[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2006057053A1 - Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus - Google Patents

Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus Download PDF

Info

Publication number
JPWO2006057053A1
JPWO2006057053A1 JP2006546514A JP2006546514A JPWO2006057053A1 JP WO2006057053 A1 JPWO2006057053 A1 JP WO2006057053A1 JP 2006546514 A JP2006546514 A JP 2006546514A JP 2006546514 A JP2006546514 A JP 2006546514A JP WO2006057053 A1 JPWO2006057053 A1 JP WO2006057053A1
Authority
JP
Japan
Prior art keywords
powder
electrode
surface treatment
discharge surface
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006546514A
Other languages
Japanese (ja)
Inventor
後藤 昭弘
昭弘 後藤
和司 中村
和司 中村
秋吉 雅夫
雅夫 秋吉
寺本 浩行
浩行 寺本
落合 宏行
宏行 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Mitsubishi Electric Corp
Original Assignee
IHI Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Mitsubishi Electric Corp filed Critical IHI Corp
Publication of JPWO2006057053A1 publication Critical patent/JPWO2006057053A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を成形した成形電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、分散剤を添加した水あるいは有機溶剤の液体中に、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を混合して液体混合粉末を作成する工程と、該混合粉末を型に流し込み、該液体を揮発あるいは前記型への吸収により除去し、粉末成形体を形成する工程と、該粉末成形体を導電性が得られる温度に加熱する工程と、からで放電表面処理用電極を製造する。A pulsed discharge is generated between a workpiece and a molded electrode formed by molding a metal powder, a metal compound powder, or a ceramic powder, and the energy of the electrode material or electrode material on the workpiece surface depends on the discharge energy. In the discharge surface treatment to form a film made of the reacted substance, a liquid mixed powder is obtained by mixing a metal powder, a metal compound powder, or a ceramic powder in water or an organic solvent liquid to which a dispersant is added. A step of forming, pouring the mixed powder into a mold, removing the liquid by volatilization or absorption into the mold to form a powder molded body, and heating the powder molded body to a temperature at which conductivity is obtained. The electrode for discharge surface treatment is manufactured by the process.

Description

本発明は、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を固めて成形した成形体電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理に関するものであり、特に、成形体電極製造に関する。 In the present invention, a pulsed discharge is generated between a metal powder, a metal compound powder, or a molded body electrode formed by solidifying a ceramic powder and a workpiece, and the energy is applied to the electrode material on the workpiece surface. Or it is related with the discharge surface treatment which forms the film which consists of the substance which electrode material reacted with discharge energy, and is related with a molded object electrode manufacture especially.

液中放電加工法によって金属材料の表面をコーティングして、耐食性、耐磨耗性を高める技術は、例えば、特開平5−148615号公報に開示されているように、WC(タングステンカーバイド)とCoの粉末を混合して圧縮成形した電極で液中パルス放電を行うことによりこの電極材料をワークに堆積させ、この後、別の電極(例えば、銅電極、グラファイト電極)によって、再溶融放電加工を行い、より高い硬度と高い密着力を得る方法が確立している。(特許文献1参照)
また、特開平9−192937号公報に示されるように、TiH2(水素化チタン)など、金属の水素化物の圧粉体を電極として、ワークとの間に放電を発生させると、Ti等の材料を使用する場合よりも、速くそして密着性よく、硬質膜を形成できる技術が確立されている。(特許文献2参照)
また、日本特許第3227454号公報に示されるように、予備焼結により強度の高い表面処理電極製造技術が確立している。(特許文献3参照)。
また、本発明者らの研究に基づく文献には、WC-Co(9:1)電極を用いて3mm程度の厚膜が形成できたことが示されているが(非特許文献1参照)、被膜形成が安定せず再現が困難であること、一見金属光沢があり緻密に見えるが空孔が多く脆い被膜であること、金属片などで強く擦ると除去されてしまうほど弱い状態であった。
A technique for improving the corrosion resistance and wear resistance by coating the surface of a metal material by submerged electric discharge machining is disclosed in, for example, WC (tungsten carbide) and Co as disclosed in JP-A-5-148615. This electrode material is deposited on the workpiece by performing pulse discharge in liquid with an electrode formed by mixing and compacting the powder of this material, and then remelting discharge machining with another electrode (for example, copper electrode, graphite electrode). A method has been established to obtain higher hardness and higher adhesion. (See Patent Document 1)
Further, as disclosed in Japanese Patent Laid-Open No. 9-192937, when a discharge is generated between a workpiece and a compact of a metal hydride such as TiH2 (titanium hydride) as an electrode, a material such as Ti A technique capable of forming a hard film faster and with better adhesion than in the case of using a coating has been established. (See Patent Document 2)
Moreover, as shown in Japanese Patent No. 3227454, a high-strength surface-treated electrode manufacturing technique has been established by preliminary sintering. (See Patent Document 3).
In addition, the literature based on the study by the present inventors shows that a thick film of about 3 mm can be formed using a WC-Co (9: 1) electrode (see Non-Patent Document 1). The formation of the film was not stable and difficult to reproduce, and at first glance it seemed dense with a metallic luster, but it was a brittle film with many pores, and it was so weak that it was removed when rubbed strongly with a metal piece.

特開平5−148615号公報JP-A-5-148615 特開平9−192937号公報Japanese Patent Laid-Open No. 9-192937 特許第3227454号Japanese Patent No. 3227454 「放電表面処理(EDC)による厚膜の形成」後藤昭弘他、型技術、(1999)、日刊工業新聞社"Formation of thick film by discharge surface treatment (EDC)" Akihiro Goto et al., Mold Technology, (1999), Nikkan Kogyo Shimbun

上記表面処理に用いられる電極としては、発明者らにより、電極材質中に炭化物になりにくい材質を所定量以上混入すると、緻密な厚膜が形成できることが見出され、Co(コバルト)、Ni(ニッケル)、Fe(鉄)などの材質を増やすことで厚膜がきることがわかってきている。
しかしながら、前述の薄い硬質被膜の場合も厚膜を形成する場合も、その電極の製造方法は、主に金型に粉末を入れてプレスする圧縮成形により製造される。
プレスにより圧縮成形する方法では、小さな電極を均一に製造することは可能であるが、電極サイズが大きくなると、プレスでは、均一なものを製造することは困難になる。
例えば、Coを主成分とするCo合金粉末をプレスして電極を製造する場合、Co合金粉末を所定の型に入れた状態で、上下から粉末を押すようにプレスするため、製造する電極のサイズが大きくなると、上下のプレス表面から離れるにしたがい圧力が伝わらなくなり、中心部分が十分に圧縮されなくなるためである。
なお、このように均一に圧縮されず、品質にばらつきのある電極を用いて放電表面処理を行うと、被膜の品質を安定に保つことが出来ない。
As the electrode used for the surface treatment, the inventors have found that when a predetermined amount or more of a material that does not easily become carbide is mixed in the electrode material, a dense thick film can be formed. Co (cobalt), Ni ( It has been found that a thick film can be obtained by increasing the material such as nickel) or Fe (iron).
However, in the case of the aforementioned thin hard film and thick film, the electrode is produced mainly by compression molding in which powder is put into a mold and pressed.
In the method of compression molding by pressing, it is possible to produce small electrodes uniformly. However, as the electrode size increases, it becomes difficult to produce uniform electrodes by pressing.
For example, when manufacturing an electrode by pressing a Co alloy powder containing Co as a main component, since the Co alloy powder is pressed to press the powder from above and below in a predetermined mold, the size of the electrode to be manufactured This is because as the distance from the upper and lower press surfaces increases, the pressure is not transmitted and the central portion is not sufficiently compressed.
In addition, when the discharge surface treatment is performed using an electrode that is not uniformly compressed and varies in quality as described above, the quality of the coating cannot be stably maintained.

この発明は、上記に鑑みてなされたもので、液中での放電パルスによる放電表面処理用の電極をサイズによらず、均一に安定して製造するための技術を確立することを目的とする。   The present invention has been made in view of the above, and an object thereof is to establish a technique for uniformly and stably producing an electrode for discharge surface treatment by a discharge pulse in a liquid regardless of the size. .

この発明に係る放電表面処理用電極は、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を成形した成形電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、分散剤を添加した水あるいは有機溶剤の液体中に、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を混合して液体混合粉末を作成する工程と、該混合粉末を型に流し込み、該液体を揮発あるいは前記型への吸収により除去し、粉末成形体を形成する工程と、該粉末成形体を導電性が得られる温度に加熱する工程と、から製造するものである。   The discharge surface treatment electrode according to the present invention generates a pulsed discharge between a metal powder, a metal compound powder, or a molded electrode obtained by molding a ceramic powder, and the energy of the work. In the discharge surface treatment for forming a coating made of an electrode material or a material in which the electrode material reacts with discharge energy on the surface, a metal powder, a metal compound powder, or water in an organic solvent liquid to which a dispersant is added, or A step of mixing a ceramic powder to prepare a liquid mixed powder, a step of pouring the mixed powder into a mold, removing the liquid by volatilization or absorption into the mold, and forming a powder compact, and the powder molding And heating the body to a temperature at which electrical conductivity is obtained.

本発明に係わる放電表面処理用電極は、電極の均一性の改善を図ることができ、被膜形成の改善を図れる。
また、大きな形状の電極が容易に成形できるため、小さな電極が必要な場合にも大きな電極から切り出して使うなどでき、電極の生産性をあげることができる。
The discharge surface treatment electrode according to the present invention can improve the uniformity of the electrode and can improve the film formation.
In addition, since a large-shaped electrode can be easily formed, even when a small electrode is required, it can be cut out from the large electrode, and the productivity of the electrode can be increased.

放電表面処理用電極製造の説明のための説明図である。It is explanatory drawing for description of the electrode for discharge surface treatment. 放電表面処理用電極製造のためのプロセスである。This is a process for manufacturing an electrode for discharge surface treatment. Co合金粉末からできた粉末成形体を1時間加熱した場合の加熱温度と、その温度での加熱後の電気抵抗値との関係を示している。The relationship between the heating temperature when a powder compact made of Co alloy powder is heated for 1 hour and the electrical resistance value after heating at that temperature is shown. 放電表面処理を行なっている様子を示している図である。It is a figure which shows a mode that discharge surface treatment is performed. 放電表面処理における電圧及び電流の関係を示す図である。It is a figure which shows the relationship between the voltage and electric current in discharge surface treatment.

実施の形態1.
以下、本発明の実施の形態について図を用いて説明する。
図1は、本発明の実施の形態1における放電表面処理用電極製造の説明のための説明図である。
図において、容器1で分散剤2を添加した有機溶剤であるアセトンと放電表面処理電極となるCo合金の粉末を混合し、混合粉末液体を製造する。
ここでは一例として、Co合金粉末をアセトンに混合した場合で説明を行なうが、他の電極材質でもよいことはいうまでない。
電極材料としては、例えば、Ni合金、Fe合金等の合金粉末材料、Co、Ni、Fe単体の金属粉末、導電性があるセラミックス、複数の金属・セラミックスを混合した粉末でもよい。なお、金属元素はこれらの材質だけには限らない。
なお、厚膜を形成するためには、炭化物を形成しないもしくは炭化しにくい金属、例えば、Co、Ni、Feなどが、所定量、すなわち、40体積%以上、より望ましくは50体積%以上含まれているのがよい。
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram for explaining manufacture of an electrode for discharge surface treatment in Embodiment 1 of the present invention.
In the figure, acetone, which is an organic solvent to which a dispersing agent 2 is added in a container 1, and a Co alloy powder to be a discharge surface treatment electrode are mixed to produce a mixed powder liquid.
Here, as an example, a description will be given of the case where Co alloy powder is mixed with acetone, but it goes without saying that other electrode materials may be used.
The electrode material may be, for example, an alloy powder material such as Ni alloy or Fe alloy, Co, Ni, Fe single metal powder, conductive ceramics, or a mixed powder of a plurality of metals / ceramics. The metal element is not limited to these materials.
In order to form a thick film, a predetermined amount, that is, 40% by volume or more, more desirably 50% by volume or more, is included in a metal that does not form carbide or is hard to be carbonized, such as Co, Ni, Fe, and the like. It is good to have.

合金での材料の体積%は定義しにくいが、ここでは、混合するそれぞれ粉末の重量をそれぞれの材料の密度で割った値の比率を体積%としている。
例えばCo(コバルト)とCr(クロム)の合金の場合にはCo(コバルト)の体積%とは、((Coの重量%)/(Coの比重))÷(((Crの重量%)/(Crの比重))+((Coの重量%)/(Coの比重)))である。
合金として混合する材料の元々の比重が近い材料であれば、重量%とほぼ同じになるのはいうまでない。
一方、粉末に混合する液体もアセトンに限らず、アルコール、トルエンなど有機溶剤ならばよいし、セラミックスや、Coなどの金属のように、酸化し難い材質であれば水でもよい。
The volume% of the material in the alloy is difficult to define, but here, the ratio of the value obtained by dividing the weight of each powder to be mixed by the density of each material is defined as volume%.
For example, in the case of an alloy of Co (cobalt) and Cr (chromium), the volume percent of Co (cobalt) is ((weight percent of Co) / (specific gravity of Co)) ÷ (((weight percent of Cr) / (Specific gravity of Cr)) + ((% by weight of Co) / (specific gravity of Co))).
Needless to say, if the material to be mixed as an alloy has a material with a specific gravity close to that of the original material, it is almost the same as the weight%.
On the other hand, the liquid to be mixed with the powder is not limited to acetone, but may be an organic solvent such as alcohol or toluene, or water if it is a material that is difficult to oxidize, such as ceramics or a metal such as Co.

図2は、本実施の形態の放電表面処理用電極製造のためのプロセスである。
図において、3は石膏などポーラスな材料からなる型、4は混合粉末液体2から有機溶剤が抜けてできた粉末成形体である。
次に、放電表面処理用電極製造のためのプロセスについて説明する。
粉末成形体4を製造するプロセスは、おおよそ以下のような工程からなる。
1) 石膏で作った型3を準備する。
ここで、割り型にしておくと、粉末成形体が取り出し易い。
2) 石膏で作った型3に、平均粒径が1から2μm以下程度のCo合金粉末と、有機溶剤と分散剤の混合物2を入れる。ここで、分散剤としては、ステアリン酸をCo合金の3wt%程度加えている。
3) 混合粉末液体2から溶剤を除去する乾燥工程。
有機溶剤が揮発あるいは型への吸収により減少
4) 有機溶剤のほとんどが揮発・型への吸収でなくなるとCo合金が固まる。
5) 割り型を割ると粉末成形体が取り出せる。
なお、必要に応じて成形電極の表面研磨等を行う。
FIG. 2 shows a process for manufacturing an electrode for discharge surface treatment according to the present embodiment.
In the figure, 3 is a mold made of a porous material such as gypsum, and 4 is a powder compact formed by removing an organic solvent from the mixed powder liquid 2.
Next, the process for manufacturing the electrode for discharge surface treatment will be described.
The process for manufacturing the powder compact 4 is roughly composed of the following steps.
1) Prepare mold 3 made of plaster.
Here, if the split mold is used, the powder compact can be easily taken out.
2) In a mold 3 made of gypsum, a Co alloy powder having an average particle size of 1 to 2 μm or less, and a mixture 2 of an organic solvent and a dispersant are placed. Here, as a dispersing agent, stearic acid is added about 3 wt% of the Co alloy.
3) A drying step for removing the solvent from the mixed powder liquid 2.
Decrease due to volatilization or absorption into the mold 4) When most of the organic solvent is not volatilization / absorption into the mold, the Co alloy solidifies.
5) The powder compact can be taken out by splitting the split mold.
If necessary, the surface of the molded electrode is polished.

粉末の材質・粒径によっては、粉末成形体4の状態で通電性がよく放電表面処理用電極として使用できる場合もあるが、たいていの場合には、電気抵抗が大きすぎ、また、強度が弱すぎ、そのまま電極として使用するのは困難な場合が多い。
そこで、放電表面処理用電極として使用できる状態とするために、粉末成形体4を加熱する。
粉末成形体4は、粉末材料からできているため酸化しやすい状態になっている。
そのため単に加熱すると粉末の酸化がすすみ、逆に電極としての導電性に悪影響を与えることがあるので、真空炉あるいはアルゴン炉など酸化しない雰囲気で加熱することが望ましい。
Depending on the material and particle size of the powder, there may be cases where the powder compact 4 has good electrical conductivity and can be used as an electrode for discharge surface treatment, but in most cases, the electrical resistance is too high and the strength is weak. In many cases, it is difficult to use the electrode as it is.
Therefore, the powder molded body 4 is heated so that it can be used as an electrode for discharge surface treatment.
Since the powder compact 4 is made of a powder material, it is in a state where it is easily oxidized.
For this reason, if the powder is simply heated, the powder will oxidize and adversely affect the conductivity of the electrode. Therefore, it is desirable to heat in a non-oxidizing atmosphere such as a vacuum furnace or an argon furnace.

図3は、Co合金粉末からできた粉末成形体4を1時間加熱した場合の加熱温度と、その温度での加熱後の電気抵抗値との関係を示している。
加熱前の電気抵抗値は材質などにより異なるが、通常10Ω以上の値であり、放電表面処理用電極として使用できる状態にはない。
しかし、この粉末成形体4を加熱することで、電気抵抗を下げることができる。
ここで、加熱温度が高すぎると、粉末成形体4が硬くなりすぎ、いわゆる焼結の状態となり、電気抵抗はさがるが、放電表面処理用電極としては使用できなくなる。電気抵抗が1Ω以下に下がり、しかも、硬くなりすぎない温度が、粉末成形体4の最適な加熱温度である。
もちろん加熱しなくても十分な導電性がある場合にはかならずしも加熱の必要はない。
FIG. 3 shows the relationship between the heating temperature when the powder compact 4 made of Co alloy powder is heated for 1 hour and the electrical resistance value after heating at that temperature.
Although the electric resistance value before heating varies depending on the material and the like, it is usually a value of 10Ω or more, and is not in a state where it can be used as a discharge surface treatment electrode.
However, the electrical resistance can be lowered by heating the powder compact 4.
Here, if the heating temperature is too high, the powder molded body 4 becomes too hard and becomes a so-called sintered state, and the electric resistance is reduced, but it cannot be used as an electrode for discharge surface treatment. The temperature at which the electrical resistance drops below 1Ω and does not become too hard is the optimum heating temperature of the powder compact 4.
Of course, heating is not always necessary when there is sufficient conductivity without heating.

図4は、上記方法で製作された電極により放電表面処理を行なっている様子を示している。
図に示されるように、電極11とワーク12を所定間隙離間して油などの加工液14中に配置し、放電表面処理用電源14からパルス状の電圧を印加することにより放電を発生させる。図中15は放電が発生した瞬間にできる放電のアーク柱である。
放電表面処理用電源13は、電極極性マイナスで、図5に示すようなパルス幅teは数μm〜数10μm程度のパルス状の放電を発生させる。
FIG. 4 shows a state where the discharge surface treatment is performed by the electrode manufactured by the above method.
As shown in the figure, the electrode 11 and the workpiece 12 are placed in a working liquid 14 such as oil with a predetermined gap therebetween, and a discharge is generated by applying a pulsed voltage from the power supply 14 for discharge surface treatment. In the figure, reference numeral 15 denotes an arc column of discharge that is generated at the moment when the discharge occurs.
The discharge surface treatment power source 13 has a negative electrode polarity, and generates a pulsed discharge having a pulse width te of about several μm to several tens of μm as shown in FIG.

以上の方法により形成した被膜は、電極の場所が変わっても均一であり、一定性能の膜になっている。
また、電極サイズが大きくなっても電極の硬さ、電気抵抗などのばらつきが小さくなっており、被膜の品質を安定させることが可能になった。
本実施の形態によれば、炭化物系の薄い硬質被膜の場合の電極の均一性の改善を図れると共に、特に、Co、Ni、Feなどの炭化物を形成しにくい金属材料を含んだ電極の均一性の改善を図れる。
また、本方法によると、大きな形状の電極が容易に成形できるため、小さな電極が必要な場合にも大きな電極から切り出して使うなどでき、電極の生産性をあげることができる。
The film formed by the above method is uniform even if the location of the electrode changes, and is a film having a constant performance.
Moreover, even when the electrode size is increased, variations in electrode hardness, electrical resistance, and the like are reduced, and the quality of the coating can be stabilized.
According to the present embodiment, it is possible to improve the uniformity of the electrode in the case of a carbide-based thin hard coating, and in particular, the uniformity of an electrode including a metal material that is difficult to form carbides such as Co, Ni, and Fe. Can be improved.
In addition, according to the present method, a large-shaped electrode can be easily formed, so that even when a small electrode is necessary, it can be cut out from the large electrode and used, thereby increasing the productivity of the electrode.

本発明は、放電表面処理に使用する電極製造技術に関する。   The present invention relates to an electrode manufacturing technique used for discharge surface treatment.

Claims (9)

金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を成形した成形電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、
分散剤を添加した水あるいは有機溶剤の液体中に、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を混合して液体混合粉末を作成する工程と、
該混合粉末を型に流し込み、該液体を揮発あるいは前記型への吸収により除去し、粉末成形体を形成する工程と、
該粉末成形体を導電性が得られる温度に加熱する工程と、
から製造したことを特徴とする放電表面処理用電極。
A pulsed discharge is generated between a workpiece and a molded electrode formed by molding a metal powder, a metal compound powder, or a ceramic powder, and the energy of the electrode material or electrode material on the workpiece surface depends on the discharge energy. In discharge surface treatment to form a film made of the reacted material,
A step of mixing a metal powder, a metal compound powder, or a ceramic powder with water or an organic solvent liquid to which a dispersant is added, to create a liquid mixed powder;
Pouring the mixed powder into a mold, removing the liquid by volatilization or absorption into the mold, and forming a powder compact;
Heating the powder compact to a temperature at which electrical conductivity is obtained;
An electrode for discharge surface treatment, which is manufactured from
粉末材料が炭化物を形成しない、もしくは形成し難い金属材料を40体積%以上含むことを特徴とする請求項1記載の放電表面処理用電極。   2. The discharge surface treatment electrode according to claim 1, wherein the powder material contains 40% by volume or more of a metal material which does not form carbide or is difficult to form. 炭化物を形成しないもしくは形成し難い金属材料が、Co、Ni、Feであることを特徴とする請求項2記載の放電表面処理用電極。   3. The discharge surface treatment electrode according to claim 2, wherein the metal material which does not form or hardly forms carbide is Co, Ni, or Fe. 金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を成形した成形電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、
分散剤を添加した水あるいは有機溶剤の液体中に、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を混合して液体混合粉末を作成する工程と、
該混合粉末を型に流し込み、該液体を揮発あるいは前記型への吸収により除去し、粉末成形体を形成する工程と、
該粉末成形体を導電性が得られる温度に加熱する工程と、
からなる放電表面処理用電極製造方法。
A pulsed discharge is generated between a workpiece and a molded electrode formed by molding a metal powder, a metal compound powder, or a ceramic powder, and the energy of the electrode material or electrode material on the workpiece surface depends on the discharge energy. In discharge surface treatment to form a film made of the reacted material,
A step of mixing a metal powder, a metal compound powder, or a ceramic powder with water or an organic solvent liquid to which a dispersant is added, to create a liquid mixed powder;
Pouring the mixed powder into a mold, removing the liquid by volatilization or absorption into the mold, and forming a powder compact;
Heating the powder compact to a temperature at which electrical conductivity is obtained;
A method for producing an electrode for discharge surface treatment comprising:
粉末材料が炭化物を形成しないもしくは形成し難い金属材料を40体積%以上含むことを特徴とする請求項4記載の放電表面用電極製造方法。   5. The method for producing an electrode for discharge surface according to claim 4, wherein the powder material contains 40% by volume or more of a metal material which does not form carbide or is difficult to form. 炭化物を形成しないもしくは形成し難い金属材料が、Co、Ni、Feであることを特徴とする請求項5記載の放電表面処理方法。   6. The discharge surface treatment method according to claim 5, wherein the metal material that does not form or hardly forms carbide is Co, Ni, or Fe. 分散剤を添加した水あるいは有機溶剤の液体中に、金属粉末、金属の化合物の粉末、あるいは、セラミックスの粉末を混合した液体混合粉末を型に流し込み、該液体を揮発あるいは前記型への吸収により除去して粉末成形体を形成した後、該粉末成形体を導電性が得られる温度に加熱して製造した電極と、
該電極とワークとを加工液中に浸漬させる、あるいは、該電極とワークとの間に加工液を供給する、加工液供給装置と、
該電極とワークとを加工液中に電圧を印加して、パルス状の放電を発生させる電源装置と、を有し、ワーク表面に電極成分あるいは電極成分が放電により変化した成分を主成分とする被膜を形成する放電表面処理装置。
In a liquid of water or an organic solvent to which a dispersant has been added, a metal powder, a metal compound powder, or a liquid mixed powder obtained by mixing ceramic powder is poured into a mold, and the liquid is volatilized or absorbed by the mold. After removing to form a powder compact, an electrode manufactured by heating the powder compact to a temperature at which conductivity is obtained;
A machining fluid supply device for immersing the electrode and the workpiece in a machining fluid or supplying a machining fluid between the electrode and the workpiece;
And a power supply device that generates a pulsed discharge by applying a voltage to the machining fluid between the electrode and the workpiece, and the electrode component or a component in which the electrode component is changed by the discharge on the workpiece surface is a main component. Discharge surface treatment apparatus for forming a film.
電極成分が炭化物を形成しないもしくは形成し難い金属材料を40体積%以上含むことを特徴とする請求項7記載の放電表面処理装置。   8. The discharge surface treatment apparatus according to claim 7, wherein the electrode component contains 40% by volume or more of a metal material which does not form carbide or is difficult to form. 炭化物を形成しないもしくは形成し難い金属材料が、Co、Ni、Feであることを特徴とする請求項7、8記載の放電表面処理装置。   9. The discharge surface treatment apparatus according to claim 7, wherein the metal material that does not form or hardly forms carbide is Co, Ni, or Fe.
JP2006546514A 2004-11-29 2004-11-29 Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus Pending JPWO2006057053A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017699 WO2006057053A1 (en) 2004-11-29 2004-11-29 Electrode for discharge surface treatment and method for discharge surface treatment, and apparatus for discharge surface treatment

Publications (1)

Publication Number Publication Date
JPWO2006057053A1 true JPWO2006057053A1 (en) 2008-06-05

Family

ID=36497802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006546514A Pending JPWO2006057053A1 (en) 2004-11-29 2004-11-29 Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus

Country Status (3)

Country Link
JP (1) JPWO2006057053A1 (en)
TW (1) TWI256325B (en)
WO (1) WO2006057053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381898B (en) * 2009-07-28 2013-01-11 Univ Far East The method of obtaining rapid solidification alloy by means of electric discharge machining

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112329A (en) * 1993-10-15 1995-05-02 Naotake Mori Surface treatment method by electric discharge machining and device thereof
JP2002020882A (en) * 2000-07-04 2002-01-23 Suzuki Motor Corp Sliding member and its production method
JP3421321B2 (en) * 1998-03-11 2003-06-30 三菱電機株式会社 Green compact electrode for discharge surface treatment and method for manufacturing compact green electrode for discharge surface treatment
WO2004011696A1 (en) * 2002-07-30 2004-02-05 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP2004060013A (en) * 2002-07-30 2004-02-26 Mitsubishi Electric Corp Electrode for discharge surface-treatment and discharge surface-treatment method
JP2004076038A (en) * 2002-08-12 2004-03-11 Suzuki Motor Corp Valve seat film forming method and valve seat film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112329A (en) * 1993-10-15 1995-05-02 Naotake Mori Surface treatment method by electric discharge machining and device thereof
JP3421321B2 (en) * 1998-03-11 2003-06-30 三菱電機株式会社 Green compact electrode for discharge surface treatment and method for manufacturing compact green electrode for discharge surface treatment
JP2002020882A (en) * 2000-07-04 2002-01-23 Suzuki Motor Corp Sliding member and its production method
WO2004011696A1 (en) * 2002-07-30 2004-02-05 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP2004060013A (en) * 2002-07-30 2004-02-26 Mitsubishi Electric Corp Electrode for discharge surface-treatment and discharge surface-treatment method
JP2004076038A (en) * 2002-08-12 2004-03-11 Suzuki Motor Corp Valve seat film forming method and valve seat film

Also Published As

Publication number Publication date
TW200616735A (en) 2006-06-01
WO2006057053A1 (en) 2006-06-01
TWI256325B (en) 2006-06-11

Similar Documents

Publication Publication Date Title
JP4137886B2 (en) Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
JP3271844B2 (en) Surface treatment method for metallic materials by submerged discharge
JP4439781B2 (en) Manufacturing method of electrode for discharge surface treatment
EP1640476B1 (en) Discharge surface treating electrode, discharge surface treating device and discharge surface treating method
CN1322165C (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
RU2321677C2 (en) Electrode for working surface by electric discharge (variants), method for working surface by means of electric discharge variants) and apparatus for working surface by means of electric discharge (variants)
JP2006322034A (en) Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
JPWO2006057053A1 (en) Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JPH11320272A (en) Discharged surface treatment method and object to be treated by the method
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment
WO2011148415A1 (en) Electrode for discharge surface treatment and discharge surface treatment film
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD
JP2004042190A (en) Electrode for electric discharge machining
JP3852580B2 (en) Discharge surface treatment electrode and method for producing the same
JP4580250B2 (en) Method for manufacturing discharge surface treatment electrode, electrode and discharge surface treatment method
JP4984015B1 (en) Discharge surface treatment electrode and method for producing discharge surface treatment electrode
JP2005214054A (en) Turbine part and gas turbine
JP2004137576A (en) Electrode for discharge surface treatment
JP2005213558A (en) Electrode for electrical discharge surface treatment and manufacturing method therefor
Das et al. MANUFACTURING PROCESS OF METAL POWDERS

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130