JPWO2003007477A1 - レベル変換回路 - Google Patents
レベル変換回路 Download PDFInfo
- Publication number
- JPWO2003007477A1 JPWO2003007477A1 JP2003513128A JP2003513128A JPWO2003007477A1 JP WO2003007477 A1 JPWO2003007477 A1 JP WO2003007477A1 JP 2003513128 A JP2003513128 A JP 2003513128A JP 2003513128 A JP2003513128 A JP 2003513128A JP WO2003007477 A1 JPWO2003007477 A1 JP WO2003007477A1
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- transistor
- node
- input
- level conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
- H03K19/018507—Interface arrangements
- H03K19/01855—Interface arrangements synchronous, i.e. using clock signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
- H03K19/018507—Interface arrangements
- H03K19/018521—Interface arrangements of complementary type, e.g. CMOS
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
- H03K3/356—Bistable circuits
- H03K3/356104—Bistable circuits using complementary field-effect transistors
- H03K3/356113—Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
- H03K3/356—Bistable circuits
- H03K3/356104—Bistable circuits using complementary field-effect transistors
- H03K3/356113—Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
- H03K3/356147—Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit using pass gates
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0289—Details of voltage level shifters arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
Abstract
レベル変換部(101)のpチャネルMOSFET(11)のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは入力ノードI2に接続される。nチャネルMOSFET(12)のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは電源電位VDDを受ける電源端子に接続される。入力信号CLK1、CLK2は相補に変化し、それらのハイレベルとローレベルの電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。
Description
技術分野
本発明は、レベル変換技術、とくに入力信号の電圧振幅を別の電圧振幅に変換するレベル変換回路に関する。
背景技術
近年、バルクシリコンを用いた集積回路として、マイクロプロセッサまたはメモリをロジック回路と同一チップ上に搭載したシステムオンシリコンと称されるチップが開発されている。これに伴って、多くの種類の回路を可能な限り微細なデザインルールで1チップ化する技術の開発が進められている。
しかし、回路の種類ごとに異なるデザインルールで設計されているために、デザインルールの異なる回路を集積化することが避けられない。その結果、1チップ内に異なる電源電圧で動作する複数の回路が混載され、それらのインターフェイス部分で電圧のレベル変換が必要となる。また、これら複数の回路の混載がそもそも高速性の追求をひとつの目的としている以上、当然、レベル変換回路にも高速動作が要求される。
液晶表示装置、有機EL(エレクトロルミネッセンス)装置等の表示デバイスには、一般に多結晶シリコンからなる薄膜トランジスタが用いられる。このような表示デバイスと同一基板上にレベル変換回路を設ける際、通常、レベル変換回路も多結晶シリコンからなる薄膜トランジスタで構成される。トランジスタの製造工程では、しきい値電圧等の素子特性にばらつきが生じる。特に、多結晶シリコンからなる薄膜トランジスタにおいては素子特性のばらつきが大きく、それでも高い確度で動作するレベル変換回路が要求される。さらにこうした表示デバイスでは、省電力化及び高精細化の観点から小振幅の入力信号が与えられた場合でも高速動作が可能なレベル変換回路が必要になる。
図1は従来のレベル変換回路の第1の例を示す回路図である。このレベル変換回路800は、2つのpチャネルMOSFET(金属酸化物半導体電界効果トランジスタ)801,802及び2つのnチャネルMOSFET803,804を含む。pチャネルMOSFET801,802は電源電位VDDを受ける電源端子と出力ノードN11,N12の間にそれぞれ接続され、nチャネルMOSFET803,804は出力ノードN11,N12と接地端子との間にそれぞれ接続される。pチャネルMOSFET801,802のゲートはそれぞれ出力ノードN11,N12に交差接続される。nチャネルMOSFET803,804のゲートには相補に変化する入力信号CLK1,CLK2が与えられる。
入力信号CLK1がハイレベルとなり、入力信号CLK2がローレベルになると、nチャネルMOSFET803がオンし、nチャネルMOSFET804がオフする。それにより、pチャネルMOSFET802がオンし、pチャネルMOSFET801がオフする。その結果、出力ノードN12の出力電位Voutが上昇する。逆に、入力信号CLK1がローレベルとなり、入力信号CLK2がハイレベルになると、出力ノードN12の出力電位Voutが低下する。
この回路でnチャネルMOSFET803,804がオンするためには、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET803,804のしきい値電圧Vtnよりも大きいことが必要となる。したがって、このレベル変換回路800は、入力信号と出力信号との電圧比が小さい場合に用いられ、この回路は、例えば3V系の信号を5V系の信号に、2.5V系の信号を3V系の信号に、または1.8V系の信号を2.5V系もしくは3.3V系の信号に変換する場合に有効である。
図2は従来のレベル変換回路の第2の例を示す回路図である。このレベル変換回路810は、バイアス回路811、pチャネルMOSFET812及びnチャネルMOSFET813を含む。
pチャネルMOSFET812は電源電位VDDを受ける電源端子と出力ノードN13との間に接続され、nチャネルMOSFET813は出力ノードN13と所定の電位VEEを受ける電源端子との間に接続される。入力信号CLKはpチャネルMOSFET812のゲート及びバイアス回路811に与えられる。バイアス回路811は入力信号の中心レベルをシフトさせてnチャネルMOSFET813のゲートに与える。
入力信号CLKがハイレベルになると、pチャネルMOSFET812がオフし、nチャネルMOSFET813がオンする。それにより、出力ノードN13の出力電位Voutが低下する。入力信号CLKがローレベルになると、pチャネルMOSFET812がオンし、nチャネルMOSFET813がオフする。それにより、出力ノードN13の出力電位Voutが上昇する。
この回路は、バイアス回路811により入力信号CLKの中心レベルがシフトされるので、設定により、入力信号CLKの電圧振幅がnチャネルMOSFET813のしきい値電圧Vtnよりも小さい場合でも動作する。
図3は従来のレベル変換回路の第3の例を示す回路図である。このレベル変換回路820は、クランプ回路821及びカレントミラー型の増幅回路822を含む。カレントミラー型の増幅回路822は、2つのpチャネルMOSFET831,832及び2つのnチャネルMOSFET833,834を含む。pチャネルMOSFET831,832は電源電位VDDを受ける電源端子と出力ノードN14,N15との間にそれぞれ接続される。nチャネルMOSFET833,834は出力ノードN14,N15と接地端子との間にそれぞれ接続される。pチャネルMOSFET831,832のゲートは出力ノードN14に接続される。クランプ回路821は、相補に変化する入力信号CLK1,CLK2の中心レベルをシフトさせてnチャネルMOSFET833,834のゲートに与える。
入力信号CLK1がハイレベルになり、入力信号CLK2がローレベルになると、nチャネルMOSFET833がオンし、nチャネルMOSFET834がオフする。それによりpチャネルMOSFET831,832がオンする。その結果、出力ノードN15の出力電位Voutが上昇する。逆に、入力信号CLK1がローレベルとなり、入力信号CLK2がハイレベルになると、出力ノードN15の出力電位Voutが低下する。
この回路は、クランプ回路821により入力信号CLK1,CLK2の中心レベルがシフトされるので、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET833,834のしきい値電圧Vtnよりも小さい場合でも動作する。
図4は従来のレベル変換回路の第4の例を示す回路図である。図4のレベル変換回路840は、クランプ回路841及びPMOSクロスカップル型の増幅回路842を含む。
PMOSクロスカップル型の増幅回路842は、2つのpチャネルMOSFET851,852及び2つのnチャネルMOSFET853,854を含む。pチャネルMOSFET851,852は電源電位VDDを受ける電源端子と出力ノードN16,N17との間にそれぞれ接続され、nチャネルMOSFET853,854は出力ノードN16,N17と接地端子との間にそれぞれ接続される。pチャネルMOSFET851,852のゲートはそれぞれ出力ノードN17,N16に交差接続される。クランプ回路841は、相補に変化する入力信号CLK1,CLK2の中心レベルをシフトさせてnチャネルMOSFET853,854のゲートに与える。
入力信号CLK1がハイレベルになり、入力信号CLK2がローレベルになると、nチャネルMOSFET853がオンし、nチャネルMOSFET854がオフする。それによりpチャネルMOSFET851がオフし、pチャネルMOSFET852がオンする。その結果、出力ノードN17の出力電位Voutが上昇する。逆に、入力信号CLK1がローレベルとなり、入力信号CLK2がハイレベルになると、出力ノードN17の出力電位Voutが低下する。
この回路は、クランプ回路841により入力信号CLK1,CLK2の中心レベルがシフトされるので、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET853,854のしきい値電圧Vtnよりも小さい場合でも動作する。
図1のレベル変換回路800は、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET803,804のしきい値電圧Vtnよりも小さい場合には動作することができない。
図2のレベル変換回路810は、バイアス回路811の存在により、入力信号CLKの電圧振幅がnチャネルMOSFET813のしきい値電圧Vtnよりも小さい場合でも動作することが可能となる。同様に、図3及び図4のレベル変換回路820,840も、クランプ回路821,841の存在により、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET833,834,853,854のしきい値電圧Vtnよりも小さい場合でも動作することが可能となる。
しかしながら、図2〜図4のレベル変換回路810,820,840においても製造工程のばらつきによってnチャネルMOSFETのしきい値電圧Vtnが設計値から大きくずれると、動作しない場合が生じる。
図1〜図4のレベル変換回路800,810,820,840のいずれにおいても製造工程でpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が不規則にばらついた場合、例えばnチャネルMOSFETのしきい値電圧が大きく、pチャネルMOSFETのしきい値電圧Vtpが小さくなった場合や、nチャネルMOSFETのしきい値電圧Vtnが小さく、pチャネルMOSFETのしきい値電圧Vtpが大きくなった場合、出力電圧波形のデューティー比が所定の設計値からずれる。特に、レベル変換回路を表示デバイスのクロック信号のために用いるとき、信号のデューティー比が50%に保たれないと、複数の表示デバイス間で画素の点灯及び消灯時間にばらつきが生じる。
図1のレベル変換回路800においては、nチャネルMOSFET803,804のオンオフの反転時にpチャネルMOSFET801,802のゲート電荷の引き抜き合いが行われる。そのため、出力電位Voutのレベルの反転に時間を要することとなり、高速動作を図ることができない。pチャネルMOSFET801,802として多結晶シリコンからなる薄膜トランジスタのように駆動能力が小さいトランジスタを用いた場合、この時間はさらに増大する。出力電位Voutのレベルの反転時、電源端子からpチャネルMOSFET801及びnチャネルMOSFET803の経路またはpチャネルMOSFET802及びnチャネルMOSFET804の経路を通して接地端子には貫通電流が流れ、出力電位Voutのレベルの反転に時間を要すればそれだけ消費電力が増える。
また、図3及び図4のレベル変換回路820,840のクランプ回路821,841については、一般にそれらが大きなレイアウト面積を要する点でも改善の余地が認められる。
発明の開示
したがって、本発明の目的は、製造工程でのばらつきによりトランジスタのしきい値電圧が設計値からずれた場合でも、より高い確度で動作できるとともに、高速動作、低消費電力化及び小面積化が可能なレベル変換回路を提供することにある。
本発明のある態様は、レベル変換回路に関する。この回路は、電源電圧が印加される電源ノードと出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと前記出力ノードとの間に接続された第2導電型の第2のトランジスタとを備え、前記第2のトランジスタの制御電極は前記電源ノードに接続され、前記第1のトランジスタの制御電極は第2入力信号が入力される第2入力ノードに接続され、前記出力ノードから出力信号が取り出される。
この構成により、第1および第2入力信号の変化に応じて第1及び第2のトランジスタのオン状態が制御され、前記の電源電圧にそのハイレベルが依存する出力信号が得られる。したがって、例えば第1及び第2入力信号の電圧振幅が第1及び第2のトランジスタのしきい値電圧よりも小さい場合でも動作可能な構成を得ることができる。
また、第2のトランジスタの制御電極が定電位であるため、第1入力信号によって直接第2トランジスタのオン状態を変化させることができ、高速動作の実現が容易になる。高速動作が実現すれば出力信号の電位の遷移期間が短くなり、貫通電流が流れる期間が短縮され、低消費電力化に寄与できる。さらにこの構成は、主に第1及び第2のトランジスタのみで実現できるため、省面積化設計の面でも有利である。
本発明のある態様では、前記の電源電圧は前記第1および第2のトランジスタのそれぞれについて単一または個別に設けられ、第1のトランジスタに対応する電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、第2のトランジスタに対応する電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電源電圧と前記第1入力信号および第2入力信号の電圧の差に応じて前記第1及び第2のトランジスタのオン状態の程度が制御され、第1入力信号が前記電源電圧に対応した前記出力信号に変換される。
別の態様では、前記電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、それらの電圧の差に応じて前記第1のトランジスタのオン状態の程度が制御され、前記第1入力信号が前記電源電圧に対応した前記出力信号に変換される。さらに別の態様では、前記電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電圧の差に応じて前記第2のトランジスタのオン状態の程度が制御され、第1入力信号が第1のトランジスタに作用する電源電圧に対応した前記出力信号に変換される。「第1のトランジスタに作用する電源電圧」とは、たとえば、そのトランジスタがMOSFETでありそのソースに電源電圧が印加されているとき、その電圧をいう。
「対応した」とは、必ずしも両者の一致をいうのではなく、出力信号が電源電圧の関数になっていればよい。例えば、電源電圧が相対的に高い値であれば、出力信号のハイレベルが入力信号のそれよりも高い方向へ引き上げられることが考えられる。
以下、第1から第4のトランジスタが存在する場合において「電源電圧」または「第1の電源電圧」および「第2の電源電圧」というとき、これらのトランジスタに共通の電源電圧がひとつだけ設けられていてもよいし、第1のトランジスタと第3のトランジスタについて別々の電源電圧が設定されていてもよい。電源電圧に関するこの考察は、電源電圧が単一か別個かに関する明示的な記述の有無によらず本明細書を通じて有効とし、その理由は、これらの異同の詳述が当業者にとって有益というよりはむしろ煩瑣に過ぎるためである。同様の考察は「接地電圧」というときにも有効である。
本発明のある態様では、第2のトランジスタの制御電極は、電源電圧を所定量引き下げる制御回路を介して電源ノードに接続される。同様に、第1のトランジスタの制御電極は、第2入力ノードの電圧を所定量引き上げる制御回路を介して第2入力ノードに接続されてもよい。これらの制御回路は、それぞれ電源電圧と第1入力ノードとの電位差、および電源電圧と第2入力ノードの電位差が大きすぎてそれぞれ第2のトランジスタおよび第1のトランジスタが必要な程度までオフしない状態を回避する。一般に、第1および第2のトランジスタはつねにともにオンさせておくことができ、ただしそのオンの程度の強弱によって出力信号をより高い電位またはより低い電位へ、いわばトランジスタの「綱引き」によって変化させることができる。トランジスタは、そのオン抵抗に等価な抵抗素子と見なすことができるためである。この方法はトランジスタが完全にオフしている状態からオンするまでの時間を必要としないため、高速動作に向く。しかし、本来オフすべきときにオンの状態が強すぎると、出力信号の電位が必要な量だけ変化しないことがある。そのため、制御回路を適度に設けることにより、制御電圧を所望の値へ調整する趣旨である。
前記の第1および第2入力ノードは単一の共通ノードであってもよい。このときまた、共通ノードに入力された第1入力信号を反転せしめる制御回路をさらに有し、第1のトランジスタの制御電極には、第2入力信号に代えてこの制御回路の出力信号が与えられてもよい。「共通ノード」とは、1)物理的にひとつのノードの場合、2)物理的にはふたつであるが、両方に共通して第1入力信号を入力する場合の両義を包含する。すなわち、ノードは物理的な意味と論理的な意味の両義を表象するものとし、これは本明細書を通じて有効とする。
本態様によって第2入力信号が不要になり、レベル変換回路への入力信号が削減でき、回路規模の縮小に貢献する。この共通ノードという考え方は、以下、いずれの態様においても有効である。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、第2の入力信号が入力される第2入力ノードと第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備える。また、第2及び第4のトランジスタの制御電極は電源ノードと接続され、第1及び第3のトランジスタの制御電極はそれぞれ第2の出力ノードおよび第1の出力ノードに接続される。この構成において、第1または第2の出力ノードから出力信号が取り出される。
この構成によれば、第1及び第3のトランジスタのしきい値電圧に拘わらず、これらをより確実に制御できるので、所望のレベル変換が実現しやすくなる。また、第1及び第2トランジスタで構成する回路の出力信号のデューティ比と第3及び第4トランジスタで構成する回路の出力信号のデューティ比に差があってもそれぞれの出力信号が互いに相手の回路の制御信号となるので、補完されて、デューティ比が揃う方向に作用する。したがって、たとえば製造ばらつきにより第1から第4トランジスタのしきい値電圧が設計値からずれた場合でも、より確実な動作が期待できる。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、第2入力信号が入力される第2入力ノードと第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、第2及び第4のトランジスタの制御電極はそれぞれ第2の出力ノードおよび第1の出力ノードに接続され、第1及び第3のトランジスタの制御電極はそれぞれ第2及び第1入力ノードに接続され、第1または第2の出力ノードから出力信号が取り出される。
この構成によれば、第2及び第4のトランジスタのしきい値電圧に拘わらず、これらをより確実に制御できるので、所望のレベル変換が実現しやすくなる。また、前述のデューティ比の補完作用も得られる。
以上のレベル変換回路において、第2入力信号として、所定の参照電圧信号が入力されてもよい。この参照電圧信号は固定電圧信号であってもよく、その値はたとえば電源電圧と接地電圧の間であり、一例としてそれらの中間値である。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、いままでに述べたいずれかのレベル変換回路と、その回路において第1入力信号と第2入力信号を入れ替えた回路と、さらに、それらふたつの回路の出力信号をふたつの制御入力信号とするクロスカップル型の差動増幅回路、またはカレントミラー型の増幅回路とを備え、これらいずれかの増幅回路を構成するふたつの電流経路のそれぞれに配されるふたつのトランジスタの接続点が最終的な出力信号を取り出すべき出力ノードに接続される。この構成でも、前述のデューティ比に関する改善が実現する。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって電源電圧と所定電圧が抵抗分割されるよう直列に配し、入力信号がハイレベルのとき第1のトランジスタが強いオン状態になるとともに、この入力信号と電源電圧の電位差によって第2のトランジスタが弱いオン状態はオフ状態となるよう構成し、入力信号がローレベルのとき第2のトランジスタが強いオン状態になるとともに、この入力信号の反転信号と電源電圧の電位差によって第1のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記の抵抗分割によって生じた中間電位を出力信号として取り出すよう配したものである。ここで、所定電圧は、たとえば接地電圧や入力信号のローレベルまたはハイレベルの電圧であり、電源電圧との間で有意な電位差を生じるものである。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな第1の電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって前記第1の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号の反転信号の振幅よりも電位差が大きな第2の電源電圧と所定電圧の間に、第3および第4のトランジスタを、それらのオン抵抗によって前記第2の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号がハイレベルのとき前記第1のトランジスタと第4のトランジスタが強いオン状態になるとともに、前記第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記入力信号がローレベルのとき前記第2のトランジスタと第3のトランジスタが強いオン状態になるとともに、前記第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記第1と第2のトランジスタによる抵抗分割によって生じた中間電位を前記第3と第4のトランジスタのいずれかの制御に利用し、前記第3と第4のトランジスタによる抵抗分割によって生じた中間電位を前記第1と第2のトランジスタのいずれかの制御に利用し、これらの中間電位の一方を出力信号として取り出すよう配したものである。
ここで、入力信号がハイレベルのとき、この入力信号とそれぞれ第1、第2の電源電圧の電位差によって第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、入力信号がローレベルのとき、この入力信号の反転信号とそれぞれ第1、第2の電源電圧の電位差によって第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成してもよい。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、出力ノードと、入力信号のハイレベルよりも高い電源電圧が印加される電源ノードとの間に接続されたpチャネル電界効果トランジスタと、入力信号が入力される第1入力ノードと出力ノードとの間に接続されたnチャネル電界効果トランジスタとを備え、nチャネル電界効果トランジスタのゲートは電源ノードに接続され、pチャネル電界効果トランジスタのゲートは入力信号の反転信号が入力される第2入力ノードに接続され、出力信号が出力ノードにて取り出されるものである。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、第1の電源電圧が印加される第1の電源ノードと第1の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第1のトランジスタと、第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第2のトランジスタと、第2の電源電圧が印加される第2の電源ノードと第2の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第3のトランジスタと、第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第4のトランジスタとを備える。この構成においてさらに、
1)前記第2及び第4のトランジスタのゲートはそれぞれ前記第1または第2の電源ノードの一方と接続され、前記第1及び第3のトランジスタのゲートはそれぞれ前記第2の出力ノードおよび第1の出力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出され、または、
2)前記第2及び第4のトランジスタのゲートはそれぞれ前記第2の出力ノードおよび第1の出力ノードに接続され、前記第1及び第3のトランジスタのゲートはそれぞれ前記第2及び第1入力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出される。
ここでも、第1の電源ノードと第2の電源ノードは同一でも別でもよい。なお、第2及び第4のトランジスタのゲートはそれぞれ第1または第2の電源電圧を引き下げる制御回路を介して第1または第2の電源ノードの一方と接続されてもよい。また、第2入力信号として、所定の参照電圧信号が入力されてもよい。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、電源電圧が印加される電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、第2入力信号が入力される第2入力ノードと第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、第2及び第4のトランジスタの制御電極は、電源電圧を引き下げる制御回路を介して電源ノードに接続され、第1及び第3のトランジスタの制御電極はそれぞれ第2の出力ノードおよび第1の出力ノードに接続され、第1または第2の出力ノードから出力信号が取り出される。制御回路を設けることで、いろいろな電圧範囲でも適正な動作が確保される。
以上のいずれかのレベル変換回路において、接地電圧をVG、前記電源電圧をVDDと表記するとき、出力信号は目標電圧Vm=(VG+VDD)/2をその振幅の中心にもつよう調整されてもよい。また、目標電圧Vmを動作中心点にもち、かつその出力の振幅が接地電圧付近から電源電圧付近までをカバーするバッファ回路をさらに有し、このバッファ回路に出力信号を通すことにより整形された修正出力信号を得てもよい。
以上述べたいずれかの、またはすべてのトランジスタは多結晶の半導体により形成されるものであってもよい。例えば、本発明に係るレベル変換回路を液晶表示装置その他の表示装置のドライバ回路等に利用する場合、透明なガラス基板上に回路を形成する必要があることも多く、多結晶タイプの半導体であれば、比較的性能面で有利かつガラス上に薄膜として形成しやすいため、用途によっては好都合である。また、動作速度の面でも有利なことが多い。
以上述べたいずれのレベル変換回路も所定の半導体装置その他に組み込むことができる。この半導体装置は例えば、複数のセンサと、これらのセンサのいずれかを選択する複数の選択用トランジスタと、前記複数のセンサを複数の選択用トランジスタを介して駆動する周辺回路と、所定の信号をレベル変換して前記周辺回路に与えるレベル変換回路を備える。表示装置の例は、複数の表示素子と、それら複数の表示素子のいずれかを選択するための複数の選択用トランジスタと、前記複数の表示素子を前記複数の選択用トランジスタを介して駆動する周辺回路と、所定の信号をレベル変換して前記周辺回路に与えるレベル変換回路を備える。前記複数の表示素子は液晶表示素子や有機エレクトロルミネッセンス素子であってもよく、複数の液晶素子、複数の選択用トランジスタ、周辺回路及びレベル変換回路は絶縁基板上に形成されてもよい。選択用トランジスタとレベル変換回路の第1から第4のトランジスタは、薄膜トランジスタであってもよい。いずれの場合も、トランジスタの製造ばらつきが大きい場合でも、より確実な動作が可能になり、高速動作、低消費電力化、省面積設計が容易になる。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
発明を実施するための最良の形態
実施の形態1.
図5は第1の実施の形態におけるレベル変換回路の構成を示す回路図である。図5において、レベル変換回路1は、レベル変換部101及びドライブ用インバータINV1、INV2を備える。レベル変換部101は、pチャネルMOSFET(金属−酸化物−半導体形電界効果トランジスタ)11、nチャネルMOSFET12を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図5のレベル変換回路の動作を説明する。CLK1がローレベル、CLK2がハイレベルのとき、pチャネルMOSFET11は、ゲート電位であるCLK2のハイレベルの電位とソース電位である電源電位との電位差の絶対値とpチャネルMOSFET11のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは弱いオン状態になる。nチャネルMOSFET12は、ソース電位がCLK1のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になる。したがって、pチャネルMOSFET11のオン抵抗は、nチャネルMOSFET12のオン抵抗よりも大きくなり、出力ノードNOの電位VoutはnチャネルMOSFET12のソース電位であるCLK1のローレベルを反映して低くなる。
一方、CLK1がハイレベル、CLK2がローレベルのとき、pチャネルMOSFET11は、ゲート電位がCLK2のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になる。nチャネルMOSFET12は、ソース電位であるCLK1のハイレベルの電位とゲート電位である電源電位との電位差の絶対値とnチャネルMOSFET12のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは弱いオン状態になる。したがって、pチャネルMOSFET11のオン抵抗は、nチャネルMOSFET12のオン抵抗よりも小さくなり、出力ノードNOの電位VoutはpチャネルMOSFET11のソース電位である電源電位を反映して高くなる。ドライブ用インバータINV1及びINV2は、出力電位Voutを電源電位VDDと接地電位とに変化する出力電位VOUTに変換する。
本実施の形態におけるレベル変換回路を多結晶シリコンからなる薄膜トランジスタにより構成した場合の特性のシミュレーションを行った。まず、図5のレベル変換回路1の動作の高速性を調べた。
一般に、バルクシリコンからなるトランジスタでは、pチャネルトランジスタのしきい値電圧Vtpは例えば(−0.9±0.1)Vであり、nチャネルトランジスタのしきい値電圧Vtnは例えば(0.7±0.1)Vである。一方、多結晶シリコンを用いた薄膜トランジスタでは、pチャネルトランジスタのしきい値電圧Vtpは例えば(−2.0±1〜1.5)Vであり、nチャネルトランジスタのしきい値電圧Vtnは例えば(1.5±1)Vである。このように多結晶シリコンを用いた薄膜トランジスタでは、バルクシリコンからなるトランジスタに比べて製造工程でのしきい値電圧のばらつきは大きくなる。
図6はシミュレーション結果を示す図である。高速動作性を確認するために、入力信号CLK1、CLK2の周波数を20MHz、入力電圧振幅を3.0V、電源電圧VDDを10Vとした。図6には、入力信号CLK1、CLK2、出力電位VOUT及び出力ノードNOの出力電位Voutの波形を示す。図6のシミュレーション結果から、20MHzという高い周波数でも入力信号CLK1、CLK2に応答してデューティ比50%の出力電位VOUTが得られることがわかる。このように、レベル変換回路1を多結晶シリコンからなる薄膜トラジスタによって構成しても高速動作が可能となる。
次に、レベル変換回路のpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧がばらついた場合の電圧波形のシミュレーションを行った。このシミュレーションでは、実用的な速度における動作を確認するために、入力信号CLK1、CLK2の周波数は2MHzとした。
図7は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果である。図7のシミュレーションでは、pチャネルMOSFETのしきい値パラメータ(しきい値電圧)を−0.5Vとし、nチャネルMOSFETのしきい値パラメータ(しきい値電圧)を0.5Vとした。
図8は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果である。図8のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−2.0Vとし、nチャネルMOSFETのしきい値パラメータを1.5Vとした。
図9は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果である。図9のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−3.5Vとし、nチャネルMOSFETのしきい値パラメータを2.5Vとした。
図7、図8及び図9の結果から、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値から比較的大きくずれた場合でも、入力信号CLK1、CLK2に応答してデューティ比が50%の出力電位VOUTが得られることがわかる。
本実施の形態におけるレベル変換回路1においては、基本的に常時オン状態になっているpチャネルMOSFET11及びnチャネルMOSFET12のオン状態の程度を入力信号CLK1及びCLK2によって制御するので、CLK1及びCLK2の電圧振幅がpチャネルMOSFET11及びnチャネルMOSFET12のしきい値電圧よりも小さい場合でも動作が可能になる。また、pチャネルMOSFET11及びnチャネルMOSFET12のしきい値電圧が設計値よりも大きくずれた場合でも、入力信号CLK1及びCLK2のレベル変化に対応した出力電位Voutが得られる。このように、製造工程でのばらつきによりpチャネルMOSFET11及びnチャネルMOSFET12のしきい値電圧が設計値からずれた場合にでも高い確度で動作することができる。
また、基本的に常時オン状態になっているpチャネルMOSFET11及びnチャネルMOSFET12のオン状態の程度が制御されるので、高速動作が可能になる。さらに、高速動作が可能であるので出力電位Voutのレベルの遷移期間が短くなるので、貫通電流が流れる期間が短縮される。それにより低消費電力化を図ることができる。
また、レベル変換回路1は、pチャネルMOSFET11及びnチャネルMOSFET12のみで構成できるので、回路素子数が少なくて良く、小面積化を図ることができるとともに、回路設計が容易になる。
図10は、図5のレベル変換回路1の別の構成を示す。図5との違いのみ示す。レベル変換部101には制御回路90が新設される。制御回路90は、pチャネルMOSFET92、nチャネルMOSFET94を含む。pチャネルMOSFET92のソースは電源端子に接続され、ドレインはpチャネルMOSFET11のゲートおよびnチャネルMOSFET94のドレインに接続され、ゲートは入力ノードI1に接続される。nチャネルMOSFET94のゲートは電源端子に接続され、ソースは接地される。このレベル変換部101では、入力ノードI2が省略されている。
以上の構成によれば、制御回路90が入力信号CLK1のインバータとして機能する。まず、nチャネルMOSFET94は、ソース接地でゲートに電源電圧が与えられているため、常時強いオン状態になる。一方、pチャネルMOSFET92は、入力信号CLK1がハイレベルの場合、弱いオンまたはオフになり、ローレベルの場合、強いオンになる。したがって、入力信号CLK1がハイレベルのとき制御回路90の出力信号はローレベルになり、入力信号CLK1がローレベルのとき出力信号はハイレベルになる。そのため、入力信号CLK1の反転信号をpチャネルMOSFET11のゲートに入力することができ、図5の回路と同じ機能が実現できる。なお、制御回路90のnチャネルMOSFET94を抵抗素子に代えてもよいし、タイプをpチャネルMOSFETへ変更してそのゲートを接地してもよい。
以上、この構成により、入力信号の数を図5に比べてひとつ減らすことができる。入力信号CLK1、電源電圧、接地電圧以外の信号や電圧も不要なため、レベル変換回路1をIC化する場合も一般に信号ピンの数が減り、配線の数も減る。したがって、コスト低減や歩留まり改善に寄与しうる。
実施の形態2.
図11は第2の実施の形態におけるレベル変換回路の構成を示す回路図である。図11において、レベル変換回路2は、レベル変換部201及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部201は、pチャネルMOSFET21、23、nチャネルMOSFET22、24を含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。
pチャネルMOSFET21及び23のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ接続される。nチャネルMOSFET22、24のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは電源電位VDDを受ける電源端子にそれぞれ接続される。
このように、図11のレベル変換回路において、pチャネルMOSFET21とnチャネルMOSFET22で構成される回路とpチャネルMOSFET23とnチャネルMOSFET24で構成される回路は、ほぼ図5のレベル変換回路と同じ構成であるが、それぞれの回路の出力ノードNO1、NO2とpチャネルMOSFET21、23のゲートを交差接続する。ただし、「交差接続」とは、物理的に信号線が交差していることを要さず、図面上そのように表現されているに過ぎない。この配慮は以降も同様である。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第1の実施の形態と同じである。
以下に、図11のレベル変換回路の動作を説明する。CLK1がローレベル、CLK2がハイレベルのとき、nチャネルMOSFET22は、ソース電位がCLK1のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になり、出力ノードNO1の電位Vout1はnチャネルMOSFET22のソース電位であるCLK1のローレベルを反映して低くなる。これにより、pチャネルMOSFET23のゲート電位は、低くなった出力ノードNO1の電位Vout1となり、ソース電位である電源電位との関係により、十分強いオン状態になる。このとき、nチャネルMOSFET24は、ソース電位であるCLK2のハイレベルの電位とゲート電位である電源電位との電位差の絶対値とnチャネルMOSFET24のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、pチャネルMOSFET23のオン抵抗は、nチャネルMOSFET24のオン抵抗よりも十分小さくなり、出力ノードNO2の電位Vout2はpチャネルMOSFET23のソース電位である電源電位を反映して高くなる。このときの電位Vout2はCLK1、CLK2のハイレベルよりも十分高くなる。したがって、pチャネルMOSFET21は、高くなった出力ノードNO2の電位Vout2とソース電位である電源電位との電位差の絶対値とpチャネルMOSFET21のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態になる。
一方、CLK1がハイレベル、CLK2がローレベルのとき、nチャネルMOSFET24は、ソース電位がCLK2のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になり、出力ノードNO2の電位Vout2はnチャネルMOSFET24のソース電位であるCLK2のローレベルを反映して低くなる。これにより、pチャネルMOSFET21のゲート電位は、低くなった出力ノードNO2の電位Vout2となり、ソース電位である電源電位との関係により、十分強いオン状態になる。このとき、nチャネルMOSFET22は、ソース電位であるCLK1のハイレベルの電位とゲート電位である電源電位との電位差の絶対値とnチャネルMOSFET22のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、pチャネルMOSFET21のオン抵抗は、nチャネルMOSFET22のオン抵抗よりも十分小さくなり、出力ノードNO1の電位Vout1はpチャネルMOSFET21のソース電位である電源電位を反映して高くなる。このときの電位Vout1はCLK1、CLK2のハイレベルよりも十分高くなる。したがって、pチャネルMOSFET23は、高くなった出力ノードNO1の電位Vout1とソース電位である電源電位との電位差の絶対値とpチャネルMOSFET23のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態になる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
本実施の形態におけるレベル変換回路を多結晶シリコンからなる薄膜トランジスタにより構成した場合の特性のシミュレーションを行った。まず、図11のレベル変換回路2の動作の高速性を調べた。
図12はシミュレーション結果を示す図である。入力信号CLK1、CLK2の周波数を20MHz、入力電圧振幅を3.0V、電源電圧VDDを10Vとした。図12(a)には、入力信号CLK1、CLK2及び出力電位VOUT1、VOUT2の波形を示し、図12(b)には、出力ノードNO1、NO2の出力電位Vout1、Vout2の波形を示す。
図12のシミュレーション結果から、20MHzという高い周波数でも入力信号CLK1、CLK2に応答してデューティ比50%の出力電位VOUT1、VOUT2が得られることがわかる。このように、レベル変換回路2を多結晶シリコンからなる薄膜トラジスタによって構成しても高速動作が可能となる。
次に、レベル変換回路のpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧がばらついた場合の電圧波形のシミュレーションを行った。このシミュレーションでは、入力信号CLK1、CLK2の周波数は2MHzとした。
図13は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果である。図13のシミュレーションでは、pチャネルMOSFETのしきい値パラメータ(しきい値電圧)を−0.5Vとし、nチャネルMOSFETのしきい値パラメータ(しきい値電圧)を0.5Vとした。
図14は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果である。図14のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−2.0Vとし、nチャネルMOSFETのしきい値パラメータを1.5Vとした。
図15は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果である。図15のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−3.5Vとし、nチャネルMOSFETのしきい値パラメータを2.5Vとした。
図13、図14及び図15の結果から、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値から比較的大きくずれた場合でも、入力信号CLK1、CLK2に応答してデューティ比が50%の出力電位VOUT1、VOUT2が得られることがわかる。
本実施の形態におけるレベル変換回路2においては、pチャネルMOSFET21とnチャネルMOSFET22で構成される回路とpチャネルMOSFET23とnチャネルMOSFET24で構成される回路のそれぞれの出力ノードNO1、NO2とpチャネルMOSFET21、23のゲートが交差接続されており、入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差よりも大きい電位差を持つVout1とVout2がpチャネルMOSFET21、23のゲートに入力されるので、pチャネルMOSFET21、23をより確実にオンオフさせることができる。したがって、CLK1及びCLK2の電圧振幅がpチャネルMOSFET21、23及びnチャネルMOSFET22、24のしきい値電圧よりも小さい場合でも確実な動作が可能になる。
また、pチャネルMOSFET21とnチャネルMOSFET22で構成される回路とpチャネルMOSFET23とnチャネルMOSFET24で構成される回路のそれぞれの出力信号Vout1、Vout2のデューティー比が異なった場合でも、出力信号Vout1、Vout2が他方の回路の入力信号になるので、互いに補完されて両出力信号のデューティ比をそろえることができる。さらに、pチャネルMOSFET21、23及びnチャネルMOSFET22、24のしきい値電圧が設計値よりも大きくずれた場合でも、入力信号CLK1及びCLK2のレベル変化に対応した出力電位Vout1、Vout2が得られる。このように、製造工程でのばらつきによりpチャネルMOSFET21、23及びnチャネルMOSFET22、24のしきい値電圧が設計値からずれた場合にでも高い確度で動作することができる。
なお、図11において電源電圧は単一に設定されたが、これはふたつのpチャネルMOSFET21、23について別個に設定されてもよい。その場合、ふたつのnチャネルMOSFET22、24のゲートはそれぞれpチャネルMOSFET21、23に対応する電源電圧に接続されることが一般的であるが、必ずしもそれに限る必要はなく、動作可能な設定範囲であれば、当然ながら交互に接続しても差し支えはない。同様の考察は以下の実施の形態でも有効である。
図16は、図11のレベル変換回路の別の構成を示す。図11との違いのみを示す。図16では、インバータINV3、INV4が削除されている。また、入力ノードI2には、入力信号CLK2に代えて、所定の参照電圧信号Vrefが入力されている。Vrefの電圧は、電源電圧VDDと接地電圧の間であり、たとえばそれらの中間値付近の値である。
CLK1がローレベルのとき、nチャネルMOSFET22は強いオンになり、ノードNO1がローレベルになる。その結果、pチャネルMOSFET23が強いオンになり、nチャネルMOSFET24は一定なので、ノードNO2の電位が上がる。そのためpチャネルMOSFET21はオフになり、出力電圧Vout1はローレベルになる。
一方、CLK1がハイレベルのとき、nチャネルMOSFET22はオフまたは弱いオンになり、ノードNO1がハイレベルになる。その結果、pチャネルMOSFET23がオフまたは弱いオンになり、nチャネルMOSFET24は一定なので、ノードNO2の電位が下がる。そのためpチャネルMOSFET21はオンになり、出力電圧Vout1はハイレベルになる。以上により、実質的に図11のレベル変換回路2同様の動作となる。
具体的な数値を挙げる。VDD=10V、CLK1=0〜3V、VOUT=0〜VDD、Vtn=+1.5V、Vtp=−2.0Vとすると、このレベル変換回路は、少なくともVref=0〜3Vの範囲で動作可能である。
Vref=1.5Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET21の駆動能力≦nチャネルMOSFET22の駆動能力
・pチャネルMOSFET23の駆動能力≦nチャネルMOSFET24の駆動能力
Vref=0Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET21の駆動能力≦nチャネルMOSFET22の駆動能力
・pチャネルMOSFET23の駆動能力≧nチャネルMOSFET24の駆動能力
Vref=3Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET21の駆動能力≧nチャネルMOSFET22の駆動能力
・pチャネルMOSFET23の駆動能力≦nチャネルMOSFET24の駆動能力
Vrefを0〜3Vで変化させても、以上の条件で動作可能である。さらに、VDDを、例えば、5Vや12Vに変化させても動作は可能であるが、VDDが低くなるとVref=3Vで動作しにくくなる。同様にVDDが高くなるとVref=0Vで動作しにくくなる。また、Vrefを3Vより高くしても条件次第では動作可能であるが、広い動作範囲と実用性を考えると、Vrefは入力信号のローレベルからハイレベルの間が望ましい。より望ましくは、入力信号の中間電位付近である。
以上の構成により、例えば複数の入力信号に対してレベル変換を施す場合、参照電圧信号を共通化することにより、信号削減効果がある。したがって、コスト低減や歩留まり改善に寄与しうる。なお、図16ではインバータINV3、INV4が削除されたが、当然、これらは残しておいてもよい。
実施の形態3.
図17は第3の実施の形態におけるレベル変換回路の構成を示す回路図である。図17において、レベル変換回路3は、レベル変換部301及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部301は、pチャネルMOSFET31、33、nチャネルMOSFET32、34を含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。
pチャネルMOSFET31及び33のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは入力ノードI2、I1にそれぞれ接続される。nチャネルMOSFET32、34のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ接続される。図17のレベル変換回路において、特徴的なのは、それぞれの回路の出力ノードNO1、NO2とnチャネルMOSFET32、34のゲートを交差接続する点である。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第1及び第2の実施の形態と同じである。
図17のレベル変換回路の動作を説明する。CLK1がローレベル、CLK2がハイレベルのとき、pチャネルMOSFET33は、ゲート電位がCLK1のローレベルの電位であり、ソース電位が電源電位であるので強いオン状態になり、出力ノードNO2の電位Vout2はpチャネルMOSFET33のソース電位である電源電位を反映して十分高くなる。これにより、nチャネルMOSFET32のゲート電位は、高くなった出力ノードNO2の電位Vout2となり、ソース電位であるCLK1のローレベルの電位との関係により、十分強いオン状態になる。このとき、pチャネルMOSFET31は、ソース電位である電源電位とゲート電位であるCLK2のハイレベルの電位との電位差の絶対値とpチャネルMOSFET31のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、nチャネルMOSFET32のオン抵抗は、pチャネルMOSFET31のオン抵抗よりも十分小さくなり、出力ノードNO1の電位Vout1はnチャネルMOSFET32のソース電位であるCLK1のローレベルの電位を反映して低くなる。したがって、nチャネルMOSFET34は、低くなった出力ノードNO1の電位Vout1とソース電位であるCLK2のハイレベルの電位との電位差の絶対値とnチャネルMOSFET34のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態である。
一方、CLK1がハイレベル、CLK2がローレベルのとき、pチャネルMOSFET31は、ソース電位が電源電位であり、ゲート電位がCLK2のローレベルの電位であるので強いオン状態になり、出力ノードNO1の電位Vout1はpチャネルMOSFET31のソース電位である電源電位を反映して高くなる。これにより、nチャネルMOSFET34のゲート電位は、高くなった出力ノードNO1の電位Vout1となり、ソース電位であるCLK1のローレベルの電位との関係により、十分強いオン状態になる。このとき、pチャネルMOSFET33は、ソース電位である電源電位とゲート電位であるCLK1のハイレベルの電位との電位差の絶対値とpチャネルMOSFET33のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、nチャネルMOSFET34のオン抵抗は、pチャネルMOSFET33のオン抵抗よりも十分小さくなり、出力ノードNO2の電位Vout2はnチャネルMOSFET34のソース電位であるCLK2のローレベルの電位を反映して低くなる。したがって、nチャネルMOSFET32は、低くなった出力ノードNO2の電位Vout2とソース電位であるCLK1のハイレベルの電位との電位差の絶対値とnチャネルMOSFET32のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態になる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
ここで、本実施の形態におけるレベル変換回路を多結晶シリコンからなる薄膜トランジスタにより構成した場合の特性のシミュレーションを行った。まず、図17のレベル変換回路3の動作の高速性を調べた。
図18はシミュレーション結果を示す図である。入力信号CLK1、CLK2の周波数を20MHz、入力電圧振幅を3.0V、電源電圧VDDを10Vとした。図18(a)には、入力信号CLK1、CLK2及び出力電位VOUT1、VOUT2の波形を示し、図18(b)には、出力ノードNO1、NO2の出力電位Vout1、Vout2の波形を示す。
図18のシミュレーション結果から、20MHzという高い周波数でも入力信号CLK1、CLK2に応答してデューティ比50%の出力電位VOUT1、VOUT2が得られることがわかる。このように、レベル変換回路3を多結晶シリコンからなる薄膜トラジスタによって構成しても高速動作が可能となる。
次に、レベル変換回路のpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧がばらついた場合の電圧波形のシミュレーションを行った。このシミュレーションでは、入力信号CLK1、CLK2の周波数は2MHzとした。
図19は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果である。図19のシミュレーションでは、pチャネルMOSFETのしきい値パラメータ(しきい値電圧)を−0.5Vとし、nチャネルMOSFETのしきい値パラメータ(しきい値電圧)を0.5Vとした。
図20は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果である。図20のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−2.0Vとし、nチャネルMOSFETのしきい値パラメータを1.5Vとした。
図21は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果である。図21のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−3.5Vとし、nチャネルMOSFETのしきい値パラメータを2.5Vとした。
図19、図20及び図21の結果から、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値から比較的大きくずれた場合でも、入力信号CLK1、CLK2に応答してデューティ比が50%の出力電位VOUT1、VOUT2が得られることがわかる。
本実施の形態におけるレベル変換回路3においては、pチャネルMOSFET31とnチャネルMOSFET32で構成される回路とpチャネルMOSFET33とnチャネルMOSFET34で構成される回路のそれぞれの出力ノードNO1、NO2とnチャネルMOSFET32、34のゲートが交差接続されており、入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差よりも大きい電位差を持つVout1とVout2がpチャネルMOSFET32、34のゲートに入力されるので、nチャネルMOSFET32、34をより確実にオンオフさせることができる。したがって、CLK1及びCLK2の電圧振幅がpチャネルMOSFET31、33及びnチャネルMOSFET32、34のしきい値電圧よりも小さい場合でも確実な動作が可能になる。
また、pチャネルMOSFET31とnチャネルMOSFET32で構成される回路とpチャネルMOSFET33とnチャネルMOSFET34で構成される回路のそれぞれの出力信号Vout1、Vout2のデューティー比が異なった場合でも、出力信号Vout1、Vout2が他方の回路の入力信号になるので、互いに補完されて両出力信号のデューティ比をそろえることができる。さらに、pチャネルMOSFET31、33及びnチャネルMOSFET32、34のしきい値電圧が設計値よりも大きくずれた場合でも、入力信号CLK1及びCLK2のレベル変化に対応した出力電位Vout1、Vout2が得られる。このように、製造工程でのばらつきによりpチャネルMOSFET31、33及びnチャネルMOSFET32、34のしきい値電圧が設計値からずれた場合でも高い確度で動作する。
図22は、図17のレベル変換回路の別の構成を示す。図17との違いのみを示す。図22では、インバータINV3、INV4が削除されている。ただし、インバータINV3、INV4は当然残しておいてもよい。また、入力ノードI2には、入力信号CLK2に代えて、所定の参照電圧信号Vrefが入力されている。Vrefの電圧は、電源電圧VDDと接地電圧の間であり、たとえばそれらの中間値付近の値である。
CLK1がローレベルのとき、pチャネルMOSFET33は強いオンになり、出力電位Vout2、すなわちpチャネルMOSFET33のドレインの電位が十分に高くなる。これにより、nチャネルMOSFET32が十分に強いオンになる。このとき、pチャネルMOSFET31はゲート電位がVrefであるので常時オンになるが、そのオン抵抗はnチャネルMOSFET32のそれよりも大きくなる。この結果、出力電位Vout1は入力信号CLK1のローレベルを反映して低くなる。したがって、nチャネルMOSFET34は、オフまたは十分に弱いオンになる。
一方、CLK1がハイレベルのとき、pチャネルMOSFET33はオフまたは弱いオンになる。また、nチャネルMOSFET32はCLK1がローレベルのときよりも弱いオンになる。pチャネルMOSFET31は常時オンなので、出力電位Vout1は高くなり、nチャネルMOSFET34はオンになる。pチャネルMOSFET33はオフまたは弱いオンであるため、そのオン抵抗はnチャネルMOSFET34のそれよりも大きくなり、出力電位Vout2はVrefと等しくなる。このため、nチャネルMOSFET32はオフまたは十分に弱いオンとなる。以上により、図17のレベル変換回路3同様の動作となる。
具体的な数値を挙げる。図16同様、VDD=10V、CLK1=0〜3V、VOUT=0〜VDD、Vtn=+1.5V、Vtp=−2.0Vとすると、このレベル変換回路は、少なくともVref=0〜3Vの範囲で動作可能である。
Vref=1.5Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET31の駆動能力≦nチャネルMOSFET32の駆動能力
・pチャネルMOSFET33の駆動能力≦nチャネルMOSFET34の駆動能力
Vref=0Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET31の駆動能力≦nチャネルMOSFET32の駆動能力
・pチャネルMOSFET33の駆動能力≧nチャネルMOSFET34の駆動能力
Vref=3Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET31の駆動能力≧nチャネルMOSFET32の駆動能力
・pチャネルMOSFET33の駆動能力≦nチャネルMOSFET34の駆動能力
動作に関する考察は図16の場合と同様であり、Vrefは入力信号のローレベルからハイレベルの間が望ましい。より望ましくは、入力信号の中間電位付近である。以上の構成による効果も図16同様である。
実施の形態4.
図23は第4の実施の形態におけるレベル変換回路の構成を示す回路図である。図23において、レベル変換回路4は、レベル変換部104及びドライブ用インバータINV1、INV2を備える。レベル変換部104は、pチャネルMOSFET11、nチャネルMOSFET12及び制御回路110を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路110は、電源電圧VDDを受けて電位を調整し出力する。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路110を介して電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図23のレベル変換回路4の動作は、基本的に図5のレベル変換回路1と同じであり、nチャネルMOSFET12のゲート電位が制御回路110によって調整された電位を受けて動作する点が異なる。
制御回路110は、電源電位VDDを受けて、電源電位VDDと入力信号CLK1のハイレベルの電位との間の電位を出力する。制御回路110の出力電位と入力信号CLK1との電位差の絶対値とnチャネルMOSFET12のしきい値電圧Vtnの絶対値との大小関係によって、nチャネルMOSFET12のオン状態の程度が制御され、出力ノードNOの電位Voutが得られる。
ドライブ用インバータINV1及びINV2は、出力電位Voutを電源電位VDDと接地電位とに変化する出力電位VOUTに変換する。本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
図24は、図23のレベル変換回路4の回路構成の第1の例を示す回路図である。制御回路110はpチャネルMOSFET111とnチャネルMOSFET121を含む。pチャネルMOSFET111のソースは電源電位VDDを受ける電源端子に接続され、ドレインおよびゲートはノードNNに接続される。nチャネルMOSFET121のソースは接地電位を受ける電源端子に接続され、ドレインおよびゲートはノードNNに接続される。
ノードNNの電位は、電源電位VDDよりもpチャネルMOSFET111のしきい値電圧Vtp以上低く、接地電位よりもnチャネルMOSFET121のしきい値電圧Vtn以上高くなり、pチャネルMOSFET111とnチャネルMOSFET121のオン抵抗値に応じた電位となる。
図25および図26はそれぞれ、図23のレベル変換回路4の回路構成の第2および第3の例を示す。図25のレベル変換回路4が図24のレベル変換回路4と異なるのは、制御回路110がpチャネルMOSFET111の代わりに抵抗素子R1を含む点である。この場合、ノードNNの電位VNNは抵抗素子R1の抵抗値とnチャネルMOSFET121のオン抵抗に応じた電位になる。
図26のレベル変換回路4が図25のレベル変換回路4と異なるのは、制御回路110がnチャネルMOSFET121の代わりに抵抗素子R2を含む点である。この場合、ノードNNの電位VNNは抵抗素子R1と抵抗素子R2のそれぞれの抵抗値に応じた電位になる。
実施の形態5.
図27は第5の実施の形態におけるレベル変換回路の構成を示す回路図である。図27において、レベル変換回路5は、レベル変換部105及びドライブ用インバータINV1、INV2を備える。レベル変換部105は、pチャネルMOSFET11、nチャネルMOSFET12、制御回路120を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路120は、入力信号CLK2を受けてCLK2の電位レベルを調整し出力する。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路120を介して入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図27のレベル変換回路5の動作は、基本的に図5のレベル変換回路1と同じであり、pチャネルMOSFET11のゲート電位が制御回路120によって電位レベルを調整された入力信号CLK2を受けて動作する点が異なる。
制御回路120は、入力信号CLK2のハイレベルの電位を電源電位VDDと入力信号CLK2のハイレベルの電位との間の電位に調整して出力する。制御回路120の出力電位と電源電位VDDとの電位差の絶対値とpチャネルMOSFET11のしきい値電圧Vtpの絶対値との大小関係によって、pチャネルMOSFET11のオン状態の程度が制御され、出力ノードNOの電位Voutが得られる。本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
図28は、図27のレベル変換回路5の回路構成の第1の例を示す回路図である。この制御回路120はnチャネルMOSFET122とnチャネルMOSFET123を含む。nチャネルMOSFET123のソースはノードNPに接続され、ドレインおよびゲートは電源電位VDDを受ける電源端子に接続される。nチャネルMOSFET122のソースは入力ノードI2に接続され、ドレインおよびゲートはノードNPに接続される。
nチャネルMOSFET123は常時オン状態であるので負荷抵抗として働く。入力信号CLK2のレベルに応じてノードNPの電位VNPがハイレベルまたはローレベルに制御される。このとき、ノードNPの電位VNPのハイレベルの電位は、電源電位VDDよりもnチャネルMOSFET123のしきい値電圧Vtn以上低く、CLK2のハイレベルの電位よりも高くなる。
図29は、図27のレベル変換回路5の回路構成の第2の例を示す回路図である。このレベル変換回路5が図28のレベル変換回路5と異なるのは、制御回路120がnチャネルMOSFET123の代わりにpチャネルMOSFET121を含む点である。この場合、pチャネルMOSFET121のソースは電源電位VDDを受ける電源端子に接続され、ドレインおよびゲートはノードNPに接続される。
pチャネルMOSFET121により、ノードNPの電位VNPが電源電位VDDからしきい値電圧Vtpの絶対値分以上低いレベルに設定される。入力信号CLK2のレベルに応じてnチャネルMOSFET122によりノードNPの電位VNPがハイレベルまたはローレベルに制御される。このとき、ノードNPの電位VNPのハイレベルの電位は、電源電位VDDよりもpチャネルMOSFET121のしきい値電圧Vtp以上低く、CLK2のハイレベルの電位よりも高くなる。
図30は、図27のレベル変換回路5の回路構成の第3の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のnチャネルMOSFET122のゲートが電源電位VDDを受ける電源端子に接続されている点である。この場合、nチャネルMOSFET122は常時オン状態となり、負荷抵抗として働く。これにより、入力信号CLK2のレベルに応じてノードNPの電位VNPがハイレベルまたはローレベルに制御される。このとき、ノードNPの電位VNPのハイレベルの電位は、電源電位VDDよりもpチャネルMOSFET121のしきい値電圧Vtp以上低く、CLK2のハイレベルの電位よりも高くなる。
図31は、図27のレベル変換回路5の回路構成の第4の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のpチャネルMOSFET121の代わりに抵抗素子R3を含む点である。この場合、入力信号CLK2のレベルに応じてnチャネルMOSFET122のオン抵抗が変化し、抵抗素子R3の抵抗値との抵抗分割によりノードNPの電位VNPがハイレベルまたはローレベルに制御される。
図32は、図27のレベル変換回路5の回路構成の第5の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のnチャネルMOSFET122の代わりに抵抗素子R3を含む点である。この場合、入力信号CLK2のレベルに応じてpチャネルMOSFET121のオン抵抗が変化し、抵抗素子R3の抵抗値との抵抗分割によりノードNPの電位VNPがハイレベルまたはローレベルに制御される。
図33は、図27のレベル変換回路5の回路構成の第6の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のpチャネルMOSFET121のゲートを他の信号から切り離し、接地した点である。この構成でも、nチャネルMOSFET122は、入力信号CLK2の電位レベルに応じてオン抵抗が変化するため、ノードNPの電位VNPがハイレベルまたはローレベルに制御される。
図34は、図27のレベル変換回路5の回路構成の第7の例を示す回路図である。このレベル変換回路5が図33のレベル変換回路5と異なるのは、制御回路120のnチャネルMOSFET122の代わりにpチャネルMOSFET123を含む点である。この場合も、入力信号CLK2のレベルに応じてpチャネルMOSFET123のオン抵抗が変化し、ノードNPの電位VNPがハイレベルまたはローレベルに制御される。
実施の形態6.
図35は第6の実施の形態におけるレベル変換回路の構成を示す回路図である。レベル変換回路6は、レベル変換部106及びドライブ用インバータINV1、INV2を備える。レベル変換部106は、pチャネルMOSFET11、nチャネルMOSFET12、制御回路110、120を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路110は、電源電圧VDDを受けて電位を調整し出力し、制御回路120は、入力信号CLK2を受けてCLK2の電位レベルを調整し出力する。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路120を介して入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路110を介して電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図35のレベル変換回路6の動作は、基本的に図5のレベル変換回路1と同じであり、pチャネルMOSFET11のゲート電位が制御回路120によって電位レベルを調整された入力信号CLK2を受けて動作し、nチャネルMOSFET12のゲート電位が制御回路110によって調整された電位を受けて動作する点が異なる。
制御回路110は、図23のレベル変換回路4の制御回路110と同じであり、制御回路120は、図27のレベル変換回路5の制御回路120と同じである。
制御回路120の出力電位と入力信号CLK2との電位差の絶対値とpチャネルMOSFET11のしきい値電圧Vtpの絶対値との大小関係によって、pチャネルMOSFET11のオン状態の程度が制御され、制御回路110の出力電位と入力信号CLK1との電位差の絶対値とnチャネルMOSFET12のしきい値電圧Vtnの絶対値との大小関係によって、nチャネルMOSFET12のオン状態の程度が制御される。これにより、出力ノードNOの電位Voutのハイレベル及びローレベルが制御される。
本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。制御回路110の具体例としては、図24、図25、図26に示した回路等がある。一方、制御回路120の具体例としては、図28、図29、図30、図31、図32、図33、図34に示した回路等がある。
実施の形態7.
図36は第7の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路7は、レベル変換部207及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部207は、pチャネルMOSFET21、23、nチャネルMOSFET22、24、及び制御回路110a、110bを含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路110a、110bは、図23のレベル変換回路4の制御回路110と同じである。
pチャネルMOSFET21及び23のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ接続される。nチャネルMOSFET22、24のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは制御回路110a、110bを介して電源電位VDDを受ける電源端子にそれぞれ接続される。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第2の実施の形態と同じである。
図36のレベル変換回路7の動作は、基本的に図11のレベル変換回路2と同じであり、nチャネルMOSFET22、24のゲート電位が制御回路110a、110bによって調整された電位を受けて動作する点が異なる。
制御回路110a、110bは、電源電位VDDを受けて、電源電位VDDと入力信号CLK1のハイレベルの電位との間の電位を出力する。制御回路110a、110bの出力電位と入力信号CLK1との電位差の絶対値とnチャネルMOSFET22、24のしきい値電圧Vtnの絶対値との大小関係によって、nチャネルMOSFET22、24のオン状態の程度が制御され、出力ノードNO1、NO2の電位Vout1、Vout2がそれぞれ得られる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
制御回路110a、110bの具体例は、図24、図25、図26に示した回路等がある。
実施の形態8.
図37は第8の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路8は、レベル変換部308及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部308は、pチャネルMOSFET31、33、nチャネルMOSFET32、34、及び制御回路120a、120bを含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路で構成される。制御回路120a、120bは、図27のレベル変換回路5の制御回路120と同じである。
pチャネルMOSFET31及び33のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは制御回路120a、120bを介して入力ノードI2、I1にそれぞれ接続される。nチャネルMOSFET32、34のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ交差接続される。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第3の実施の形態と同じである。
図37のレベル変換回路8の動作は、基本的に図17のレベル変換回路3と同じであり、nチャネルMOSFET32、34のゲート電位が制御回路110a、110bによって調整された電位を受けて動作する点が異なる。
制御回路120a、120bは、入力信号CLK1、CLK2のハイレベルの電位を電源電位VDDと入力信号CLK1、CLK2のハイレベルの電位との間の電位に調整して出力する。
制御回路120a、120bの出力電位と入力信号CLK2、CLK1との電位差の絶対値とnチャネルMOSFET32、34のしきい値電圧Vtpの絶対値との大小関係によって、nチャネルMOSFET32、34のオン状態の程度が制御され、出力ノードNOの電位Voutが得られる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
制御回路120a、120bの具体例は、図28、図29、図30、図31、図32、図33、図34に示した回路等がある。
実施の形態9.
図38は第9の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路9は、2つのレベル変換部101A、101B及び1つのPMOSクロスカップル型の差動増幅回路400を備える。
レベル変換部101A、101Bの構成は、第1の実施の形態におけるレベル変換部101の構成と同様である。ただし、レベル変換部101Aの入力ノードI1,I2にはそれぞれ入力信号CLK1、CLK2が与えられ、レベル変換部101Bの入力ノードI1,I2にはそれぞれ入力信号CLK2、CLK1が与えられる。
差動増幅回路400は、pチャネルMOSFET401、403及びnチャネルMOSFET402、404を含む。pチャネルMOSFET401、403のソースは電源電圧VDDを受ける電源端子に接続され、ドレインは出力ノードNO401、NO402にそれぞれ接続され、ゲートは出力ノードNO402、NO401に交差接続される。nチャネルMOSFET402、404のソースには所定の電位VEEが与えられ、ドレインは出力ノードNO401、NO402にそれぞれ接続され、ゲートはレベル変換部101A、101Bの出力ノードNOA、NOBにそれぞれ接続される。所定の電位VEEは、電源電位VDDよりも低い正電位、接地電位、負電位のいずれでもよい。また、図中右側のVEEにはクロック信号CLK1が入力されてもよく、左のVEEにはCLK2が入力されてもよい。
本実施の形態のレベル変換回路9においては、差動増幅回路400の出力ノードNO401、NO402から相補に変化する出力電位VOUT1、VOUT2が出力される。出力電位VOUT1、VOUT2は電源電位VDDと所定の電位VEEとの間で変化する。
実施の形態10.
図39は第10の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路10が図38のレベル変換回路9と異なるのは、2つのレベル変換部101A、101Bの代わりに、それぞれ制御回路100A、100Bを有する2つのレベル変換部104A、104Bを備える点である。
レベル変換部104A、104Bの構成は、第4の実施の形態におけるレベル変換部104の構成と同様である。ただし、レベル変換部104Aの入力ノードI1,I2にはそれぞれ入力信号CLK1、CLK2が与えられ、レベル変換部104Bの入力ノードI1,I2にはそれぞれ入力信号CLK2、CLK1が与えられる。
本実施の形態のレベル変換回路10においては、差動増幅回路400の出力ノードNO401、NO402から相補に変化する出力電位VOUT1、VOUT2が出力される。出力電位VOUT1、VOUT2は電源電位VDDと所定の電位VEEとの間で変化する。本実施の形態の制御回路110の具体例は、図24乃至図26に示した回路等である。
なお、第9及び第10の実施の形態では、レベル変換部としてレベル変換部101及び104を用いたが、第5の実施の形態のレベル変換部105、第6の実施の形態のレベル変換部106を用いてもよい。また、第7の実施の形態のレベル変換部207、第8の実施の形態のレベル変換部308でもよいが、このときは、レベル変換部の出力ノードNO1、NO2をそれぞれ差動増幅回路のnチャネルMOSFET402、404のゲートに接続すればよい。
実施の形態11.
図40は第11の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路11が図38のレベル変換回路9と異なるのは、PMOSクロスカップル型の差動増幅回路400の代わりにカレントミラー型の増幅回路500が接続されている点である。
カレントミラー型の増幅回路500は、pチャネルMOSFET501、503及びnチャネルMOSFET502、504を含む。pチャネルMOSFET501、503のソースは電源電圧VDDを受ける電源端子に接続され、ドレインは出力ノードNO501、NO502にそれぞれ接続され、ゲートは出力ノードNO502に接続される。nチャネルMOSFET502、504のソースには所定の電位VEEが与えられ、ドレインは出力ノードNO501、NO502にそれぞれ接続され、ゲートはレベル変換部101A、101Bの出力ノードNOA、NOBにそれぞれ接続される。所定の電位VEEは、電源電位VDDよりも低い正電位、接地電位、負電位などでよい。また、図中右のVEEにはクロック信号CLK1を入力してもよいし、左のVEEにはCLK2を入力してもよい。
本実施の形態のレベル変換回路11においては、カレントミラー型の増幅回路500の出力ノードNO501から出力電位VOUTが出力される。出力電位VOUTは電源電位VDDと所定の電位VEEとの間で変化する。
実施の形態12.
図41は第12の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路12が図40のレベル変換回路11と異なるのは、2つのレベル変換部101A、101Bの代わりに、それぞれ制御回路110A、110Bを有する2つのレベル変換部104A、104Bを備える点である。
レベル変換部104A、104Bの構成は、第4の実施の形態におけるレベル変換部104の構成と同様である。ただし、レベル変換部104Aの入力ノードI1,I2にはそれぞれ入力信号CLK1、CLK2が与えられ、レベル変換部104Bの入力ノードI1,I2にはそれぞれ入力信号CLK2、CLK1が与えられる。
本実施の形態のレベル変換回路12においては、カレントミラー型の増幅回路500の出力ノードNO501から出力電位VOUTが出力される。出力電位VOUTは電源電位VDDと所定の電位VEEとの間で変化する。本実施の形態の制御回路110の具体例は、図24乃至図26に示した回路等がある。
なお、第9及び第10の実施の形態のレベル変換部101及び104の代わりに、第5の実施の形態のレベル変換部105、第6の実施の形態のレベル変換部106を用いてもよい。また、第7の実施の形態のレベル変換部207、第8の実施の形態のレベル変換部308を用いてもよいが、このときは、レベル変換部の出力ノードNO1、NO2をそれぞれ差動増幅回路のnチャネルMOSFET502、504のゲートに接続すればよい。
実施の形態13.
図42は第13の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路13はペア型レベル変換回路で、2つのレベル変換部101A、101B及び4つのインバータINV1A、INV2A、INV1B、INV2Bを備える。
レベル変換部101A、101Bの構成は、図5のレベル変換部101の構成と同様である。レベル変換部101AのnチャネルMOSFET12のソース、レベル変換部101BのpチャネルMOSFET11のゲートは、入力信号CLK1を受ける入力ノードIAに接続される。レベル変換部101AのpチャネルMOSFET11のゲート、レベル変換部101BのnチャネルMOSFET12のソースは、入力信号CLK2を受ける入力ノードIBに接続される。
本実施の形態のレベル変換回路13においては、入力信号CLK1、CLK2がレベル変換された出力信号VOUT1、VOUT2が出力される。出力電位VOUT1、VOUT2は電源電位VDDと接地電位との間で変化する。
なお、本実施の形態のレベル変換部101として、第4の実施の形態のレベル変換部104、第5の実施の形態のレベル変換部105、第6の実施の形態のレベル変換部106を用いてもよい。
実施の形態14.
図43は、本発明のレベル変換回路を用いた液晶表示装置の一例を示すブロック図である。この装置では、ガラス基板600上に、複数の走査電極Y1、Y2、…Yn及び複数のデータ電極X1、X2、…Xmが互いに交差するように配置されている。ここで、n及びmはそれぞれ任意の整数である。なお、ガラス基板600の代わりにプラスチック等からなる基板を用いてもよい。複数の走査電極Y1〜Ynと複数のデータ電極X1〜Xmとの交差部には薄膜トランジスタ601を介して液晶素子602が設けられる。薄膜トランジスタ601は、例えば、非晶質シリコンをレーザアニーリング法等により結晶化することより得られた多結晶シリコンにより形成される。
ガラス基板600上には、走査線駆動回路603、データ線駆動回路604及び電圧変換回路700が設けられている。走査電極Y1〜Ynは走査線駆動回路603と接続され、データ電極X1〜Xmはデータ線駆動回路604に接続されている。電圧変換回路700は外部制御回路605から与えられる相補に変化する小振幅のふたつの基本クロック信号をそれとは異なる電圧のクロック信号にレベル変換し、走査線駆動回路603及びデータ線駆動回路604に与える。
図44は、図43の液晶表示素子に用いられる電圧変換回路700の構成を示すブロック図である。この電圧変換回路700において、ガラス基板600上に、昇圧電源回路701、負電源回路702及び第1〜第4のレベル変換回路703、704、705、706が形成されている。第1のレベル変換回路703には外部電源電圧8V及び3Vが与えられる。内部回路は図43の走査線駆動回路603及びデータ線駆動回路604であり、0〜8V、0〜12V、−3〜8V、−3〜12Vの4通りの電圧範囲の信号を入力すると仮定する。
第1のレベル変換回路703は、図43の外部制御回路605から与えられる基本クロック信号を0Vから8Vの範囲で変化する信号にレベル変換し、内部回路及び第2〜第4のレベル変換回路704、705、706に与える。第2のレベル変換回路704は、第1のレベル変換回路703から与えられる信号を昇圧電源回路701の電源電圧に基づいて0から12Vの範囲で変化する信号にレベル変換し、内部回路及び第4のレベル変換回路706に与える。第3のレベル変換回路705は、第1のレベル変換回路703から与えられる信号を負電源回路702の負の電源電圧に基づいて−3Vから8Vの範囲で変化する信号にレベル変換し、内部回路に与える。第4のレベル変換回路706は、第2のレベル変換回路704から与えられる信号を負電源回路702の負の電源電圧に基づいて−3Vから12Vの範囲で変化する信号にレベル変換し、内部回路に与える。
第1〜第4のレベル変換回路703、704、705、706として、第1〜13の実施の形態のレベル変換回路1〜13のいずれかが用いられる。それにより、図43の液晶表示装置は、製造工程でのpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧のばらつきが大きい場合でも高い確度で動作することができるとともに、高速動作、低消費電力化、小面積化及び高精細化が可能となる。
実施の形態15.
図45は、本発明のレベル変換回路を用いた有機エレクトロルミネッセンス装置の一例を示すブロック図である。この有機エレクトロルミネッセンス装置では、ガラス基板610上に、複数の走査電極Y1、Y2、…Yn及び複数のデータ電極X1、X2、…Xmが互いに交差するように配置されている。なお、ガラス基板610の代わりにプラスチック等からなる基板を用いてもよい。複数の走査電極Y1〜Ynと複数のデータ電極X1〜Xmとの交差部には薄膜トランジスタ611及び612を介して有機エレクトロルミネッセンス素子613が設けられる。薄膜トランジスタ611、612は、例えば、非晶質シリコンをレーザアニーリング法等により結晶化することより得られた多結晶シリコンにより形成される。
ガラス基板610上には、走査線駆動回路614、データ線駆動回路615及び電圧変換回路710が設けられている。走査電極Y1〜Ynは走査線駆動回路614と接続され、データ電極X1〜Xmはデータ線駆動回路615に接続されている。電圧変換回路710は外部制御回路616から与えられる相補に変化する小振幅のふたつの基本クロック信号をそれとは異なる電圧のクロック信号にレベル変換し、走査線駆動回路614及びデータ線駆動回路615に与える。電圧変換回路710の構成は、図44に示した電圧変換回路700の構成と同様である。
電圧変換回路710には、第1〜13の実施の形態のレベル変換回路1〜13のいずれかが用いられる。それにより、図45の有機エレクトロルミネッセンス装置は、製造工程でのpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧のばらつきが大きい場合でも高い確度で動作することができるとともに、高速動作、低消費電力化、小面積化及び高精細化が可能となる。
実施の形態16.
図46は、実施の形態に係るレベル変換回路を用いたセンサ装置の一例を示すブロック図である。このセンサ装置では、ガラス基板620上に、複数の走査電極Y1、Y2、…Yn及び複数のデータ電極X1、X2、…Xmが互いに交差するように配置されている。なお、ガラス基板620の代わりにプラスチック等からなる基板を用いてもよい。複数の走査電極Y1〜Ynと複数のデータ電極X1〜Xmとの交差部には薄膜トランジスタ621を介してセンサ622が設けられている。薄膜トランジスタ621は、例えば、非晶質シリコンをレーザアニーリング法等により結晶化することより得られた多結晶シリコンにより形成される。センサ622としては、例えば、受光素子を用いることができる。この場合には、イメージセンサが構成される。また、センサ622として、圧力差を抵抗または静電容量により検知する圧力センサを用いてもよい。この場合には、物体の表面粗さを検知する表面粗さセンサ、指紋等の紋様を検知する紋様検知センサ等が構成される。
ガラス基板620上には、走査線駆動回路623、データ線駆動回路624及び電圧変換回路720が設けられている。走査電極Y1〜Ynは走査線駆動回路623と接続され、データ電極X1〜Xmはデータ線駆動回路624に接続されている。電圧変換回路720は外部制御回路625から与えられる相補に変化する小振幅のふたつの基本クロック信号をそれとは異なる電圧のクロック信号にレベル変換し、走査線駆動回路623及びデータ線駆動回路624に与える。電圧変換回路720の構成は、図44に示した電圧変換回路700の構成と同様である。
電圧変換回路720には、第1〜13の実施の形態のレベル変換回路1〜13のいずれかが用いられる。それにより、図46のセンサ装置は、製造工程でのpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧のばらつきが大きい場合でも高い確度で動作することができるとともに、高速動作、低消費電力化、小面積化及び高精細化が可能となる。
以上、本発明を実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素の組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
産業上の利用可能性
以上のように、本発明によれば、安定動作、高速動作、省電力化、高精細化の少なくともいずれかにおいて有利なレベル変換回路を提供することができる。
【図面の簡単な説明】
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
図1は、従来のレベル変換回路の第1の例を示す回路図である。
図2は、従来のレベル変換回路の第2の例を示す回路図である。
図3は、従来のレベル変換回路の第3の例を示す回路図である。
図4は、従来のレベル変換回路の第4の例を示す回路図である。
図5は、実施の形態1におけるレベル変換回路の構成を示す回路図である。
図6は、実施の形態1において、多結晶シリコンからなる薄膜トランジスタを用いた場合のシミュレーション結果を示す電圧波形図である。
図7は、実施の形態1において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果を示す電圧波形図である。
図8は、実施の形態1において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果を示す電圧波形図である。
図9は、実施の形態1において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果を示す電圧波形図である。
図10は、図5のレベル変換回路の別の構成を示す回路図である。
図11は、実施の形態2におけるレベル変換回路の構成を示す回路図である。
図12は、実施の形態2において、多結晶シリコンからなる薄膜トランジスタを用いた場合のシミュレーション結果を示す電圧波形図である。
図13は、実施の形態2において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果を示す電圧波形図である。
図14は、実施の形態2において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果を示す電圧波形図である。
図15は、実施の形態2において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果を示す電圧波形図である。
図16は、図11のレベル変換回路の別の構成を示す回路図である。
図17は、実施の形態3におけるレベル変換回路の構成を示す回路図である。
図18は、実施の形態3において、多結晶シリコンからなる薄膜トランジスタを用いた場合のシミュレーション結果を示す電圧波形図である。
図19は、実施の形態3において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果を示す電圧波形図である。
図20は、実施の形態3において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果を示す電圧波形図である。
図21は、実施の形態3において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果を示す電圧波形図である。
図22は、図17のレベル変換回路の別の構成を示す回路図である。
図23は、実施の形態4におけるレベル変換回路の構成を示す回路図である。
図24は、図23のレベル変換回路の回路構成の第1の例を示す回路図である。
図25は、図23のレベル変換回路の回路構成の第2の例を示す回路図である。
図26は、図23のレベル変換回路の回路構成の第3の例を示す回路図である。
図27は、実施の形態5におけるレベル変換回路の構成を示す回路図である。
図28は、図27のレベル変換回路の回路構成の第1の例を示す回路図である。
図29は、図27のレベル変換回路の回路構成の第2の例を示す回路図である。
図30は、図27のレベル変換回路の回路構成の第3の例を示す回路図である。
図31は、図27のレベル変換回路の回路構成の第4の例を示す回路図である。
図32は、図27のレベル変換回路の回路構成の第5の例を示す回路図である。
図33は、図27のレベル変換回路の回路構成の第6の例を示す回路図である。
図34は、図27のレベル変換回路の回路構成の第7の例を示す回路図である。
図35は、実施の形態6におけるレベル変換回路の構成を示す回路図である。
図36は、実施の形態7におけるレベル変換回路の構成を示す回路図である。
図37は、実施の形態8におけるレベル変換回路の構成を示す回路図である。
図38は、実施の形態9におけるレベル変換回路の構成を示す回路図である。
図39は、実施の形態10におけるレベル変換回路の構成を示す回路図である。
図40は、実施の形態11におけるレベル変換回路の構成を示す回路図である。
図41は、実施の形態12におけるレベル変換回路の構成を示す回路図である。
図42は、実施の形態13におけるレベル変換回路の構成を示す回路図である。
図43は、実施の形態に係るレベル変換回路を用いた液晶表示装置の一例を示すブロック図である。
図44は、図43の液晶表示装置に用いられる電圧変換装置の構成を示すブロック図である。
図45は、実施の形態に係るレベル変換回路を用いた有機エレクトロルミネッセンス装置の一例を示すブロック図である。
図46は、実施の形態に係るレベル変換回路を用いたセンサ装置の一例を示すブロック図である。
本発明は、レベル変換技術、とくに入力信号の電圧振幅を別の電圧振幅に変換するレベル変換回路に関する。
背景技術
近年、バルクシリコンを用いた集積回路として、マイクロプロセッサまたはメモリをロジック回路と同一チップ上に搭載したシステムオンシリコンと称されるチップが開発されている。これに伴って、多くの種類の回路を可能な限り微細なデザインルールで1チップ化する技術の開発が進められている。
しかし、回路の種類ごとに異なるデザインルールで設計されているために、デザインルールの異なる回路を集積化することが避けられない。その結果、1チップ内に異なる電源電圧で動作する複数の回路が混載され、それらのインターフェイス部分で電圧のレベル変換が必要となる。また、これら複数の回路の混載がそもそも高速性の追求をひとつの目的としている以上、当然、レベル変換回路にも高速動作が要求される。
液晶表示装置、有機EL(エレクトロルミネッセンス)装置等の表示デバイスには、一般に多結晶シリコンからなる薄膜トランジスタが用いられる。このような表示デバイスと同一基板上にレベル変換回路を設ける際、通常、レベル変換回路も多結晶シリコンからなる薄膜トランジスタで構成される。トランジスタの製造工程では、しきい値電圧等の素子特性にばらつきが生じる。特に、多結晶シリコンからなる薄膜トランジスタにおいては素子特性のばらつきが大きく、それでも高い確度で動作するレベル変換回路が要求される。さらにこうした表示デバイスでは、省電力化及び高精細化の観点から小振幅の入力信号が与えられた場合でも高速動作が可能なレベル変換回路が必要になる。
図1は従来のレベル変換回路の第1の例を示す回路図である。このレベル変換回路800は、2つのpチャネルMOSFET(金属酸化物半導体電界効果トランジスタ)801,802及び2つのnチャネルMOSFET803,804を含む。pチャネルMOSFET801,802は電源電位VDDを受ける電源端子と出力ノードN11,N12の間にそれぞれ接続され、nチャネルMOSFET803,804は出力ノードN11,N12と接地端子との間にそれぞれ接続される。pチャネルMOSFET801,802のゲートはそれぞれ出力ノードN11,N12に交差接続される。nチャネルMOSFET803,804のゲートには相補に変化する入力信号CLK1,CLK2が与えられる。
入力信号CLK1がハイレベルとなり、入力信号CLK2がローレベルになると、nチャネルMOSFET803がオンし、nチャネルMOSFET804がオフする。それにより、pチャネルMOSFET802がオンし、pチャネルMOSFET801がオフする。その結果、出力ノードN12の出力電位Voutが上昇する。逆に、入力信号CLK1がローレベルとなり、入力信号CLK2がハイレベルになると、出力ノードN12の出力電位Voutが低下する。
この回路でnチャネルMOSFET803,804がオンするためには、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET803,804のしきい値電圧Vtnよりも大きいことが必要となる。したがって、このレベル変換回路800は、入力信号と出力信号との電圧比が小さい場合に用いられ、この回路は、例えば3V系の信号を5V系の信号に、2.5V系の信号を3V系の信号に、または1.8V系の信号を2.5V系もしくは3.3V系の信号に変換する場合に有効である。
図2は従来のレベル変換回路の第2の例を示す回路図である。このレベル変換回路810は、バイアス回路811、pチャネルMOSFET812及びnチャネルMOSFET813を含む。
pチャネルMOSFET812は電源電位VDDを受ける電源端子と出力ノードN13との間に接続され、nチャネルMOSFET813は出力ノードN13と所定の電位VEEを受ける電源端子との間に接続される。入力信号CLKはpチャネルMOSFET812のゲート及びバイアス回路811に与えられる。バイアス回路811は入力信号の中心レベルをシフトさせてnチャネルMOSFET813のゲートに与える。
入力信号CLKがハイレベルになると、pチャネルMOSFET812がオフし、nチャネルMOSFET813がオンする。それにより、出力ノードN13の出力電位Voutが低下する。入力信号CLKがローレベルになると、pチャネルMOSFET812がオンし、nチャネルMOSFET813がオフする。それにより、出力ノードN13の出力電位Voutが上昇する。
この回路は、バイアス回路811により入力信号CLKの中心レベルがシフトされるので、設定により、入力信号CLKの電圧振幅がnチャネルMOSFET813のしきい値電圧Vtnよりも小さい場合でも動作する。
図3は従来のレベル変換回路の第3の例を示す回路図である。このレベル変換回路820は、クランプ回路821及びカレントミラー型の増幅回路822を含む。カレントミラー型の増幅回路822は、2つのpチャネルMOSFET831,832及び2つのnチャネルMOSFET833,834を含む。pチャネルMOSFET831,832は電源電位VDDを受ける電源端子と出力ノードN14,N15との間にそれぞれ接続される。nチャネルMOSFET833,834は出力ノードN14,N15と接地端子との間にそれぞれ接続される。pチャネルMOSFET831,832のゲートは出力ノードN14に接続される。クランプ回路821は、相補に変化する入力信号CLK1,CLK2の中心レベルをシフトさせてnチャネルMOSFET833,834のゲートに与える。
入力信号CLK1がハイレベルになり、入力信号CLK2がローレベルになると、nチャネルMOSFET833がオンし、nチャネルMOSFET834がオフする。それによりpチャネルMOSFET831,832がオンする。その結果、出力ノードN15の出力電位Voutが上昇する。逆に、入力信号CLK1がローレベルとなり、入力信号CLK2がハイレベルになると、出力ノードN15の出力電位Voutが低下する。
この回路は、クランプ回路821により入力信号CLK1,CLK2の中心レベルがシフトされるので、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET833,834のしきい値電圧Vtnよりも小さい場合でも動作する。
図4は従来のレベル変換回路の第4の例を示す回路図である。図4のレベル変換回路840は、クランプ回路841及びPMOSクロスカップル型の増幅回路842を含む。
PMOSクロスカップル型の増幅回路842は、2つのpチャネルMOSFET851,852及び2つのnチャネルMOSFET853,854を含む。pチャネルMOSFET851,852は電源電位VDDを受ける電源端子と出力ノードN16,N17との間にそれぞれ接続され、nチャネルMOSFET853,854は出力ノードN16,N17と接地端子との間にそれぞれ接続される。pチャネルMOSFET851,852のゲートはそれぞれ出力ノードN17,N16に交差接続される。クランプ回路841は、相補に変化する入力信号CLK1,CLK2の中心レベルをシフトさせてnチャネルMOSFET853,854のゲートに与える。
入力信号CLK1がハイレベルになり、入力信号CLK2がローレベルになると、nチャネルMOSFET853がオンし、nチャネルMOSFET854がオフする。それによりpチャネルMOSFET851がオフし、pチャネルMOSFET852がオンする。その結果、出力ノードN17の出力電位Voutが上昇する。逆に、入力信号CLK1がローレベルとなり、入力信号CLK2がハイレベルになると、出力ノードN17の出力電位Voutが低下する。
この回路は、クランプ回路841により入力信号CLK1,CLK2の中心レベルがシフトされるので、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET853,854のしきい値電圧Vtnよりも小さい場合でも動作する。
図1のレベル変換回路800は、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET803,804のしきい値電圧Vtnよりも小さい場合には動作することができない。
図2のレベル変換回路810は、バイアス回路811の存在により、入力信号CLKの電圧振幅がnチャネルMOSFET813のしきい値電圧Vtnよりも小さい場合でも動作することが可能となる。同様に、図3及び図4のレベル変換回路820,840も、クランプ回路821,841の存在により、入力信号CLK1,CLK2の電圧振幅がnチャネルMOSFET833,834,853,854のしきい値電圧Vtnよりも小さい場合でも動作することが可能となる。
しかしながら、図2〜図4のレベル変換回路810,820,840においても製造工程のばらつきによってnチャネルMOSFETのしきい値電圧Vtnが設計値から大きくずれると、動作しない場合が生じる。
図1〜図4のレベル変換回路800,810,820,840のいずれにおいても製造工程でpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が不規則にばらついた場合、例えばnチャネルMOSFETのしきい値電圧が大きく、pチャネルMOSFETのしきい値電圧Vtpが小さくなった場合や、nチャネルMOSFETのしきい値電圧Vtnが小さく、pチャネルMOSFETのしきい値電圧Vtpが大きくなった場合、出力電圧波形のデューティー比が所定の設計値からずれる。特に、レベル変換回路を表示デバイスのクロック信号のために用いるとき、信号のデューティー比が50%に保たれないと、複数の表示デバイス間で画素の点灯及び消灯時間にばらつきが生じる。
図1のレベル変換回路800においては、nチャネルMOSFET803,804のオンオフの反転時にpチャネルMOSFET801,802のゲート電荷の引き抜き合いが行われる。そのため、出力電位Voutのレベルの反転に時間を要することとなり、高速動作を図ることができない。pチャネルMOSFET801,802として多結晶シリコンからなる薄膜トランジスタのように駆動能力が小さいトランジスタを用いた場合、この時間はさらに増大する。出力電位Voutのレベルの反転時、電源端子からpチャネルMOSFET801及びnチャネルMOSFET803の経路またはpチャネルMOSFET802及びnチャネルMOSFET804の経路を通して接地端子には貫通電流が流れ、出力電位Voutのレベルの反転に時間を要すればそれだけ消費電力が増える。
また、図3及び図4のレベル変換回路820,840のクランプ回路821,841については、一般にそれらが大きなレイアウト面積を要する点でも改善の余地が認められる。
発明の開示
したがって、本発明の目的は、製造工程でのばらつきによりトランジスタのしきい値電圧が設計値からずれた場合でも、より高い確度で動作できるとともに、高速動作、低消費電力化及び小面積化が可能なレベル変換回路を提供することにある。
本発明のある態様は、レベル変換回路に関する。この回路は、電源電圧が印加される電源ノードと出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと前記出力ノードとの間に接続された第2導電型の第2のトランジスタとを備え、前記第2のトランジスタの制御電極は前記電源ノードに接続され、前記第1のトランジスタの制御電極は第2入力信号が入力される第2入力ノードに接続され、前記出力ノードから出力信号が取り出される。
この構成により、第1および第2入力信号の変化に応じて第1及び第2のトランジスタのオン状態が制御され、前記の電源電圧にそのハイレベルが依存する出力信号が得られる。したがって、例えば第1及び第2入力信号の電圧振幅が第1及び第2のトランジスタのしきい値電圧よりも小さい場合でも動作可能な構成を得ることができる。
また、第2のトランジスタの制御電極が定電位であるため、第1入力信号によって直接第2トランジスタのオン状態を変化させることができ、高速動作の実現が容易になる。高速動作が実現すれば出力信号の電位の遷移期間が短くなり、貫通電流が流れる期間が短縮され、低消費電力化に寄与できる。さらにこの構成は、主に第1及び第2のトランジスタのみで実現できるため、省面積化設計の面でも有利である。
本発明のある態様では、前記の電源電圧は前記第1および第2のトランジスタのそれぞれについて単一または個別に設けられ、第1のトランジスタに対応する電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、第2のトランジスタに対応する電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電源電圧と前記第1入力信号および第2入力信号の電圧の差に応じて前記第1及び第2のトランジスタのオン状態の程度が制御され、第1入力信号が前記電源電圧に対応した前記出力信号に変換される。
別の態様では、前記電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、それらの電圧の差に応じて前記第1のトランジスタのオン状態の程度が制御され、前記第1入力信号が前記電源電圧に対応した前記出力信号に変換される。さらに別の態様では、前記電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電圧の差に応じて前記第2のトランジスタのオン状態の程度が制御され、第1入力信号が第1のトランジスタに作用する電源電圧に対応した前記出力信号に変換される。「第1のトランジスタに作用する電源電圧」とは、たとえば、そのトランジスタがMOSFETでありそのソースに電源電圧が印加されているとき、その電圧をいう。
「対応した」とは、必ずしも両者の一致をいうのではなく、出力信号が電源電圧の関数になっていればよい。例えば、電源電圧が相対的に高い値であれば、出力信号のハイレベルが入力信号のそれよりも高い方向へ引き上げられることが考えられる。
以下、第1から第4のトランジスタが存在する場合において「電源電圧」または「第1の電源電圧」および「第2の電源電圧」というとき、これらのトランジスタに共通の電源電圧がひとつだけ設けられていてもよいし、第1のトランジスタと第3のトランジスタについて別々の電源電圧が設定されていてもよい。電源電圧に関するこの考察は、電源電圧が単一か別個かに関する明示的な記述の有無によらず本明細書を通じて有効とし、その理由は、これらの異同の詳述が当業者にとって有益というよりはむしろ煩瑣に過ぎるためである。同様の考察は「接地電圧」というときにも有効である。
本発明のある態様では、第2のトランジスタの制御電極は、電源電圧を所定量引き下げる制御回路を介して電源ノードに接続される。同様に、第1のトランジスタの制御電極は、第2入力ノードの電圧を所定量引き上げる制御回路を介して第2入力ノードに接続されてもよい。これらの制御回路は、それぞれ電源電圧と第1入力ノードとの電位差、および電源電圧と第2入力ノードの電位差が大きすぎてそれぞれ第2のトランジスタおよび第1のトランジスタが必要な程度までオフしない状態を回避する。一般に、第1および第2のトランジスタはつねにともにオンさせておくことができ、ただしそのオンの程度の強弱によって出力信号をより高い電位またはより低い電位へ、いわばトランジスタの「綱引き」によって変化させることができる。トランジスタは、そのオン抵抗に等価な抵抗素子と見なすことができるためである。この方法はトランジスタが完全にオフしている状態からオンするまでの時間を必要としないため、高速動作に向く。しかし、本来オフすべきときにオンの状態が強すぎると、出力信号の電位が必要な量だけ変化しないことがある。そのため、制御回路を適度に設けることにより、制御電圧を所望の値へ調整する趣旨である。
前記の第1および第2入力ノードは単一の共通ノードであってもよい。このときまた、共通ノードに入力された第1入力信号を反転せしめる制御回路をさらに有し、第1のトランジスタの制御電極には、第2入力信号に代えてこの制御回路の出力信号が与えられてもよい。「共通ノード」とは、1)物理的にひとつのノードの場合、2)物理的にはふたつであるが、両方に共通して第1入力信号を入力する場合の両義を包含する。すなわち、ノードは物理的な意味と論理的な意味の両義を表象するものとし、これは本明細書を通じて有効とする。
本態様によって第2入力信号が不要になり、レベル変換回路への入力信号が削減でき、回路規模の縮小に貢献する。この共通ノードという考え方は、以下、いずれの態様においても有効である。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、第2の入力信号が入力される第2入力ノードと第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備える。また、第2及び第4のトランジスタの制御電極は電源ノードと接続され、第1及び第3のトランジスタの制御電極はそれぞれ第2の出力ノードおよび第1の出力ノードに接続される。この構成において、第1または第2の出力ノードから出力信号が取り出される。
この構成によれば、第1及び第3のトランジスタのしきい値電圧に拘わらず、これらをより確実に制御できるので、所望のレベル変換が実現しやすくなる。また、第1及び第2トランジスタで構成する回路の出力信号のデューティ比と第3及び第4トランジスタで構成する回路の出力信号のデューティ比に差があってもそれぞれの出力信号が互いに相手の回路の制御信号となるので、補完されて、デューティ比が揃う方向に作用する。したがって、たとえば製造ばらつきにより第1から第4トランジスタのしきい値電圧が設計値からずれた場合でも、より確実な動作が期待できる。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、第2入力信号が入力される第2入力ノードと第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、第2及び第4のトランジスタの制御電極はそれぞれ第2の出力ノードおよび第1の出力ノードに接続され、第1及び第3のトランジスタの制御電極はそれぞれ第2及び第1入力ノードに接続され、第1または第2の出力ノードから出力信号が取り出される。
この構成によれば、第2及び第4のトランジスタのしきい値電圧に拘わらず、これらをより確実に制御できるので、所望のレベル変換が実現しやすくなる。また、前述のデューティ比の補完作用も得られる。
以上のレベル変換回路において、第2入力信号として、所定の参照電圧信号が入力されてもよい。この参照電圧信号は固定電圧信号であってもよく、その値はたとえば電源電圧と接地電圧の間であり、一例としてそれらの中間値である。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、いままでに述べたいずれかのレベル変換回路と、その回路において第1入力信号と第2入力信号を入れ替えた回路と、さらに、それらふたつの回路の出力信号をふたつの制御入力信号とするクロスカップル型の差動増幅回路、またはカレントミラー型の増幅回路とを備え、これらいずれかの増幅回路を構成するふたつの電流経路のそれぞれに配されるふたつのトランジスタの接続点が最終的な出力信号を取り出すべき出力ノードに接続される。この構成でも、前述のデューティ比に関する改善が実現する。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって電源電圧と所定電圧が抵抗分割されるよう直列に配し、入力信号がハイレベルのとき第1のトランジスタが強いオン状態になるとともに、この入力信号と電源電圧の電位差によって第2のトランジスタが弱いオン状態はオフ状態となるよう構成し、入力信号がローレベルのとき第2のトランジスタが強いオン状態になるとともに、この入力信号の反転信号と電源電圧の電位差によって第1のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記の抵抗分割によって生じた中間電位を出力信号として取り出すよう配したものである。ここで、所定電圧は、たとえば接地電圧や入力信号のローレベルまたはハイレベルの電圧であり、電源電圧との間で有意な電位差を生じるものである。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな第1の電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって前記第1の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号の反転信号の振幅よりも電位差が大きな第2の電源電圧と所定電圧の間に、第3および第4のトランジスタを、それらのオン抵抗によって前記第2の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号がハイレベルのとき前記第1のトランジスタと第4のトランジスタが強いオン状態になるとともに、前記第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記入力信号がローレベルのとき前記第2のトランジスタと第3のトランジスタが強いオン状態になるとともに、前記第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記第1と第2のトランジスタによる抵抗分割によって生じた中間電位を前記第3と第4のトランジスタのいずれかの制御に利用し、前記第3と第4のトランジスタによる抵抗分割によって生じた中間電位を前記第1と第2のトランジスタのいずれかの制御に利用し、これらの中間電位の一方を出力信号として取り出すよう配したものである。
ここで、入力信号がハイレベルのとき、この入力信号とそれぞれ第1、第2の電源電圧の電位差によって第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、入力信号がローレベルのとき、この入力信号の反転信号とそれぞれ第1、第2の電源電圧の電位差によって第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成してもよい。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、出力ノードと、入力信号のハイレベルよりも高い電源電圧が印加される電源ノードとの間に接続されたpチャネル電界効果トランジスタと、入力信号が入力される第1入力ノードと出力ノードとの間に接続されたnチャネル電界効果トランジスタとを備え、nチャネル電界効果トランジスタのゲートは電源ノードに接続され、pチャネル電界効果トランジスタのゲートは入力信号の反転信号が入力される第2入力ノードに接続され、出力信号が出力ノードにて取り出されるものである。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、第1の電源電圧が印加される第1の電源ノードと第1の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第1のトランジスタと、第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第2のトランジスタと、第2の電源電圧が印加される第2の電源ノードと第2の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第3のトランジスタと、第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第4のトランジスタとを備える。この構成においてさらに、
1)前記第2及び第4のトランジスタのゲートはそれぞれ前記第1または第2の電源ノードの一方と接続され、前記第1及び第3のトランジスタのゲートはそれぞれ前記第2の出力ノードおよび第1の出力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出され、または、
2)前記第2及び第4のトランジスタのゲートはそれぞれ前記第2の出力ノードおよび第1の出力ノードに接続され、前記第1及び第3のトランジスタのゲートはそれぞれ前記第2及び第1入力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出される。
ここでも、第1の電源ノードと第2の電源ノードは同一でも別でもよい。なお、第2及び第4のトランジスタのゲートはそれぞれ第1または第2の電源電圧を引き下げる制御回路を介して第1または第2の電源ノードの一方と接続されてもよい。また、第2入力信号として、所定の参照電圧信号が入力されてもよい。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、電源電圧が印加される電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、第1入力信号が入力される第1入力ノードと第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、第2入力信号が入力される第2入力ノードと第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、第2及び第4のトランジスタの制御電極は、電源電圧を引き下げる制御回路を介して電源ノードに接続され、第1及び第3のトランジスタの制御電極はそれぞれ第2の出力ノードおよび第1の出力ノードに接続され、第1または第2の出力ノードから出力信号が取り出される。制御回路を設けることで、いろいろな電圧範囲でも適正な動作が確保される。
以上のいずれかのレベル変換回路において、接地電圧をVG、前記電源電圧をVDDと表記するとき、出力信号は目標電圧Vm=(VG+VDD)/2をその振幅の中心にもつよう調整されてもよい。また、目標電圧Vmを動作中心点にもち、かつその出力の振幅が接地電圧付近から電源電圧付近までをカバーするバッファ回路をさらに有し、このバッファ回路に出力信号を通すことにより整形された修正出力信号を得てもよい。
以上述べたいずれかの、またはすべてのトランジスタは多結晶の半導体により形成されるものであってもよい。例えば、本発明に係るレベル変換回路を液晶表示装置その他の表示装置のドライバ回路等に利用する場合、透明なガラス基板上に回路を形成する必要があることも多く、多結晶タイプの半導体であれば、比較的性能面で有利かつガラス上に薄膜として形成しやすいため、用途によっては好都合である。また、動作速度の面でも有利なことが多い。
以上述べたいずれのレベル変換回路も所定の半導体装置その他に組み込むことができる。この半導体装置は例えば、複数のセンサと、これらのセンサのいずれかを選択する複数の選択用トランジスタと、前記複数のセンサを複数の選択用トランジスタを介して駆動する周辺回路と、所定の信号をレベル変換して前記周辺回路に与えるレベル変換回路を備える。表示装置の例は、複数の表示素子と、それら複数の表示素子のいずれかを選択するための複数の選択用トランジスタと、前記複数の表示素子を前記複数の選択用トランジスタを介して駆動する周辺回路と、所定の信号をレベル変換して前記周辺回路に与えるレベル変換回路を備える。前記複数の表示素子は液晶表示素子や有機エレクトロルミネッセンス素子であってもよく、複数の液晶素子、複数の選択用トランジスタ、周辺回路及びレベル変換回路は絶縁基板上に形成されてもよい。選択用トランジスタとレベル変換回路の第1から第4のトランジスタは、薄膜トランジスタであってもよい。いずれの場合も、トランジスタの製造ばらつきが大きい場合でも、より確実な動作が可能になり、高速動作、低消費電力化、省面積設計が容易になる。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
発明を実施するための最良の形態
実施の形態1.
図5は第1の実施の形態におけるレベル変換回路の構成を示す回路図である。図5において、レベル変換回路1は、レベル変換部101及びドライブ用インバータINV1、INV2を備える。レベル変換部101は、pチャネルMOSFET(金属−酸化物−半導体形電界効果トランジスタ)11、nチャネルMOSFET12を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図5のレベル変換回路の動作を説明する。CLK1がローレベル、CLK2がハイレベルのとき、pチャネルMOSFET11は、ゲート電位であるCLK2のハイレベルの電位とソース電位である電源電位との電位差の絶対値とpチャネルMOSFET11のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは弱いオン状態になる。nチャネルMOSFET12は、ソース電位がCLK1のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になる。したがって、pチャネルMOSFET11のオン抵抗は、nチャネルMOSFET12のオン抵抗よりも大きくなり、出力ノードNOの電位VoutはnチャネルMOSFET12のソース電位であるCLK1のローレベルを反映して低くなる。
一方、CLK1がハイレベル、CLK2がローレベルのとき、pチャネルMOSFET11は、ゲート電位がCLK2のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になる。nチャネルMOSFET12は、ソース電位であるCLK1のハイレベルの電位とゲート電位である電源電位との電位差の絶対値とnチャネルMOSFET12のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは弱いオン状態になる。したがって、pチャネルMOSFET11のオン抵抗は、nチャネルMOSFET12のオン抵抗よりも小さくなり、出力ノードNOの電位VoutはpチャネルMOSFET11のソース電位である電源電位を反映して高くなる。ドライブ用インバータINV1及びINV2は、出力電位Voutを電源電位VDDと接地電位とに変化する出力電位VOUTに変換する。
本実施の形態におけるレベル変換回路を多結晶シリコンからなる薄膜トランジスタにより構成した場合の特性のシミュレーションを行った。まず、図5のレベル変換回路1の動作の高速性を調べた。
一般に、バルクシリコンからなるトランジスタでは、pチャネルトランジスタのしきい値電圧Vtpは例えば(−0.9±0.1)Vであり、nチャネルトランジスタのしきい値電圧Vtnは例えば(0.7±0.1)Vである。一方、多結晶シリコンを用いた薄膜トランジスタでは、pチャネルトランジスタのしきい値電圧Vtpは例えば(−2.0±1〜1.5)Vであり、nチャネルトランジスタのしきい値電圧Vtnは例えば(1.5±1)Vである。このように多結晶シリコンを用いた薄膜トランジスタでは、バルクシリコンからなるトランジスタに比べて製造工程でのしきい値電圧のばらつきは大きくなる。
図6はシミュレーション結果を示す図である。高速動作性を確認するために、入力信号CLK1、CLK2の周波数を20MHz、入力電圧振幅を3.0V、電源電圧VDDを10Vとした。図6には、入力信号CLK1、CLK2、出力電位VOUT及び出力ノードNOの出力電位Voutの波形を示す。図6のシミュレーション結果から、20MHzという高い周波数でも入力信号CLK1、CLK2に応答してデューティ比50%の出力電位VOUTが得られることがわかる。このように、レベル変換回路1を多結晶シリコンからなる薄膜トラジスタによって構成しても高速動作が可能となる。
次に、レベル変換回路のpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧がばらついた場合の電圧波形のシミュレーションを行った。このシミュレーションでは、実用的な速度における動作を確認するために、入力信号CLK1、CLK2の周波数は2MHzとした。
図7は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果である。図7のシミュレーションでは、pチャネルMOSFETのしきい値パラメータ(しきい値電圧)を−0.5Vとし、nチャネルMOSFETのしきい値パラメータ(しきい値電圧)を0.5Vとした。
図8は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果である。図8のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−2.0Vとし、nチャネルMOSFETのしきい値パラメータを1.5Vとした。
図9は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果である。図9のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−3.5Vとし、nチャネルMOSFETのしきい値パラメータを2.5Vとした。
図7、図8及び図9の結果から、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値から比較的大きくずれた場合でも、入力信号CLK1、CLK2に応答してデューティ比が50%の出力電位VOUTが得られることがわかる。
本実施の形態におけるレベル変換回路1においては、基本的に常時オン状態になっているpチャネルMOSFET11及びnチャネルMOSFET12のオン状態の程度を入力信号CLK1及びCLK2によって制御するので、CLK1及びCLK2の電圧振幅がpチャネルMOSFET11及びnチャネルMOSFET12のしきい値電圧よりも小さい場合でも動作が可能になる。また、pチャネルMOSFET11及びnチャネルMOSFET12のしきい値電圧が設計値よりも大きくずれた場合でも、入力信号CLK1及びCLK2のレベル変化に対応した出力電位Voutが得られる。このように、製造工程でのばらつきによりpチャネルMOSFET11及びnチャネルMOSFET12のしきい値電圧が設計値からずれた場合にでも高い確度で動作することができる。
また、基本的に常時オン状態になっているpチャネルMOSFET11及びnチャネルMOSFET12のオン状態の程度が制御されるので、高速動作が可能になる。さらに、高速動作が可能であるので出力電位Voutのレベルの遷移期間が短くなるので、貫通電流が流れる期間が短縮される。それにより低消費電力化を図ることができる。
また、レベル変換回路1は、pチャネルMOSFET11及びnチャネルMOSFET12のみで構成できるので、回路素子数が少なくて良く、小面積化を図ることができるとともに、回路設計が容易になる。
図10は、図5のレベル変換回路1の別の構成を示す。図5との違いのみ示す。レベル変換部101には制御回路90が新設される。制御回路90は、pチャネルMOSFET92、nチャネルMOSFET94を含む。pチャネルMOSFET92のソースは電源端子に接続され、ドレインはpチャネルMOSFET11のゲートおよびnチャネルMOSFET94のドレインに接続され、ゲートは入力ノードI1に接続される。nチャネルMOSFET94のゲートは電源端子に接続され、ソースは接地される。このレベル変換部101では、入力ノードI2が省略されている。
以上の構成によれば、制御回路90が入力信号CLK1のインバータとして機能する。まず、nチャネルMOSFET94は、ソース接地でゲートに電源電圧が与えられているため、常時強いオン状態になる。一方、pチャネルMOSFET92は、入力信号CLK1がハイレベルの場合、弱いオンまたはオフになり、ローレベルの場合、強いオンになる。したがって、入力信号CLK1がハイレベルのとき制御回路90の出力信号はローレベルになり、入力信号CLK1がローレベルのとき出力信号はハイレベルになる。そのため、入力信号CLK1の反転信号をpチャネルMOSFET11のゲートに入力することができ、図5の回路と同じ機能が実現できる。なお、制御回路90のnチャネルMOSFET94を抵抗素子に代えてもよいし、タイプをpチャネルMOSFETへ変更してそのゲートを接地してもよい。
以上、この構成により、入力信号の数を図5に比べてひとつ減らすことができる。入力信号CLK1、電源電圧、接地電圧以外の信号や電圧も不要なため、レベル変換回路1をIC化する場合も一般に信号ピンの数が減り、配線の数も減る。したがって、コスト低減や歩留まり改善に寄与しうる。
実施の形態2.
図11は第2の実施の形態におけるレベル変換回路の構成を示す回路図である。図11において、レベル変換回路2は、レベル変換部201及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部201は、pチャネルMOSFET21、23、nチャネルMOSFET22、24を含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。
pチャネルMOSFET21及び23のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ接続される。nチャネルMOSFET22、24のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは電源電位VDDを受ける電源端子にそれぞれ接続される。
このように、図11のレベル変換回路において、pチャネルMOSFET21とnチャネルMOSFET22で構成される回路とpチャネルMOSFET23とnチャネルMOSFET24で構成される回路は、ほぼ図5のレベル変換回路と同じ構成であるが、それぞれの回路の出力ノードNO1、NO2とpチャネルMOSFET21、23のゲートを交差接続する。ただし、「交差接続」とは、物理的に信号線が交差していることを要さず、図面上そのように表現されているに過ぎない。この配慮は以降も同様である。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第1の実施の形態と同じである。
以下に、図11のレベル変換回路の動作を説明する。CLK1がローレベル、CLK2がハイレベルのとき、nチャネルMOSFET22は、ソース電位がCLK1のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になり、出力ノードNO1の電位Vout1はnチャネルMOSFET22のソース電位であるCLK1のローレベルを反映して低くなる。これにより、pチャネルMOSFET23のゲート電位は、低くなった出力ノードNO1の電位Vout1となり、ソース電位である電源電位との関係により、十分強いオン状態になる。このとき、nチャネルMOSFET24は、ソース電位であるCLK2のハイレベルの電位とゲート電位である電源電位との電位差の絶対値とnチャネルMOSFET24のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、pチャネルMOSFET23のオン抵抗は、nチャネルMOSFET24のオン抵抗よりも十分小さくなり、出力ノードNO2の電位Vout2はpチャネルMOSFET23のソース電位である電源電位を反映して高くなる。このときの電位Vout2はCLK1、CLK2のハイレベルよりも十分高くなる。したがって、pチャネルMOSFET21は、高くなった出力ノードNO2の電位Vout2とソース電位である電源電位との電位差の絶対値とpチャネルMOSFET21のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態になる。
一方、CLK1がハイレベル、CLK2がローレベルのとき、nチャネルMOSFET24は、ソース電位がCLK2のローレベルの電位であり、ゲート電位が電源電位であるので強いオン状態になり、出力ノードNO2の電位Vout2はnチャネルMOSFET24のソース電位であるCLK2のローレベルを反映して低くなる。これにより、pチャネルMOSFET21のゲート電位は、低くなった出力ノードNO2の電位Vout2となり、ソース電位である電源電位との関係により、十分強いオン状態になる。このとき、nチャネルMOSFET22は、ソース電位であるCLK1のハイレベルの電位とゲート電位である電源電位との電位差の絶対値とnチャネルMOSFET22のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、pチャネルMOSFET21のオン抵抗は、nチャネルMOSFET22のオン抵抗よりも十分小さくなり、出力ノードNO1の電位Vout1はpチャネルMOSFET21のソース電位である電源電位を反映して高くなる。このときの電位Vout1はCLK1、CLK2のハイレベルよりも十分高くなる。したがって、pチャネルMOSFET23は、高くなった出力ノードNO1の電位Vout1とソース電位である電源電位との電位差の絶対値とpチャネルMOSFET23のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態になる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
本実施の形態におけるレベル変換回路を多結晶シリコンからなる薄膜トランジスタにより構成した場合の特性のシミュレーションを行った。まず、図11のレベル変換回路2の動作の高速性を調べた。
図12はシミュレーション結果を示す図である。入力信号CLK1、CLK2の周波数を20MHz、入力電圧振幅を3.0V、電源電圧VDDを10Vとした。図12(a)には、入力信号CLK1、CLK2及び出力電位VOUT1、VOUT2の波形を示し、図12(b)には、出力ノードNO1、NO2の出力電位Vout1、Vout2の波形を示す。
図12のシミュレーション結果から、20MHzという高い周波数でも入力信号CLK1、CLK2に応答してデューティ比50%の出力電位VOUT1、VOUT2が得られることがわかる。このように、レベル変換回路2を多結晶シリコンからなる薄膜トラジスタによって構成しても高速動作が可能となる。
次に、レベル変換回路のpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧がばらついた場合の電圧波形のシミュレーションを行った。このシミュレーションでは、入力信号CLK1、CLK2の周波数は2MHzとした。
図13は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果である。図13のシミュレーションでは、pチャネルMOSFETのしきい値パラメータ(しきい値電圧)を−0.5Vとし、nチャネルMOSFETのしきい値パラメータ(しきい値電圧)を0.5Vとした。
図14は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果である。図14のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−2.0Vとし、nチャネルMOSFETのしきい値パラメータを1.5Vとした。
図15は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果である。図15のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−3.5Vとし、nチャネルMOSFETのしきい値パラメータを2.5Vとした。
図13、図14及び図15の結果から、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値から比較的大きくずれた場合でも、入力信号CLK1、CLK2に応答してデューティ比が50%の出力電位VOUT1、VOUT2が得られることがわかる。
本実施の形態におけるレベル変換回路2においては、pチャネルMOSFET21とnチャネルMOSFET22で構成される回路とpチャネルMOSFET23とnチャネルMOSFET24で構成される回路のそれぞれの出力ノードNO1、NO2とpチャネルMOSFET21、23のゲートが交差接続されており、入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差よりも大きい電位差を持つVout1とVout2がpチャネルMOSFET21、23のゲートに入力されるので、pチャネルMOSFET21、23をより確実にオンオフさせることができる。したがって、CLK1及びCLK2の電圧振幅がpチャネルMOSFET21、23及びnチャネルMOSFET22、24のしきい値電圧よりも小さい場合でも確実な動作が可能になる。
また、pチャネルMOSFET21とnチャネルMOSFET22で構成される回路とpチャネルMOSFET23とnチャネルMOSFET24で構成される回路のそれぞれの出力信号Vout1、Vout2のデューティー比が異なった場合でも、出力信号Vout1、Vout2が他方の回路の入力信号になるので、互いに補完されて両出力信号のデューティ比をそろえることができる。さらに、pチャネルMOSFET21、23及びnチャネルMOSFET22、24のしきい値電圧が設計値よりも大きくずれた場合でも、入力信号CLK1及びCLK2のレベル変化に対応した出力電位Vout1、Vout2が得られる。このように、製造工程でのばらつきによりpチャネルMOSFET21、23及びnチャネルMOSFET22、24のしきい値電圧が設計値からずれた場合にでも高い確度で動作することができる。
なお、図11において電源電圧は単一に設定されたが、これはふたつのpチャネルMOSFET21、23について別個に設定されてもよい。その場合、ふたつのnチャネルMOSFET22、24のゲートはそれぞれpチャネルMOSFET21、23に対応する電源電圧に接続されることが一般的であるが、必ずしもそれに限る必要はなく、動作可能な設定範囲であれば、当然ながら交互に接続しても差し支えはない。同様の考察は以下の実施の形態でも有効である。
図16は、図11のレベル変換回路の別の構成を示す。図11との違いのみを示す。図16では、インバータINV3、INV4が削除されている。また、入力ノードI2には、入力信号CLK2に代えて、所定の参照電圧信号Vrefが入力されている。Vrefの電圧は、電源電圧VDDと接地電圧の間であり、たとえばそれらの中間値付近の値である。
CLK1がローレベルのとき、nチャネルMOSFET22は強いオンになり、ノードNO1がローレベルになる。その結果、pチャネルMOSFET23が強いオンになり、nチャネルMOSFET24は一定なので、ノードNO2の電位が上がる。そのためpチャネルMOSFET21はオフになり、出力電圧Vout1はローレベルになる。
一方、CLK1がハイレベルのとき、nチャネルMOSFET22はオフまたは弱いオンになり、ノードNO1がハイレベルになる。その結果、pチャネルMOSFET23がオフまたは弱いオンになり、nチャネルMOSFET24は一定なので、ノードNO2の電位が下がる。そのためpチャネルMOSFET21はオンになり、出力電圧Vout1はハイレベルになる。以上により、実質的に図11のレベル変換回路2同様の動作となる。
具体的な数値を挙げる。VDD=10V、CLK1=0〜3V、VOUT=0〜VDD、Vtn=+1.5V、Vtp=−2.0Vとすると、このレベル変換回路は、少なくともVref=0〜3Vの範囲で動作可能である。
Vref=1.5Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET21の駆動能力≦nチャネルMOSFET22の駆動能力
・pチャネルMOSFET23の駆動能力≦nチャネルMOSFET24の駆動能力
Vref=0Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET21の駆動能力≦nチャネルMOSFET22の駆動能力
・pチャネルMOSFET23の駆動能力≧nチャネルMOSFET24の駆動能力
Vref=3Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET21の駆動能力≧nチャネルMOSFET22の駆動能力
・pチャネルMOSFET23の駆動能力≦nチャネルMOSFET24の駆動能力
Vrefを0〜3Vで変化させても、以上の条件で動作可能である。さらに、VDDを、例えば、5Vや12Vに変化させても動作は可能であるが、VDDが低くなるとVref=3Vで動作しにくくなる。同様にVDDが高くなるとVref=0Vで動作しにくくなる。また、Vrefを3Vより高くしても条件次第では動作可能であるが、広い動作範囲と実用性を考えると、Vrefは入力信号のローレベルからハイレベルの間が望ましい。より望ましくは、入力信号の中間電位付近である。
以上の構成により、例えば複数の入力信号に対してレベル変換を施す場合、参照電圧信号を共通化することにより、信号削減効果がある。したがって、コスト低減や歩留まり改善に寄与しうる。なお、図16ではインバータINV3、INV4が削除されたが、当然、これらは残しておいてもよい。
実施の形態3.
図17は第3の実施の形態におけるレベル変換回路の構成を示す回路図である。図17において、レベル変換回路3は、レベル変換部301及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部301は、pチャネルMOSFET31、33、nチャネルMOSFET32、34を含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。
pチャネルMOSFET31及び33のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは入力ノードI2、I1にそれぞれ接続される。nチャネルMOSFET32、34のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ接続される。図17のレベル変換回路において、特徴的なのは、それぞれの回路の出力ノードNO1、NO2とnチャネルMOSFET32、34のゲートを交差接続する点である。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第1及び第2の実施の形態と同じである。
図17のレベル変換回路の動作を説明する。CLK1がローレベル、CLK2がハイレベルのとき、pチャネルMOSFET33は、ゲート電位がCLK1のローレベルの電位であり、ソース電位が電源電位であるので強いオン状態になり、出力ノードNO2の電位Vout2はpチャネルMOSFET33のソース電位である電源電位を反映して十分高くなる。これにより、nチャネルMOSFET32のゲート電位は、高くなった出力ノードNO2の電位Vout2となり、ソース電位であるCLK1のローレベルの電位との関係により、十分強いオン状態になる。このとき、pチャネルMOSFET31は、ソース電位である電源電位とゲート電位であるCLK2のハイレベルの電位との電位差の絶対値とpチャネルMOSFET31のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、nチャネルMOSFET32のオン抵抗は、pチャネルMOSFET31のオン抵抗よりも十分小さくなり、出力ノードNO1の電位Vout1はnチャネルMOSFET32のソース電位であるCLK1のローレベルの電位を反映して低くなる。したがって、nチャネルMOSFET34は、低くなった出力ノードNO1の電位Vout1とソース電位であるCLK2のハイレベルの電位との電位差の絶対値とnチャネルMOSFET34のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態である。
一方、CLK1がハイレベル、CLK2がローレベルのとき、pチャネルMOSFET31は、ソース電位が電源電位であり、ゲート電位がCLK2のローレベルの電位であるので強いオン状態になり、出力ノードNO1の電位Vout1はpチャネルMOSFET31のソース電位である電源電位を反映して高くなる。これにより、nチャネルMOSFET34のゲート電位は、高くなった出力ノードNO1の電位Vout1となり、ソース電位であるCLK1のローレベルの電位との関係により、十分強いオン状態になる。このとき、pチャネルMOSFET33は、ソース電位である電源電位とゲート電位であるCLK1のハイレベルの電位との電位差の絶対値とpチャネルMOSFET33のしきい値電圧Vtpの絶対値との大小関係により、オフ状態あるいは弱いオン状態であるので、nチャネルMOSFET34のオン抵抗は、pチャネルMOSFET33のオン抵抗よりも十分小さくなり、出力ノードNO2の電位Vout2はnチャネルMOSFET34のソース電位であるCLK2のローレベルの電位を反映して低くなる。したがって、nチャネルMOSFET32は、低くなった出力ノードNO2の電位Vout2とソース電位であるCLK1のハイレベルの電位との電位差の絶対値とnチャネルMOSFET32のしきい値電圧Vtnの絶対値との大小関係により、オフ状態あるいは十分弱いオン状態になる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
ここで、本実施の形態におけるレベル変換回路を多結晶シリコンからなる薄膜トランジスタにより構成した場合の特性のシミュレーションを行った。まず、図17のレベル変換回路3の動作の高速性を調べた。
図18はシミュレーション結果を示す図である。入力信号CLK1、CLK2の周波数を20MHz、入力電圧振幅を3.0V、電源電圧VDDを10Vとした。図18(a)には、入力信号CLK1、CLK2及び出力電位VOUT1、VOUT2の波形を示し、図18(b)には、出力ノードNO1、NO2の出力電位Vout1、Vout2の波形を示す。
図18のシミュレーション結果から、20MHzという高い周波数でも入力信号CLK1、CLK2に応答してデューティ比50%の出力電位VOUT1、VOUT2が得られることがわかる。このように、レベル変換回路3を多結晶シリコンからなる薄膜トラジスタによって構成しても高速動作が可能となる。
次に、レベル変換回路のpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧がばらついた場合の電圧波形のシミュレーションを行った。このシミュレーションでは、入力信号CLK1、CLK2の周波数は2MHzとした。
図19は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果である。図19のシミュレーションでは、pチャネルMOSFETのしきい値パラメータ(しきい値電圧)を−0.5Vとし、nチャネルMOSFETのしきい値パラメータ(しきい値電圧)を0.5Vとした。
図20は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果である。図20のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−2.0Vとし、nチャネルMOSFETのしきい値パラメータを1.5Vとした。
図21は、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果である。図21のシミュレーションでは、pチャネルMOSFETのしきい値パラメータを−3.5Vとし、nチャネルMOSFETのしきい値パラメータを2.5Vとした。
図19、図20及び図21の結果から、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値から比較的大きくずれた場合でも、入力信号CLK1、CLK2に応答してデューティ比が50%の出力電位VOUT1、VOUT2が得られることがわかる。
本実施の形態におけるレベル変換回路3においては、pチャネルMOSFET31とnチャネルMOSFET32で構成される回路とpチャネルMOSFET33とnチャネルMOSFET34で構成される回路のそれぞれの出力ノードNO1、NO2とnチャネルMOSFET32、34のゲートが交差接続されており、入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差よりも大きい電位差を持つVout1とVout2がpチャネルMOSFET32、34のゲートに入力されるので、nチャネルMOSFET32、34をより確実にオンオフさせることができる。したがって、CLK1及びCLK2の電圧振幅がpチャネルMOSFET31、33及びnチャネルMOSFET32、34のしきい値電圧よりも小さい場合でも確実な動作が可能になる。
また、pチャネルMOSFET31とnチャネルMOSFET32で構成される回路とpチャネルMOSFET33とnチャネルMOSFET34で構成される回路のそれぞれの出力信号Vout1、Vout2のデューティー比が異なった場合でも、出力信号Vout1、Vout2が他方の回路の入力信号になるので、互いに補完されて両出力信号のデューティ比をそろえることができる。さらに、pチャネルMOSFET31、33及びnチャネルMOSFET32、34のしきい値電圧が設計値よりも大きくずれた場合でも、入力信号CLK1及びCLK2のレベル変化に対応した出力電位Vout1、Vout2が得られる。このように、製造工程でのばらつきによりpチャネルMOSFET31、33及びnチャネルMOSFET32、34のしきい値電圧が設計値からずれた場合でも高い確度で動作する。
図22は、図17のレベル変換回路の別の構成を示す。図17との違いのみを示す。図22では、インバータINV3、INV4が削除されている。ただし、インバータINV3、INV4は当然残しておいてもよい。また、入力ノードI2には、入力信号CLK2に代えて、所定の参照電圧信号Vrefが入力されている。Vrefの電圧は、電源電圧VDDと接地電圧の間であり、たとえばそれらの中間値付近の値である。
CLK1がローレベルのとき、pチャネルMOSFET33は強いオンになり、出力電位Vout2、すなわちpチャネルMOSFET33のドレインの電位が十分に高くなる。これにより、nチャネルMOSFET32が十分に強いオンになる。このとき、pチャネルMOSFET31はゲート電位がVrefであるので常時オンになるが、そのオン抵抗はnチャネルMOSFET32のそれよりも大きくなる。この結果、出力電位Vout1は入力信号CLK1のローレベルを反映して低くなる。したがって、nチャネルMOSFET34は、オフまたは十分に弱いオンになる。
一方、CLK1がハイレベルのとき、pチャネルMOSFET33はオフまたは弱いオンになる。また、nチャネルMOSFET32はCLK1がローレベルのときよりも弱いオンになる。pチャネルMOSFET31は常時オンなので、出力電位Vout1は高くなり、nチャネルMOSFET34はオンになる。pチャネルMOSFET33はオフまたは弱いオンであるため、そのオン抵抗はnチャネルMOSFET34のそれよりも大きくなり、出力電位Vout2はVrefと等しくなる。このため、nチャネルMOSFET32はオフまたは十分に弱いオンとなる。以上により、図17のレベル変換回路3同様の動作となる。
具体的な数値を挙げる。図16同様、VDD=10V、CLK1=0〜3V、VOUT=0〜VDD、Vtn=+1.5V、Vtp=−2.0Vとすると、このレベル変換回路は、少なくともVref=0〜3Vの範囲で動作可能である。
Vref=1.5Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET31の駆動能力≦nチャネルMOSFET32の駆動能力
・pチャネルMOSFET33の駆動能力≦nチャネルMOSFET34の駆動能力
Vref=0Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET31の駆動能力≦nチャネルMOSFET32の駆動能力
・pチャネルMOSFET33の駆動能力≧nチャネルMOSFET34の駆動能力
Vref=3Vのとき、各トランジスタの駆動能力の関係は以下の通りが望ましい。
・pチャネルMOSFET31の駆動能力≧nチャネルMOSFET32の駆動能力
・pチャネルMOSFET33の駆動能力≦nチャネルMOSFET34の駆動能力
動作に関する考察は図16の場合と同様であり、Vrefは入力信号のローレベルからハイレベルの間が望ましい。より望ましくは、入力信号の中間電位付近である。以上の構成による効果も図16同様である。
実施の形態4.
図23は第4の実施の形態におけるレベル変換回路の構成を示す回路図である。図23において、レベル変換回路4は、レベル変換部104及びドライブ用インバータINV1、INV2を備える。レベル変換部104は、pチャネルMOSFET11、nチャネルMOSFET12及び制御回路110を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路110は、電源電圧VDDを受けて電位を調整し出力する。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路110を介して電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図23のレベル変換回路4の動作は、基本的に図5のレベル変換回路1と同じであり、nチャネルMOSFET12のゲート電位が制御回路110によって調整された電位を受けて動作する点が異なる。
制御回路110は、電源電位VDDを受けて、電源電位VDDと入力信号CLK1のハイレベルの電位との間の電位を出力する。制御回路110の出力電位と入力信号CLK1との電位差の絶対値とnチャネルMOSFET12のしきい値電圧Vtnの絶対値との大小関係によって、nチャネルMOSFET12のオン状態の程度が制御され、出力ノードNOの電位Voutが得られる。
ドライブ用インバータINV1及びINV2は、出力電位Voutを電源電位VDDと接地電位とに変化する出力電位VOUTに変換する。本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
図24は、図23のレベル変換回路4の回路構成の第1の例を示す回路図である。制御回路110はpチャネルMOSFET111とnチャネルMOSFET121を含む。pチャネルMOSFET111のソースは電源電位VDDを受ける電源端子に接続され、ドレインおよびゲートはノードNNに接続される。nチャネルMOSFET121のソースは接地電位を受ける電源端子に接続され、ドレインおよびゲートはノードNNに接続される。
ノードNNの電位は、電源電位VDDよりもpチャネルMOSFET111のしきい値電圧Vtp以上低く、接地電位よりもnチャネルMOSFET121のしきい値電圧Vtn以上高くなり、pチャネルMOSFET111とnチャネルMOSFET121のオン抵抗値に応じた電位となる。
図25および図26はそれぞれ、図23のレベル変換回路4の回路構成の第2および第3の例を示す。図25のレベル変換回路4が図24のレベル変換回路4と異なるのは、制御回路110がpチャネルMOSFET111の代わりに抵抗素子R1を含む点である。この場合、ノードNNの電位VNNは抵抗素子R1の抵抗値とnチャネルMOSFET121のオン抵抗に応じた電位になる。
図26のレベル変換回路4が図25のレベル変換回路4と異なるのは、制御回路110がnチャネルMOSFET121の代わりに抵抗素子R2を含む点である。この場合、ノードNNの電位VNNは抵抗素子R1と抵抗素子R2のそれぞれの抵抗値に応じた電位になる。
実施の形態5.
図27は第5の実施の形態におけるレベル変換回路の構成を示す回路図である。図27において、レベル変換回路5は、レベル変換部105及びドライブ用インバータINV1、INV2を備える。レベル変換部105は、pチャネルMOSFET11、nチャネルMOSFET12、制御回路120を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路120は、入力信号CLK2を受けてCLK2の電位レベルを調整し出力する。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路120を介して入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図27のレベル変換回路5の動作は、基本的に図5のレベル変換回路1と同じであり、pチャネルMOSFET11のゲート電位が制御回路120によって電位レベルを調整された入力信号CLK2を受けて動作する点が異なる。
制御回路120は、入力信号CLK2のハイレベルの電位を電源電位VDDと入力信号CLK2のハイレベルの電位との間の電位に調整して出力する。制御回路120の出力電位と電源電位VDDとの電位差の絶対値とpチャネルMOSFET11のしきい値電圧Vtpの絶対値との大小関係によって、pチャネルMOSFET11のオン状態の程度が制御され、出力ノードNOの電位Voutが得られる。本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
図28は、図27のレベル変換回路5の回路構成の第1の例を示す回路図である。この制御回路120はnチャネルMOSFET122とnチャネルMOSFET123を含む。nチャネルMOSFET123のソースはノードNPに接続され、ドレインおよびゲートは電源電位VDDを受ける電源端子に接続される。nチャネルMOSFET122のソースは入力ノードI2に接続され、ドレインおよびゲートはノードNPに接続される。
nチャネルMOSFET123は常時オン状態であるので負荷抵抗として働く。入力信号CLK2のレベルに応じてノードNPの電位VNPがハイレベルまたはローレベルに制御される。このとき、ノードNPの電位VNPのハイレベルの電位は、電源電位VDDよりもnチャネルMOSFET123のしきい値電圧Vtn以上低く、CLK2のハイレベルの電位よりも高くなる。
図29は、図27のレベル変換回路5の回路構成の第2の例を示す回路図である。このレベル変換回路5が図28のレベル変換回路5と異なるのは、制御回路120がnチャネルMOSFET123の代わりにpチャネルMOSFET121を含む点である。この場合、pチャネルMOSFET121のソースは電源電位VDDを受ける電源端子に接続され、ドレインおよびゲートはノードNPに接続される。
pチャネルMOSFET121により、ノードNPの電位VNPが電源電位VDDからしきい値電圧Vtpの絶対値分以上低いレベルに設定される。入力信号CLK2のレベルに応じてnチャネルMOSFET122によりノードNPの電位VNPがハイレベルまたはローレベルに制御される。このとき、ノードNPの電位VNPのハイレベルの電位は、電源電位VDDよりもpチャネルMOSFET121のしきい値電圧Vtp以上低く、CLK2のハイレベルの電位よりも高くなる。
図30は、図27のレベル変換回路5の回路構成の第3の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のnチャネルMOSFET122のゲートが電源電位VDDを受ける電源端子に接続されている点である。この場合、nチャネルMOSFET122は常時オン状態となり、負荷抵抗として働く。これにより、入力信号CLK2のレベルに応じてノードNPの電位VNPがハイレベルまたはローレベルに制御される。このとき、ノードNPの電位VNPのハイレベルの電位は、電源電位VDDよりもpチャネルMOSFET121のしきい値電圧Vtp以上低く、CLK2のハイレベルの電位よりも高くなる。
図31は、図27のレベル変換回路5の回路構成の第4の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のpチャネルMOSFET121の代わりに抵抗素子R3を含む点である。この場合、入力信号CLK2のレベルに応じてnチャネルMOSFET122のオン抵抗が変化し、抵抗素子R3の抵抗値との抵抗分割によりノードNPの電位VNPがハイレベルまたはローレベルに制御される。
図32は、図27のレベル変換回路5の回路構成の第5の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のnチャネルMOSFET122の代わりに抵抗素子R3を含む点である。この場合、入力信号CLK2のレベルに応じてpチャネルMOSFET121のオン抵抗が変化し、抵抗素子R3の抵抗値との抵抗分割によりノードNPの電位VNPがハイレベルまたはローレベルに制御される。
図33は、図27のレベル変換回路5の回路構成の第6の例を示す回路図である。このレベル変換回路5が図29のレベル変換回路5と異なるのは、制御回路120のpチャネルMOSFET121のゲートを他の信号から切り離し、接地した点である。この構成でも、nチャネルMOSFET122は、入力信号CLK2の電位レベルに応じてオン抵抗が変化するため、ノードNPの電位VNPがハイレベルまたはローレベルに制御される。
図34は、図27のレベル変換回路5の回路構成の第7の例を示す回路図である。このレベル変換回路5が図33のレベル変換回路5と異なるのは、制御回路120のnチャネルMOSFET122の代わりにpチャネルMOSFET123を含む点である。この場合も、入力信号CLK2のレベルに応じてpチャネルMOSFET123のオン抵抗が変化し、ノードNPの電位VNPがハイレベルまたはローレベルに制御される。
実施の形態6.
図35は第6の実施の形態におけるレベル変換回路の構成を示す回路図である。レベル変換回路6は、レベル変換部106及びドライブ用インバータINV1、INV2を備える。レベル変換部106は、pチャネルMOSFET11、nチャネルMOSFET12、制御回路110、120を含む。ドライブ用インバータINV1、INV2は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路110は、電源電圧VDDを受けて電位を調整し出力し、制御回路120は、入力信号CLK2を受けてCLK2の電位レベルを調整し出力する。
pチャネルMOSFET11のソースは電源電位VDDを受ける電源端子に接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路120を介して入力ノードI2に接続される。nチャネルMOSFET12のソースは入力ノードI1と接続され、ドレインは出力ノードNOに接続され、ゲートは制御回路110を介して電源電位VDDを受ける電源端子に接続される。
入力ノードI1、I2には、相補にハイレベルとローレベルとに変化する入力信号CLK1、CLK2がそれぞれ与えられる。入力信号CLK1、CLK2のハイレベルとローレベルとの間の電位差は、電源電位VDDと接地電位との間の電位差よりも小さい。本実施の形態では、入力信号CLK1、CLK2のローレベルは接地電位であり、ハイレベルは電源電位VDDと接地電位の間の電位である。
図35のレベル変換回路6の動作は、基本的に図5のレベル変換回路1と同じであり、pチャネルMOSFET11のゲート電位が制御回路120によって電位レベルを調整された入力信号CLK2を受けて動作し、nチャネルMOSFET12のゲート電位が制御回路110によって調整された電位を受けて動作する点が異なる。
制御回路110は、図23のレベル変換回路4の制御回路110と同じであり、制御回路120は、図27のレベル変換回路5の制御回路120と同じである。
制御回路120の出力電位と入力信号CLK2との電位差の絶対値とpチャネルMOSFET11のしきい値電圧Vtpの絶対値との大小関係によって、pチャネルMOSFET11のオン状態の程度が制御され、制御回路110の出力電位と入力信号CLK1との電位差の絶対値とnチャネルMOSFET12のしきい値電圧Vtnの絶対値との大小関係によって、nチャネルMOSFET12のオン状態の程度が制御される。これにより、出力ノードNOの電位Voutのハイレベル及びローレベルが制御される。
本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。制御回路110の具体例としては、図24、図25、図26に示した回路等がある。一方、制御回路120の具体例としては、図28、図29、図30、図31、図32、図33、図34に示した回路等がある。
実施の形態7.
図36は第7の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路7は、レベル変換部207及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部207は、pチャネルMOSFET21、23、nチャネルMOSFET22、24、及び制御回路110a、110bを含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路により構成される。制御回路110a、110bは、図23のレベル変換回路4の制御回路110と同じである。
pチャネルMOSFET21及び23のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ接続される。nチャネルMOSFET22、24のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは制御回路110a、110bを介して電源電位VDDを受ける電源端子にそれぞれ接続される。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第2の実施の形態と同じである。
図36のレベル変換回路7の動作は、基本的に図11のレベル変換回路2と同じであり、nチャネルMOSFET22、24のゲート電位が制御回路110a、110bによって調整された電位を受けて動作する点が異なる。
制御回路110a、110bは、電源電位VDDを受けて、電源電位VDDと入力信号CLK1のハイレベルの電位との間の電位を出力する。制御回路110a、110bの出力電位と入力信号CLK1との電位差の絶対値とnチャネルMOSFET22、24のしきい値電圧Vtnの絶対値との大小関係によって、nチャネルMOSFET22、24のオン状態の程度が制御され、出力ノードNO1、NO2の電位Vout1、Vout2がそれぞれ得られる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
制御回路110a、110bの具体例は、図24、図25、図26に示した回路等がある。
実施の形態8.
図37は第8の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路8は、レベル変換部308及びドライブ用インバータINV1、INV2、INV3、INV4を備える。レベル変換部308は、pチャネルMOSFET31、33、nチャネルMOSFET32、34、及び制御回路120a、120bを含む。ドライブ用インバータINV1、INV2、INV3、INV4は、pチャネルMOSFET及びnチャネルMOSFETからなるCMOS回路で構成される。制御回路120a、120bは、図27のレベル変換回路5の制御回路120と同じである。
pチャネルMOSFET31及び33のソースは電源電位VDDを受ける電源端子にそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは制御回路120a、120bを介して入力ノードI2、I1にそれぞれ接続される。nチャネルMOSFET32、34のソースは入力ノードI1、I2とそれぞれ接続され、ドレインは出力ノードNO1、NO2にそれぞれ接続され、ゲートは出力ノードNO2、NO1にそれぞれ交差接続される。入力信号CLK1、CLK2と電源電位VDDの電位及びそれぞれの関係は第3の実施の形態と同じである。
図37のレベル変換回路8の動作は、基本的に図17のレベル変換回路3と同じであり、nチャネルMOSFET32、34のゲート電位が制御回路110a、110bによって調整された電位を受けて動作する点が異なる。
制御回路120a、120bは、入力信号CLK1、CLK2のハイレベルの電位を電源電位VDDと入力信号CLK1、CLK2のハイレベルの電位との間の電位に調整して出力する。
制御回路120a、120bの出力電位と入力信号CLK2、CLK1との電位差の絶対値とnチャネルMOSFET32、34のしきい値電圧Vtpの絶対値との大小関係によって、nチャネルMOSFET32、34のオン状態の程度が制御され、出力ノードNOの電位Voutが得られる。
ドライブ用インバータINV1及びINV2は、出力電位Vout1を電源電位VDDと接地電位とに変化する出力電位VOUT1に変換し、ドライブ用インバータINV3及びINV4は、出力電位Vout2を電源電位VDDと接地電位とに変化する出力電位VOUT2に変換する。
本実施の形態では、電源電位VDDと入力信号CLK1及びCLK2のハイレベルの電位との電位差が大きい場合でも高い確度で動作することができる。
制御回路120a、120bの具体例は、図28、図29、図30、図31、図32、図33、図34に示した回路等がある。
実施の形態9.
図38は第9の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路9は、2つのレベル変換部101A、101B及び1つのPMOSクロスカップル型の差動増幅回路400を備える。
レベル変換部101A、101Bの構成は、第1の実施の形態におけるレベル変換部101の構成と同様である。ただし、レベル変換部101Aの入力ノードI1,I2にはそれぞれ入力信号CLK1、CLK2が与えられ、レベル変換部101Bの入力ノードI1,I2にはそれぞれ入力信号CLK2、CLK1が与えられる。
差動増幅回路400は、pチャネルMOSFET401、403及びnチャネルMOSFET402、404を含む。pチャネルMOSFET401、403のソースは電源電圧VDDを受ける電源端子に接続され、ドレインは出力ノードNO401、NO402にそれぞれ接続され、ゲートは出力ノードNO402、NO401に交差接続される。nチャネルMOSFET402、404のソースには所定の電位VEEが与えられ、ドレインは出力ノードNO401、NO402にそれぞれ接続され、ゲートはレベル変換部101A、101Bの出力ノードNOA、NOBにそれぞれ接続される。所定の電位VEEは、電源電位VDDよりも低い正電位、接地電位、負電位のいずれでもよい。また、図中右側のVEEにはクロック信号CLK1が入力されてもよく、左のVEEにはCLK2が入力されてもよい。
本実施の形態のレベル変換回路9においては、差動増幅回路400の出力ノードNO401、NO402から相補に変化する出力電位VOUT1、VOUT2が出力される。出力電位VOUT1、VOUT2は電源電位VDDと所定の電位VEEとの間で変化する。
実施の形態10.
図39は第10の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路10が図38のレベル変換回路9と異なるのは、2つのレベル変換部101A、101Bの代わりに、それぞれ制御回路100A、100Bを有する2つのレベル変換部104A、104Bを備える点である。
レベル変換部104A、104Bの構成は、第4の実施の形態におけるレベル変換部104の構成と同様である。ただし、レベル変換部104Aの入力ノードI1,I2にはそれぞれ入力信号CLK1、CLK2が与えられ、レベル変換部104Bの入力ノードI1,I2にはそれぞれ入力信号CLK2、CLK1が与えられる。
本実施の形態のレベル変換回路10においては、差動増幅回路400の出力ノードNO401、NO402から相補に変化する出力電位VOUT1、VOUT2が出力される。出力電位VOUT1、VOUT2は電源電位VDDと所定の電位VEEとの間で変化する。本実施の形態の制御回路110の具体例は、図24乃至図26に示した回路等である。
なお、第9及び第10の実施の形態では、レベル変換部としてレベル変換部101及び104を用いたが、第5の実施の形態のレベル変換部105、第6の実施の形態のレベル変換部106を用いてもよい。また、第7の実施の形態のレベル変換部207、第8の実施の形態のレベル変換部308でもよいが、このときは、レベル変換部の出力ノードNO1、NO2をそれぞれ差動増幅回路のnチャネルMOSFET402、404のゲートに接続すればよい。
実施の形態11.
図40は第11の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路11が図38のレベル変換回路9と異なるのは、PMOSクロスカップル型の差動増幅回路400の代わりにカレントミラー型の増幅回路500が接続されている点である。
カレントミラー型の増幅回路500は、pチャネルMOSFET501、503及びnチャネルMOSFET502、504を含む。pチャネルMOSFET501、503のソースは電源電圧VDDを受ける電源端子に接続され、ドレインは出力ノードNO501、NO502にそれぞれ接続され、ゲートは出力ノードNO502に接続される。nチャネルMOSFET502、504のソースには所定の電位VEEが与えられ、ドレインは出力ノードNO501、NO502にそれぞれ接続され、ゲートはレベル変換部101A、101Bの出力ノードNOA、NOBにそれぞれ接続される。所定の電位VEEは、電源電位VDDよりも低い正電位、接地電位、負電位などでよい。また、図中右のVEEにはクロック信号CLK1を入力してもよいし、左のVEEにはCLK2を入力してもよい。
本実施の形態のレベル変換回路11においては、カレントミラー型の増幅回路500の出力ノードNO501から出力電位VOUTが出力される。出力電位VOUTは電源電位VDDと所定の電位VEEとの間で変化する。
実施の形態12.
図41は第12の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路12が図40のレベル変換回路11と異なるのは、2つのレベル変換部101A、101Bの代わりに、それぞれ制御回路110A、110Bを有する2つのレベル変換部104A、104Bを備える点である。
レベル変換部104A、104Bの構成は、第4の実施の形態におけるレベル変換部104の構成と同様である。ただし、レベル変換部104Aの入力ノードI1,I2にはそれぞれ入力信号CLK1、CLK2が与えられ、レベル変換部104Bの入力ノードI1,I2にはそれぞれ入力信号CLK2、CLK1が与えられる。
本実施の形態のレベル変換回路12においては、カレントミラー型の増幅回路500の出力ノードNO501から出力電位VOUTが出力される。出力電位VOUTは電源電位VDDと所定の電位VEEとの間で変化する。本実施の形態の制御回路110の具体例は、図24乃至図26に示した回路等がある。
なお、第9及び第10の実施の形態のレベル変換部101及び104の代わりに、第5の実施の形態のレベル変換部105、第6の実施の形態のレベル変換部106を用いてもよい。また、第7の実施の形態のレベル変換部207、第8の実施の形態のレベル変換部308を用いてもよいが、このときは、レベル変換部の出力ノードNO1、NO2をそれぞれ差動増幅回路のnチャネルMOSFET502、504のゲートに接続すればよい。
実施の形態13.
図42は第13の実施の形態におけるレベル変換回路の構成を示す回路図である。このレベル変換回路13はペア型レベル変換回路で、2つのレベル変換部101A、101B及び4つのインバータINV1A、INV2A、INV1B、INV2Bを備える。
レベル変換部101A、101Bの構成は、図5のレベル変換部101の構成と同様である。レベル変換部101AのnチャネルMOSFET12のソース、レベル変換部101BのpチャネルMOSFET11のゲートは、入力信号CLK1を受ける入力ノードIAに接続される。レベル変換部101AのpチャネルMOSFET11のゲート、レベル変換部101BのnチャネルMOSFET12のソースは、入力信号CLK2を受ける入力ノードIBに接続される。
本実施の形態のレベル変換回路13においては、入力信号CLK1、CLK2がレベル変換された出力信号VOUT1、VOUT2が出力される。出力電位VOUT1、VOUT2は電源電位VDDと接地電位との間で変化する。
なお、本実施の形態のレベル変換部101として、第4の実施の形態のレベル変換部104、第5の実施の形態のレベル変換部105、第6の実施の形態のレベル変換部106を用いてもよい。
実施の形態14.
図43は、本発明のレベル変換回路を用いた液晶表示装置の一例を示すブロック図である。この装置では、ガラス基板600上に、複数の走査電極Y1、Y2、…Yn及び複数のデータ電極X1、X2、…Xmが互いに交差するように配置されている。ここで、n及びmはそれぞれ任意の整数である。なお、ガラス基板600の代わりにプラスチック等からなる基板を用いてもよい。複数の走査電極Y1〜Ynと複数のデータ電極X1〜Xmとの交差部には薄膜トランジスタ601を介して液晶素子602が設けられる。薄膜トランジスタ601は、例えば、非晶質シリコンをレーザアニーリング法等により結晶化することより得られた多結晶シリコンにより形成される。
ガラス基板600上には、走査線駆動回路603、データ線駆動回路604及び電圧変換回路700が設けられている。走査電極Y1〜Ynは走査線駆動回路603と接続され、データ電極X1〜Xmはデータ線駆動回路604に接続されている。電圧変換回路700は外部制御回路605から与えられる相補に変化する小振幅のふたつの基本クロック信号をそれとは異なる電圧のクロック信号にレベル変換し、走査線駆動回路603及びデータ線駆動回路604に与える。
図44は、図43の液晶表示素子に用いられる電圧変換回路700の構成を示すブロック図である。この電圧変換回路700において、ガラス基板600上に、昇圧電源回路701、負電源回路702及び第1〜第4のレベル変換回路703、704、705、706が形成されている。第1のレベル変換回路703には外部電源電圧8V及び3Vが与えられる。内部回路は図43の走査線駆動回路603及びデータ線駆動回路604であり、0〜8V、0〜12V、−3〜8V、−3〜12Vの4通りの電圧範囲の信号を入力すると仮定する。
第1のレベル変換回路703は、図43の外部制御回路605から与えられる基本クロック信号を0Vから8Vの範囲で変化する信号にレベル変換し、内部回路及び第2〜第4のレベル変換回路704、705、706に与える。第2のレベル変換回路704は、第1のレベル変換回路703から与えられる信号を昇圧電源回路701の電源電圧に基づいて0から12Vの範囲で変化する信号にレベル変換し、内部回路及び第4のレベル変換回路706に与える。第3のレベル変換回路705は、第1のレベル変換回路703から与えられる信号を負電源回路702の負の電源電圧に基づいて−3Vから8Vの範囲で変化する信号にレベル変換し、内部回路に与える。第4のレベル変換回路706は、第2のレベル変換回路704から与えられる信号を負電源回路702の負の電源電圧に基づいて−3Vから12Vの範囲で変化する信号にレベル変換し、内部回路に与える。
第1〜第4のレベル変換回路703、704、705、706として、第1〜13の実施の形態のレベル変換回路1〜13のいずれかが用いられる。それにより、図43の液晶表示装置は、製造工程でのpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧のばらつきが大きい場合でも高い確度で動作することができるとともに、高速動作、低消費電力化、小面積化及び高精細化が可能となる。
実施の形態15.
図45は、本発明のレベル変換回路を用いた有機エレクトロルミネッセンス装置の一例を示すブロック図である。この有機エレクトロルミネッセンス装置では、ガラス基板610上に、複数の走査電極Y1、Y2、…Yn及び複数のデータ電極X1、X2、…Xmが互いに交差するように配置されている。なお、ガラス基板610の代わりにプラスチック等からなる基板を用いてもよい。複数の走査電極Y1〜Ynと複数のデータ電極X1〜Xmとの交差部には薄膜トランジスタ611及び612を介して有機エレクトロルミネッセンス素子613が設けられる。薄膜トランジスタ611、612は、例えば、非晶質シリコンをレーザアニーリング法等により結晶化することより得られた多結晶シリコンにより形成される。
ガラス基板610上には、走査線駆動回路614、データ線駆動回路615及び電圧変換回路710が設けられている。走査電極Y1〜Ynは走査線駆動回路614と接続され、データ電極X1〜Xmはデータ線駆動回路615に接続されている。電圧変換回路710は外部制御回路616から与えられる相補に変化する小振幅のふたつの基本クロック信号をそれとは異なる電圧のクロック信号にレベル変換し、走査線駆動回路614及びデータ線駆動回路615に与える。電圧変換回路710の構成は、図44に示した電圧変換回路700の構成と同様である。
電圧変換回路710には、第1〜13の実施の形態のレベル変換回路1〜13のいずれかが用いられる。それにより、図45の有機エレクトロルミネッセンス装置は、製造工程でのpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧のばらつきが大きい場合でも高い確度で動作することができるとともに、高速動作、低消費電力化、小面積化及び高精細化が可能となる。
実施の形態16.
図46は、実施の形態に係るレベル変換回路を用いたセンサ装置の一例を示すブロック図である。このセンサ装置では、ガラス基板620上に、複数の走査電極Y1、Y2、…Yn及び複数のデータ電極X1、X2、…Xmが互いに交差するように配置されている。なお、ガラス基板620の代わりにプラスチック等からなる基板を用いてもよい。複数の走査電極Y1〜Ynと複数のデータ電極X1〜Xmとの交差部には薄膜トランジスタ621を介してセンサ622が設けられている。薄膜トランジスタ621は、例えば、非晶質シリコンをレーザアニーリング法等により結晶化することより得られた多結晶シリコンにより形成される。センサ622としては、例えば、受光素子を用いることができる。この場合には、イメージセンサが構成される。また、センサ622として、圧力差を抵抗または静電容量により検知する圧力センサを用いてもよい。この場合には、物体の表面粗さを検知する表面粗さセンサ、指紋等の紋様を検知する紋様検知センサ等が構成される。
ガラス基板620上には、走査線駆動回路623、データ線駆動回路624及び電圧変換回路720が設けられている。走査電極Y1〜Ynは走査線駆動回路623と接続され、データ電極X1〜Xmはデータ線駆動回路624に接続されている。電圧変換回路720は外部制御回路625から与えられる相補に変化する小振幅のふたつの基本クロック信号をそれとは異なる電圧のクロック信号にレベル変換し、走査線駆動回路623及びデータ線駆動回路624に与える。電圧変換回路720の構成は、図44に示した電圧変換回路700の構成と同様である。
電圧変換回路720には、第1〜13の実施の形態のレベル変換回路1〜13のいずれかが用いられる。それにより、図46のセンサ装置は、製造工程でのpチャネルMOSFET及びnチャネルMOSFETのしきい値電圧のばらつきが大きい場合でも高い確度で動作することができるとともに、高速動作、低消費電力化、小面積化及び高精細化が可能となる。
以上、本発明を実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素の組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
産業上の利用可能性
以上のように、本発明によれば、安定動作、高速動作、省電力化、高精細化の少なくともいずれかにおいて有利なレベル変換回路を提供することができる。
【図面の簡単な説明】
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
図1は、従来のレベル変換回路の第1の例を示す回路図である。
図2は、従来のレベル変換回路の第2の例を示す回路図である。
図3は、従来のレベル変換回路の第3の例を示す回路図である。
図4は、従来のレベル変換回路の第4の例を示す回路図である。
図5は、実施の形態1におけるレベル変換回路の構成を示す回路図である。
図6は、実施の形態1において、多結晶シリコンからなる薄膜トランジスタを用いた場合のシミュレーション結果を示す電圧波形図である。
図7は、実施の形態1において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果を示す電圧波形図である。
図8は、実施の形態1において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果を示す電圧波形図である。
図9は、実施の形態1において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果を示す電圧波形図である。
図10は、図5のレベル変換回路の別の構成を示す回路図である。
図11は、実施の形態2におけるレベル変換回路の構成を示す回路図である。
図12は、実施の形態2において、多結晶シリコンからなる薄膜トランジスタを用いた場合のシミュレーション結果を示す電圧波形図である。
図13は、実施の形態2において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果を示す電圧波形図である。
図14は、実施の形態2において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果を示す電圧波形図である。
図15は、実施の形態2において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果を示す電圧波形図である。
図16は、図11のレベル変換回路の別の構成を示す回路図である。
図17は、実施の形態3におけるレベル変換回路の構成を示す回路図である。
図18は、実施の形態3において、多結晶シリコンからなる薄膜トランジスタを用いた場合のシミュレーション結果を示す電圧波形図である。
図19は、実施の形態3において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて小さい場合のシミュレーション結果を示す電圧波形図である。
図20は、実施の形態3において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値の場合のシミュレーション結果を示す電圧波形図である。
図21は、実施の形態3において、pチャネルMOSFET及びnチャネルMOSFETのしきい値電圧が設定値に比べて大きい場合のシミュレーション結果を示す電圧波形図である。
図22は、図17のレベル変換回路の別の構成を示す回路図である。
図23は、実施の形態4におけるレベル変換回路の構成を示す回路図である。
図24は、図23のレベル変換回路の回路構成の第1の例を示す回路図である。
図25は、図23のレベル変換回路の回路構成の第2の例を示す回路図である。
図26は、図23のレベル変換回路の回路構成の第3の例を示す回路図である。
図27は、実施の形態5におけるレベル変換回路の構成を示す回路図である。
図28は、図27のレベル変換回路の回路構成の第1の例を示す回路図である。
図29は、図27のレベル変換回路の回路構成の第2の例を示す回路図である。
図30は、図27のレベル変換回路の回路構成の第3の例を示す回路図である。
図31は、図27のレベル変換回路の回路構成の第4の例を示す回路図である。
図32は、図27のレベル変換回路の回路構成の第5の例を示す回路図である。
図33は、図27のレベル変換回路の回路構成の第6の例を示す回路図である。
図34は、図27のレベル変換回路の回路構成の第7の例を示す回路図である。
図35は、実施の形態6におけるレベル変換回路の構成を示す回路図である。
図36は、実施の形態7におけるレベル変換回路の構成を示す回路図である。
図37は、実施の形態8におけるレベル変換回路の構成を示す回路図である。
図38は、実施の形態9におけるレベル変換回路の構成を示す回路図である。
図39は、実施の形態10におけるレベル変換回路の構成を示す回路図である。
図40は、実施の形態11におけるレベル変換回路の構成を示す回路図である。
図41は、実施の形態12におけるレベル変換回路の構成を示す回路図である。
図42は、実施の形態13におけるレベル変換回路の構成を示す回路図である。
図43は、実施の形態に係るレベル変換回路を用いた液晶表示装置の一例を示すブロック図である。
図44は、図43の液晶表示装置に用いられる電圧変換装置の構成を示すブロック図である。
図45は、実施の形態に係るレベル変換回路を用いた有機エレクトロルミネッセンス装置の一例を示すブロック図である。
図46は、実施の形態に係るレベル変換回路を用いたセンサ装置の一例を示すブロック図である。
【0010】
が実現する。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって電源電圧と所定電圧が抵抗分割されるよう直列に配し、入力信号がハイレベルのとき第1のトランジスタが強いオン状態になるとともに、この入力信号と電源電圧の電位差によって第2のトランジスタが弱いオン状態またはオフ状態となるよう構成し、入力信号がローレベルのとき第2のトランジスタが強いオン状態になるとともに、この入力信号の反転信号と電源電圧の電位差によって第1のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記の抵抗分割によって生じた中間電位を出力信号として取り出すよう配したものである。ここで、所定電圧は、たとえば接地電圧や入力信号のローレベルまたはハイレベルの電圧であり、電源電圧との間で有意な電位差を生じるものである。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな第1の電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって前記第1の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号の反転信号の振幅よりも電位差が大きな第2の電源電圧と所定電圧の間に、第3および第4のトランジスタを、それらのオン抵抗によって前記第2の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号がハイレベルのとき前記第1のトランジスタと第4のトランジスタが強いオン状態になるとともに、前記第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記入力信号がローレベルのとき前記第2のトランジスタと第3のトランジスタが強いオン状態になるとともに、前記第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記第1と第2のトランジスタによる抵抗分割によって生じた中間電位を前記第3と第4のトランジスタのいずれかの制御に利用し、前記第3と第4のトランジスタによる抵抗分割によって生じた中間電位を前記第1と第2のトランジスタのいずれかの制御に利用し、これらの中間電位の一方を出力信号として取り出すよう配したものである。
が実現する。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって電源電圧と所定電圧が抵抗分割されるよう直列に配し、入力信号がハイレベルのとき第1のトランジスタが強いオン状態になるとともに、この入力信号と電源電圧の電位差によって第2のトランジスタが弱いオン状態またはオフ状態となるよう構成し、入力信号がローレベルのとき第2のトランジスタが強いオン状態になるとともに、この入力信号の反転信号と電源電圧の電位差によって第1のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記の抵抗分割によって生じた中間電位を出力信号として取り出すよう配したものである。ここで、所定電圧は、たとえば接地電圧や入力信号のローレベルまたはハイレベルの電圧であり、電源電圧との間で有意な電位差を生じるものである。
本発明のさらに別の態様もレベル変換回路に関する。この回路は、入力信号の振幅よりも電位差が大きな第1の電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって前記第1の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号の反転信号の振幅よりも電位差が大きな第2の電源電圧と所定電圧の間に、第3および第4のトランジスタを、それらのオン抵抗によって前記第2の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、前記入力信号がハイレベルのとき前記第1のトランジスタと第4のトランジスタが強いオン状態になるとともに、前記第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記入力信号がローレベルのとき前記第2のトランジスタと第3のトランジスタが強いオン状態になるとともに、前記第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成し、前記第1と第2のトランジスタによる抵抗分割によって生じた中間電位を前記第3と第4のトランジスタのいずれかの制御に利用し、前記第3と第4のトランジスタによる抵抗分割によって生じた中間電位を前記第1と第2のトランジスタのいずれかの制御に利用し、これらの中間電位の一方を出力信号として取り出すよう配したものである。
Claims (30)
- 電源電圧が印加される電源ノードと出力ノードとの間に接続された第1導電型の第1のトランジスタと、
第1入力信号が入力される第1入力ノードと前記出力ノードとの間に接続された第2導電型の第2のトランジスタとを備え、
前記第2のトランジスタの制御電極は前記電源ノードに接続され、前記第1のトランジスタの制御電極は第2入力信号が入力される第2入力ノードに接続され、前記出力ノードから出力信号が取り出されることを特徴とするレベル変換回路。 - 前記電源電圧は前記第1および第2のトランジスタのそれぞれについて単一または個別に設けられ、第1のトランジスタに対応する電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、第2のトランジスタに対応する電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電源電圧と前記第1入力信号および第2入力信号の電圧の差に応じて前記第1及び第2のトランジスタのオン状態の程度が制御され、第1入力信号が前記電源電圧に対応した前記出力信号に変換されることを特徴とする請求の範囲1に記載のレベル変換回路。
- 前記電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、それらの電圧の差に応じて前記第1のトランジスタのオン状態の程度が制御され、前記第1入力信号が前記電源電圧に対応した前記出力信号に変換されることを特徴とする請求の範囲1に記載のレベル変換回路。
- 前記電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電圧の差に応じて前記第2のトランジスタのオン状態の程度が制御され、前記第1入力信号が前記第1のトランジスタに作用する電源電圧に対応した前記出力信号に変換されることを特徴とする請求の範囲1に記載のレベル変換回路。
- 前記第2のトランジスタの制御電極は、前記電源電圧を所定量引き下げる制御回路を介して前記電源ノードに接続されることを特徴とする請求の範囲1から4のいずれかに記載のレベル変換回路。
- 前記第1のトランジスタの制御電極は、前記第2入力ノードの電圧を所定量引き上げる制御回路を介して前記第2入力ノードに接続されることを特徴とする請求の範囲1から5のいずれかに記載のレベル変換回路。
- 前記第1および第2入力ノードは単一の共通ノードである請求の範囲1から6のいずれかに記載のレベル変換回路。
- 前記共通ノードに入力された前記第1入力信号を反転せしめる制御回路をさらに有し、前記第1のトランジスタの制御電極には、前記第2入力信号に代えて前記制御回路の出力信号が与えられることを特徴とする請求の範囲7に記載のレベル変換回路。
- 電源電圧が印加される電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、
第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、
前記電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、
第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、
前記第2及び第4のトランジスタの制御電極は前記電源ノードと接続され、前記第1のトランジスタの制御電極は前記第2の出力ノードに接続され、前記第3のトランジスタの制御電極は前記第1の出力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出されることを特徴とするレベル変換回路。 - 電源電圧が印加される電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、
第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、
前記電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、
第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、
前記第2のトランジスタの制御電極は前記第2の出力ノードに接続され、前記第4のトランジスタの制御電極は前記第1の出力ノードに接続され、前記第1及び第3のトランジスタの制御電極はそれぞれ前記第2及び第1入力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出されることを特徴とするレベル変換回路。 - 前記電源電圧は前記第1および第2のトランジスタのそれぞれについて単一または個別に設けられ、第1のトランジスタに対応する電源電圧は前記第1入力信号のハイレベルよりも高い値に設定され、第2のトランジスタに対応する電源電圧は前記第2入力信号のハイレベルよりも高い値に設定され、それらの電源電圧と前記第1入力信号および第2入力信号の電圧の差に応じて前記第1から第4のトランジスタのオン状態の程度が制御され、第1入力信号が前記電源電圧に対応した前記出力信号に変換されることを特徴とする請求の範囲9、10に記載のレベル変換回路。
- 前記第2および第4のトランジスタの制御電極は、前記電源電圧を所定量引き下げる制御回路を介して前記電源ノードに接続されることを特徴とする請求の範囲9または11に記載のレベル変換回路。
- 前記第1および第3のトランジスタの制御電極は、前記第2入力ノードの電圧を所定量引き上げる制御回路を介して前記第2入力ノードに接続されることを特徴とする請求の範囲10または11に記載のレベル変換回路。
- 前記第2入力信号として、所定の参照電圧信号が入力されることを特徴とする請求の範囲9から13のいずれかに記載のレベル変換回路。
- 請求の範囲1に記載のレベル変換回路と、請求の範囲1に記載のレベル変換回路において第1入力信号と第2入力信号を入れ替えたレベル変換回路と、それらふたつのレベル変換回路の出力信号をふたつの制御入力信号とするクロスカップル型の差動増幅回路とを備え、この差動増幅回路を構成するふたつの電流経路のそれぞれに配されるふたつのトランジスタの接続点が最終的な出力信号を取り出すべき出力ノードに接続されることを特徴とするレベル変換回路。
- 前記クロスカップル型の差動増幅回路に代えてカレントミラー型の増幅回路を配したことを特徴とする請求の範囲15に記載のレベル変換回路。
- 前記第1および第2入力ノードは単一の共通ノードである請求の範囲15または16に記載のレベル変換回路。
- 前記共通ノードに入力された前記第1入力信号を反転せしめる制御回路をさらに有し、前記第1のトランジスタの制御電極には、前記第2入力信号に代えて前記制御回路の出力信号が与えられることを特徴とする請求の範囲17に記載のレベル変換回路。
- 入力信号の振幅よりも電位差が大きな電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって前記電源電圧と所定電圧が抵抗分割されるよう直列に配し、
前記入力信号がハイレベルのとき前記第1のトランジスタが強いオン状態になるとともに、この入力信号と前記電源電圧の電位差によって前記第2のトランジスタが弱いオン状態またはオフ状態となるよう構成し、
前記入力信号がローレベルのとき前記第2のトランジスタが強いオン状態になるとともに、この入力信号の反転信号と前記電源電圧の電位差によって前記第1のトランジスタが弱いオン状態またはオフ状態となるよう構成し、
前記抵抗分割によって生じた中間電位を出力信号として取り出すよう配したことを特徴とするレベル変換回路。 - 入力信号の振幅よりも電位差が大きな第1の電源電圧と所定電圧の間に、第1および第2のトランジスタを、それらのオン抵抗によって前記第1の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、
前記入力信号の反転信号の振幅よりも電位差が大きな第2の電源電圧と所定電圧の間に、第3および第4のトランジスタを、それらのオン抵抗によって前記第2の電源電圧と所定電圧が抵抗分割されるようこの順に直列に配し、
前記入力信号がハイレベルのとき前記第1のトランジスタと第4のトランジスタが強いオン状態になるとともに、前記第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、
前記入力信号がローレベルのとき前記第2のトランジスタと第3のトランジスタが強いオン状態になるとともに、前記第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成し、
前記第1と第2のトランジスタによる抵抗分割によって生じた中間電位を前記第3と第4のトランジスタのいずれかの制御に利用し、前記第3と第4のトランジスタによる抵抗分割によって生じた中間電位を前記第1と第2のトランジスタのいずれかの制御に利用し、これらの中間電位の一方を出力信号として取り出すよう配したことを特徴とするレベル変換回路。 - 前記入力信号がハイレベルのとき、この入力信号とそれぞれ前記第1、第2の電源電圧の電位差によって前記第2のトランジスタと第3のトランジスタが弱いオン状態またはオフ状態となるよう構成し、
前記入力信号がローレベルのとき、この入力信号の反転信号とそれぞれ前記第1、第2の電源電圧の電位差によって前記第1のトランジスタと第4のトランジスタが弱いオン状態またはオフ状態となるよう構成したことを特徴とする請求の範囲20に記載のレベル変換回路。 - 出力ノードと、入力信号のハイレベルよりも高い電源電圧が印加される電源ノードとの間に接続されたpチャネル電界効果トランジスタと、
前記入力信号が入力される第1入力ノードと前記出力ノードとの間に接続されたnチャネル電界効果トランジスタとを備え、
前記nチャネル電界効果トランジスタのゲートは前記電源ノードに接続され、前記pチャネル電界効果トランジスタのゲートは前記入力信号の反転信号が入力される第2入力ノードに接続され、出力信号が前記出力ノードにて取り出されることを特徴とするレベル変換回路。 - 第1の電源電圧が印加される第1の電源ノードと第1の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第1のトランジスタと、
第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第2のトランジスタと、
第2の電源電圧が印加される第2の電源ノードと第2の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第3のトランジスタと、
第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第4のトランジスタとを備え、
前記第2及び第4のトランジスタのゲートはそれぞれ前記第1または第2の電源ノードの一方と接続され、前記第1のトランジスタのゲートは前記第2の出力ノードに接続され、前記第3のトランジスタのゲートは前記第1の出力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出されることを特徴とするレベル変換回路。 - 前記第2及び第4のトランジスタのゲートはそれぞれ前記第1または第2の電源電圧を引き下げる制御回路を介して前記第1または第2の電源ノードの一方と接続されることを特徴とする請求の範囲23に記載のレベル変換回路。
- 第1の電源電圧が印加される第1の電源ノードと第1の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第1のトランジスタと、
第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第2のトランジスタと、
第2の電源電圧が印加される第2の電源ノードと第2の出力ノードとの間に接続されたpチャネル電界効果トランジスタである第3のトランジスタと、
第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続されたnチャネル電界効果トランジスタである第4のトランジスタとを備え、
前記第2のトランジスタのゲートは前記第2の出力ノードに接続され、前記第4のトランジスタのゲートは前記第1の出力ノードに接続され、前記第1及び第3のトランジスタのゲートはそれぞれ前記第2及び第1入力ノードに接続され、前記第1または第2の出力ノードから出力信号が取り出されることを特徴とするレベル変換回路。 - 前記第2入力信号として、所定の参照電圧信号が入力されることを特徴とする請求の範囲23から25のいずれかに記載のレベル変換回路。
- 電源電圧が印加される電源ノードと第1の出力ノードとの間に接続された第1導電型の第1のトランジスタと、
第1入力信号が入力される第1入力ノードと前記第1の出力ノードとの間に接続された第2導電型の第2のトランジスタと、
前記電源ノードと第2の出力ノードとの間に接続された第1導電型の第3のトランジスタと、
第2入力信号が入力される第2入力ノードと前記第2の出力ノードとの間に接続された第2導電型の第4のトランジスタとを備え、
前記第2及び第4のトランジスタの制御電極は、前記電源電圧を引き下げる制御回路を介して前記電源ノードに接続され、前記第1のトランジスタの制御電極は前記第2の出力ノードおよび第1の出力ノードに接続され、前記第3のトランジスタの制御電極は前記第1の出力ノードに接続され、
前記第1または第2の出力ノードから出力信号が取り出されることを特徴とするレベル変換回路。 - 接地電圧をVG、前記電源電圧をVDDと表記するとき、前記出力信号は目標電圧Vm=(VG+VDD)/2をその振幅の中心にもつよう調整されることを特徴とする請求の範囲1から27のいずれかに記載のレベル変換回路。
- 前記目標電圧Vmを動作中心点にもち、かつその出力の振幅が前記接地電圧付近から前記電源電圧付近までをカバーするバッファ回路をさらに有し、このバッファ回路に前記出力信号を通すことにより整形された修正出力信号を得ることを特徴とする請求の範囲28に記載のレベル変換回路。
- 前記トランジスタは、多結晶シリコンにより形成されることを特徴とする請求の範囲1から29のいずれかに記載のレベル変換回路。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001212913 | 2001-07-12 | ||
JP2001212913 | 2001-07-12 | ||
PCT/JP2002/007026 WO2003007477A1 (fr) | 2001-07-12 | 2002-07-10 | Circuit convertisseur de niveau |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2003007477A1 true JPWO2003007477A1 (ja) | 2004-11-04 |
Family
ID=19047985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003513128A Pending JPWO2003007477A1 (ja) | 2001-07-12 | 2002-07-10 | レベル変換回路 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7078934B2 (ja) |
JP (1) | JPWO2003007477A1 (ja) |
KR (1) | KR100639741B1 (ja) |
CN (1) | CN100527624C (ja) |
TW (1) | TWI237947B (ja) |
WO (1) | WO2003007477A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI282537B (en) * | 2005-04-21 | 2007-06-11 | Au Optronics Corp | Display units |
KR100719679B1 (ko) * | 2006-01-20 | 2007-05-17 | 삼성에스디아이 주식회사 | 레벨 쉬프터 |
KR100719678B1 (ko) * | 2006-01-20 | 2007-05-17 | 삼성에스디아이 주식회사 | 레벨 쉬프터 |
JP2008048254A (ja) * | 2006-08-18 | 2008-02-28 | Nec Electronics Corp | レベル変換回路及び半導体装置 |
JP4260176B2 (ja) * | 2006-08-31 | 2009-04-30 | 株式会社沖データ | レベルシフト回路、駆動装置、ledヘッド及び画像形成装置 |
CN101438497B (zh) * | 2006-11-17 | 2012-06-06 | 松下电器产业株式会社 | 多相位电平移位系统 |
KR100925034B1 (ko) | 2006-12-05 | 2009-11-03 | 한국전자통신연구원 | 비동기 디지털 신호레벨 변환회로 |
JP4289410B2 (ja) * | 2007-03-12 | 2009-07-01 | セイコーエプソン株式会社 | レベルシフト回路、電気光学装置、およびレベルシフト方法 |
GB2455432B (en) * | 2007-12-14 | 2013-04-10 | Icera Inc | Voltage control |
JP4686589B2 (ja) * | 2008-11-17 | 2011-05-25 | 三菱電機株式会社 | レベルシフト回路 |
CN106027014B (zh) | 2012-05-11 | 2019-10-01 | 意法半导体研发(深圳)有限公司 | 用于功率驱动器电路应用的电流斜率控制方法和装置 |
CN103426395B (zh) | 2012-05-24 | 2016-12-14 | 意法半导体研发(深圳)有限公司 | 用于功率驱动器电路应用的电压斜率控制方法和装置 |
KR101322738B1 (ko) * | 2012-11-08 | 2013-11-04 | 숭실대학교산학협력단 | 스위치 제어를 위한 레벨 컨버터 |
TWI606683B (zh) * | 2016-05-03 | 2017-11-21 | 國立中興大學 | 零靜功耗高低多端互補式多位準轉換器 |
CN107623518B (zh) * | 2017-09-26 | 2024-05-14 | 北京集创北方科技股份有限公司 | 电平转换电路和应用电平转换电路的方法 |
US11411394B2 (en) * | 2020-12-31 | 2022-08-09 | Skyechip Sdn Bhd | Voltage clamping circuit for protecting an internal circuitry and a method of operating thereof |
CN113949377A (zh) * | 2021-09-17 | 2022-01-18 | 珠海亿智电子科技有限公司 | 一种耐电压i2c接口系统 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4486670A (en) * | 1982-01-19 | 1984-12-04 | Intersil, Inc. | Monolithic CMOS low power digital level shifter |
JPH01231418A (ja) * | 1988-03-11 | 1989-09-14 | Hitachi Ltd | 入力バッファ回路 |
JPH01176115A (ja) * | 1987-12-29 | 1989-07-12 | Nec Corp | 半導体集積回路 |
JPH0691442B2 (ja) * | 1988-03-31 | 1994-11-14 | 日本電気株式会社 | レベルシフト回路 |
JPH03291013A (ja) | 1990-04-09 | 1991-12-20 | Sumitomo Electric Ind Ltd | レベルシフト回路 |
JPH0497616A (ja) * | 1990-08-16 | 1992-03-30 | Toshiba Corp | レベルシフタ回路 |
JPH0637624A (ja) * | 1992-07-13 | 1994-02-10 | Nec Corp | レベル変換回路 |
JP2836412B2 (ja) | 1992-12-04 | 1998-12-14 | 日本電気株式会社 | レベル変換回路 |
JPH06204850A (ja) * | 1993-01-07 | 1994-07-22 | Oki Electric Ind Co Ltd | レベルシフタ回路 |
JPH09205351A (ja) * | 1996-01-25 | 1997-08-05 | Sony Corp | レベルシフト回路 |
JP3695967B2 (ja) * | 1998-11-16 | 2005-09-14 | 株式会社東芝 | 半導体集積回路装置 |
GB2347567A (en) * | 1999-03-05 | 2000-09-06 | Sharp Kk | CMOS level shifters and sense amplifiers |
JP3583999B2 (ja) * | 2000-03-01 | 2004-11-04 | 三洋電機株式会社 | レベル変換回路 |
-
2002
- 2002-07-05 TW TW091114916A patent/TWI237947B/zh not_active IP Right Cessation
- 2002-07-10 CN CNB028139283A patent/CN100527624C/zh not_active Expired - Fee Related
- 2002-07-10 WO PCT/JP2002/007026 patent/WO2003007477A1/ja active Application Filing
- 2002-07-10 KR KR1020047000337A patent/KR100639741B1/ko not_active IP Right Cessation
- 2002-07-10 JP JP2003513128A patent/JPWO2003007477A1/ja active Pending
-
2004
- 2004-01-12 US US10/754,926 patent/US7078934B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100639741B1 (ko) | 2006-10-31 |
CN1526200A (zh) | 2004-09-01 |
WO2003007477A1 (fr) | 2003-01-23 |
TWI237947B (en) | 2005-08-11 |
CN100527624C (zh) | 2009-08-12 |
KR20040015342A (ko) | 2004-02-18 |
US7078934B2 (en) | 2006-07-18 |
US20040140829A1 (en) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022043197A (ja) | 半導体装置 | |
JP3835553B2 (ja) | レベルシフタ及び平板表示装置 | |
JP3583999B2 (ja) | レベル変換回路 | |
US8102357B2 (en) | Display device | |
JP4922314B2 (ja) | 低電力消費及び小型の容量結合型レベルシフト回路 | |
JPWO2003007477A1 (ja) | レベル変換回路 | |
JP3851302B2 (ja) | バッファー回路及びこれを利用したアクティブマトリックス表示装置 | |
WO2009084272A1 (ja) | 半導体装置及び表示装置 | |
JP3512763B2 (ja) | 薄膜トランジスタ液晶表示装置のゲートドライバに用いられるシングルエンド型高電圧レベルシフタ | |
US6741230B2 (en) | Level shift circuit and image display device | |
US20040257111A1 (en) | Level converting circuit efficiently increasing an amplitude of a small-amplitude signal | |
US6980194B2 (en) | Amplitude conversion circuit for converting signal amplitude | |
KR100590034B1 (ko) | 레벨시프터 및 이를 이용한 표시장치 | |
JP4796437B2 (ja) | 発振回路 | |
EP1360765B1 (en) | Buffers with reduced voltage input/output signals | |
JP2003338749A (ja) | 振幅変換回路およびそれを用いた半導体装置 | |
JP2005311790A (ja) | 信号レベル変換回路および該回路を用いた液晶表示装置 | |
JP2001111412A (ja) | 入力信号レベル変換回路及び液晶表示装置 | |
JP2001085988A (ja) | 信号レベル変換回路および信号レベル変換回路を備えたアクティブマトリクス型液晶表示装置 | |
JP2004128162A (ja) | 半導体装置 | |
KR100735771B1 (ko) | 레벨 변환 회로 및 그것을 구비한 반도체 장치 및 표시 장치 | |
JP2002314400A (ja) | 信号レベル変換回路、信号レベル変換装置、および画像表示応用機器 | |
JP2006135384A (ja) | レベルシフタ | |
KR20030050352A (ko) | 낮은 입력 전압에서 사용 가능한 레벨 쉬프터 회로 | |
JP2004194154A (ja) | 振幅変換回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070123 |