JP4119461B2 - Manufacturing method of electrode for discharge surface treatment - Google Patents
Manufacturing method of electrode for discharge surface treatment Download PDFInfo
- Publication number
- JP4119461B2 JP4119461B2 JP2006205977A JP2006205977A JP4119461B2 JP 4119461 B2 JP4119461 B2 JP 4119461B2 JP 2006205977 A JP2006205977 A JP 2006205977A JP 2006205977 A JP2006205977 A JP 2006205977A JP 4119461 B2 JP4119461 B2 JP 4119461B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- discharge
- surface treatment
- discharge surface
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
この発明は、合金粉末を電極材料に持つ電極とワークとの間にパルス状の放電を発生させ、その放電エネルギにより電極材料の被膜をワーク表面に形成しあるいは放電エネルギにより電極材料が反応した物質の被膜をワーク表面に形成する放電表面処理に関し、該放電表面処理に用いる電極の製造方法に関するものである。 The present invention is a substance in which a pulsed discharge is generated between an electrode having an alloy powder as an electrode material and a work, and a film of the electrode material is formed on the work surface by the discharge energy or the electrode material reacts by the discharge energy. In particular, the present invention relates to a method for producing an electrode used for the discharge surface treatment.
液中放電加工法によって金属材料の表面をコーティングして、耐食性、耐磨耗性を高める技術は、既に公知である。その技術の一例としては、次のようなものがある。 A technique for improving the corrosion resistance and wear resistance by coating the surface of a metal material by a submerged electric discharge machining method is already known. An example of the technique is as follows.
例えば、特開平5−148615号公報では、WC(タングステンカーバイド)とCoの粉末を混合して圧縮成形した電極で液中パルス放電を行うことによりこの電極材料をワークに堆積させ、この後、別の電極(例えば、銅電極、グラファイト電極)によって、再溶融放電加工を行い、より高い硬度と高い密着力を得る方法が開示される。すなわち、WC-Coの混合圧粉体電極を用いて、ワーク(母材S50C)に液中で放電加工を行い、WC-Coをワークに堆積させ(1次加工)、次いで銅電極のようなそれほど消耗しない電極によって再溶融加工(2次加工)を行う。この結果、1次加工のままでは、堆積組織は硬度(ビッカース硬さHv)もHv=1410程度であり、また空洞も多かったが、2次加工の再溶融加工によって被覆層の空洞が無くなり、硬度もHv=1750と向上している。この方法によって、ワークである鋼材に対しては硬くしかも密着度のよい被覆層が得られる。 For example, in Japanese Patent Application Laid-Open No. 5-148615, this electrode material is deposited on a workpiece by performing pulse discharge in liquid using an electrode formed by mixing WC (tungsten carbide) and Co powder and compression molding. A method is disclosed in which remelting electric discharge machining is performed with a plurality of electrodes (for example, copper electrode, graphite electrode) to obtain higher hardness and higher adhesion. That is, using a WC-Co mixed green compact electrode, the workpiece (base material S50C) is subjected to electrical discharge machining in a liquid, WC-Co is deposited on the workpiece (primary machining), and then a copper electrode or the like. Remelting processing (secondary processing) is performed with electrodes that are not so consumed. As a result, in the primary processing, the deposited structure had a hardness (Vickers hardness Hv) of about Hv = 1410, and there were many cavities, but the remelting processing of the secondary processing eliminated the cavities of the coating layer, Hardness is also improved with Hv = 1750. By this method, a coating layer that is hard and has good adhesion to a steel material as a workpiece can be obtained.
ところが、上述の方法では、ワークとして超硬合金のような焼結材料の表面に強固な密着力を持った被覆層を形成することは困難である。この点に関し、本発明者らの研究によると、硬質炭化物を形成するTi等の材料を電極として、ワークとの間に放電を発生させると、再溶融の過程なしに強固な硬質膜をワークの金属表面に形成できることがわかった。これは、放電により消耗した電極材料と加工液中の成分である炭素Cが反応してTiCが生成することによるものである。 However, in the above-described method, it is difficult to form a coating layer having strong adhesion on the surface of a sintered material such as a cemented carbide as a workpiece. In this regard, according to the study by the present inventors, when a material such as Ti that forms hard carbide is used as an electrode and a discharge is generated between the workpiece and the workpiece, a strong hard film is formed on the workpiece without remelting. It was found that it can be formed on a metal surface. This is because TiC is generated by the reaction between the electrode material consumed by the discharge and carbon C, which is a component in the working fluid.
また、特開平9−192937号公報では、TiH2(水素化チタン)など、金属の水素化物の圧粉体を電極として、ワークとの間に放電を発生させると、Ti等の材料を使用する場合よりも、速くそして密着性よく、硬質膜を形成できる技術が開示されている。更には、TiH2(水素化チタン)等の水素化物に他の金属やセラミックスを混合した圧粉体を電極として、ワークとの間に放電を発生させると硬度、耐磨耗性等様々な性質をもった硬質被膜を素早く形成することができる技術も開示されている。 Japanese Patent Laid-Open No. 9-192937 uses a material such as Ti when a discharge is generated between a workpiece and a compact of a metal hydride such as TiH 2 (titanium hydride) as an electrode. A technique capable of forming a hard film faster and with better adhesion than the case is disclosed. Furthermore, when a discharge is generated between the workpiece and a compact, which is a mixture of hydride such as TiH 2 (titanium hydride) with other metals or ceramics, various properties such as hardness and wear resistance are obtained. There is also disclosed a technique capable of quickly forming a hard coating having a thickness.
また、別の技術として、特許第3227454号では、予備焼結により強度の高い表面処理電極が製造できることが開示される。すなわち、WC粉末とCo粉末を混合した粉末からなる放電表面処理用電極を製造する場合、WC粉末とCo粉末を混合し圧縮成形してなる圧粉体は、WC粉末とCo粉末を混合して圧縮成形しただけでもよいが、ワックスを混入した後圧縮成形すれば圧粉体の成形性が向上する。 As another technique, Japanese Patent No. 3227454 discloses that a surface-treated electrode having high strength can be produced by preliminary sintering. That is, when manufacturing an electrode for discharge surface treatment comprising a powder obtained by mixing WC powder and Co powder, a green compact obtained by mixing and compressing WC powder and Co powder is obtained by mixing WC powder and Co powder. It may be only compression molded, but if the wax is mixed and then compression molded, the moldability of the green compact is improved.
この場合、ワックスは絶縁性物質であり、電極中に大量に残ると電極の電気抵抗が大きくなって放電性が悪化するので、圧粉体電極を真空炉に入れて加熱することでワックスを除去している。この時、加熱温度が低すぎるとワックスが除去できず、温度が高すぎるとワックスが煤になって電極の純度を劣化させるので、ワックスが溶融する温度以上かつワックスが分解して煤になる温度以下に保つ必要がある。 In this case, the wax is an insulating substance, and if it remains in the electrode in large quantities, the electrical resistance of the electrode increases and the discharge performance deteriorates. Therefore, the wax is removed by heating the green compact electrode in a vacuum furnace. is doing. At this time, if the heating temperature is too low, the wax cannot be removed, and if the temperature is too high, the wax becomes soot and deteriorates the purity of the electrode. It is necessary to keep below.
そして、真空炉中の圧粉体を、高周波コイルなどにより加熱し、機械加工に耐えうる強度を与え、かつ硬化しすぎないように、例えば白墨程度の硬度まで焼成する(これは予備焼結状態と呼ばれる)。この場合、炭化物間の接触部においては相互に結合が進むが比較的焼結温度が低く本焼結に至らない温度のため弱い結合となっている。このような電極で放電表面処理を行うと、緻密で均質な被膜が形成できることが判明している。
ところが上述した従来の放電表面処理では、電極としては、被膜にしたい材料の粉末例えば図5に示すようにCo粉末107、Cr粉末108、Ni粉末109を混合し、混合した粉末を圧縮成形して圧粉体としたもの、あるいは、その後に加熱処理を行った圧粉体としたものを用いている。別の例で言えば、超硬合金(WC-Co-Cr)の成分の被膜を形成する場合にはWC(炭化タングステン)の粉末とCo(コバルト)の粉末とCr(クロム)の粉末とを混合し、その混合した粉末を圧縮成形した圧粉体、あるいはその後に加熱処理を行った圧紛体を電極としている。 However, in the above-described conventional discharge surface treatment, as an electrode, powder of a material to be coated is mixed, for example, Co powder 107, Cr powder 108, Ni powder 109 as shown in FIG. 5, and the mixed powder is compression-molded. A green compact or a green compact subjected to heat treatment is used. In another example, when forming a cemented carbide (WC-Co-Cr) component film, WC (tungsten carbide) powder, Co (cobalt) powder and Cr (chromium) powder The electrode is a green compact obtained by mixing and compression-molding the mixed powder, or a compact subjected to heat treatment thereafter.
この圧粉体の電極を放電させることによって緻密な被膜が形成できるのであるが、粉末を混合して製造した電極であるため、被膜を微視的(ミクロ)に観察すると、電極である粉末の混合のばらつき、および粉末の粒径の大きさに起因する溶融の際のばらつきによって均一な成分の被膜とはならない。このミクロなばらつきの程度は、混合粉末を電極として放電する以上避けられない。そして、通常の被膜においてはこの成分のばらつきが問題となることはないが、特殊環境、例えば航空機のエンジンなど高温環境で使用する場合などでは問題になることがある。 A dense film can be formed by discharging the green compact electrode. However, since it is an electrode manufactured by mixing powder, when the film is observed microscopically, Due to the mixing variation and the variation in melting caused by the size of the powder particle size, a uniform component film is not obtained. The degree of this micro variation is inevitable as long as the mixed powder is discharged as an electrode. In a normal film, the variation of this component does not become a problem, but it may become a problem in a special environment, for example, when used in a high temperature environment such as an aircraft engine.
また、上述のような従来の放電表面処理では、硬質被膜を形成することに主眼をおいていたので、電極材料としては、硬質セラミックス材料、あるいは、放電のエネルギにより加工液中の油の成分であるC(炭素)と化学反応して硬質炭化物を形成する材料を主成分としている。しかし、硬質材料は一般的に融点が高い・熱伝導が悪いなどの特性を持っており、10μm程度の薄膜の形成は緻密にできるが、数100μm以上の緻密な厚膜の形成は極めて困難であった。 Further, in the conventional discharge surface treatment as described above, since the focus was on forming a hard coating, the electrode material may be a hard ceramic material or an oil component in the machining fluid depending on the energy of discharge. The main component is a material that chemically reacts with certain C (carbon) to form a hard carbide. However, hard materials generally have characteristics such as a high melting point and poor thermal conductivity, and thin films of about 10 μm can be densely formed, but it is extremely difficult to form dense thick films of several hundred μm or more. there were.
本発明者らの研究に基づく(「放電表面処理(EDC)による厚膜の形成」後藤昭弘他,型技術,(1999),日刊工業新聞社)なる文献にはWC-Co(9:1)電極を用いて3mm程度の厚膜が形成できたことが示されているが、被膜形成が安定せず再現が困難であること、一見金属光沢があり緻密に見えるが空孔が多く脆い被膜であること、前述したように被膜の材質がもとの粉末の粒径に左右されてばらつくこと、などの問題があり、実用には困難なレベルである。 Based on the research of the present inventors ("Formation of thick film by electric discharge surface treatment (EDC)" Akihiro Goto et al., Mold Technology, (1999), Nikkan Kogyo Shimbun) WC-Co (9: 1) It has been shown that a thick film of about 3 mm could be formed using an electrode, but the film formation was not stable and difficult to reproduce. As described above, there are problems such as the fact that the material of the coating varies depending on the particle size of the original powder, and this is a practically difficult level.
この発明は、上記に鑑みてなされたもので、従来困難であった被膜成分のばらつきをなくして均一化するようにした放電表面処理用電極および放電表面処理方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a discharge surface treatment electrode and a discharge surface treatment method in which variations in coating film components, which has been difficult in the past, are eliminated and made uniform.
また、この発明は、上記に鑑みてなされたもので、従来の液中パルス放電加工により従来困難であった厚膜の形成を行う放電表面処理用電極の製造方法を提供することを目的とする。 In addition, the present invention has been made in view of the above, and an object of the present invention is to provide a method for manufacturing a discharge surface treatment electrode for forming a thick film, which has been difficult in the past by conventional submerged pulse discharge machining. .
上記目的を達成するため、この発明にかかる放電表面処理用電極の製造方法は、電極とワークとの間にパルス状の放電を加工液中において発生させ、その放電エネルギにより電極材料の被膜をワーク表面に形成しあるいは放電エネルギにより電極材料が反応した物質の被膜をワーク表面に形成する放電表面処理に用いられる放電表面処理用電極の製造方法において、合金材料を溶解あるいは粉砕する工程と、この溶解あるいは粉砕した合金粉末の粒径をそろえる工程と、粒径がそろえられた合金粉末を、圧縮形成する工程と、を備えたものである。 In order to achieve the above object, a method for manufacturing an electrode for discharge surface treatment according to the present invention generates a pulsed discharge in a machining fluid between an electrode and a workpiece, and a coating of an electrode material is applied to the workpiece by the discharge energy. In a manufacturing method of an electrode for discharge surface treatment used for discharge surface treatment in which a film of a substance formed on the surface or reacted with an electrode material by discharge energy is formed on a workpiece surface, a step of dissolving or pulverizing the alloy material, and this dissolution Or the process of equalizing the particle size of the pulverized alloy powder, and the process of compressing and forming the alloy powder having the equal particle diameter are provided.
この発明によれば、合金粉末を電極材料とした放電表面処理用電極を効率よく製造することができる。 According to this invention, an electrode for discharge surface treatment using an alloy powder as an electrode material can be efficiently produced.
実施の形態1.
以下に添付図面を参照して、この発明にかかる好適な実施の形態を詳細に説明する。
図1は、この発明の実施の形態1である放電表面処理用電極製造装置の簡略構成図である。図1において、金型の上パンチ103、金型の下パンチ104、金型のダイ105で囲まれた空間には、例えばステライト(Cr(クロム)、Co(コバルト)、Ni(ニッケル)などの合金)粉末101が充填される。そして、この合金粉末101を圧縮成形することにより圧粉体を形成し、もしくはこの圧粉体を加熱したものを形成する。放電表面処理に当たっては、この圧粉体もしくはこの圧粉体を加熱したものが放電電極とされる。
Embodiment 1 FIG.
Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a simplified configuration diagram of a discharge surface treatment electrode manufacturing apparatus according to Embodiment 1 of the present invention. In FIG. 1, in a space surrounded by the
ここにおいて、合金粉末101は、Co(コバルト)、Cr(クロム)、Ni(ニッケル)などを混合して作った合金(例えばステライト)を溶解・粉砕して作った粉末であり、この粉末はフィルタを通して粒径をそろえた粉末である。すなわち、粉末の粒ひとつひとつが合金になっている。 Here, the alloy powder 101 is a powder made by melting and grinding an alloy (for example, stellite) made by mixing Co (cobalt), Cr (chromium), Ni (nickel), etc., and this powder is a filter. It is a powder with a uniform particle size. That is, each powder particle is an alloy.
図1では、合金粉末101をダイ105とパンチ103、104により圧縮成形する。そして、場合によっては電極の強度を増すために、その後加熱処理を行う。このような電極を用いて、加工液中である油の中でパルス状の放電を発生させる。
In FIG. 1, the alloy powder 101 is compression molded by a die 105 and
図2は、放電中の様子を示した放電表面処理装置の簡略図である。図2において、電極202は合金粉末の粒201の圧粉体であり、この電極202とワーク203とを油である加工液204の中で対向配置させ、放電表面処理用電源205によって電極202とワーク203との間にパルス状の電圧を印加し、パルス状の放電を発生させて放電のアーク柱206を形成し、ワーク203上に被膜を形成する。
FIG. 2 is a simplified diagram of a discharge surface treatment apparatus showing a state during discharge. In FIG. 2, an
図3は、電極202とワーク203との間に印加される電圧波形およびパルス状の放電電流波形を示している。なお、放電は電極202側がマイナス、ワーク203側がプラスの極性にて行われる。
FIG. 3 shows a voltage waveform and a pulsed discharge current waveform applied between the
放電毎に電極材料が、ワーク側に供給される。電極材料は一種類の合金からなっており均一な成分であるため成分のばらつきのない被膜が形成できる。 The electrode material is supplied to the workpiece side for each discharge. Since the electrode material is made of a single kind of alloy and is a uniform component, a coating without variations in components can be formed.
実施の形態2.
つぎに、実施の形態2について説明する。上述した実施の形態1では、電極202の粉末を合金粉末としたのであるが、この実施の形態2では合金の成分組成を特定する。
Embodiment 2. FIG.
Next, a second embodiment will be described. In the first embodiment described above, the powder of the
本発明者らの実験によると、電極材質の成分に、炭化物を形成しないあるいは炭化物を形成しにくい材料を添加するに従い、被膜を厚くできることがわかってきた。従来は、炭化物を形成しやすい材料の割合が多く含まれており、例えば、Tiなどの材料を電極に含むと、油中での放電により化学反応を起こし、被膜としてはTiC(炭化チタン)という硬質の炭化物になる。表面処理が進むにつれて、ワーク表面の材質が鋼材(鋼材に処理する場合)からセラミックスであるTiCに変わり、それに伴い、熱伝導・融点などの特性が変化する。ところが、炭化しないあるいは炭化しにくい材料を電極に加えることで被膜は炭化物にならず、金属のまま被膜に残る材料が増えるという現象が生じた。そして、この電極材料の選定が、被膜を厚く盛り上げるのに大きな意味を持つことが判明した。この場合、硬度、緻密性、および均一性を満たすことは当然であり、厚膜を形成する前提である。 According to the experiments by the present inventors, it has been found that the coating can be made thicker as a material that does not form carbide or does not easily form carbide is added to the component of the electrode material. Conventionally, a large proportion of materials that easily form carbides are included. For example, when a material such as Ti is included in the electrode, a chemical reaction occurs due to discharge in oil, and the coating is called TiC (titanium carbide). It becomes hard carbide. As the surface treatment progresses, the material of the workpiece surface changes from steel (when processing into steel) to TiC, which is ceramic, and along with that, characteristics such as heat conduction and melting point change. However, when a material that is not carbonized or hardly carbonized is added to the electrode, the film does not become a carbide, and a phenomenon occurs in which the material that remains in the film as a metal increases. And, it has been found that the selection of the electrode material has a great significance for thickening the coating. In this case, it is natural that the hardness, the denseness, and the uniformity are satisfied, and it is a premise for forming a thick film.
図4は、Co(コバルト)、Cr(クロム)、Ni(ニッケル)などを混合して作った合金の成分に対する被膜厚さを示しており、ここでは炭化しにくいCo(コバルト)とNi(ニッケル)の合計の重量%と被膜の厚さとの関係を示している。 FIG. 4 shows the film thickness for the components of an alloy made by mixing Co (cobalt), Cr (chromium), Ni (nickel), and the like. Here, Co (cobalt) and Ni (nickel) which are hard to be carbonized are shown. ) And the thickness of the coating.
この関係を表すに当たり、使用した放電のパルス条件は、図3においてピーク電流値ie=10A、放電持続時間(放電パルス幅)te=64μs、休止時間to=128μs、15mm×15mmの面積の電極において被膜を形成した。そして、処理時間は15分である。 In expressing this relationship, the discharge pulse conditions used are as follows: in FIG. 3, the peak current value ie = 10 A, the discharge duration (discharge pulse width) te = 64 μs, the rest time to = 128 μs, and the electrode with an area of 15 mm × 15 mm. A film was formed. The processing time is 15 minutes.
油中での放電により、電極中のCrの一部は炭化物であるCr3C2(炭化クロム)などになるが、炭化しにくい材料であるCo(コバルト)とNi(ニッケル)はそのままの状態で被膜の成分となる。電極中のCo(コバルト)とNi(ニッケル)の量が増えるに従い被膜は厚く形成できるようになる。すなわち、放電により被膜に炭化物が形成されないあるいは炭化物が形成されにくい金属材料を電極に50重量%以上含むことにより、被膜が極めて厚くなり、図4によれば、Co、Ni含有量が低い場合には10μm程の膜厚であったものが、Co、Ni含有量30%程度から次第に厚くなり、Co、Ni含有量50%を過ぎたころから10000μm近くにまで厚くなる。 Due to the discharge in oil, some of the Cr in the electrode becomes carbide, such as Cr 3 C 2 (chromium carbide), but Co (cobalt) and Ni (nickel), which are difficult to carbonize, remain as they are. It becomes a component of the film. As the amount of Co (cobalt) and Ni (nickel) in the electrode increases, the coating becomes thicker. That is, when the electrode contains a metal material in which 50% by weight or more of the carbide is not formed in the film or is hard to form carbide by discharge, the film becomes very thick. According to FIG. 4, the Co and Ni contents are low. Although the film thickness was about 10 μm, it gradually became thicker from about 30% Co and Ni content, and increased to about 10,000 μm after the Co and Ni content exceeded 50%.
この場合、圧膜の形成に当たって、電極の粉末を合金とすることで、被膜に成分の不均一を生じることがなく、均一な被膜の形成ができる。なお、合金としては、ステライトをあげて説明してきたが、その他、Ni含有量が50重量%以上含むNi、Cr,Feの合金であるインコネルについても適用することができる。 In this case, in forming the pressure film, the electrode powder is made of an alloy, so that a uniform film can be formed without causing non-uniform components in the film. The alloy has been described by taking stellite as an alloy, but it can also be applied to Inconel, which is an alloy of Ni, Cr, and Fe with Ni content of 50 wt% or more.
Claims (5)
一種類の合金からなる合金材料を溶解あるいは粉砕する工程と、
この溶解あるいは粉砕した合金粉末の粒径をそろえる工程と、
粒径をそろえた合金粉末を、所定の金型で圧縮形成する工程と、
を備えたことを特徴とする放電表面処理用電極の製造方法。 A pulsed discharge is generated in the machining fluid between the electrode and the workpiece, and the coating film of the electrode material is formed on the workpiece surface by the discharge energy, or the coating film of the substance reacted with the electrode material is formed on the workpiece surface by the discharge energy. In the manufacturing method of the discharge surface treatment electrode used for the discharge surface treatment to
Melting or crushing an alloy material made of one kind of alloy ;
A step of aligning the particle size of the melted or crushed alloy powder;
Compressing and forming an alloy powder having a uniform particle size with a predetermined mold;
A method for manufacturing an electrode for discharge surface treatment, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006205977A JP4119461B2 (en) | 2006-07-28 | 2006-07-28 | Manufacturing method of electrode for discharge surface treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006205977A JP4119461B2 (en) | 2006-07-28 | 2006-07-28 | Manufacturing method of electrode for discharge surface treatment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002220972A Division JP3857625B2 (en) | 2002-07-30 | 2002-07-30 | Discharge surface treatment electrode and discharge surface treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007002337A JP2007002337A (en) | 2007-01-11 |
JP4119461B2 true JP4119461B2 (en) | 2008-07-16 |
Family
ID=37688204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006205977A Expired - Lifetime JP4119461B2 (en) | 2006-07-28 | 2006-07-28 | Manufacturing method of electrode for discharge surface treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4119461B2 (en) |
-
2006
- 2006-07-28 JP JP2006205977A patent/JP4119461B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2007002337A (en) | 2007-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW457154B (en) | Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge | |
JP4137886B2 (en) | Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus | |
JP4439781B2 (en) | Manufacturing method of electrode for discharge surface treatment | |
JP5121933B2 (en) | Discharge surface treatment method | |
RU2319789C2 (en) | Method for treating surface with use of electric discharge | |
EP1640476B1 (en) | Discharge surface treating electrode, discharge surface treating device and discharge surface treating method | |
WO2001023640A1 (en) | Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method | |
US7834291B2 (en) | Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment | |
JP4119461B2 (en) | Manufacturing method of electrode for discharge surface treatment | |
JP3857625B2 (en) | Discharge surface treatment electrode and discharge surface treatment method | |
JP4450812B2 (en) | Discharge surface treatment method | |
JP4320523B2 (en) | ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD | |
WO2008010263A1 (en) | Process for producing electrode for discharge surface treatment and method of discharge surface treatment | |
JP4580250B2 (en) | Method for manufacturing discharge surface treatment electrode, electrode and discharge surface treatment method | |
JP4504691B2 (en) | Turbine parts and gas turbines | |
JP3852580B2 (en) | Discharge surface treatment electrode and method for producing the same | |
JPWO2006057053A1 (en) | Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus | |
JP2004137576A (en) | Electrode for discharge surface treatment | |
TWI284682B (en) | Electric discharge surface treating electrode, manufacture and evaluation methods thereof, electric discharge surface treating device, and electric discharge treating method | |
JP2005213558A (en) | Electrode for electrical discharge surface treatment and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4119461 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |