姿勢を外部座標系の値として精度良く求めることができる。
(14)上記(12)において、好ましくは、前記建設機械は、下部走行体と、この下部走行体上に旋回可能に搭載された上部旋回体とを有し、前記フロント作業機は前記上部旋回体上下方向に回動可能に取り付けられており、前記機体座標系が設定される建設機械の特定位置は前記上部旋回体の回転軸近傍の位置であり、前記機体座標系は前記下部走行体に固定して設定された直交座標系であり、前記機体座標計測演算手段は、前記下部走行体に対する上部旋回体の回転角を計測する角度計測手段を更に有し、前記座標位置演算手段は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段の計測結果と前記角度計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求めるものである。
これによりGPS受信手段が上部旋回体に設置されていても、直接GPSを用いずに下部走行体に固定して設定された機体座標系の位置及び姿勢を外部座標系の値として求めることができる。
(15)上記(14)において、好ましくは、前記レーザ受光器は前記フロント作業機に設置され、前記機体座標計測演算手段は、前記フロント作業機を構成する複数のフロント部材の位置と姿勢を計測する位置・姿勢計測手段を更に有し、前記座標位置演算手段は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段の計測結果と前記角度計測手段の計測結果と前記位置・姿勢計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系の位置及び姿勢を求めるものである。
これにより多関節型のフロント作業機が上部旋回体上下方向に回動可能に取り付けられ、レーザ受光器がそのフロント作業機に設置されていても、下部走行体に固定して設定された機体座標系の位置及び姿勢を外部座標系の値として求めることができる。
(16)上記(12)において、好ましくは、前記3次元位置計測手段は、前記建設機械の特定位置に設置されたリフレクタを追尾しその距離と方位を計測するレーザ追尾装置である。
これにより自動追尾トータルステーションシステムとして知られている既存のシステムを用いて3次元位置計測手段を構成することができる。
(17)また、上記第2の目的を達成するために、本発明は、多関節型のフロント作業機を構成する上下方向に回動可能な複数のフロント部材を含む複数の被駆動部材と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、前記複数の油圧アクチュエータに供給される圧油の流量を制御する複数の油圧制御弁と、この複数の油圧制御弁を制御し予め設定された目標作業面を形成するよう前記フロント作業機の動作を制御するフロント制御手段とを備えた建設機械の遠隔設定システムにおいて、前記建設機械に搭載された機体側制御手段と、遠隔操作端末とを備え、前記遠隔操作端末は、前記目標作業面の設定情報として、建設機械の外側に設定された位置及び姿勢が既知である外部座標系に関連付けられた施工データを入力する入力手段と、前記施工データから前記外部座標系での目標作業面の設定情報を生成し、この設定情報を前記建設機械に設定された機体座標系での目標作業面の設定情報に変換する設定情報変換手段と、前記機体座標系での目標作業面の設定情報を前記建設機械に送信する第1無線通信手段と、前記建設機械と目標作業面との位置関係を前記外部座標系に関連付けて表示する表示手段とを有し、前記機体側制御手段は、前記遠隔操作端末から前記機体座標系での目標作業面の設定情報を受信する第2無線通信手段を有し、前記フロント制御手段は、前記機体座標系での目標作業面の設定情報に基づき前記油圧制御弁を制御し前記目標作業面を形成するよう前記フロント作業機の動作を制御するものとする。
これにより外部座標系に関連付けられた施工データを用い、建設機械に設定された機体座標系での目標作業面の設定情報を生成することができる。また、設定手段と設定情報変換手段は遠隔操作端末に備えられるので、施工データが膨大な電子データであっても、その施工データを機体側制御手段に記憶する必要がなくなり、膨大な電子データである施工データを利用した目標作業面の遠隔設定を容易に行うことができる。
(18)上記(17)において、好ましくは、前記外部座標系は、地球の準拠楕円体の中心を原点とする直交座標系である。
これにより地球の緯度、経度、高さ情報を用いて作成した施工データを外部座標系(地球の準拠楕円体の中心を原点とする直交座標系)に関連付けられた施工データとして利用することができ、地球の緯度、経度、高さ情報を用いて作成した施工データを利用した目標作業面の遠隔設定を容易に行うことができる。
(19)上記(17)において、好ましくは、前記設定情報変換手段は、前記機体座標系の位置及び姿勢を前記外部座標系の値として求める機体座標計測演算手段と、この機体座標計測演算手段で求めた外部座標系での機体座標系の位置及び姿勢に基づき、前記外部座標系での目標作業面の設定情報を前記機体座標系での目標作業面の設定情報に変換する設定情報演算手段とを有する。
これにより建設機械が移動しても、その都度、機体座標系の位置及び姿勢を外部座標系の値として求めることにより外部座標系に対する建設機械の位置及び姿勢を特定し、機体座標系での目標作業面の設定情報を生成することができる。
(20)上記(19)において、好ましくは、前記設定情報変換手段は、前記外部座標系での機体座標系の位置及び姿勢と前記施工データとを比較して、前記機体座標系の位置及び姿勢における施工データ部分を抽出し、その施工データ部分から前記外部座標系での目標作業面の設定情報を生成する手段を更に有する。
これにより膨大な電子データである施工データから必要なデータのみ抽出し、外部座標系での目標作業面の設定情報を生成することができる。
発明を実施するための最良の形態
以下、本発明の実施の形態を図面を用いて説明する。
図1は本発明の第1の実施の形態である建設機械の遠隔制御システムの全体構成を示す図である。
図1において、1は油圧ショベルであり、100は油圧ショベル1から離れた場所に設置された管理事務所である。
油圧ショベル1は下部走行体2、上部旋回体3、フロント作業機7を有し、上部旋回体3は下部走行体に対して旋回可能に搭載され、フロント作業機7は上部旋回体3の前部に上下動可能に取り付けられている。上部旋回体3は収納室4、カウンタウェイト5、運転室6等から構成されている。フロント作業機7はブーム8、アーム9、バケット10を有する多関節構造であり、ブーム8はブームシリンダ11により、アーム9はアームシリンダ12により、バケット10はバケットシリンダ13によりそれぞれ回転駆動される。下部走行体2は図示しない左右走行モータ走行駆動され、上部旋回体3は図示しない旋回モータにより旋回駆動される。
ブームシリンダ11、アームシリンダ12、バケットシリンダ13はそれぞれ制御弁24,25,26を介して油圧ポンプ19に接続され、流量制御弁24,25,26によって油圧ポンプ19から各シリンダ11,12,13に供給される圧油の流量及び方向が調整される。ここで、図の簡単のため省略したが、上記左右走行モータ及び旋回モータに対しても同様に左右走行制御弁、旋回制御弁が設けられている。
制御弁24,25,26及び旋回用制御弁に対しては操作レバー装置303L,303Rが設けられ、操作レバー303L,303Rはそれぞれ操作レバー31,32とポテンショメータ31a,31b,32a,32bとを有し、操作レバー31が前後方向Aに操作されるとその操作量をポテンショメータ31aが検出し、当該操作量に応じた電気的な操作信号X1を出力し、操作レバー31が左右方向Bに操作されるとその操作量をポテンショメータ31bが検出し、当該操作量に応じた電気的な操作信号X2出力し、操作レバー32が前後方向Cに操作されるとその操作量をポテンショメータ32aが検出し、当該操作量に応じた電気的な操作信号X3を出力し、操作レバー32が左右方向Dに操作されるとその操作量をポテンショメータ32bが検出し、当該操作量に応じた電気的な操作信号X4を出力する。
ポテンショメータ31a,31b,32a,32bから出力された操作信号X1,X2,X3,X4は制御ユニット52に送られ、この制御ユニット52は操作信号X1,X2,X3,X4に基づいて所定の演算を行い、電磁比例弁24L,24R,25L,25R,26L,26R及び図示しない旋回用制御弁に設けられた電磁比例弁に制御信号を出力する。電磁比例弁24L,24R,25L,25R,26L,26Rは制御弁24,25,26のそれぞれの油圧駆動に対応して設けられ、制御弁24,25,26は電磁比例弁24L,24R,25L,25R,26L,26Rにより指示されるパイロット圧力により応じて切り替え方向及び開度を調整し、旋回用制御弁の電磁比例弁も同様であり、これにより油圧ポンプ19からブームシリンダ11、アームシリンダ12、バケットシリンダ13、及び図示しない旋回モータへ供給される圧油の方向及び流量が制限される。
図示しない左右走行制御弁に対してはそれぞれ操作レバーと操作ペダルが設けられ、操作レバーと操作ペダルの一方が操作されると同様に左右走行制御弁の切り替え方向及び開度が調整される。
以上のような油圧ショベル1に本発明の遠隔制御システムが備えられている。この遠隔制御システムは、油圧ショベル1に装備された機体側制御装置101と事務所100に設置された遠隔操作端末102とで構成されている。まず、機体側制御装置101について説明する。
ブーム8にはブーム8の回転角度を検出する角度センサ34が、アーム9にはアーム9の回転角度を検出する角度センサ35が、バケット10にはバケット10の回転角度を検出する角度センサ36がそれぞれ設けられており、角度センサ34,35,36は、それぞれフロント作業機7の姿勢に応じて電気的な角度信号α、β、γを出力する。
更に、運転室6内には車体の左右傾斜角度を検出する傾斜センサ37が備えられており、車体の左右傾斜角度に応じて電気的な角度信号σを出力する。
油圧ショベル1の外部にはレーザ光を発するレーザ灯台51が設置され、油圧ショベル1のアーム9の側面にはレーザ光Rを受光するとパルス信号τを発生するレーザ受光器52が取り付けられている。レーザ灯台51が発するレーザ光は外部基準となるレーザ基準面Rを形成する。
角度センサ34,35,36、傾斜センサ37から出力された角度信号α、β、γ、σ及びレーザ受光器52から出力されたパルス信号τは、制御ユニット53に入力される。制御ユニット53は無線通信装置54を備え、各角度信号α、β、γ、σ及びパルス信号τと、管理事務所Gから送信され無線通信装置54により受信する目標掘削面の設定情報に基づき、バケット10の先端位置や車体に対する目標掘削面の位置関係などを演算し、自動制御の設定値として記憶すると共に表示情報を無線通信装置54により管理事務所100の遠隔操作端末102に送信する。また、制御ユニット53は、管理事務所100の遠隔操作端末102から送信され無線通信装置54により受信する設定情報や自動制御の開始指示(後述)及び無線操縦信号に従い、フロント作業機7が設定された範囲を出ないように制御する範囲制限制御、フロント作業機7が設定された範囲から出そうになるとその範囲に沿って動作させる領域制限掘削制御、あるいは設定された軌跡に沿ってフロント作業機7を動作させる軌跡制御などを行う。
管理事務所100において、遠隔操作端末102はパソコン71とジョイスティック72と無線通信装置73,74とを有している。パソコン71は制御装置71a、表示装置71b、操作装置71cからなり、油圧ショベル1の自動制御の設定手段として用いられる。表示装置71bは例えばLCDからなる画像表示部71dを備えている。操作装置71cは、公知の如く、文字入力キー、カーソル移動キー(上下左右)、リターンキー、数値入力キー(テンキー)等を備えたキーボード及びマウスである。ジョイスティック72は油圧ショベル1の無線操縦を行うための遠隔操作手段であり、油圧ショベル1に設けられた上述の操作レバー装置303L,303R及び図示しない走行用の操作レバーと同等の機能を有し、ジョイスティック72を操作するとフロント作業機7に係わる制御弁24,25,26及び図示しない旋回制御弁、左右走行制御弁に対する操作信号が出力される。
無線通信装置73はパソコン71の制御装置71aに接続され、制御装置71aはこの無線通信装置73を介して油圧ショベル1の制御ユニット53と情報のやりとりを行う。無線通信装置74はジョイスティック72に接続され、ジョイスティック72は操作信号をこの無線通信装置74を介して油圧ショベル1の制御ユニット53に送信する。
無線通信装置54,73,74は、それぞれ、無線通信装置本体54a,73a,74aとアンテナ54b,73b,74bを備えている。
図2に制御ユニット53及び無線通信装置54の構成を示す。制御ユニット53は、角度センサ34,35,36、傾斜センサ37からそれぞれ入力される角度信号α,β,γ,σ、レーザ受光器52から入力されるパルス信号τ、及びポテンショメータ31a,31b,32a,32bから入力される操作信号X1,X2,X3,X4をディジタル信号に変換するA/D変換器110、中央演算処理装置(CPU)120、制御手順のプログラムや制御に必要な定数を格納するリードオンリーメモリー(ROM)130、演算結果あるいは演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)140、無線通信装置54の本体54aと通信を行うためのシリアルコミュニケーションインターフェース(SCI)150、ディジタル信号をアナログ信号に変換するD/A変換器160を含むシングルチップマイコン165と、機種別あるいはグレード別の制御定数、寸法データなどを記憶しておく不揮発性メモリ(EEPROM)170と、増幅器180とで構成されている。
無線通信装置54の本体54aは、中央演算処理装置(CPU)310、演算のプログラムや演算に必要な定数を格納するリードオンリーメモリー(ROM)320、演算結果あるいは演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)330、制御ユニット53と通信を行うためのシリアルコミュニケーションインターフェース(SCI)340、無線通信用アンテナ54bで受信した信号を増幅する増幅器350とで構成されている。
図3にパソコン71の制御装置71a及び無線通信装置73の構成を示す。制御装置71aは、操作装置71cからの操作信号を取り込むインターフェース(I/O)210、中央演算処理装置(CPU)220、制御手順のプログラムや制御に必要な定数を格納するリードオンリーメモリー(ROM)230、演算結果あるいは演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)240、無線通信装置73の本体73aと通信を行うためのシリアルコミュニケーションインターフェース(SCI)250を含むシングルチップマイコン255と、不揮発性メモリ(EEPROM)260と、表示装置71bに表示する表示内容を描画したり加工するためのメモリ270と、表示装置71bに表示させるための演算を行う表示演算部280と、表示演算部280で作成された表示内容を表示装置71bに出力するためのインターフェース290とで構成されている。
無線通信装置73の本体73aは、無線通信装置本体54aと同様、中央演算処理装置(CPU)410、リードオンリーメモリー(ROM)420、ランダムアクセスメモリ(RAM)430、シリアルコミュニケーションインターフェース(SCI)440、増幅器450とで構成されている。ジョイスティック72の無線通信装置74の本体74aも同様に構成されている。
図4に、制御ユニット53のROM130に記憶された制御プログラムの概要を機能ブロック図で示す。制御ユニット53は、目標掘削面を設定すると共に遠隔操作端末102に送信する表示情報の演算を行う設定・表示処理部55と、領域制限掘削制御を行う掘削制御部56とを有している。
設定・表示処理部55は、角度センサ34,35,36、傾斜センサ37の角度信号α,β,γ,σ、レーザ受光器52のパルス信号τと遠隔操作端末102からの設定情報(後述)を入力し、油圧ショベル1の下部走行体2と上部旋回体3からなる車体に関して設定されたx−z座標系により目標掘削面及びレーザ基準面を演算し、目標掘削面を設定すると共に、遠隔操作端末102の表示装置71bに表示される表示情報を演算する。
掘削制御部56は、設定・表示処理部55で設定された目標掘削面に基づき、公知の領域制限掘削制御を行うよう制御弁26,27,28に対する指令信号を生成する処理を行う。
図5に設定・表示処理部55の処理機能をブロック線図で示す。設定・表示処理部55は、バケット爪先の座標演算部55aと、車体とレーザ基準面の位置関係演算部55bと、レーザ基準面と目標掘削面の位置関係(深さ)記憶部55cと、車体と目標掘削面の位置関係演算・記憶部55dと、バケットの爪先深さなどの数値データ演算部55eと、目標掘削面とバケットの位置関係演算部55fと、レーザ基準面と目標掘削面と車体との位置関係演算部55gの各機能を有している。
バケット爪先の座標演算部55aは、油圧ショベル1の車体に関して設定されたx−z座標系及び各部寸法と角度センサ34,35,36の角度信号α,β,γに基づいて、バケット爪先のx−z座標系の座標値(Pvx,Pvz)を演算する。
車体とレーザ基準面の位置関係演算部55bは、レーザ受光器52によってレーザ光を受光した際のレーザ受光器52のx−z座標系の座標値(PLx,PLz)と、傾斜センサ37の角度信号σと遠隔操作端末102で設定された目標掘削面の勾配εとから、x−z座標系におけるレーザ基準面Rの一次式を演算する。
レーザ基準面と目標掘削面の位置関係(深さ)記憶部55cは、遠隔操作端末102で設定されたレーザ基準面Rに対する目標掘削面の深さ(位置関係)LdをRAM140に記憶する。
車体と目標掘削面の位置関係演算・記憶部55dは演算部55bによって演算された車体とレーザ基準面との位置関係と、記憶部55cに記憶された深さ設定値Ldとから、x−z座標系における目標掘削面の一次式を演算する。この目標掘削面の一次式はRAM140に記憶され、掘削制御部56において領域制限掘削制御の目標掘削面の設定値として用いられる。
数値データ演算部55eは、演算部55aによって演算されたバケット爪先の座標値と、演算部55bによって演算された車体とレーザ基準面の位置関係と、演算部55dによって演算された車体と目標掘削面の位置関係とからバケットの爪先深さ、バケット勾配、目標掘削面の設定深さ、勾配などの数値を演算し表示情報とする。
目標掘削面とバケットの位置関係演算部55fは、演算部55aによって演算されたバケット爪先の座標値と、演算部55dによって演算された車体と目標掘削面の位置関係とから目標掘削面とバケットの位置関係を演算し表示情報とする。
レーザ基準面と目標掘削面と車体との位置関係演算部55gは、演算部55bによって演算された車体とレーザ基準面の位置関係と、演算部55dによって演算された車体と目標掘削面の位置関係とからレーザ基準面と目標掘削面と車体との位置関係を演算し表示情報とする。
演算部55e,55f,55gで演算された数値及び位置関係は表示情報として遠隔操作端末102に送信される。
図6に掘削制御部56の処理機能をブロック線図で示す。掘削制御部56は、操作信号の最大値選択部56aと領域制限掘削制御演算部56bの各機能を有している。最大値選択部56aでは操作レバー装置303L,303Rからの操作信号X1〜X3と遠隔操作端末102のジョイスティック72からの無線操縦のための操作信号の対応するものを比較し最大値を選択する。領域制限掘削制御演算部56bでは、その最大値として選択された操作信号と、角度センサ34,35,36の角度信号α,β,γと遠隔操作端末102の操作装置71cからの制御開始・終了信号と上記演算・記憶部55で記憶した目標掘削面の設定情報を入力し、領域制限掘削制御を行うよう演算処理を行い、流量制御弁24,25,26に制御信号を出力する。
ここで、領域制限掘削制御とは、車体基準で目標掘削面を設定し、操作レバーを操作しフロント作業機7の一部、例えば、バケット10が目標掘削面に近づくと、バケットの目標掘削面に向かう方向の動きのみを減速し、バケット10が目標掘削面に達すると、バケット10は目標掘削面の外には出ないが目標掘削面に沿っては動けるようにフロント作業機7を半自動で制御するものであり、その一例が国際公開番号WO95/30059号公報に開示されている。また、領域制限掘削制御演算部56bは油圧制御弁24,25,26を制御し目標掘削面を形成するようフロント作業機7の動作を制御するフロント制御手段を構成する。
図7に、パソコン71の制御装置71aのROM230に記憶された制御プログラムの概要を機能ブロック図で示す。制御ユニット71aは、パソコン71の操作装置71cにより入力した目標掘削面の深さ・勾配及び制御の開始・終了指示情報を送信可能な信号に処理する通信処理部81と、油圧ショベル1から送信された表示情報と操作装置71cからの操作信号に基づき表示演算処理を行い、その処理データを表示装置71bに表示させる表示演算処理部82とを有している。
表示演算処理部82の処理内容を図8〜図16により説明する。
まず、表示装置71bの画像表示部71dに表示する内容を説明する。
図8及び図9は画像表示部71dに選択的に表示する2種類の画面を示すものであり、図8は自動制御のための目標掘削面の深さ、勾配の設定状態を表示する掘削設定画面61を、図9は掘削設定画面で設定した目標掘削面とバケットの相対位置を拡大表示する掘削モニタ画面62をそれぞれ示している。これら画面61,62はそれぞれ目的とする情報を表示する主画面領域63と、その右側に位置する副画面領域としてのメニュー領域64とを有し、メニュー領域64にはそれぞれの画面情報に応じて複数の項目が設定されている。また、メニュー領域64の各項目の選択・実行は、例えばパソコン71の操作装置(キーボード)71cのカーソル移動キー(上下左右)とリターンキーを用いて行う。つまり、メニュー領域64には各項目を反転表示するカーソルが表示されており、操作装置71cの上下のカーソル移動キーを操作してカーソルを上下に移動し、メニュー領域64上の希望する項目を選び、リターンキーを押すことで反転表示した項目の内容を決定し実行する。これらのキーを用いる代わりにマウスを用い項目を選択し、クリックすることで決定・実行を行ってもよい。
掘削設定画面61及び掘削モニタ画面62の詳細を説明する。
図8において、掘削設定画面61の主画面領域63は、車体をシンボルで表示すると共に、自動制御のための目標掘削面の深さ、勾配の設定状態を数値と設定値に応じて動く直線で表示する。また、レーザ基準面を外部基準として用いた場合は、当該レーザ基準面を上下に動く破線で表示する。
また、掘削設定画面61のメニュー領域64には「制御ON/OFF」、「勾配]、「深さ」、「画面切換」の各項目がある。操作装置71cの上下のカーソル移動キーを用いてメニュー領域64の「勾配」を選択し、数値入力キーを操作して数値を入力することで目標掘削面の勾配を設定することができる。このとき、数値を入力すると画面上の勾配の数値が変更され、かつ目標掘削面を示す直線の傾きが変化する。また、レーザ基準面を用いるときは、目標掘削面はレーザ基準面に平行に表示され、数値入力キーを操作するとレーザ基準面を示す破線の傾きも変化する。レーザ基準面は、前述したようにフロント作業機のアームに取り付けたレーザ受光器52がレーザ基準面一致したときに、レーザ受光器52がパルス信号を出力することにより設定・表示される。レーザ基準面を用いないときは、目標掘削面の勾配は例えば車体下面の中心を基準として設定・表示される。
また、同様に上下のカーソル移動キーを用いて「深さ」を選択し、数値入力キーを操作して数値を入力することで目標掘削面の深さを設定することができる。このとき、数値を入力すると画面上の設定深さの数値が変更され、かつ目標掘削面を示す直線が上下に移動する。また、レーザ基準面を用いるときは、目標掘削面の深さはレーザ基準面からの値として設定され、レーザ基準面に対して上下に移動する。レーザ基準面を用いないときは、目標掘削面の深さは例えば地面を基準として設定・表示される。
操作装置71cの上下のカーソル移動キーとリターンキーを用いてメニュー領域64の「制御ON/OFF」を選択・実行すると自動制御が開始される。制御中は画面中に図示の如く「制御中」の表示を行う。この「制御中」の表示は他画面、つまりこれから説明する図9に示す掘削モニタ画面62に切り換えたときにも行う。また、上記の目標掘削面の設定は制御のON/OFFに係わらず行える。再度、「制御ON/OFF」を選択・実行すると自動制御を終了させる。
メニュー領域64の「画面切換」を選択・実行すると、掘削設定画面61から掘削モニタ画面62に切り替わる。
掘削モニタ画面62の主画面領域63は、掘削設定画面61で設定した目標掘削面とバケット10の位置関係を数値と動くイラストで拡大表示する。目標掘削面の表示は、掘削設定画面61と同様、設定状態に応じて動く直線を表示することにより行う。バケット10のイラスト表示は、油圧ショベル1側の制御ユニット53で計算されたバケット10の姿勢及び目標掘削面との位置関係に応じて移動、回転するバケットのシンボルを表示することにより行う。管理事務所のオペレータはこの画面を見ることでバケット先端の位置と目標掘削面との位置を常時確認しながら作業することができる。また、自動制御がOFFでもこの画面でジョイスティック72を用いてそのような作業を行うことができる。
掘削モニタ画面62のメニュー領域64には「角度単位」、「画面切換」の各項目がある。操作装置71cの上下のカーソル移動キーとリターンキーを用いて、メニュー領域64の「角度単位」を選択・実行すると、主画面領域63に表示される左右傾斜角度とバケット角の角度単位を「°」→「%」→「割分」表示に順次切り替えることができる。
メニュー領域64の「画面切換」を選択・実行すると、掘削モニタ画面62から掘削設定画面61に切り替わる。
図10は前述した「掘削設定画面61」と「掘削モニタ画面62」の画面遷移を示す。オペレータは操作装置71cの上下のカーソル移動キーとリターンキーを用い、上述したように各画面でメニュー領域64の「画面切換」を選択し実行することで、自由に表示内容を切り換えることができる。
図11〜図16に上記のような表示制御を行う表示演算処理部82の処理手順をフローチャートで示す。
図11はパソコン71の制御装置71aに電源が投入されたときの処理手順を示すフローチャートである。制御装置71aの電源が投入されると、初期画面として掘削設定画面61を表示し、メニュー領域64のカーソル初期位置を「画面切換」に設定する(ステップS104)。次いで、操作装置71cのリターンキーが押され決定操作がなされたかどうか(ステップS141)、あるいは上下のカーソル移動キーが押されメニュー(上)又は(下)操作がなされたかかどうかを判断する(ステップS142、143)。このとき、メニュー領域のカーソルは「画面切換」にあり、操作装置71cのリターンキーが押されると、掘削モニタ画面62に切り換え(ステップS144)、上カーソル移動キーが押されるとカーソルを「深さ」に移動し(ステップS145)、下カーソル移動キーが押されるとカーソルを「制御ON/OFF」に移動する(ステップS146)。
図12は、図11に示したフローチャートのステップS145で、掘削設定画面61のメニュー領域64のカーソルを「深さ」に移動したときの処理手順を示すフローチャートである。操作装置71cの上下のカーソル移動キーが押されたかどうか(ステップS151、1512)、あるいは数値入力キーが押された数値が入力されたかどうかを判断する(ステップS153)。上カーソル移動キーが押されるとカーソルを「勾配」に移動させ(ステップS155)、下カーソル移動キーが押されるとカーソルを「画面切換」に移動させる(ステップS156)。また、数値入力キーが押されると深さ設定値の数値を入力した数値に変更する(ステップS157)。
図13は、図12に示したフローチャートのステップS155で、掘削設定画面61のメニュー領域64のカーソルを「勾配」に移動したときの処理手順を示すフローチャートである。操作装置71cの上下のカーソル移動キーが押されたかどうか(ステップS161、162)、あるいは数値入力キーが押され数値が入力されたかどうかを判断する(ステップS163)。上カーソル移動キーが押されるとカーソルを「制御ON/OFF」に移動させ(ステップS165)、下カーソル移動キーが押されるとカーソルを「深さ」に移動させる(ステップS166)。また、数値入力キーが押されると勾配設定値の数値を入力した数値に変更する(ステップS167)。
図14は、図13に示したフローチャートのステップS165で、掘削設定画面61のメニュー領域64のカーソルを「制御ON/OFF」に移動させたときの処理手順を示すフローチャートである。操作装置71cの上下のカーソル移動キーが押されたかどうか(ステップS171、172)、あるいはリターンキーが押されたかどうかを判断する(ステップS172)。上カーソル移動キーが押されるとカーソルを「画面切換」に移動させ(ステップS174)、下カーソル移動キーが押されるとカーソルを「勾配」に移動させる(ステップS175)。リターンキーが押されると、制御状態で「制御中」が表示されているかどうかを判断し(ステップS176)、制御状態であると「制御中」の表示をOFFにし、かつ制御ユニットに制御OFF指令のコマンドを送る(ステップS177)。制御状態でないと「制御中」を表示し、かつ制御ユニット52に制御ON指令のコマンドを送る(ステップS178)。
図15は、図11に示したフローチャートのステップS144で、掘削モニタ画面62に切り換えたときの処理手順を示すフローチャートである。このとき、カーソルは「画面切換」位置にある。また、掘削モニタ画面62に表示されるバケット角の角度の単位の初期値は「°」を表示する。次いで、操作装置71cのリターンキーが押されたかどうか(ステップS181)、あるいは上下のカーソル移動キーが押されたかどうかを判断する(ステップS182,183)。リターンキーが押されると掘削設定画面61に切り換える(ステップS182)。上カーソル移動キーまたはしたカーソル移動キーが押されるとカーソルを「角度単位」に移動させ(ステップS184)。
図16は、図15に示したフローチャートのステップS184で、カーソルを「角度単位」に移動させたときの処理手順を示すフローチャートである。操作装置71cのリターンキーが押されたかどうか(ステップS111)、あるいは上下のカーソル移動キーが押されたかどうかを判断する(ステップS112、113)。リターンキーが押されると、現在の角度単位が「°」であるかどうか(ステップS114)、あるいは「%」であるかどうか(ステップS116)が判断され、その判断結果に応じて角度単位を「%」(ステップS115)、「割分」(ステップS117)、「°」(ステップS118)に設定する。掘削モニタ画面62にはバケット角の角度単位の初期値として「°」が表示されており、電源投入後、始めてリターンキーが押された場合は、現在の角度単位が「°」であるのでステップS114で肯定され、ステップS115で角度単位を「%」に変更する。その後、再度リターンキーが押されると、ステップS114で否定され、ステップS115で肯定され、ステップS117で角度単位を「割分」に変更する。その後、更にリターンキーが押されると、ステップS114,S115で否定され、ステップS118で角度単位を「°」に変更する。
また、上カーソル移動キー又は下カーソル移動キーが押されるとカーソルを「画面切換」に移動する(ステップS120)。
以上の遠隔制御システムを用いた作業例を説明する。
まず、作業現場において、これから掘削しようとする目標掘削面の近くに油圧ショベル1を移動設置し、かつレーザ灯台51を適所に設置する。レーザ灯台51の設置箇所としては、目標掘削面に平行にレーザ基準面(外部基準)Rを形成できかつ油圧ショベル1のアーム9に取り付けたレーザ受光器52がそのレーザ基準面のレーザ光を受光できる場所を選択する。次いで、レーザ基準面Rの角度をこれから掘削しようとする目標掘削面の角度に合わせるようレーザ灯台51のレーザ光の発射方向を調整するとともに、制御ユニット53の電源を入れ、作業現場での準備作業を完了する。作業員は準備作業の完了を携帯電話などで管理事務所100側のオペレータに知らせる。
一方、遠隔操作端末102を設置した管理事務所100においては、パソコン71の電源を入れ、表示装置71bの表示部に掘削設定画面61を表示する。ここで、制御ユニット53の電源ON時、目標掘削面の深さ及びレーザ基準面の一次式の初期値としてはそれらが掘削設定画面61に表示されない値が設定されるようにしておく。これにより掘削設定画面61の初期画面では建設機械1の車体は表示されるが、目標掘削面及びレーザ基準面は表示されない。また、目標掘削面の勾配としては0°を設定しておく。
作業現場から準備作業が完了したことを知らされると、管理事務所のオペレータはジョイスティック71を操作して油圧ショベル1のフロント作業機7を遠隔で操縦し、レーザ受光器52にレーザ灯台51のレーザ光を受光させる。レーザ受光器52がレーザ光を受光すると、前述したように油圧ショベル1に搭載された制御ユニット53の設定・表示処理部55において、演算部55bにて車体とレーザ基準面の位置関係が演算され、演算部55gにてレーザ基準面と目標掘削面と車体との位置関係が演算される。演算部55gの演算結果は表示情報として管理事務所側に無線で送信され、表示装置71bの掘削設定画面61には油圧ショベル1の車体とレーザ基準面が表示される。このとき、目標掘削面の設定情報としては上述した初期値が用いられるので、掘削設定画面61ではレーザ基準面は水平に表示される。
次いで、管理事務所側では、オペレータはパソコン71の操作装置71cを用いて目標掘削面の深さと勾配(設定情報)を入力する。この操作は、掘削設定画面61のメニュー領域64の「深さ」又は「勾配」の項目を選択し、主画面領域63を見ながら行う。オペレータが入力した設定情報は無線で油圧ショベル1の制御ユニット53に送信され、演算部55b,55dにてその設定情報を用いて車体とレーザ基準面の位置関係、車体と目標掘削面の位置関係が演算され、演算部55gにてレーザ基準面と目標掘削メント車体の位置関係が演算される。その演算結果は表示情報として管理事務所側に無線で送り戻され、表示装置71bの掘削設定画面61にオペレータの入力値に応じてレーザ基準面と目標掘削面が表示される。例えば、目標掘削面の勾配を入力すれば、それに応じて掘削設定画面61に表示されるレーザ基準面の角度が変わり、目標掘削面の深さを入力すれば、それに応じた位置にレーザ基準面と平行に目標掘削面が表示され、目標掘削面の深さの数値を変えれば、それに応じて目標掘削面はレーザ基準面に対し平行移動する。このようにオペレータは、掘削設定画面61を見ながら最適の位置に目標掘削面を設定することができる。
一方、油圧ショベル1側では、その目標掘削面は、制御ユニット53の演算部55dにて車体と目標掘削面の位置関係(車体のx−z座標系における一次式)として記憶される。
なお、このように設定操作を行うとき、作業現場の作業員と携帯電話で連絡を取り合ったり、作業現場をカメラで撮影し、その画像情報を管理事務所100側のモニタテレビに表示できるようにしておくことが好ましく、管理事務所100のオペレータはその携帯電話による連絡やモニタテレビの画像を通じて現場の地形情報を把握し、これにより一層適切に目標掘削面を設定することができる。
以上のように目標掘削面が設定されると、管理事務所100側のオペレータは、掘削設定画面61のメニュー領域64で「制御ON/OFF」の項目を選択実行し、油圧ショベル1の領域制限掘削制御を開始する。この領域制限掘削制御では、オペレータはジョイスティック72を操作し、油圧ショベル1のフロント作業機7を無線操縦することで、油圧ショベル1はバケット先端が目標掘削面を超えないように半自動で制御され、目標掘削面を容易に形成することができる。
また、この無線操縦による半自動制御では、表示装置71bの画面を掘削モニタ画面62に切り換えてもよい。掘削モニタ画面62では、バケットシンボルと目標掘削面の位置関係が拡大表示されているので、オペレータはその画面を見ながらバケットと目標掘削面の位置関係を常時確認しながら作業を行うことができる。
以上のように構成した本実施の形態によれば次の効果が得られる。
1)油圧ショベル1にフロント作業機7の動作を半自動で制御する領域制限掘削制御機能を搭載し、この油圧ショベル1に対し遠隔操作端末102を設け、目標掘削面の設定情報の入力と無線操縦を遠隔操作端末102側で行えるようにし、かつ遠隔操作端末102に油圧ショベル1と目標掘削面との位置関係を表示する表示装置71bを設けたので、オペレータは表示装置71bの画面を見ながら遠隔で目標掘削面の設定を行うことができるとともに、遠隔でフロント作業機7を操縦し、領域制限掘削制御の半自動制御機能を利用して目標掘削面を形成することができ、これにより目標掘削面の遠隔設定と油圧ショベル1の遠隔操縦を容易に行うことができる。
2)領域制限掘削制御は、ジョイスティック72の無線操縦信号と操作装置71cの設定情報に基づいてフロント作業機の動作を制御する半自動制御であるので、手動方式に比べオペレータの負担は格段に減り、かつ設定情報を変えるだけで種々の作業現場に容易に対応することができる。
3)遠隔操作端末102側での目標掘削面の設定情報の入力は、油圧ショベル1のレーザ基準面に対する目標掘削面の位置関係を入力することにより行い、油圧ショベル1側でその設定情報を油圧ショベル1に対する位置関係に変換するので、オペレータは外部基準であるレーザ基準面を用いて目標掘削面を設定することができる。また、このとき、遠隔操作端末102の表示装置71bにレーザ基準面と目標掘削面と油圧ショベル1の位置関係を表示するので、オペレータは表示装置の画面を見ながら容易に目標掘削面を設定することができる。
なお、上記実施の形態では、油圧ショベル1側の制御ユニット53の設定・表示処理部55にバケットの爪先深さなどの数値データ演算部55eと、目標掘削面とバケットの位置関係演算部55fと、レーザ基準面と目標掘削面と車体との位置関係演算部55gを設けたが、これらの演算部は遠隔操作端末102側の制御装置71aに設けてもよい。
また、遠隔操作端末102のパソコン71とジョイスティック72を離れた場所に設置してもよい。
また、遠隔操作端末102ではパソコン71用の無線通信装置73とジョイスティック72用の無線通信装置74とを別個に構成したが、これらの無線通信装置は1つにまとめてもよい。
更に、上記実施の形態では、管理事務所100側のみに表示装置71bと操作装置71cを設置したが、油圧ショベル1側にも表示装置と操作装置を設置してもよく、この場合は、状況に応じ、油圧ショベル1にオペレータが搭乗し、有人で設定及び制御操作を行うことができる。
更に、上記の実施の形態では、自動制御に係わる作業の目標となる面や領域の設定状態を数値と動くイラストで表示する画面(掘削設定画面61)以外の画面として掘削モニタ画面62を設けたが、これに代え、或いはこれに加え、別の画面を表示するようにしてもよい。別の画面としては、例えば燃料計、油圧温度計、エンジン冷却水温時計等の計器情報を表示する計器情報画面や、水温異常や油温異常を表示する異常警告情報画面、エンジン回転数、掘削負荷、走行負荷、旋回負荷等の稼動情報を表示する稼動情報画面等が考えられる。
本発明の他の実施の形態を説明する。
上記の実施の形態では、外部基準としてレーザ基準面を用いたが、位置及び姿勢が既知である外部座標系を外部基準として用いることができる。位置及び姿勢が既知である外部座標系の代表例としてはGPS(grobal positioning system)で用いるグローバル座標系がある。グローバル座標系とは地球の準拠楕円体の中心に原点を持つ直交座標系である。GPSによりグローバル座標系を外部基準として油圧ショベル1の位置・方向を計測・把握するとともに、表示装置にGPS情報と関連づけられた地形データと設計データを表示することにより、その設計データを目標作業面として用いることができる。
つまり、車体にGPSアンテナを一個若しくは複数個設置し、複数のGPS衛星からの信号を用いてGPSアンテナの位置を地球上の緯度・経度・海抜高さ情報として検出し、その情報をグローバル座標系の値に変換し、所定の演算処理を行うことにより油圧ショベルの位置や車体の方向を把握する。この演算処理は油圧ショベルに設置した制御装置で行ってもよいが、好ましくは管理事務所に設置したパソコンの制御装置で行う。パソコンの制御装置には地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを設定しておく。この施工データには地形データと施工計画線(設計データ)が含まれる。パソコンの表示装置は油圧ショベルの位置・方向情報と三次元の施工データを入力し、それらを表示する。また、パソコンの制御装置は油圧ショベルの位置・方向情報と三次元の施工データとを比較して、現在の車体位置・方向における目標の掘削面を演算し、この目標掘削面の設定情報を油圧ショベルの車体基準の設定情報に変換し、油圧ショベルに送信する。油圧ショベルはその設定情報を記憶し、自動制御に使用する。施工データから得た目標掘削面の設定情報は油圧ショベルに送信し、油圧ショベル1でその設定情報を車体基準の設定情報に変換してもよい。
図17〜図20は、グローバル座標系における油圧ショベルの位置・方向を特定する方法として2個のGPSアンテナを用いるものを本発明の第2の実施の形態として示すものである。図中、図1に示した部材と同等のものには同じ符号を付している。
図17は本実施の形態に係わる油圧ショベルの外観を示す図である。油圧ショベル1Aには、ブーム回転角検出器34、アーム回転角検出器35、バケット回転角検出器36に加え、下部走行体2と上部旋回体3の回転角(旋回角度)を検出する角度センサ520、上部旋回体3の前後方向の傾斜角(ピッチ角度)と左右方向の傾斜角(ロール角度)を検出する傾斜センサ524が設けられている。
また、油圧ショベル1Aには、GPS衛星からの位置信号を受信する2個のGPSアンテナ531,532、受信した位置信号を管理事務所100に送信するための無線アンテナ533、各種センサ34〜36,520,524の信号を管理事務所100に送信し、管理事務所100から無線操縦信号や目標掘削面の設定情報及び表示情報(後述)の各種データを受信する無線アンテナ535が設けられている。2個のGPSアンテナ531,532は上部旋回体3の旋回中心から外れた旋回体後部の左右に設置されている。
図18は本実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
機体側制御装置101Aは、車体コントローラ633と、表示装置634と、無線アンテナ535及び無線機635からなる無線通信装置54Aと、GPSアンテナ531,532及びGPS受信機543,544と、無線アンテナ533及び無線機547からなる無線通信装置548とを備えている。
遠隔操作端末102Aは、制御装置643、表示装置644、操作装置645からなるパソコン71Aと、無線アンテナ641及び無線機642からなる無線通信装置73Aと、ジョイスティック72と、無線機74a及び無線アンテナ74bからなる無線通信装置74と、GPSアンテナ552、無線アンテナ553及び無線機556からなる無線通信装置554と、GPSアンテナ552、GPS受信機555及びGPSコンピュータ557とを備えている。
機体側制御装置101A側の動作は、車体コントローラ633がセンサ34〜36,520,524の信号を入力しアンテナ535及び無線機635を介して遠隔操作端末102Aに送信する点、アンテナ535及び無線機635を介して遠隔操作端末102Aから表示情報を受信し表示装置634に表示させる点、GPS受信機543,544が受信したGPSアンテナ531,532の位置情報をアンテナ533及び無線機547を介して遠隔操作端末102Aに送信する点を除いて、第1の実施の形態と実質的に同じである。
遠隔操作端末102A側では、機体側制御装置101Aから送信されたセンサ34〜36,520,524の信号をアンテナ641及び無線機642で受信し、パソコン71Aの制御装置643に入力するとともに、機体側制御装置101Aから送信されたGPSアンテナ531,532の位置情報をアンテナ553及び無線機556で受信し、GPSコンピュータ557で補正した後、パソコン71Aの制御装置643に入力する。
本実施の形態では高精度での位置計測を行うため、RTK(リアルタイムキネマティック)計測を行う。GPSアンテナ552、GPS受信機555及びGPSコンピュータ557はそのための基準局としての役割も持つものであり、GPSコンピュータ557は予め計測したアンテナ52の3次元位置データと、GPSアンテナ552により受信されるGPS衛星からの位置信号とに基づき、RTK計測のための補正データを生成し、この補正データを用いてGPSアンテナ531,532により受信したGPS衛星からの位置情報を補正し、GPSアンテナ531,532の3次元位置のRTK計測を行う。このRTK計測によって、GPSアンテナ531,532の3次元位置が約±1〜2cmの精度で計測される。そして、計測された3次元位置データはパソコン71Aの制御装置643に入力される。
制御装置643には、地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを入力し、記憶装置に記憶しておく。施工データの入力は操作装置645を用いて行う。この場合、操作装置645により施工データを作成し、記憶させてもよいし、外部で作成した施工データをMO等の記録メディアを用いて制御装置643にインストールし、記憶させてもよい。このとき、その施工データを更に加工してもよい。この施工データには地形データと施工計画線(設計データ)が含まれるのが好ましいが、施工計画線(設計データ)だけであってもよい。制御装置643は、無線機642及びGPSコンピュータ557から入力した情報に基づき、グローバル座標系にて現在の車体位置・方向における目標の掘削面を演算し、その目標掘削面を油圧ショベルのイラスト及び該当する施工データ部分とともに表示装置644に表示させる。また、制御装置643は、その目標掘削面の設定情報を油圧ショベルの車体基準の設定情報に変換し、機体側制御装置101Aに送信する。機体側制御装置101Aではその設定情報を制御ユニット643に記憶し、フロント作業機7の制御に使用する。
また、油圧ショベルの作業状態や施工状態を監視するため、制御装置643はフロント作業機7のバケット先端位置をグローバル座標系にて演算し、表示装置644に表示させるとともに、その表示情報を目標掘削面、油圧ショベルのイラストの表示情報とともに機体側制御装置101Aに送信する。機体側制御装置101Aではその表示情報を制御ユニット643を介して表示装置634に表示させる。これにより、状況に応じ、油圧ショベル1Aにオペレータが搭乗し、有人で制御操作を行うことができる。
図19はグローバル座標系の概念を説明する図である。
図19において、Gは地球の準拠楕円体であり、グローバル座標系ΣG原点O0は準拠楕円体Gの中心に設定されている。また、グローバル座標系ΣGのx0軸方向は赤道Aと子午線Bの交点Cと準拠楕円体Gの中心とを通る線上に位置し、z0軸方向は準拠楕円体Gの中心から南北に延ばした線上に位置し、y0軸方向はx0軸とz0軸に直交する線上に位置している。GPSでは、地球上の位置を緯度及び経度と、準拠楕円体Gに対する高さ(深さ)で表現するので、このようにグローバル座標系ΣGを設定することで、GPSの位置情報をグローバル座標系ΣGの値に容易に変換することができる。
図20は制御装置643の演算処理手順の一例を示すフローチャートである。
まず、GPSコンピュータ557で求めたGPSアンテナ531の3次元位置(緯度、経度、高さ)をグローバル座標系ΣGの値GP1に変換する(ステップS510)。このための演算式は一般的によく知られているものなので、ここでは省略する。同様に、GPSコンピュータ557で求めたGPSアンテナ532の3次元位置をグローバル座標系ΣGの値GP2に変換する(ステップS520)。次いで、そのようにして求めたGPSアンテナ531,532のグローバル座標系ΣGでの3次元位置GP1,GP2と、旋回角度センサ520で検出した旋回角度、傾斜センサ524で検出した傾斜角度(ピッチ角度及びロール角度)と、記憶装置に記憶したショベルベース座標系ΣSBの原点に対するGPSアンテナ531,532の位置関係とからショベルベース座標系ΣSBの位置及び姿勢(下部走行体2の方向)をグローバル座標系ΣGの値GΣSBで求める(ステップS530)。この演算は座標変換であり、一般的な数学的手法により行うことができる。
ここで、ショベルベース座標系ΣSBとは、油圧ショベルの下部走行体2に固定して設定され、3軸のうちの1軸が上部旋回体3の回転軸上或いはその近傍に位置する直交座標系をいう。
次いで、制御装置643の記憶装置に記憶した施工データを読みだし、それをグローバル座標系ΣGのデータに変換し、この施工データをグローバル座標系でのショベルベース座標系GΣSBと比較して、ショベルベース座標系GΣSBの位置・方向における2次元データとしての施工データ部分を抽出し、この施工データ部分から目標掘削面(ΣG)を演算する(ステップS540)。次いで、ショベルベース座標系GΣSBの座標データを用いてその目標掘削面(ΣG)をショベルベース座標系ΣSBの値に変換する(ステップS550)。この演算も座標変換であり、一般的な数学的手法により行うことができる。ショベルベース座標系ΣSBの値に変換した目標掘削面(ΣSB)はアンテナ641及び無線機642を介して機体側制御装置101Aに送信する(ステップS560)。機体側制御装置101Aでは、その設定情報を制御ユニット643に記憶し、フロント作業機7の制御に使用する。
次いで、角度センサ34〜36で検出したブーム角度、アーム角度、バケット角度と、旋回角度センサ520で検出した旋回角度と、記憶装置に記憶したショベルベース座標系ΣSBの原点とブーム8の基端との位置関係及びブーム8、アーム9、バケット10の寸法とからショベルベース座標系ΣBにてバケット先端位置BPBKを求める(ステップS570)。この演算も座標変換であり、一般的な数学的手法により行うことができる。次いで、ステップS530で求めたグローバル座標系ΣGでのショベルベース座標系の値GΣSBとステップS570で求めたショベルベース座標系でのバケット先端位置BPBKとからグローバル座標系ΣGでのバケット先端位置GPBKを求める(ステップS580)。そして、ステップS540で求めたグローバル座標系での目標掘削面(ΣG)及びステップS580で求めたグローバル座標系でのバケット先端位置GPBKを経度、緯度、高さの3次元データに変換する(ステップS590)。このための演算式は一般的によく知られているものなので、ここでは省略する。
次いで、経度、緯度、高さの3次元データに変換した目標掘削面及びバケット先端位置を表示装置644に表示させ(ステップS600)、更にその目標掘削面及びバケット先端位置の情報をアンテナ641及び無線機642を介して機体側制御装置101Aに送信する(ステップS610)。機体側制御装置101Aでは、その情報を制御ユニット643を介して表示装置634に表示させる。なお、このとき、ステップS540で抽出したショベルベース座標系GΣSBの位置・方向における2次元データとしての施工データ部分に含まれる地形データも経度、緯度、高さの3次元データに変換し、表示装置644,634に表示してもよい。
以上のように構成した本実施の形態においては、油圧ショベル1Aの車体の一部である上部旋回体3に搭載した2個のGPSアンテナ531,532を用いてグローバル座標系での油圧ショベル1Aの車体(下部走行体2)の位置及び方向(グローバル座標系でのショベルベース座標系GΣSBの位置及び姿勢)を特定するので、地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦を容易に行うことができる。また、油圧ショベルが走行し移動しても、車体の位置及び方向を特定することができるので、油圧ショベルの移動に係わらず施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦が可能となる。
更に、作業装置であるバケット7の先端(モニタポイント)の位置を計測するので、作業状態や施工状態を監視することができる。
また、本実施の形態によれば、油圧ショベルが目標とする掘削面の設定情報が管理事務所の遠隔操作端末102Aから無線を通じて送られてくるので、膨大な電子データである施工データを機体側制御装置101Aに記憶する必要が無く、かつ管理事務所で現在の車体位置における目標の掘削面を表示装置634を見ながら把握することが可能となる。また、CD−Rのように車体に記録メディアを駆動する装置を必要としないので、安価なシステムであり、耐環境性も良く信頼性に優れる。
なお、上記の実施の形態では、2個のGPSアンテナ531,532と上部旋回体3の傾斜角を検出する傾斜センサ524とを用いてグローバル座標系でのショベルベース座標系の位置及び姿勢を求めたが、傾斜センサを設けずに、上部旋回体3の旋回中心から外れた3カ所に3個のGPSアンテナを設けてもよく、この場合も3個のGPSアンテナの位置情報でグローバル座標系でのショベルベース座標系の位置及び姿勢を求めることができる。
また、油圧ショベル1Aにオペレータが搭乗し、有人で制御操作を行う方式に特化する場合は、遠隔操作手段であるジョイスティック72及び無線通信装置74は無くてもよい。
既知の外部座標系における油圧ショベルの位置・方向を特定する方法として直接GPSを用いない方法を本発明の第3の実施の形態として図21〜図27により説明する。図中、図1及び図17に示した部材と同等のものには同じ符号を付している。
図21は本実施の形態に係わる油圧ショベルの外観を示す図である。油圧ショベル1Bの上部旋回体3の上部にはレーザ光のリフレクタ761が設けられ、フロント作業機7のアーム9の側面にはレーザ受光器725が設けられている。リフレクタ761は上部旋回体3の旋回中心である旋回軸近傍の位置に立てた柱の上端に設けられている。アンテナ類としては、各種センサ34〜36,520,524の信号及びレーザ受光器725の信号を管理事務所100に送信し、管理事務所100から無線操縦信号や目標掘削面の設定情報及び表示情報(後述)の各種データを受信する無線アンテナ535が設けられているだけである。
また、油圧ショベル1Bの外部には、リフレクタ761の位置をリアルタイムに追尾し、その距離と方位を計測するレーザ追尾装置762と、レーザ受光器725に対してレーザ光波面763を投影するレーザ灯台764が設置されている。レーザ追尾装置762とレーザ灯台764は共に地上に設置されている。リフレクタ761とレーザ追尾装置762は自動追尾トータルステーションシステムとして知られているものである。なお、レーザ追尾装置762の設置位置にワールド座標系が設定される(後述)。
ここで、レーザ追尾装置762の設置位置は事前に計測し、その位置を緯度、経度、高さの3次元データとして把握しておく。これによりその位置と前述したグローバル座標系との位置関係は既知となり、その位置に設定されたワールド座標系とグローバル座標系との位置関係も既知となる。
図22は本実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
機体側制御装置101Bは、車体コントローラ633Bにレーザ受光器725の受光信号が更に入力され、その受光信号もアンテナ535及び無線機635を介して送信される点、図18に示したGPS受信システムが無い点を除いて、図18に示した実施の形態のものと実質的に同じである。
遠隔操作端末102Bは、アンテナ641及び無線機642で機体側制御装置101Bから送信されたレーザ受光器725の受光信号を更に受信し、パソコン71Bの制御装置643Bに入力する点、図18に示したGPS受信処理システムの代わりに、レーザ追尾装置762で追尾している油圧ショベル1B上のリフレクタ761の位置信号を有線又は無線によりパソコン71Bの制御装置643Bに入力する点を除いて、図18に示した実施の形態のものと実質的に同じである。
レーザ追尾装置762の設置位置(ワールド座標系)に対する下部走行体2の位置と方向(姿勢)を同定する方法の詳細を図23及び図24を用いて説明する。
図21に示した法面掘削では、レーザ灯台764の発光するレーザ光波面763を、掘削動作を行うフロント作業機7の適当な位置でレーザ受光器725がよぎるように設置することができる。機体側制御装置101Bでは、各種角度センサ34〜36,520の信号、傾斜計524の信号及びレーザ受光器25の信号を車体コントローラ633Bに取り込み、全ての入力データを遠隔操作端末102B側に送信する。遠隔操作端末102Bの制御装置643Bではこれらのデータを受信する。オペレータの操作によりフロント作業機7を動かし、レーザ受光器725がレーザ灯台764の発するレーザ光波面763を受光したとき、遠隔操作端末102Bの制御装置643Bでは、そのことをトリガーとしてそのときの受信データを用いて下部走行体2の位置と方向を特定するための演算を開始する。
油圧ショベル1Bが水平に位置していると仮定すると、受信データのうちブーム角度計34とアーム角度計35の値から、リフレクタ761を基準点としてレーザ受光器725までの水平距離(水平面に対する投影長さ)lBKと、水平面に対する仰角αが求まる。実際には、油圧ショベル1Bは水平面に対し微少に傾斜して位置することが多い。このため、更に傾斜計524も用い、上記の値を補正してリフレクタ761を基準点としたレーザ受光器725の水平距離lBKと仰角αを求める。
レーザ追尾装置762を設置した位置とグローバル座標系との位置関係は既知であり、グローバル座標系の位置と方向は既知であるため、前述したようにその設置位置に便宜的な指標としてワールド座標系ΣWを設定する。リフレクタ761の位置は、レーザ追尾装置762による計測結果により既知である。これをワールド座標系で表現しWPrfとする。ここでPは位置ベクトルであることを、左上付き添え宇Wはワールド座標系であることを、右下付き添え宇rfはリフレクタを表すものとする。
上記lBKとαとWPrfとからレーザ受光器725が存在する可能性がある水平面内の領域をワールド座標系による円の方程式で表すことができる。これを受光器存在可能円と呼ぶことにする。
一方、レーザ光波面763とレーザ追尾装置762との位置関係は予め設定可能であり、既知であり、面の方程式で表現できる。例えば、油圧ショベル1Bが水平に位置していると仮定すると、レーザ光波面763を垂直方向に設定した場合は、レーザ追尾装置762とレーザ灯台764の距離(ワールド座標系のyW座標値)でレーザ光波面763を表現できる。レーザ光波面763とレーザ追尾装置762との位置関係の一般的な同定方法については後述する。
上記受光器存在可能円とレーザ光波面の方程式よりそれらの交点であるWPL,WPL′の2点が求まる。油圧ショベル1Bの作業状況は、作業進行計画或いは監視カメラ等により把握でき、その作業状況に応じてWPL,WPL′のうちの一方であるWPLを選択することで、レーザ受光器25の位置を特定できる。
ここで、リフレクタ761の位置WPrfはワールド座標系での上部旋回体3の位置に該当し、レーザ受光器725の位置WPLはワールド座標系での上部旋回体3の方向に該当する。つまり、WPrfとWPLによりワールド座標系での上部旋回体3の位置と方向を特定できる。
このようにしてワールド座標系での上部旋回体3の位置と方向を特定できれば、角度センサ520で検出した旋回角度の値θSWと傾斜センサ524で検出したピッチ角とロール角の値から、ワールド座標系での下部走行体2の位置と方向を特定できる。またこれにより、油圧ショベル1Bの下部走行体2に固定して設定した、油圧ショベル1Bの動作を表現するベースとなる座標系であるショベルベース座標系WΣSBが特定できる。
また、一度ショベルベース座標系が特定できれば、走行操作をしないか、あるいは下部走行体2が位置ずれを起こさない限り、再度、ショベルベース座標系を演算する必要はない。図21に示した法面掘削作業では、前述したように、上部旋回体3を旋回させることではバケット10の先端が掘削したい位置に届かなくなると、油圧ショベル1Bを走行移動するので、このように油圧ショベルを移動させた場合は、再度、オペレータはフロント作業機7を動かし、受光器725の受光信号をトリガーとして上記の演算を行わせ、ショベルベース座標系WΣSBを特定する。
以上のような演算を行うことによって、油圧ショベル1Bの位置が変わっても常にワールド座標系でのショベルベース座標系WΣSBを求めることができる。
ここで、ワールド座標系ΣWを設定したレーザ追尾装置762の設置位置とグローバル座標系との位置関係は既知であるため、ワールド座標系でのショベルベース座標系WΣSBは容易にグローバル座標系での値GΣSBに変換することができ、このグローバル座標系ΣGでのショベルベース座標系GΣSBを用いることにより、地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用することが可能となる。
図25及び図26は、上記の考え方に基づく遠隔操作端末102Bの制御装置643B内での演算処理手順の一例を示すフローチャートである。
図25において、まず、各種角度センサ34〜36,520、傾斜センサ524の値、レーザ受光器725が受光状態であるかどうかを示す信号、リフレクタ761の位置WPrfの入力を行う(ステップS710)。角度センサ34〜36,520、傾斜センサ524の値とレーザ受光器725が受光状態であるかどうかを示す信号に関しては、機体側制御装置101Bからアンテナ641、無線機642を介して入力する。リフレクタ761の位置WPrfはレーザ追尾装置762より入力する。
次に、レーザ受光器725が受光状態であるかどうかを判定し(ステップS720)、受光状態ならステップS730へ進み、受光状態でなければステップS767へ飛ぶ。ステップS730では、受光器存在可能円の方程式を求める(ステップS730)。つまり、まず、角度センサ34,35のブーム角度、アーム角度と傾斜センサ524のピッチ角及びロール角とから上述したようにレーザ受光器725のリフレクタ761に対する水平距離lBKと水平面からの傾きαを求める。次に、この演算値lBK,αとリフレクタ761の位置WPrfとから水平面と平行な受光器存在可能円の方程式を求める。
次に、予め設定されているレーザ光波面の方程式とステップS730で求めた受光器存在可能円の方程式から、それらの交点WPL,WPL′を演算する(ステップS740)。そして、作業現場の条件(この例では、レーザ追尾装置762に近い側)により、レーザ受光器725の位置としてWPLを選択する(ステップS750)。
以上のようにして求めたWPrfとWPLによりワールド座標系での上部旋回体3の位置と方向を特定し、角度センサ520の旋回角度、傾斜センサ524のピッチ角及びロール角の値より、ワールド座標系におけるショベルベース座標系ΣSBの値WΣSB(位置と方向)を求める(ステツプS760)。
次いで、制御装置643Bの記憶装置に記憶したグローバル座標系でのワールド座標系の値GΣWを読みだし、ステップS760で求めたワールド座標系でのショベルベース座標系値WΣSBとそのグローバル座標系でのワールド座標系GΣWとからショベルベース座標系ΣSBの位置及び姿勢(下部走行体2の方向)をグローバル座標系の値GΣSBで求める(ステップS770)。
次いで、図20に示したステップS540,S550,S560と同様の処理を行う。つまり、制御装置643Bの記憶装置に記憶した緯度・経度・海抜高さ情報に加工した施工データを読みだし、それをグローバル座標系ΣGのデータに変換し、この施工データをグローバル座標系でのショベルベース座標系GΣSBと比較して、ショベルベース座標系GΣSBの位置・方向における2次元データとしての施工データ部分を抽出し、この施工データ部分から目標掘削面(ΣG)を演算する(ステップS780)。次いで、ショベルベース座標系GΣSBの座標データを用いてその目的掘削面(ΣG)をショベルベース座標系ΣSBの値に変換する(ステップS790)。ショベルベース座標系ΣSBの値に変換した目標掘削面(ΣSB)はアンテナ641及び無線機642を介して機体側制御装置101Bに送信する(ステップS800)。機体側制御装置101Bでは、その設定情報を制御ユニット643Bに記憶し、フロント作業機7の制御に使用する。
次いで、計算不可能状態が設定されていればそれをクリアし(ステップS810)、ステップS820に進む。ステップS820では、図26に示す表示データの演算とその出力処理を行う。
図26において、まず、計算不可能状態であるかどうかを判断し(ステップS830)、計算不可能状態であればステップS840に飛び、計算不可能状態でなければ、更にオペレータが走行操作中であるかどうか判断し(ステップS850)、走行操作中であればステップS840に飛ぶ。ステップS840では、計算不可能状態であることを表示装置644に表示して、ステップS710に戻る。
ステップS850で走行操作中で無ければステップS860に行く。ステップS860では、油圧ショベル1Bの旋回中心が一定以上ずれたかどうか判定する。このためリフレクタ761の前回の位置と今回の位置を比較し、その差分がΔX以上であればステップS840へ飛ぶ。差分がΔX以下であればステップS870〜S910へ進む。
ステップS870〜S910の処理は図20に示したステップS570〜S610の処理と実質的に同じである。つまり、角度センサ34〜36で検出したブーム角度、アーム角度、バケット角度と、旋回角度センサ520で検出した旋回角度と、記憶装置に記憶したショベルベース座標系ΣSBの原点とブーム8の基端との位置関係及びブーム8、アーム9、バケット10の寸法とからショベルベース座標系ΣBにてバケット先端位置BPBKを求める(ステップS870)。次いで、ステップS770で求めたグローバル座標系ΣGでのショベルベース座標系の値GΣSBとステップS870で求めたショベルベース座標系でのバケット先端位置BPBKとからグローバル座標系ΣGでのバケット先端位置GPBKを求める(ステップS880)。そして、ステップS780で求めたグローバル座標系での目標掘削面(ΣG)及びステップS880で求めたグローバル座標系でのバケット先端位置GPBKを経度、緯度、高さの3次元データに変換する(ステップS890)。
次いで、経度、緯度、高さの3次元データに変換した目標掘削面及びバケット先端位置を表示装置644Bに表示させ(ステップS900)、更にその目標掘削面及びバケット先端位置の情報をアンテナ641及び無線機642を介して機体側制御装置101Bに送信する(ステップS910)。機体側制御装置101Bでは、その情報を制御ユニット643Bを介して表示装置634に表示させる。なお、この場合も、ステップS780で抽出したショベルベース座標系GΣS Bの位置・方向における2次元データとしての施工データ部分に含まれる地形データも経度、緯度、高さの3次元データに変換し、表示装置644,634に表示してもよい。
以上の処理が終了したらステップS710に戻り、処理を繰り返す。
レーザ灯台764から出力するレーザ光波面763とレーザ追尾装置762との位置関係(レーザ光波面763のワールド座標系での方程式)を同定する方法及び装置の一例を、図27により説明する。
レーザ灯台764には、レーザ灯台764の位置を特定するための代表点としてリフレクタ761Aを装着する。このときリフレクタ761Aの位置とレーザ灯台764の発光の中心点の位置関係は、リフレクタ761Aの取付部材の寸法等から既知である。一方、2つの地上設置型のレーザ受光器765,766を用意する。レーザ受光器765にはリフレクタ761Bが、レーザ受光器766にはリフレクタ761Cがそれぞれ装着されている。レーザ受光器765の受光部とリフレクタ761Bの位置関係、レーザ受光器766の受光部とリフレクタ761Cの位置関係は、リフレクタ761B,761Cの取付部材の寸法等から既知である。
レーザ灯台764から発光するレーザ光波面763を受光できる位置にレーザ受光器765とレーザ受光器766とを設置する。この状態でレーザ追尾装置762を使用して、リフレクタ761A、リフレクタ761B、リフレクタ761Cそれぞれの位置を計測する。計測した3点より、レーザ灯台764の発光の中心点の位置、レーザ受光器765の受光部の位置、レーザ受光器766の受光部の位置が演算でき、この演算した3点の位置を含む平面の方程式を求めることができる。これによりレーザ灯台764から出力するレーザ光波面763の方程式を同定することができる。
上記の例では2つのレーザ受光器765,766を用いたが、レーザ受光器が1つだげの場合でも位置をずらし、それぞれの位置でリフレクタの位置を計測することにより、上記と同じくレーザ光波面763上の3点の位置を計測でき、同様にレーザ光波面763の方程式を同定することができる。
以上のように構成した本実施の形態においては、第2の実施の形態と同様、油圧ショベルの位置に係わらず地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦を容易にかつ安価な構成で行うことができる。
また、本実施の形態では、直接GPS情報を用いずに、グローバル座標系での油圧ショベル1Aの車体(下部走行体2)の位置及び方向(グローバル座標系でのショベルベース座標系GΣSBの位置及び姿勢)を常に演算することができるので、油圧ショベルが地下、ビル内、山間部などGPS衛星を捕捉できないような作業現場にあっても、またGPSでは衛星からの電波が受信できないような気象条件であっても、それらに左右されず地球上の緯度・経度・海抜高さ情報を用いて三次元に加工した施工データを利用した目標作業面の遠隔設定と油圧ショベルの遠隔操縦を行うことができる。
なお、本実施の形態においても、油圧ショベル1Bにオペレータが搭乗し、有人で制御操作を行う方式に特化する場合は、遠隔操作手段であるジョイスティック72及び無線通信装置74は無くてもよい。
以上、本発明の幾つかの実施の形態を説明したが、本発明はそれに制限されるものではなく、本発明の精神の範囲内で種々の変更、追加が可能である。例えば、上記実施の形態では、油圧ショベル1で目標作業面として目標掘削面を形成する場合について説明したが、油圧ショベル1のフロント作業機7にハンドリング装置を取り付け、コンクリートブロックを敷設する作業に本発明を適用しても良く、この場合はコンクリートブロック敷設面が目標作業面となる。
産業上の利用可能性
本発明によれば、オペレータは表示手段の画面を見ながら遠隔で目標作業面の設定を行うことができるとともに、遠隔でフロント作業機を操縦し、フロント制御手段の制御機能を利用して目標作業面を形成することができるので、目標作業面の遠隔設定と建設機械の遠隔操縦を容易に行うことができる。
また、フロント制御手段は、遠隔操作手段の無線操縦信号と設定情報に基づいてフロント作業機の動作を制御する半自動制御方式であるので、手動方式に比べオペレータの負担は格段に減り、かつ設定情報を変えるだけで種々の作業現場に容易に対応することができる。
また、本発明によれば、遠隔操作端末側での目標作業面の設定情報の入力を建設機械の外部基準に関連付けられたデータにより行い、機体側制御手段と遠隔操作端末のいずれか一方で、目標作業面の設定情報を建設機械と目標作業面の位置関係に変換するので、オペレータは外部基準を用いて目標作業面を設定することができる。また、このとき隔操作端末の表示手段に外部基準と目標作業面と建設機械の位置関係を表示するので、オペレータは表示手段の画面を見ながら容易に目標作業面を設定することができる。
また、本発明によれば、外部座標系に関連付けられた施工データが膨大な電子データであっても、その施工データを用いて建設機械に設定された機体座標系での目標作業面の設定情報を設定手段と設定情報変換手段は遠隔操作端末に備えられるので、施工データが膨大な電子データであっても、その施工データを機体側制御手段に記憶する必要がなくなり、膨大な電子データである施工データを利用した目標作業面の遠隔設定を容易に行うことができ、更にその設定情報を用いて建設機械の遠隔操縦を容易に行うことができる。また、CD−Rのように建設機械の車体に記録メディアを駆動する装置を必要としないので、安価なシステムであり、耐環境性も良く信頼性に優れる。
更に、本発明によれば、建設機械が移動しても、外部座標系に対する建設機械の位置及び姿勢を特定し、機体座標系での目標作業面の設定情報を生成することができる。
また、本発明によれば、直接GPSを用いずに機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができるので、建設機械が地下、ビル内、山間部などGPS衛星を捕捉できないような作業現場にあっても、またGPSでは衛星からの電波が受信できないような気象条件であっても、それらに左右されず機体座標系の位置及び姿勢を外部座標系(グローバル座標系)の値として求めることができる。
【図面の簡単な説明】
図1は、本発明の一実施の形態に係わるよる建設機械の遠隔制御システムの全体構成を示す図である。
図2は、油圧ショベルに搭載された制御ユニット及び無線通信装置の構成を示す図である。
図3は、遠隔操作端末側に設置されたパソコンの制御装置及び無線通信装置の構成を示す図である。
図4は、油圧ショベルに搭載された制御ユニットのROMに記憶された制御プログラムの概要を示す機能ブロック図である。
図5は、制御ユニットの設定・表示処理部の処理機能を示すブロック線図である。
図6は、制御ユニットの掘削制御部の処理機能を示すブロック線図である。
図7は、遠隔操作端末側に設置されたパソコンの制御装置のROMに記憶された制御プログラムの概要を示す機能ブロック図である。
図8は、上側にパソコンの表示装置に表示される掘削設定画面を示し、下側にその表示内容を説明する図である。
図9は、上側に同表示装置の掘削モニタ画面を示し、下側にその表示内容を説明する図である。
図10は、同表示装置に表示される画面の遷移を示す図である。
図11は、パソコンの制御装置に電源が投入されたときの処理手順を示すフローチャートである。
図12は、掘削設定画面のメニュー領域のカーソルを「深さ」に移動したときの処理手順を示すフローチャートである。
図13は、掘削設定画面のメニュー領域のカーソルを「勾配」に移動したときの処理手順を示すフローチャートである。
図14は、掘削設定画面のメニュー領域のカーソルを「制御ON/OFF」に移動させたときの処理手順を示すフローチャートである。
図15は、掘削設定画面から掘削モニタ画面に切り換えたときの処理手順を示すフローチャートである。
図16は、掘削モニタ画面のメニュー領域のカーソルを「角度単位」に移動したときの処理手順を示すフローチャートである。
図17は、本発明の第2の実施の形態に係わる油圧ショベルの外観を示す図である。
図18は、第2の実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
図19は、グローバル座標系の概要を説明する図である。
図20は、演算処理手順を示すフローチャートである。
図21は、本発明の第3の実施の形態に係わる油圧ショベルの外観とその周辺の作業状況及び装置を示す図である。
図22は、第3の実施の形態に係わる遠隔制御システム及び遠隔設定システムの全体構成を示す図である。
図23は、第3の実施の形態における計測原理を説明するための各部材の幾何学的関係を示す図である。
図24は、第3の実施の形態における計測原理を説明するための各部材の幾何学的関係を示す図である。
図25は、演算処理手順を示すフローチャートである。
図26は、演算処理手順を示すフローチャートである。
図27は、レーザ灯台から出力するレーザ光波面とレーザ追尾装置との位置関係(レーザ光波面のワールド座標系での方程式)を同定する方法及び装置の一例を示す図である。
Claims (20)
- 多関節型のフロント作業機(7)を構成する上下方向に回動可能な複数のフロント部材(8,9,10)を含む複数の被駆動部材と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータ(11,12,13)と、前記複数の油圧アクチュエータに供給される圧油の流量を制御する複数の油圧制御弁(24,25,26)と、この複数の油圧制御弁を制御し予め設定された目標作業面を形成するよう前記フロント作業機の動作を制御するフロント制御手段(53,56;633;633B)とを備えた建設機械(1;1A;1B)の遠隔制御システムにおいて、
前記建設機械(1;1A;1B)に搭載された機体側制御手段(101;101A;101B)と、前記建設機械を無線操縦する遠隔操作端末(102;102A;102B)とを備え、
前記遠隔操作端末は、前記複数の被駆動部材(8,9,10)の動作を指示する無線操縦信号を出力する遠隔操作手段(72)と、前記目標作業面の設定情報を入力する入力手段(71,71c;71A,645;71B,645)と、前記無線操縦信号と設定情報を前記建設機械に送信する第1無線通信手段(73,74;73A,74)と、前記建設機械と目標作業面との位置関係を表示する表示手段(71,71b;71A,644;71B,644)とを有し、
前記機体側制御手段は、前記遠隔操作端末から前記無線操縦信号と設定情報を受信する第2無線通信手段(54;54A)を有し、
前記フロント制御手段(53,56;633;633B)は、前記無線操縦信号と設定情報に基づき前記油圧制御弁(24,25,26)を制御し前記目標作業面を形成するよう前記フロント作業機(7)の動作を制御することを特徴とする建設機械の遠隔制御システム。 - 請求項1記載の建設機械の遠隔制御システムにおいて、
前記遠隔操作端末(102;102A;102B)の入力手段(71,71c;71A,645;71B,645)は、前記建設機械(1;1A;1B)の外部基準(R;ΣG)に関連付けられた設定情報を入力する手段であり、前記表示手段(71,71b;71A,644;71B,644)は、前記建設機械と目標作業面との位置関係を前記外部基準に関連付けて表示する手段であり、
前記機体側制御手段(101;101A;101B)と遠隔操作端末(102,102A,102B)のいずれか一方は、前記建設機械の外部基準に関連付けられた目標作業面の設定情報を、建設機械と目標作業面の位置関係に変換する設定情報変換手段(52,53,55,55d;531,532,643,S510−S550;725,762,764,643B,S710−S790)を更に有し、
前記フロント制御手段(53,56;633;633B)は、前記無線操縦信号と、前記建設機械と目標作業面の位置関係に変換された設定情報とに基づき前記油圧制御弁(24,25,26)を制御し前記目標作業面を形成するよう前記フロント作業機(7)の動作を制御することを特徴とする建設機械の遠隔制御システム。 - 請求項2記載の建設機械の遠隔制御システムにおいて、
前記外部基準(R)はレーザ燈台(51)が発するレーザ光により形成されるレーザ基準面であり、前記入力手段(71,71c)は、前記設定情報として前記レーザ基準面と目標作業面の位置関係を入力する手段であり、前記設定情報変換手段(52,53,55,55d)は、前記建設機械(1)と前記レーザ基準面の位置関係を計測する計測手段(52,55b)と、前記設定手段で入力したレーザ基準面と目標作業面の位置関係と前記計測手段で計測した建設機械とレーザ基準面の位置関係とを用いて建設機械と目標作業面の位置関係を求める演算手段(55d)とを有することを特徴とする建設機械の遠隔制御システム。 - 請求項2記載の建設機械の遠隔制御システムにおいて、
前記遠隔操作端末(102)の表示手段(71b)は、設定モードと遠隔操作モードに切り換え可能であり、前記設定モードにあるときは、前記外部基準(R)と目標作業面と建設機械(1)の位置関係を表示し、前記遠隔操作モードに切り換えられると、前記目標作業面と前記フロント作業機(7)の位置関係を表示することを特徴とする建設機械の遠隔制御システム。 - 請求項2記載の建設機械の遠隔制御システムにおいて、
前記外部基準(ΣG)は、前記建設機械(1A;1B)の外側に設定され、位置及び姿勢が既知である外部座標系であり、
前記入力手段(71A,644;71B,644)は、前記設定情報として前記外部座標系に関連付けられた施工データを入力する手段であり、
前記設定情報変換手段(531,532,643,S510−S550;725,762,764,643B,S710−S790)は前記遠隔操作端末(102A;102B)に備えられ、前記施工データから前記外部座標系での目標作業面の設定情報を生成し、この設定情報を前記建設機械に設定された機体座標系(ΣSB)での目標作業面の設定情報に変換する手段であることを特徴とする建設機械の遠隔制御システム。 - 請求項5記載の建設機械の遠隔制御システムにおいて、
前記外部座標系(ΣG)は、地球の準拠楕円体の中心を原点とする直交座標系であることを特徴とする建設機械の遠隔制御システム。 - 請求項5記載の建設機械の遠隔制御システムにおいて、
前記設定情報変換手段(531,532,643,S510−S550;725,762,764,643B,S710−S790)は、前記機体座標系(ΣSB)の位置及び姿勢を前記外部座標系(ΣG)の値として求める機体座標計測演算手段(531,532,S510−S530;725,762,764,S710−S770)と、この機体座標計測演算手段で求めた外部座標系での機体座標系の位置及び姿勢に基づき、前記外部座標系での目標作業面の設定情報を前記機体座標系での目標作業面の設定情報に変換する設定情報演算手段(S550;S790)とを有することを特徴とする建設機械の遠隔制御システム。 - 請求項7記載の建設機械の遠隔制御システムにおいて、
前記設定情報変換手段(643,S510−S550;643B,S710−S790)は、前記外部座標系(ΣG)での機体座標系(ΣSB)の位置及び姿勢と前記施工データとを比較して、前記機体座標系の位置及び姿勢における施工データ部分を抽出し、その施工データ部分から前記外部座標系での目標作業面の設定情報を生成する手段(S540;S780)を更に有することを特徴とする建設機械の遠隔制御システム。 - 請求項7記載の建設機械の遠隔制御システムにおいて、
前記機体座標計測演算手段(531,532,S510−S530)は、
前記建設機械(1A)の異なる位置に設置された少なくとも2個のGPS受信手段(531,532)と、
前記2個のGPS受信手段の受信情報に基づき、前記機体座標系(ΣSB)の位置及び姿勢を前記外部座標系(ΣG)の値として求める座標位置演算手段(S510−S530)とを有することを特徴とする建設機械の遠隔制御システム。 - 請求項9記載の建設機械の遠隔制御システムにおいて、
前記機体座標計測演算手段(531,532,S510−S530)は、前記建設機械の傾斜量を計測する傾斜量計測手段(524)を更に有し、
前記座標位置演算手段(S510−S530)は、前記2個のGPS受信手段(531,532)の受信情報と前記傾斜量計測手段の計測結果とに基づき、前記機体座標系(ΣSB)の位置及び姿勢を前記外部座標系(ΣG)の値として求めることを特徴とする建設機械の遠隔制御システム。 - 請求項9記載の建設機械の遠隔制御システムにおいて、
前記建設機械(1A)は、下部走行体(2)と、この下部走行体上に旋回可能に搭載された上部旋回体(3)とを有し、前記フロント作業機(7)は前記上部旋回体上下方向に回動可能に取り付けられており、
前記2個のGPS受信手段(531,532)は前記上部旋回体上の異なる位置に設置された2個のGPSアンテナを有し、
前記機体座標系(ΣSB)は、前記上部旋回体の回転軸近傍の位置で前記下部走行体に固定して設定された直交座標系であり、
前記機体座標計測演算手段(531,532,S510−S530)は、前記下部走行体に対する上部旋回体の回転角を計測する角度計測手段(520)を更に有し、
前記座標位置演算手段(S510−S530)は、前記2個のGPS受信手段の受信情報と前記角度計測手段の計測結果とに基づき、前記機体座標系の位置及び姿勢を前記外部座標系(ΣG)の値として求めることを特徴とする建設機械の遠隔制御システム。 - 請求項7記載の建設機械の遠隔制御システムにおいて、
前記機体座標計測演算手段(725,762,764,S710−S770)は、
前記外部座標系(ΣG)に対する位置関係が既知である地上の特定位置に設置され、その特定位置から前記建設機械(1B)の特定位置までの距離と方位を計測する3次元位置計測手段(762)と、
前記建設機械に設置されたレーザ受光器(725)と、
前記レーザ受光器に向けてレーザ光を発するレーザ灯台(764)と、
前記レーザ受光器が前記レーザ灯台の発するレーザ光を受光したことをトリガーとして前記地上の特定位置に対する前記レーザ光の位置関係を演算し、この演算結果と前記3次元位置計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系(ΣSB)の位置及び姿勢を求める座標位置演算手段(S710−S790)とを有することを特徴とする建設機械の遠隔制御システム。 - 請求項12記載の建設機械の遠隔制御システムにおいて、
前記機体座標計測演算手段(725,762,764,S710−S770)は、前記建設機械(1B)の傾斜量を計測する傾斜量計測手段(524)を更に有し、
前記座標位置演算手段(S710−S790)は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段(762)の計測結果と前記傾斜量計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系(ΣSB)の位置及び姿勢を求めることを特徴とする建設機械の遠隔制御システム。 - 請求項12記載の建設機械の遠隔制御システムにおいて、
前記建設機械(1B)は、下部走行体(2)と、この下部走行体上に旋回可能に搭載された上部旋回体(3)とを有し、前記フロント作業機(7)は前記上部旋回体上下方向に回動可能に取り付けられており、
前記機体座標系(ΣSB)が設定される建設機械の特定位置は前記上部旋回体の回転軸近傍の位置であり、
前記機体座標系(ΣSB)は前記下部走行体に固定して設定された直交座標系であり、
前記機体座標計測演算手段(725,762,764,S710−S770)は、前記下部走行体に対する上部旋回体の回転角を計測する角度計測手段(520)を更に有し、
前記座標位置演算手段(S710−S790)は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段(762)の計測結果と前記角度計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系(ΣSB)の位置及び姿勢を求めることを特徴とする建設機械の遠隔制御システム。 - 請求項14記載の建設機械の遠隔制御システムにおいて、
前記レーザ受光器(725)は前記フロント作業機(7)に設置され、
前記機体座標計測演算手段(725,762,764,S710−S770)は、前記フロント作業機を構成する複数のフロント部材の位置と姿勢を計測する位置・姿勢計測手段(34,35,36)を更に有し、
前記座標位置演算手段(S710−S790)は、前記地上の特定位置に対する前記レーザ光の位置関係の演算結果と前記3次元位置計測手段(762)の計測結果と前記角度計測手段の計測結果と前記位置・姿勢計測手段の計測結果とに基づき、前記地上の特定位置に対する前記機体座標系(ΣSB)の位置及び姿勢を求めることを特徴とする建設機械の遠隔制御システム。 - 請求項12記載の建設機械の遠隔制御システムにおいて、
前記3次元位置計測手段(762)は、前記建設機械の特定位置に設置されたリフレクタ(761)を追尾しその距離と方位を計測するレーザ追尾装置であることを特徴とする建設機械の遠隔制御システム。 - 多関節型のフロント作業機(7)を構成する上下方向に回動可能な複数のフロント部材(8,9,10)を含む複数の被駆動部材と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータ(11,12,13)と、前記複数の油圧アクチュエータに供給される圧油の流量を制御する複数の油圧制御弁(24,25,26)と、この複数の油圧制御弁を制御し予め設定された目標作業面を形成するよう前記フロント作業機の動作を制御するフロント制御手段(633;633B)とを備えた建設機械(1A,1B)の遠隔設定システムにおいて、
前記建設機械(1A,1B)に搭載された機体側制御手段(101A;101B)と、遠隔操作端末(102A;102B)とを備え、
前記遠隔操作端末は、前記目標作業面の設定情報として、建設機械(1A;1B)の外側に設定された位置及び姿勢が既知である外部座標系に関連付けられた施工データを入力する入力手段(71A,645;71B,645)と、前記施工データから前記外部座標系での目標作業面の設定情報を生成し、この設定情報を前記建設機械に設定された機体座標系(ΣSB)での目標作業面の設定情報に変換する設定情報変換手段(531,532,643,S510−S550;725,762,764,643B,S710−S790)と、前記機体座標系(ΣSB)での目標作業面の設定情報を前記建設機械に送信する第1無線通信手段(73A,74)と、前記建設機械と目標作業面との位置関係を前記外部座標系に関連付けて表示する表示手段(71A,644;71B,644)とを有し、
前記機体側制御手段は、前記遠隔操作端末から前記機体座標系(ΣSB)での目標作業面の設定情報を受信する第2無線通信手段(54A)を有し、
前記フロント制御手段(633;633B)は、前記機体座標系(ΣSB)での目標作業面の設定情報に基づき前記油圧制御弁(24,25,26)を制御し前記目標作業面を形成するよう前記フロント作業機(7)の動作を制御することを特徴とする建設機械の遠隔設定システム。 - 請求項17記載の建設機械の遠隔設定システムにおいて、
前記外部座標系(ΣG)は、地球の準拠楕円体の中心を原点とする直交座標系であることを特徴とする建設機械の遠隔設定システム。 - 請求項17記載の建設機械の遠隔設定システムにおいて、
前記設定情報変換手段(531,532,643,S510−S550;725,762,764,643B,S710−790)は、前記機体座標系(ΣSB)の位置及び姿勢を前記外部座標系(ΣG)の値として求める機体座標計測演算手段(531,532,S510−S530;725,762,764,S710−S770)と、この機体座標計測演算手段で求めた外部座標系での機体座標系の位置及び姿勢に基づき、前記外部座標系での目標作業面の設定情報を前記機体座標系での目標作業面の設定情報に変換する設定情報演算手段(S550;S790)とを有することを特徴とする建設機械の遠隔設定システム。 - 請求項19記載の建設機械の遠隔設定システムにおいて、
前記設定情報変換手段(643,S510−S550;643B,S710−S790)は、前記外部座標系(ΣG)での機体座標系(ΣSB)の位置及び姿勢と前記施工データとを比較して、前記機体座標系の位置及び姿勢における施工データ部分を抽出し、その施工データ部分から前記外部座標系での目標作業面の設定情報を生成する手段(S540;S780)を更に有することを特徴とする建設機械の遠隔設定システム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001186278 | 2001-06-20 | ||
JP2001186278 | 2001-06-20 | ||
PCT/JP2002/004783 WO2003000997A1 (fr) | 2001-06-20 | 2002-05-17 | Systeme de telecommande et systeme de telereglage d'engins de construction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2003000997A1 true JPWO2003000997A1 (ja) | 2004-10-14 |
Family
ID=19025738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003507367A Pending JPWO2003000997A1 (ja) | 2001-06-20 | 2002-05-17 | 建設機械の遠隔制御システム及び遠隔設定システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US6782644B2 (ja) |
EP (1) | EP1452651A1 (ja) |
JP (1) | JPWO2003000997A1 (ja) |
WO (1) | WO2003000997A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017191396A (ja) * | 2016-04-12 | 2017-10-19 | 日本車輌製造株式会社 | 施工管理システム |
JP2021067174A (ja) * | 2016-03-24 | 2021-04-30 | 住友重機械工業株式会社 | ショベル、ショベルのシステム |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3816806B2 (ja) * | 2002-01-21 | 2006-08-30 | 株式会社トプコン | 建設機械制御システム |
US6994223B1 (en) * | 2002-10-29 | 2006-02-07 | Auto Crane Company | Diagnostic readout for operation of a crane |
JP4233932B2 (ja) * | 2003-06-19 | 2009-03-04 | 日立建機株式会社 | 作業機械の作業支援・管理システム |
US7010367B2 (en) * | 2003-10-16 | 2006-03-07 | Caterpillar Inc. | Operator interface for a work machine |
EP1555772A3 (en) * | 2004-01-15 | 2013-07-17 | Yamaha Corporation | Remote control method of external devices |
US20060041845A1 (en) * | 2004-05-20 | 2006-02-23 | Caterpillar Inc. | Systems and methods for exchanging display data between machines |
US7764365B2 (en) * | 2004-07-23 | 2010-07-27 | Trimble Navigation Limited | Combination laser detector and global navigation satellite receiver system |
US7222444B2 (en) * | 2004-10-21 | 2007-05-29 | Deere & Company | Coordinated linkage system for a work vehicle |
JP2006132132A (ja) * | 2004-11-04 | 2006-05-25 | Hitachi Constr Mach Co Ltd | 作業管理装置及びこれを備えた作業機械 |
DE102005024676A1 (de) * | 2004-12-21 | 2006-07-06 | Bosch Rexroth Aktiengesellschaft | System zur Lageerfassung und -regelung für Arbeitsarme mobiler Arbeitsmaschinen |
US7643890B1 (en) | 2005-01-13 | 2010-01-05 | Lincoln Global, Inc. | Remote management of portable construction devices |
US7168174B2 (en) * | 2005-03-14 | 2007-01-30 | Trimble Navigation Limited | Method and apparatus for machine element control |
US7640683B2 (en) * | 2005-04-15 | 2010-01-05 | Topcon Positioning Systems, Inc. | Method and apparatus for satellite positioning of earth-moving equipment |
US8457828B2 (en) * | 2005-06-27 | 2013-06-04 | The Charles Machine Works, Inc. | Remote control machine with partial or total autonomous control |
KR100652876B1 (ko) * | 2005-09-26 | 2006-12-01 | 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 | 건설기계의 무선전장 시스템 및 이를 이용한 건설기계메인터넌스 시스템 |
EP1954889B1 (en) * | 2005-11-14 | 2019-10-23 | Leica Geosystems Technology A/S | A control panel and receptacle for an earth moving equipment |
US7734397B2 (en) | 2005-12-28 | 2010-06-08 | Wildcat Technologies, Llc | Method and system for tracking the positioning and limiting the movement of mobile machinery and its appendages |
US8596373B2 (en) * | 2006-03-10 | 2013-12-03 | Deere & Company | Method and apparatus for retrofitting work vehicle with blade position sensing and control system |
DE602006001105D1 (de) * | 2006-03-17 | 2008-06-19 | Qinghua He | Elektromechanisch gesteuerter Bagger und Verfahren zur Steuerung des elektromechanisch gesteuerten Baggers. |
US20080047170A1 (en) * | 2006-08-24 | 2008-02-28 | Trimble Navigation Ltd. | Excavator 3D integrated laser and radio positioning guidance system |
US7925439B2 (en) * | 2006-10-19 | 2011-04-12 | Topcon Positioning Systems, Inc. | Gimbaled satellite positioning system antenna |
US8078297B2 (en) * | 2006-12-01 | 2011-12-13 | Trimble Navigation Limited | Interface for retrofitting a manually controlled machine for automatic control |
CN100591880C (zh) * | 2006-12-31 | 2010-02-24 | 三一重工股份有限公司 | 一种智能臂架控制装置 |
US8019514B2 (en) * | 2007-02-28 | 2011-09-13 | Caterpillar Inc. | Automated rollover prevention system |
US7890236B2 (en) * | 2007-08-21 | 2011-02-15 | Clark Equipment Company | Automated control module for a power machine |
US7825798B2 (en) * | 2008-06-26 | 2010-11-02 | Torres Juan G | Security and tracking system to prevent the unauthorized use or access to a device having hydraulic components |
WO2010085184A1 (en) * | 2009-01-20 | 2010-07-29 | Husqvarna Ab | Control system for a remote control work machine |
US20100245129A1 (en) * | 2009-03-31 | 2010-09-30 | Caterpillar Inc. | System and method for identifying machines |
US9206589B2 (en) * | 2009-03-31 | 2015-12-08 | Caterpillar Inc. | System and method for controlling machines remotely |
US8639393B2 (en) * | 2010-11-30 | 2014-01-28 | Caterpillar Inc. | System for automated excavation planning and control |
US8272467B1 (en) | 2011-03-04 | 2012-09-25 | Staab Michael A | Remotely controlled backhoe |
US8554378B2 (en) | 2011-03-08 | 2013-10-08 | Magnetek, Inc. | System for control of mobile hydraulic equipment |
JP5237408B2 (ja) * | 2011-03-24 | 2013-07-17 | 株式会社小松製作所 | 油圧ショベルの較正システム及び較正方法 |
CN102419899B (zh) * | 2011-11-02 | 2014-01-08 | 中联重科股份有限公司 | 工程机械设备的拆装控制系统及拆装遥控装置 |
JP2013186740A (ja) * | 2012-03-08 | 2013-09-19 | Fanuc Ltd | 機械の管理システム |
US9360870B2 (en) | 2012-07-18 | 2016-06-07 | Lynch Fluid Controls Inc. | Digital proportional wireless control |
EP2902550A4 (en) * | 2012-09-20 | 2016-07-20 | Volvo Constr Equip Ab | METHOD FOR AUTOMATIC DETECTION AND ADJUSTMENT OF A FASTENING AND DEVICE THEREFOR |
CN104662232B (zh) * | 2012-09-25 | 2017-06-09 | 沃尔沃建造设备有限公司 | 用于施工机械的自动整平系统及其控制方法 |
US8820457B2 (en) * | 2012-11-13 | 2014-09-02 | Komatsu Ltd. | Hydraulic excavator |
US9016419B2 (en) | 2012-11-13 | 2015-04-28 | Komatsu Ltd. | Hydraulic excavator |
US9213331B2 (en) * | 2012-12-19 | 2015-12-15 | Caterpillar Inc. | Remote control system for a machine |
EP2955281A4 (en) * | 2013-02-08 | 2017-01-25 | Volvo Construction Equipment AB | Construction equipment driving control method |
US9687950B2 (en) | 2013-03-13 | 2017-06-27 | Trimble Inc. | System and method for positioning a tool in a work space |
JP6147037B2 (ja) * | 2013-03-14 | 2017-06-14 | 株式会社トプコン | 建設機械制御システム |
NL1040157C2 (nl) * | 2013-04-12 | 2014-10-14 | Hudson Bay Holding B V | Mobiele inrichting met besturingssysteem. |
US20140336828A1 (en) * | 2013-05-09 | 2014-11-13 | Terydon, Inc. | Mechanism for remotely controlling water jet equipment |
US11360494B2 (en) | 2013-05-09 | 2022-06-14 | Terydon, Inc. | Method of cleaning heat exchangers or tube bundles using a cleaning station |
US10408552B2 (en) | 2013-05-09 | 2019-09-10 | Terydon, Inc. | Indexer, indexer retrofit kit and method of use thereof |
US10890390B2 (en) | 2013-05-09 | 2021-01-12 | Terydon, Inc. | Indexer, indexer retrofit kit and method of use thereof |
US11327511B2 (en) | 2013-05-09 | 2022-05-10 | Terydon, Inc. | Indexer, indexer retrofit kit and method of use thereof |
US10401878B2 (en) | 2013-05-09 | 2019-09-03 | Terydon, Inc. | Indexer, indexer retrofit kit and method of use thereof |
US11294399B2 (en) | 2013-05-09 | 2022-04-05 | Terydon, Inc. | Rotary tool with smart indexing |
US9213333B2 (en) * | 2013-06-06 | 2015-12-15 | Caterpillar Inc. | Remote operator station |
DE102013211443A1 (de) * | 2013-06-19 | 2014-12-24 | Robert Bosch Gmbh | Mobile Arbeitsmaschine mit Arbeitsraumüberwachung |
BR112016004771B1 (pt) * | 2013-09-06 | 2021-08-10 | Putzmeister Engineering Gmbh | Máquina de trabalho e método para sua operação |
GB2521624B (en) * | 2013-12-23 | 2016-05-25 | Dolan Francis | A control apparatus for heavy machinery |
JP6053714B2 (ja) * | 2014-03-31 | 2016-12-27 | 日立建機株式会社 | 油圧ショベル |
US9458598B2 (en) * | 2014-04-24 | 2016-10-04 | Komatsu Ltd. | Work vehicle |
US9856628B2 (en) * | 2014-06-02 | 2018-01-02 | Komatsu Ltd. | Control system for construction machine, construction machine, and method for controlling construction machine |
KR101681434B1 (ko) * | 2014-09-05 | 2016-11-30 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 유압 셔블 |
US9867331B1 (en) | 2014-10-28 | 2018-01-16 | Hydro-Gear Limited Partnership | Utility vehicle with onboard and remote control systems |
KR102483962B1 (ko) * | 2015-03-19 | 2022-12-30 | 스미토모 겐키 가부시키가이샤 | 쇼벨 |
JP2017043885A (ja) * | 2015-08-24 | 2017-03-02 | 株式会社小松製作所 | ホイールローダ |
JP2017172207A (ja) * | 2016-03-24 | 2017-09-28 | 住友重機械工業株式会社 | ショベル |
JP6002873B1 (ja) * | 2016-03-28 | 2016-10-05 | 株式会社小松製作所 | 評価装置及び評価方法 |
US9885169B2 (en) * | 2016-07-01 | 2018-02-06 | GK Technology, Inc. | Automated backslope cutting system |
US11300981B2 (en) | 2016-08-30 | 2022-04-12 | Terydon, Inc. | Rotary tool with smart indexer |
US11733720B2 (en) | 2016-08-30 | 2023-08-22 | Terydon, Inc. | Indexer and method of use thereof |
JP6794193B2 (ja) * | 2016-09-02 | 2020-12-02 | 株式会社小松製作所 | 作業機械の画像表示システム |
JP6867132B2 (ja) * | 2016-09-30 | 2021-04-28 | 株式会社小松製作所 | 作業機械の検出処理装置及び作業機械の検出処理方法 |
US9995016B1 (en) * | 2016-11-30 | 2018-06-12 | Caterpillar Trimble Control Technologies Llc | Excavator limb length and offset angle determination using a laser distance meter |
US9995017B1 (en) * | 2016-12-08 | 2018-06-12 | Caterpillar Trimble Control Technologies Llc | Excavator implement length and angle offset determination using a laser distance meter |
US10407879B2 (en) * | 2017-02-08 | 2019-09-10 | Deere & Company | System and method for remote work implement angular position display |
JP6723184B2 (ja) * | 2017-03-28 | 2020-07-15 | 日立建機株式会社 | 稼働データ記憶装置 |
FI20176052A1 (en) * | 2017-11-24 | 2019-05-25 | Novatron Oy | Control of earthmoving machinery |
JP7232437B2 (ja) * | 2018-02-19 | 2023-03-03 | 国立大学法人 東京大学 | 作業車両の表示システム及び生成方法 |
JP7114950B2 (ja) * | 2018-03-09 | 2022-08-09 | 株式会社タダノ | 遠隔操作端末及び作業車両 |
JP6889675B2 (ja) * | 2018-03-13 | 2021-06-18 | ヤンマーパワーテクノロジー株式会社 | 旋回作業車、及び、旋回作業車における施工端部の位置検知方法 |
JP7127313B2 (ja) * | 2018-03-19 | 2022-08-30 | コベルコ建機株式会社 | 建設機械 |
CN111919001A (zh) * | 2018-03-20 | 2020-11-10 | 住友重机械工业株式会社 | 挖土机、信息处理装置、信息处理方法、程序 |
JP7152170B2 (ja) * | 2018-03-28 | 2022-10-12 | 株式会社小松製作所 | 作業車両の制御システム、方法、及び作業車両 |
JP7014004B2 (ja) * | 2018-03-29 | 2022-02-01 | コベルコ建機株式会社 | 作業機械操縦装置 |
US10801180B2 (en) * | 2018-06-11 | 2020-10-13 | Deere & Company | Work machine self protection system |
JP7285051B2 (ja) * | 2018-06-29 | 2023-06-01 | 株式会社小松製作所 | 表示制御装置、および表示制御方法 |
CN108894272A (zh) * | 2018-07-31 | 2018-11-27 | 青岛雷沃工程机械有限公司 | 一种挖掘机自动引导施工系统及施工方法 |
JP6944426B2 (ja) * | 2018-09-05 | 2021-10-06 | 株式会社日立建機ティエラ | 電動式建設機械 |
JP7301514B2 (ja) * | 2018-09-21 | 2023-07-03 | 日立建機株式会社 | 座標変換システム及び作業機械 |
CN112867831B (zh) * | 2018-10-19 | 2023-09-05 | 住友建机株式会社 | 挖土机 |
US11002541B2 (en) | 2019-07-23 | 2021-05-11 | Trimble Inc. | Target positioning with electronic distance measuring and bundle adjustment |
US10997747B2 (en) | 2019-05-09 | 2021-05-04 | Trimble Inc. | Target positioning with bundle adjustment |
JP2022540807A (ja) * | 2019-07-08 | 2022-09-20 | ダンフォス・パワー・ソリューションズ・ツー・テクノロジー・エイ/エス | 油圧システム構造及びシステム構造内で使用可能な双方向比例弁 |
JP7268579B2 (ja) * | 2019-11-01 | 2023-05-08 | コベルコ建機株式会社 | 油圧作業機及び遠隔操縦システム |
EP3851592A3 (en) * | 2019-12-28 | 2021-11-03 | Kubota Corporation | Communication system for working machine |
CN111442759B (zh) * | 2020-03-05 | 2023-10-31 | 天地科技股份有限公司 | 一种综采工作面设备位姿统一监测系统 |
US11774959B2 (en) | 2020-07-30 | 2023-10-03 | Caterpillar Paving Products Inc. | Systems and methods for providing machine configuration recommendations |
CN111708067B (zh) * | 2020-08-04 | 2022-04-12 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | 挖掘机自动引导系统 |
CN112095708A (zh) * | 2020-09-23 | 2020-12-18 | 三一重机有限公司 | 挖掘机触控控制方法、系统及挖掘机 |
CN112482484A (zh) * | 2020-11-25 | 2021-03-12 | 贵州詹阳动力重工有限公司 | 一种挖掘机远程遥控模拟舱及远程遥控系统 |
CN113217068B (zh) * | 2021-04-28 | 2024-08-16 | 太原理工大学 | 一种工作面的检测装置、方法、终端及存储介质 |
EP4364303A1 (en) * | 2021-06-29 | 2024-05-08 | Danfoss A/S | High temperature wireless transceiver for automotive and off-road automotive applications |
MX2024002050A (es) * | 2021-08-17 | 2024-03-01 | Eddy Pump Corp | Sistema y modulo de control de vehiculo. |
US20230250613A1 (en) * | 2022-02-10 | 2023-08-10 | Zoomlion Heavy Industry Na, Inc. | Remote Wireless Electric Cab |
JP2023151114A (ja) * | 2022-03-31 | 2023-10-16 | 株式会社トプコン | 作業結果情報取得装置、作業結果情報取得システム、作業結果情報取得装置の制御方法及び作業結果情報取得装置の制御プログラム |
CN114934550B (zh) * | 2022-06-07 | 2023-05-26 | 中联重科股份有限公司 | 用于控制臂架的方法、控制器及机械设备 |
DE102022119045A1 (de) | 2022-07-28 | 2024-02-08 | Wacker Neuson Linz Gmbh | Arbeitsmaschine mit einer Begrenzungseinheit zum Festlegen eines Grenz-Parameters |
WO2024202371A1 (ja) * | 2023-03-31 | 2024-10-03 | 日立建機株式会社 | 建設機械および遠隔操作システム |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5826130A (ja) | 1981-08-10 | 1983-02-16 | Meidensha Electric Mfg Co Ltd | 土建作業方法 |
US4829418A (en) * | 1987-04-24 | 1989-05-09 | Laser Alignment, Inc. | Apparatus and method for controlling a hydraulic excavator |
US4888890A (en) * | 1988-11-14 | 1989-12-26 | Spectra-Physics, Inc. | Laser control of excavating machine digging depth |
US5019761A (en) * | 1989-02-21 | 1991-05-28 | Kraft Brett W | Force feedback control for backhoe |
JP2889945B2 (ja) | 1990-04-13 | 1999-05-10 | 株式会社小松製作所 | レーザ光を用いた油圧式パワーショベルの直線掘削制御方法 |
US5100229A (en) * | 1990-08-17 | 1992-03-31 | Spatial Positioning Systems, Inc. | Spatial positioning system |
JPH0680251A (ja) | 1992-09-01 | 1994-03-22 | Fujita Corp | 資材の積み降ろしシステム |
JP3321274B2 (ja) * | 1993-12-24 | 2002-09-03 | 株式会社小松製作所 | 作業機械の遠隔操作制御装置 |
KR100196669B1 (ko) | 1994-04-28 | 1999-06-15 | 세구치 류이치 | 건설기계의 영역제한 굴삭제어장치 |
US5666792A (en) * | 1994-12-30 | 1997-09-16 | Mullins; Donald B. | Remotely guided brush cutting, chipping and clearing apparatus and method |
US6044316A (en) * | 1994-12-30 | 2000-03-28 | Mullins; Donald B. | Method and apparatus for navigating a remotely guided brush cutting, chipping and clearing apparatus |
JP3206874B2 (ja) * | 1995-10-16 | 2001-09-10 | 鹿島建設株式会社 | 遠隔施工支援用の画像システム |
JPH1018353A (ja) * | 1996-07-01 | 1998-01-20 | Hitachi Constr Mach Co Ltd | 遠隔操縦作業機械 |
JP3364419B2 (ja) | 1997-10-29 | 2003-01-08 | 新キャタピラー三菱株式会社 | 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械 |
CN1606021A (zh) * | 1998-08-31 | 2005-04-13 | 株式会社神户制钢所 | 建筑机械管理系统 |
US6112139A (en) * | 1998-10-29 | 2000-08-29 | Case Corporation | Apparatus and method for wireless remote control of an operation of a work vehicle |
JP2000204580A (ja) | 1999-01-13 | 2000-07-25 | Hitachi Constr Mach Co Ltd | 建設機械の制御装置及び連続傾斜面の掘削形成方法 |
US6374147B1 (en) * | 1999-03-31 | 2002-04-16 | Caterpillar Inc. | Apparatus and method for providing coordinated control of a work implement |
JP2001098585A (ja) | 1999-10-01 | 2001-04-10 | Komatsu Ltd | 建設機械の掘削作業ガイダンス装置および掘削制御装置 |
JP4024042B2 (ja) * | 1999-10-01 | 2007-12-19 | 日立建機株式会社 | 掘削機械の目標掘削面設定装置、その記録媒体及び表示装置 |
JP2001123476A (ja) * | 1999-10-26 | 2001-05-08 | Hitachi Constr Mach Co Ltd | 掘削機械の表示システム及び記録媒体 |
JP2001159518A (ja) * | 1999-11-30 | 2001-06-12 | Komatsu Ltd | 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置 |
WO2001073226A1 (fr) * | 2000-03-31 | 2001-10-04 | Hitachi Construction Machinery Co., Ltd. | Procede et systeme de gestion d'une machine de construction et appareil de traitement arithmetique |
WO2003017035A2 (en) * | 2001-08-16 | 2003-02-27 | R. Morley Incorporated | Machine control over the web |
US6691435B1 (en) * | 2002-09-25 | 2004-02-17 | Sno-Way International, Inc. | Plow system including a hydraulic fluid diverter |
JP6080251B2 (ja) * | 2012-10-31 | 2017-02-15 | 鈴茂器工株式会社 | 米飯成形装置 |
-
2002
- 2002-05-17 WO PCT/JP2002/004783 patent/WO2003000997A1/ja not_active Application Discontinuation
- 2002-05-17 EP EP02728076A patent/EP1452651A1/en not_active Withdrawn
- 2002-05-17 US US10/343,414 patent/US6782644B2/en not_active Expired - Fee Related
- 2002-05-17 JP JP2003507367A patent/JPWO2003000997A1/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021067174A (ja) * | 2016-03-24 | 2021-04-30 | 住友重機械工業株式会社 | ショベル、ショベルのシステム |
JP2017191396A (ja) * | 2016-04-12 | 2017-10-19 | 日本車輌製造株式会社 | 施工管理システム |
Also Published As
Publication number | Publication date |
---|---|
US6782644B2 (en) | 2004-08-31 |
WO2003000997A1 (fr) | 2003-01-03 |
US20030147727A1 (en) | 2003-08-07 |
EP1452651A1 (en) | 2004-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2003000997A1 (ja) | 建設機械の遠隔制御システム及び遠隔設定システム | |
KR101695914B1 (ko) | 토공공사 수행시 굴삭기의 형상정보를 실시간 제공하는 굴삭기 3d 토공 bim 시스템 | |
US10508417B2 (en) | Construction information display device and method for displaying construction information | |
US9464408B2 (en) | Three dimensional feature location and characterization from an excavator | |
US6094625A (en) | Augmented vision for survey work and machine control | |
JP6712674B2 (ja) | 建設機械 | |
US20030014212A1 (en) | Augmented vision system using wireless communications | |
WO2020003631A1 (ja) | 表示制御装置、および表示制御方法 | |
US20130054097A1 (en) | Buried Utility Data with Exclusion Zones | |
JP4012448B2 (ja) | 建設機械の掘削作業教示装置 | |
JP7372029B2 (ja) | 表示制御装置、表示制御システムおよび表示制御方法 | |
JPWO2019175917A1 (ja) | 作業機械 | |
JP3987777B2 (ja) | 建設機械の掘削作業教示装置 | |
US20240011252A1 (en) | Shovel and shovel control device | |
WO2020121933A1 (ja) | 建設機械管理システム、建設機械管理プログラム、建設機械管理方法、建設機械および建設機械の外部管理装置 | |
US20230291989A1 (en) | Display control device and display method | |
US20230029071A1 (en) | Excavation level detection device | |
US20230267895A1 (en) | Display control device and display control method | |
JP6684004B1 (ja) | 建設機械管理システム、建設機械管理プログラム、建設機械管理方法、建設機械および建設機械の外部管理装置 | |
JP7076020B1 (ja) | 自動作業システム | |
US20240060275A1 (en) | Method and system of configuring a machine control unit of a construction machine | |
WO2023157707A1 (ja) | 表示制御装置、及び遠隔操作装置 | |
JP2023122748A (ja) | 作業位置指示システム | |
JP2023150952A (ja) | 作業機械 | |
JP2922832B2 (ja) | 測地システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070925 |