[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2006040873A1 - Flame retardant synthetic fibers, flame retardant fiber composites and upholstered furniture products using the same - Google Patents

Flame retardant synthetic fibers, flame retardant fiber composites and upholstered furniture products using the same Download PDF

Info

Publication number
JPWO2006040873A1
JPWO2006040873A1 JP2006540842A JP2006540842A JPWO2006040873A1 JP WO2006040873 A1 JPWO2006040873 A1 JP WO2006040873A1 JP 2006540842 A JP2006540842 A JP 2006540842A JP 2006540842 A JP2006540842 A JP 2006540842A JP WO2006040873 A1 JPWO2006040873 A1 JP WO2006040873A1
Authority
JP
Japan
Prior art keywords
weight
parts
fiber
flame
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006540842A
Other languages
Japanese (ja)
Inventor
戎 敏明
敏明 戎
正信 田村
正信 田村
真彦 三歩一
真彦 三歩一
渡 見尾
渡 見尾
良友 松本
良友 松本
丸山 茂
茂 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2006040873A1 publication Critical patent/JPWO2006040873A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

A flame resistant synthetic fiber having advanced flame resistance is provided. Furthermore, the flame resistant synthetic fiber may preferably be used in textiles used for furniture, such as beddings and chairs, such as mattress, and sofa, etc. that need extremely high carbonizability rendered highly flame resistant by flame resistant agents and advanced flame resistance. The present invention also aims at obtaining upholstered furniture products using the flame resistant fiber composite having advanced flame resistance. That is, the present invention relates to a flame resistant fiber composite consisting of a flame resistant synthetic fiber (A) not less than 10 parts by weight, and at least one fiber (B) selected from a natural fiber and/or a chemical fiber (B) not more than 90 parts by weight, the flame resistant synthetic fiber (A) comprising 100 parts by weight of a polymer containing halogen atom of not less than 17% by weight, 3 to 50 parts by weight of a zinc compound, 0 to 30 parts by weight of an antimony compound, and 3 to 30 parts by weight of an other inorganic compound, a total amount of these compounds being not less than 15 parts by weight, and also relates to upholstered furniture products using the flame resistant fiber composite.

Description

本発明は、難燃剤で高度に難燃化した炭化能力が極めて高く、高度な難燃性の必要なベッドマットレス等の寝具や椅子、ソファー等の家具等に用いられる繊維製品に好適に使用可能である高度な難燃性を有する難燃性合成繊維、難燃繊維複合体、および該難燃繊維複合体からなる不織布、更にはそれらを用いた布張り家具製品に関する。   The present invention has a very high carbonization ability made highly flame retardant with a flame retardant, and can be suitably used for textiles used for bedding such as bed mattresses and chairs, furniture such as sofas that require high flame retardancy. The present invention relates to a flame retardant synthetic fiber having a high flame retardancy, a flame retardant fiber composite, a nonwoven fabric comprising the flame retardant fiber composite, and a upholstered furniture product using them.

近年、衣食住の安全性確保の要求が強まり、防炎の観点より難燃素材の必要性が高まってきている。そのような中で、特に発生時に人的被害が大きい就寝中の火災を防止するため、寝具や家具等に使用される素材への難燃性付与の必要性が高まってきている。   In recent years, demands for ensuring the safety of clothing, food and housing have increased, and the need for flame retardant materials has increased from the viewpoint of flameproofing. Under such circumstances, in order to prevent a fire during sleeping, which causes great human damage at the time of occurrence, there is an increasing need for imparting flame retardancy to materials used for bedding and furniture.

これら寝具や家具等の製品においては、使用時の快適さや意匠性のために綿やポリエステル、ウレタンフォームなどの易燃性素材がその内部や表面に用いられる事が多い。それらの防炎性の確保には、適当な難燃素材をこれら製品中に使用することで、その易燃性素材への着炎を長時間にわたり防止する高度な難燃性を具備することが重要である。また、その難燃素材は、これら寝具や家具等の製品の快適さや意匠性を損なわないものでなければならない。   In products such as bedding and furniture, flammable materials such as cotton, polyester, and urethane foam are often used on the inside and the surface for comfort and design at the time of use. In order to ensure their flameproofness, the use of appropriate flame retardant materials in these products can provide a high level of flame retardancy that prevents flames from being applied to the flammable materials for a long period of time. is important. In addition, the flame retardant material must not impair the comfort and design of products such as bedding and furniture.

これらの繊維製品においては、使用時の快適さのために綿やウレタンフォーム、ポリエステルなどの易燃性素材が用いられるため、防炎にはその易燃性素材への着炎を長時間に渉り防止することが重要である。また、その防炎素材はマットレス等の寝具や椅子やソファー等の家具等の快適さや意匠性を損なわないものでなければならない。   In these textile products, flammable materials such as cotton, urethane foam, and polyester are used for comfort during use. It is important to prevent this. In addition, the flameproof material must not impair the comfort and design of bedding such as mattresses and furniture such as chairs and sofas.

この難燃素材に使用される繊維製品に対し、過去様々な難燃性合成繊維や防炎薬剤が検討されてきたが、この高度な難燃性と寝具や家具等の製品に求められる快適さや意匠性といった要件を充分に兼ね合わせたものは未だ現れていない。   Various flame retardant synthetic fibers and flame retardants have been studied in the past for the fiber products used in this flame retardant material. The high flame retardancy and comfort required for products such as bedding and furniture There has not yet been a product that fully combines requirements such as design.

例えば、綿布に防炎薬剤を塗布する、いわゆる後加工防炎という手法があるが、防炎薬剤の付着の均一化、付着による布の硬化、洗濯による脱離、安全性などの問題があった。   For example, there is a so-called post-processing flame-proofing method, which applies a flameproofing agent to cotton cloth, but there are problems such as uniform adhesion of the flameproofing agent, curing of the fabric due to adhesion, detachment by washing, safety, etc. .

また、安価な素材であるポリエステルを用いた場合には、ポリエステルは炭化成分となりえないため、強制燃焼させた場合には溶融し穴が空き、構造を維持することが出来ず、前述の寝具や家具等に用いられる綿やウレタンフォームへ着炎してしまい、性能としては全く不充分であった。   In addition, when polyester, which is an inexpensive material, is used, polyester cannot become a carbonizing component, so when forcedly burned, it melts and has holes, and the structure cannot be maintained. The cotton and urethane foam used for furniture and the like were flared, and the performance was quite inadequate.

また、有機耐熱繊維からの布は、難燃性は優れているが極めて高価であり、さら開繊時の加工性の問題や、吸湿性や触感の悪さ、そして染色性の悪さから意匠性の高い色柄を得るのが難しいという問題もある。   In addition, fabrics made from organic heat-resistant fibers have excellent flame retardancy but are extremely expensive. Further, they have a design property due to problems of processability at the time of opening, poor hygroscopicity and touch, and poor dyeability. There is also a problem that it is difficult to obtain a high color pattern.

これらの家具、寝具に使用される難燃繊維素材の欠点を改良し、一般的な特性として要求される優れた風合、吸湿性、触感を有し、かつ、安定した難燃性を有する素材として、難燃剤を大量に添加した高度に難燃化した含ハロゲン繊維と、難燃化していない他の繊維とを組み合わせた難燃繊維複合体(特許文献1)が、提案されている。また、有機耐熱性繊維を少量混ぜることで、作業服用途に使用可能な、高度難燃繊維複合体(特許文献2)で、風合いや吸湿性に優れ、高度な難燃性を有するとの記載はあるが、有機耐熱繊維は一般に着色しているため布帛の白度が不十分であり、また染色による発色にも問題があり、意匠性に問題のある難燃繊維複合体であった。更に、これらはまた、本質的に難燃性である繊維と含ハロゲン繊維から嵩高さを有する難燃性不織布(特許文献3)が提案されているが、これらの方法では複数の繊維を複合化して用いなければ高度な難燃性が得られず、製品の製造工程が複雑になり、また、有機耐熱繊維や本質的に難燃性である繊維は一般的に高価でありコスト的に不利であるという問題点があった。
特開昭61−89339号公報 特開平8−218259号公報 WO03/023108号公報
Materials that improve the defects of flame retardant fiber materials used in furniture and bedding, have excellent texture, moisture absorption, and tactile sensation required as general characteristics, and have stable flame retardant properties As a proposal, a flame retardant fiber composite (Patent Document 1) in which a highly flame retardant halogen-containing fiber to which a large amount of a flame retardant is added is combined with other fibers that are not flame retardant has been proposed. In addition, it is a highly flame-retardant fiber composite (Patent Document 2) that can be used for work clothes by mixing a small amount of organic heat-resistant fiber, and is excellent in texture and moisture absorption and has high flame retardancy. However, since the organic heat-resistant fiber is generally colored, the whiteness of the fabric is insufficient, and there is a problem in coloring due to dyeing, and the flame-retardant fiber composite has a problem in design. Furthermore, they have also proposed a flame-retardant nonwoven fabric (Patent Document 3) having a bulkiness from essentially flame-retardant fibers and halogen-containing fibers. In these methods, a plurality of fibers are combined. High flame retardancy cannot be obtained unless used, and the manufacturing process of the product becomes complicated. Organic heat-resistant fibers and fibers that are inherently flame retardant are generally expensive and disadvantageous in terms of cost. There was a problem that there was.
JP 61-89339 A JP-A-8-218259 WO03 / 023108

本発明は、従来の難燃性素材では解決が困難であった課題、すなわち、加工性や風合い、触感が良好で意匠性のある布張り家具製品に好適に用いられる難燃性合成繊維、難燃繊維複合体、および該難燃繊維複合体からなる不織布、更にはそれらを用いた布張り家具製品を得るためになされたものである。   The present invention is a problem difficult to solve with conventional flame retardant materials, that is, a flame retardant synthetic fiber suitably used for upholstered furniture products having good processability, texture, and touch and having a good design. The present invention has been made in order to obtain a flame retardant composite, a nonwoven fabric made of the flame retardant fiber composite, and upholstered furniture products using them.

本発明者らは、前記問題を解決するため鋭意検討を重ねた結果、ハロゲンを17重量%以上含有する難燃性合成繊維に亜鉛化合物、アンチモン化合物、その他無機化合物を併用含有させることで、加工性や風合い、触感は良好なまま、高度な難燃性を獲得できることを見出した。この結果、意匠性を損なうことなく、かつ長時間の炎にも耐え得る難燃性や自己消火性を兼ね備えた家具、寝具等に用いられる繊維製品を得ることが可能な難燃性合成繊維が安価に得られることを見出した。また、耐熱性繊維単独で使用するときの問題であった、加工性や価格の問題も改善できることを見出し、本発明を完成するに至った。
さらに詳しくは、ハロゲンを17重量%以上含有する難燃性合成繊維に亜鉛化合物、アンチモン化合物、その他無機化合物を併用含有した繊維により、加工性や風合い、触感が良好で意匠性を損なうことなく、燃焼時に極めて高い炭化性と自己消火性を発現することで、燃焼後の繊維形態を維持する高度な難燃性を兼ね備えた結果、高度な難燃性を要求される家具、寝具等に用いられる繊維製品を得ることが可能な難燃性合成繊維(A)及びこれと天然繊維及び/又は化学繊維の少なくとも1種の繊維(B)を組合わせた難燃繊維複合体が得られることを見出した。また、耐熱繊維単独で使用するときの問題であった、加工性や価格の問題も改善できることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have made it possible to incorporate a zinc compound, an antimony compound, and other inorganic compounds into a flame retardant synthetic fiber containing 17% by weight or more of a halogen, thereby processing it. It has been found that a high degree of flame retardancy can be obtained while maintaining good properties, texture and touch. As a result, there is provided a flame-retardant synthetic fiber capable of obtaining a textile product used for furniture, bedding, etc. having flame retardancy and self-extinguishing properties that can withstand a long flame without impairing the design. It was found that it can be obtained at low cost. Moreover, it discovered that the problem of workability and a price which was a problem at the time of using a heat resistant fiber alone could be improved, and came to complete this invention.
More specifically, by using a fiber containing a zinc compound, an antimony compound, and other inorganic compounds in combination with a flame retardant synthetic fiber containing 17% by weight or more of halogen, the workability, texture, and touch are good and the design is not impaired. It is used for furniture, bedding, etc. that require high flame retardance as a result of having high flame retardancy that maintains the fiber form after combustion by expressing extremely high carbonization and self-extinguishing properties during combustion. It has been found that a flame retardant synthetic fiber (A) capable of obtaining a textile product and a flame retardant fiber composite obtained by combining this with at least one kind of natural fiber and / or chemical fiber (B) are obtained. It was. Moreover, it discovered that the problem of workability and a price which was a problem when using a heat-resistant fiber alone was able to be improved, and came to complete this invention.

すなわち、本発明は、ハロゲン原子を17重量%以上含む重合体100重量部に対し、亜鉛化合物を3〜50重量部、アンチモン化合物0〜30重量部、その他無機化合物3〜30重量部含み、かつそれら化合物の合計が15重量部以上である難燃性合成繊維(A)10重量部以上と、天然繊維および/または化学繊維(B)90重量部以下からなる難燃繊維複合体である。好ましくは、ハロゲン原子を17重量%以上含む重合体が、アクリロニトリル30〜70重量%、ハロゲン含有ビニルおよび/またはハロゲン含有ビニリデン単量体70〜30重量%およびこれらと共重合可能なビニル系単量体0〜10重量%よりなる難燃性合成繊維(A)である。難燃性合成繊維(A)に含まれる、前記亜鉛化合物が、亜鉛、酸化亜鉛、硼酸亜鉛、錫酸亜鉛、炭酸亜鉛から選ばれる化合物、前記無機化合物が、カオリン、ゼオライト、モンモリロナイト、タルク、パーライト、ベントナイト、バーミキュライト、珪藻土、黒鉛等の天然もしくは合成鉱産物系化合物、水酸化アルミニウム、硫酸アルミニウム、ケイ酸アルミニウム等のアルミニウム系化合物、水酸化マグネシウム、酸化マグネシウム等のマグネシウム化合物、シリケート、ガラス等のケイ素化合物から選ばれる化合物である。難燃性合成繊維(A)と天然繊維および/または化学繊維繊維(B)としてポリエステル系繊維を0〜40重量部、特には低融点バインダー繊維を用いた難燃繊維複合体に関する。さらにはこれらの難燃繊維複合体からなる不織布、特には炎遮蔽バリア用不織布に関するものであり、さらにはこれら難燃繊維複合体、不織布、炎遮蔽バリア用不織布を用いた布張り家具製品に関する。
以下、難燃繊維複合体に用いる繊維(A)は前記説明した難燃性合成繊維を意味する。
That is, the present invention includes 3 to 50 parts by weight of a zinc compound, 0 to 30 parts by weight of an antimony compound, and 3 to 30 parts by weight of other inorganic compounds with respect to 100 parts by weight of a polymer containing 17% by weight or more of a halogen atom. It is a flame retardant fiber composite comprising a flame retardant synthetic fiber (A) of 10 parts by weight or more and a natural fiber and / or a chemical fiber (B) of 90 parts by weight or less, the total of these compounds being 15 parts by weight or more. Preferably, the polymer containing 17% by weight or more of halogen atom is 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of halogen-containing vinyl and / or halogen-containing vinylidene monomer, and a vinyl monomer copolymerizable therewith. It is a flame retardant synthetic fiber (A) comprising 0 to 10% by weight of the body. The zinc compound contained in the flame retardant synthetic fiber (A) is a compound selected from zinc, zinc oxide, zinc borate, zinc stannate and zinc carbonate, and the inorganic compound is kaolin, zeolite, montmorillonite, talc, pearlite. Natural or synthetic mineral products such as bentonite, vermiculite, diatomaceous earth, graphite, aluminum compounds such as aluminum hydroxide, aluminum sulfate, aluminum silicate, magnesium compounds such as magnesium hydroxide, magnesium oxide, silicate, glass, etc. It is a compound selected from silicon compounds. The present invention relates to a flame retardant fiber composite using 0 to 40 parts by weight of a polyester fiber as the flame retardant synthetic fiber (A) and natural fiber and / or chemical fiber fiber (B), particularly a low melting point binder fiber. Furthermore, the present invention relates to nonwoven fabrics composed of these flame retardant fiber composites, particularly flame retardant barrier nonwoven fabrics, and further relates to upholstered furniture products using these flame retardant fiber composites, nonwoven fabrics, and flame shield barrier nonwoven fabrics.
Hereinafter, the fiber (A) used for the flame-retardant fiber composite means the above-described flame-retardant synthetic fiber.

本発明の難燃性合成繊維複合体及びそれから得られるインテリア繊維製品は、風合い、触感、視感などの意匠性や、加工性に優れ、長時間の炎にも繊維形態を維持することで高度な難燃性を有することを可能とするものである。   The flame-retardant synthetic fiber composite of the present invention and interior fiber products obtained from the composite are excellent in design properties such as texture, touch and sight, and processability, and are highly advanced by maintaining the fiber form even for a long flame. It is possible to have excellent flame retardancy.

本発明のハロゲン原子を17%以上含む重合体における好ましいハロゲン含量の下限としては20%、さらに好ましくは26%、上限としては86%、さらに好ましくは73%、とくに好ましくはは48%である。前記ハロゲン含有量が17%未満の場合、繊維を難燃化することが困難になり、好ましくない。ハロゲン含有量の上限が86%であるのは、臭化ビニリデン単独重合体のハロゲン含有量であり、この値がハロゲン含有量の上限値となる。これ以上のハロゲン含有量を得るためにはさらにモノマー中のハロゲン原子を増やす必要があり、技術的に現実的ではなくなる。   The lower limit of the preferable halogen content in the polymer containing 17% or more of the halogen atom of the present invention is 20%, more preferably 26%, the upper limit is 86%, more preferably 73%, and particularly preferably 48%. When the halogen content is less than 17%, it is difficult to make the fiber flame-retardant, which is not preferable. The upper limit of the halogen content is 86% is the halogen content of the vinylidene bromide homopolymer, and this value is the upper limit of the halogen content. In order to obtain a higher halogen content, it is necessary to increase the number of halogen atoms in the monomer, which is not technically practical.

前記のごときハロゲン原子を17%以上含む重合体としては、たとえばハロゲン原子を含有する単量体の重合体、前記ハロゲン原子を含有する単量体とハロゲン原子を含有しない単量体との共重合体、ハロゲン原子を含有する重合体とハロゲン原子を含有しない重合体とを混合したもの、ハロゲン原子を含有しない単量体もしくは重合体を重合中〜重合後に、ハロゲン原子を導入したハロゲン原子含有重合体などがあげられるが、これらに限定されるものではない。   Examples of the polymer containing a halogen atom of 17% or more include, for example, a polymer of a monomer containing a halogen atom, and a copolymer of a monomer containing a halogen atom and a monomer not containing a halogen atom. A mixture of a polymer containing a halogen atom and a polymer not containing a halogen atom, a monomer or polymer containing no halogen atom during polymerization, and after polymerization, Examples include, but are not limited to, coalescence.

このようなハロゲン原子を17重量%以上含む重合体の具体例としては、たとえば塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどのハロゲン含有ビニル系またはビニリデン系単量体の単独重合体または2種以上の共重合体;アクリロニトリル−塩化ビニル、アクリロニトリル−塩化ビニリデン、アクリロニトリル−臭化ビニル、アクリロニトリル−フッ化ビニル、アクリロニトリル−塩化ビニル−塩化ビニリデン、アクリロニトリル−塩化ビニル−臭化ビニル、アクリロニトリル−塩化ビニリデン−臭化ビニル、アクリロニトリル−塩化ビニリデン−フッ化ビニリデンなどのハロゲン含有ビニル系またはビニリデン系単量体とアクリロニトリルとの共重体;塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどのハロゲン含有ビニル系またはビニリデン系単量体の1種以上とアクリロニトリルおよびこれらと共重合可能なビニル系単量体との共重合体;アクリロニトリル単独重合体にハロゲン含有化合物を添加・重合させた重合体;ハロゲン含有ポリエステル;ビニルアルコールと塩化ビニルの共重合体;ポリエチレンやポリ塩化ビニルなどを塩素付加処理した重合体などがあげられるが、これらに限定されるものではない。また、前記単独重合体や共重合体を適宜混合して使用してもよい。   Specific examples of such a polymer containing 17% by weight or more of halogen atoms include halogen-containing vinyl-based or vinylidene-based polymers such as vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, vinylidene fluoride, and the like. Monomer homopolymer or two or more copolymers; acrylonitrile-vinyl chloride, acrylonitrile-vinylidene chloride, acrylonitrile-vinyl bromide, acrylonitrile-vinyl fluoride, acrylonitrile-vinyl chloride-vinylidene chloride, acrylonitrile-vinyl chloride -Vinyl bromide, acrylonitrile-vinylidene chloride-vinyl bromide, acrylonitrile-vinylidene chloride-vinylidene fluoride copolymer of acrylonitrile and vinyl chloride, vinylidene chloride, A copolymer of at least one halogen-containing vinyl-based or vinylidene-based monomer such as vinyl chloride, vinylidene bromide, vinyl fluoride, vinylidene fluoride, and a vinyl monomer copolymerizable with acrylonitrile; Examples include polymers obtained by adding and polymerizing halogen-containing compounds to acrylonitrile homopolymers; halogen-containing polyesters; copolymers of vinyl alcohol and vinyl chloride; polymers obtained by chlorination treatment of polyethylene, polyvinyl chloride, and the like. It is not limited to these. Moreover, you may use the said homopolymer and copolymer suitably mixing.

前記ハロゲン原子を17重量%以上含む重合体が、アクリロニトリル30〜70重量部、ハロゲン含有ビニルおよび/またはハロゲン含有ビニリデン単量体70〜30重量部およびそれらと共重合可能なビニル系単量体0〜10重量部、好ましくはアクリロニトリル40〜60重量部、ハロゲン含有ビニルおよび/またはハロゲン含有ビニリデン単量体60〜40重量部およびそれらと共重合可能なビニル系単量体0〜10重量部からなる重合体の場合には、得られる繊維が所望の性能(強度、難燃性、染色性など)を有しつつアクリル繊維の風合を有するため特に好ましい。   The polymer containing 17% by weight or more of the halogen atom is 30 to 70 parts by weight of acrylonitrile, 70 to 30 parts by weight of halogen-containing vinyl and / or halogen-containing vinylidene monomer, and vinyl monomer 0 copolymerizable therewith. 10 to 10 parts by weight, preferably 40 to 60 parts by weight of acrylonitrile, 60 to 40 parts by weight of a halogen-containing vinyl and / or halogen-containing vinylidene monomer, and 0 to 10 parts by weight of a vinyl monomer copolymerizable therewith. In the case of a polymer, the obtained fiber is particularly preferable because it has a desired performance (strength, flame retardancy, dyeability, etc.) and has an acrylic fiber texture.

前記それらと共重合可能なビニル系単量体としては、たとえばアクリル酸、そのエステル、メタクリル酸、そのエステル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルスルホン酸、その塩、メタリルスルホン酸、その塩、スチレンスルホン酸、その塩、2−アクリルアミド−2−メチルスルホン酸、その塩などがあげられ、それらの1種または2種以上が用いられる。また、そのうち少なくとも1種がスルホン酸基含有ビニル系単量体の場合には、染色性が向上するため好ましい。   Examples of the vinyl monomers copolymerizable therewith include acrylic acid, its ester, methacrylic acid, its ester, acrylamide, methacrylamide, vinyl acetate, vinyl sulfonic acid, its salt, methallyl sulfonic acid, its salt Styrene sulfonic acid, a salt thereof, 2-acrylamido-2-methylsulfonic acid, a salt thereof, and the like, and one or more of them are used. In addition, it is preferable that at least one of them is a sulfonic acid group-containing vinyl monomer because dyeability is improved.

前記それらと共重合可能なビニル系単量体としては、たとえばアクリル酸、そのエステル、メタクリル酸、そのエステル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルスルホン酸、その塩、メタリルスルホン酸、その塩、スチレンスルホン酸、その塩、2−アクリルアミド−2−メチルスルホン酸、その塩などがあげられ、それらの1種または2種以上が用いられる。また、そのうち少なくとも1種がスルホン酸基含有ビニル系単量体の場合には、染色性が向上するため好ましい。   Examples of the vinyl monomers copolymerizable therewith include acrylic acid, its ester, methacrylic acid, its ester, acrylamide, methacrylamide, vinyl acetate, vinyl sulfonic acid, its salt, methallyl sulfonic acid, its salt Styrene sulfonic acid, a salt thereof, 2-acrylamido-2-methylsulfonic acid, a salt thereof, and the like, and one or more of them are used. In addition, it is preferable that at least one of them is a sulfonic acid group-containing vinyl monomer because dyeability is improved.

前記ハロゲン含有ビニル系単量体および/またはハロゲン含有ビニリデン単量体、およびアクリロニトリルからの単位を含む共重合体の具体例としては、例えば塩化ビニル50部、アクリロニトリル49部、スチレンスルホン酸ソーダ1部よりなる共重合体、塩化ビニリデン47部、アクリロニトリル51.5部、スチレンスルホン酸ソーダ1.5部よりなる共重合体、塩化ビニリデン41部、アクリロニトリル56部、2−アクリルアミド−2−メチルスルホン酸ソーダ3部などがあげられる。これは、既知の重合方法で得る事が
出来る。
Specific examples of the copolymer containing the halogen-containing vinyl monomer and / or the halogen-containing vinylidene monomer and a unit from acrylonitrile include, for example, 50 parts of vinyl chloride, 49 parts of acrylonitrile, and 1 part of sodium styrenesulfonate. A copolymer comprising 47 parts of vinylidene chloride, 51.5 parts of acrylonitrile, 1.5 parts of sodium styrenesulfonate, 41 parts of vinylidene chloride, 56 parts of acrylonitrile, sodium 2-acrylamido-2-methylsulfonate There are 3 parts. This can be obtained by known polymerization methods.

本発明に用いる亜鉛化合物は、亜鉛、酸化亜鉛、硼酸亜鉛、錫酸亜鉛、炭酸亜鉛等を挙げることができるがこれらに限定されるものではない。またこれらを組み合わせて使用しても何ら支障はない。その使用量は、ハロゲン原子を17%以上含む重合体100重量部に対して3〜50重量部、好ましくは4〜40重量部、更に好ましくは5〜30重量部である。3重量部未満だと、燃焼時にハロゲン原子を17%以上含む重合体を炭化させる効果(炭化効果)が少なくなる傾向があり、所望とする高度な難燃性能を得る必要な炭化効果を得ることが出来ない。50重量部を超えると十分な炭化効果、形態保持効果は得られるが繊維化時の製造工程において糸切れなどが発生するため好ましくない。前記亜鉛化合物の平均粒子径としては、3μm以下であることがハロゲン含有重合体に亜鉛化合物成分を添加してなる繊維の製造工程上におけるノズル詰りなどのトラブル回避、繊維の強度向上、繊維中での亜鉛化合物成分粒子の分散などの点から好ましい。更に前記亜鉛化合物成分は、ブロッキング性改善のために粒子表面に化学的修飾を施しても支障ない。   Examples of the zinc compound used in the present invention include, but are not limited to, zinc, zinc oxide, zinc borate, zinc stannate, and zinc carbonate. Moreover, there is no problem even if these are used in combination. The amount used is 3 to 50 parts by weight, preferably 4 to 40 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer containing 17% or more of halogen atoms. When the amount is less than 3 parts by weight, the effect of carbonizing a polymer containing 17% or more of halogen atoms during combustion (carbonization effect) tends to be reduced, and a necessary carbonization effect for obtaining a desired high flame retardancy is obtained. I can't. If it exceeds 50 parts by weight, a sufficient carbonization effect and shape retention effect can be obtained, but this is not preferable because yarn breakage and the like occur in the production process during fiberization. The average particle size of the zinc compound is 3 μm or less, avoiding troubles such as nozzle clogging in the fiber production process by adding a zinc compound component to a halogen-containing polymer, improving the strength of the fiber, From the viewpoint of dispersion of the zinc compound component particles. Further, the zinc compound component may be chemically modified to improve the blocking property.

前記アンチモン化合物としては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモンなどの酸化アンチモン化合物、アンチモン酸やその塩類、オキシ塩化アンチモンなどの無機アンチモン化合物などを挙げることができるがこれらに限定されるものではない。またこれらを組み合わせて使用しても何ら支障はない。その量はハロゲン原子を17%以上含む重合体100重量部に対し0〜30重量部、好ましくは0〜25重量部、更に好ましくは0〜20重量部である。30重量部を超えるとその効果が飽和しコスト高の要因となるため好ましくない。0重量部であっても所望とする難燃性能が達成される場合もあるが、自己消火効果が少ないため更に高度な自己消火効果を要求される用途に使用する場合には、3重量部以上添加することが好ましい。   Examples of the antimony compounds include, but are not limited to, antimony oxide compounds such as antimony trioxide, antimony tetraoxide, and antimony pentoxide, inorganic antimony compounds such as antimonic acid and salts thereof, and antimony oxychloride. is not. Moreover, there is no problem even if these are used in combination. The amount is 0 to 30 parts by weight, preferably 0 to 25 parts by weight, and more preferably 0 to 20 parts by weight with respect to 100 parts by weight of a polymer containing 17% or more of halogen atoms. If the amount exceeds 30 parts by weight, the effect is saturated and the cost is increased. Even if it is 0 part by weight, the desired flame retardant performance may be achieved, but since the self-extinguishing effect is small, it is 3 parts by weight or more when used for applications that require a higher level of self-extinguishing effect. It is preferable to add.

前記無機化合物としては、カオリン、ゼオライト、モンモリロナイト、タルク、パーライト、ベントナイト、バーミキュライト、珪藻土、黒鉛等の天然もしくは合成鉱産物系化合物、水酸化アルミニウム、硫酸アルミニウム、ケイ酸アルミニウム等のアルミニウム系化合物、水酸化マグネシウム、酸化マグネシウム等のマグネシウム化合物、シリケート、ガラス等のケイ素化合物などを挙げることができるがこれらに限定されるものではない。またこれらを組み合わせて使用しても何ら支障はない。その量はハロゲン原子を17%以上含む重合体100重量部に対し3〜30重量部、好ましくは5〜25重量部、更に好ましくは7〜20重量部である。3重量部未満では燃焼時に残存する炭化物量が少ないため充分な形態保持効果を得ることが出来ないし、30重量部を超えるとその効果が飽和しコスト高の要因や繊維の製造工程上におけるノズル詰りなどのトラブル発生の原因となるため好ましくない。   Examples of the inorganic compound include kaolin, zeolite, montmorillonite, talc, pearlite, bentonite, vermiculite, diatomaceous earth, graphite and other natural or synthetic mineral compounds, aluminum hydroxide, aluminum sulfate, aluminum silicate and other aluminum compounds, water Examples thereof include, but are not limited to, magnesium compounds such as magnesium oxide and magnesium oxide, and silicon compounds such as silicate and glass. Moreover, there is no problem even if these are used in combination. The amount is 3 to 30 parts by weight, preferably 5 to 25 parts by weight, and more preferably 7 to 20 parts by weight with respect to 100 parts by weight of a polymer containing 17% or more of halogen atoms. If the amount is less than 3 parts by weight, the amount of carbide remaining at the time of combustion is small, so that a sufficient shape retention effect cannot be obtained. If the amount exceeds 30 parts by weight, the effect is saturated and the cost increases and nozzle clogging occurs in the fiber manufacturing process. This is not preferable because it may cause troubles such as.

これら亜鉛化合物、アンチモン化合物、その他無機化合物の合計量は、ハロゲン原子を17%以上含む重合体100重量部に対し15重量部以上110重量部以下、好ましくは17重量部以上70重量部以下、更に好ましくは20重量部以上50重量部以下である。15重量部未満では、これら添加剤の量が少ないため意図するような高度な難燃効果を得ることが難しく好ましくない。   The total amount of these zinc compound, antimony compound and other inorganic compounds is 15 parts by weight or more and 110 parts by weight or less, preferably 17 parts by weight or more and 70 parts by weight or less, with respect to 100 parts by weight of the polymer containing 17% or more of halogen atoms. Preferably they are 20 to 50 weight part. If it is less than 15 parts by weight, the amount of these additives is so small that it is difficult and difficult to obtain the intended high flame retardant effect.

本発明の難燃性合成繊維には、必要に応じて帯電防止剤、熱着色防止剤、耐光性向上剤、白度向上剤、失透防止剤、着色剤、難燃剤といったその他添加剤を含有せしめても良い。   The flame retardant synthetic fiber of the present invention contains other additives such as an antistatic agent, a thermal coloring inhibitor, a light resistance improver, a whiteness improver, a devitrification agent, a colorant, and a flame retardant as necessary. You can squeeze it.

本発明の難燃性合成繊維は、ハロゲン原子を17重量%以上含む重合体を用い、湿式紡糸法、乾式紡糸法、半乾半湿式法等の公知の製造方法で製造される。例えば湿式紡糸法では、上記重合体をN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、アセトン、ロダン塩水溶液等の溶媒に溶解後、ノズルを通じて凝固浴に押出すことで凝固させ、次いで水洗、乾燥、延伸、熱処理し、必要であれば捲縮を付与し切断することで製品を得る。
本発明の難燃性合成繊維は、短繊維でも長繊維でもよく、使用方法において適宜選択することが可能であり、例えば他の天然繊維および化学繊維と複合させて加工するには複合させる繊維に近似なものが好ましく、繊維製品用途に使用される他の天然繊維および化学繊維に合わせて、1.7〜12dtex程度、カット長38〜128mm程度の短繊維が好ましい。
The flame-retardant synthetic fiber of the present invention is produced by a known production method such as a wet spinning method, a dry spinning method, a semi-dry semi-wet method, etc., using a polymer containing a halogen atom of 17% by weight or more. For example, in the wet spinning method, the above polymer is dissolved in a solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, acetone, or a rhodan salt aqueous solution, and then coagulated by extrusion through a nozzle into a coagulation bath, and then washed with water. , Drying, stretching, heat treatment, and if necessary, crimping and cutting to obtain a product.
The flame-retardant synthetic fiber of the present invention may be a short fiber or a long fiber, and can be appropriately selected in the method of use. For example, it is a fiber to be combined with other natural fibers and chemical fibers to be processed. Approximate ones are preferable, and short fibers having a length of about 1.7 to 12 dtex and a cut length of about 38 to 128 mm are preferable in accordance with other natural fibers and chemical fibers used for textile products.

本発明の難燃性合成繊維が高度に優れた難燃性を示す理由は、以下のように考えられる。ハロゲン原子を17%以上含む重合体100重量部に対し亜鉛化合物3〜50重量部、アンチモン化合物0〜30重量部、その他の無機化合物3〜30重量部を含有させた繊維(A)を他の火炎源により燃焼させると、まず重合体の燃焼により脱離した重合体中のハロゲン原子が、繊維(A)中に含有されている亜鉛化合物およびアンチモン化合物と容易に反応し、塩化亜鉛および塩化アンチモン化合物を、アンチモン化合物が含有されていない場合は塩化水素を発生する。塩化亜鉛は、重合体中の分子鎖間架橋反応の触媒として作用するため、重合体中の分子鎖は燃焼中に架橋することで強固な炭化物を形成する(炭化効果)。また塩化アンチモン化合物または塩化水素は、低沸点化合物でありそのガスは不燃性のため、燃焼個所の酸素を遮断し燃焼を抑制し消火する(自己消火効果)。更に、その他無機化合物は、燃焼時にも完全に焼失することは無いため、上記の強固な炭化物が生成した場合、炭化物内にとどまることで炭化物の強度をより強固なものとする(形態保持効果)。これらの結果、繊維(A)は、炭化効果、自己消火効果、形態保持効果を兼ね備えることで、燃焼後も繊維形状が崩壊することなく炭化物の状態で形態を保持し、その上自己消火効果を有するので、火炎は遮断されそれ以上の延焼が抑制されることで高度に優れた難燃性を示す。   The reason why the flame-retardant synthetic fiber of the present invention exhibits highly excellent flame retardancy is considered as follows. A fiber (A) containing 3 to 50 parts by weight of a zinc compound, 0 to 30 parts by weight of an antimony compound, and 3 to 30 parts by weight of another inorganic compound with respect to 100 parts by weight of a polymer containing 17% or more of a halogen atom. When burned by a flame source, first, halogen atoms in the polymer desorbed by the burning of the polymer easily react with the zinc compound and antimony compound contained in the fiber (A), and zinc chloride and antimony chloride. When the compound does not contain an antimony compound, hydrogen chloride is generated. Since zinc chloride acts as a catalyst for the cross-linking reaction between molecular chains in the polymer, the molecular chains in the polymer are cross-linked during combustion to form a strong carbide (carbonization effect). Further, antimony chloride compound or hydrogen chloride is a low boiling point compound and its gas is nonflammable, so it shuts off oxygen at the combustion site, suppresses combustion and extinguishes fire (self-extinguishing effect). Furthermore, since other inorganic compounds are not completely burned off during combustion, when the above-mentioned strong carbide is generated, the strength of the carbide is made stronger by remaining in the carbide (morphological retention effect). . As a result, the fiber (A) has a carbonization effect, a self-extinguishing effect, and a shape-holding effect, so that the shape of the fiber is maintained in the state of carbide without breaking the fiber shape even after combustion. Therefore, the flame is cut off, and the further spread of fire is suppressed, so that highly flame retardancy is exhibited.

本発明に用いる天然繊維および/または化学繊維(B)は、本発明の難燃性布帛に優れた風合、触感、意匠性、製品強力、耐洗濯性、耐久性を与えるための、また、寝具や家具に難燃性不織布を用いる際の加工性を良好にする成分である。   The natural fiber and / or chemical fiber (B) used in the present invention is for imparting excellent texture, touch, design, product strength, washing resistance and durability to the flame retardant fabric of the present invention. It is a component that improves processability when using a flame-retardant nonwoven fabric for bedding and furniture.

前記天然繊維の具体例としては、例えば綿、麻、などの植物性繊維や、羊毛、らくだ毛、山羊毛、絹などの動物繊維など、また化学繊維の具体例としては、たとえばビスコースレーヨン繊維、キュプラ繊維などの再生繊維、アセテート繊維などの再生繊維、あるいはナイロン繊維、ポリエステル繊維、ポリエステル系低融点バインダー繊維、アクリル繊維などの合成繊維などがあげられるが、これらに限定されるものではない。これら天然繊維や化学繊維は単独で難燃性合成繊維(A)と用いてもよく、2種類以上で難燃性合成繊維(A)と用いてもよい。   Specific examples of the natural fibers include plant fibers such as cotton and hemp, animal fibers such as wool, camel hair, goat wool, and silk, and specific examples of chemical fibers include viscose rayon fibers. Examples thereof include, but are not limited to, recycled fibers such as cupra fibers, recycled fibers such as acetate fibers, and synthetic fibers such as nylon fibers, polyester fibers, polyester-based low melting point binder fibers, and acrylic fibers. These natural fibers and chemical fibers may be used alone with the flame retardant synthetic fiber (A), or two or more types may be used with the flame retardant synthetic fiber (A).

本発明において、ポリエステル系繊維は燃焼時に溶融物が生じ、難燃性不織布を覆うことで難燃性不織布により形成される炭化層がより強固なものとなり、激しい炎に長時間晒されても寝具や家具に用いられる綿やウレタンフォームへの着炎を防ぐ炎遮蔽バリア性能を付与することが出来ること、不織布に加工した際の嵩高性が得やすいこと、開繊機(カード)においてハロゲン現有合成繊維の強度の問題から繊維が破損することを緩和することから、(A+B)全体100重量部の内Bとして15〜25重量部のポリエステルを含むことが好ましい。ポリエステル系低融点バインダー繊維を用いると、不織布とする際に簡便な熱溶融接着法が採用できる。ポリエステル系低融点バインダー繊維としては、低融点ポリエステル単一型繊維でもよくポリエステル/低融点ポリプロピレン、低融点ポリエチレン、低融点ポリエステルからなる並列型もしくは芯鞘型複合型繊維でも良い。一般的に低融点ポリエステルの融点は概ね110〜200°C 、低融点ポリプロピレンの融点は概ね140〜160°C 、低融点ポリエチレンの融点は概ね95〜130°C であり、概ね110〜200°C 程度で融解接着能力を有するものであれば特に限定はない。また低融点でないポリエステル系繊維を使用した場合、不織布とする際簡便なニードルパンチ法が採用できる。   In the present invention, a polyester-based fiber generates a melt upon combustion, and the carbonized layer formed by the flame-retardant nonwoven fabric becomes stronger by covering the flame-retardant nonwoven fabric, so that the bedding even if exposed to intense flames for a long time It can provide flame shielding barrier performance to prevent flames from being applied to cotton and urethane foam used in furniture and furniture, it is easy to obtain bulkiness when processed into non-woven fabric, and halogen-existing synthetic fibers in the opening machine (card) It is preferable to contain 15 to 25 parts by weight of polyester as B out of 100 parts by weight of the whole (A + B), because the fiber is less damaged due to the problem of strength. When a polyester-based low-melting-point binder fiber is used, a simple hot-melt bonding method can be adopted when forming a nonwoven fabric. The polyester-based low-melting-point binder fiber may be a low-melting-point polyester single-type fiber or a parallel-type or core-sheath type composite fiber made of polyester / low-melting-point polypropylene, low-melting-point polyethylene, or low-melting-point polyester. In general, the low melting point polyester has a melting point of about 110 to 200 ° C, the low melting point polypropylene has a melting point of about 140 to 160 ° C, and the low melting point polyethylene has a melting point of about 95 to 130 ° C. There is no particular limitation as long as it has a melting adhesive ability to the extent. In addition, when a polyester fiber having a low melting point is used, a simple needle punch method can be employed when forming a nonwoven fabric.

本発明においては難燃性合成繊維(A)10重量部以上と天然繊維および/または化学繊維(B)90重量部以下とから、本発明の難燃性布帛100重量部が製造されるが、それらの混合割合は、得られる難燃性不織布から製造される最終製品に要求される難燃性とともに、吸水性、風合、吸湿性、触感、意匠性、製品強力、耐洗濯性、耐久性などの品質に応じて決定される。一般に、合成繊維(A)95〜10重量部、好ましくは60〜20重量部、天然繊維および/または化学繊維(B)5〜90重量部、好ましくは80〜40重量部の合計が100重量部になるように複合せしめられる。不織布製造の際に熱溶融接着法を選択する場合には、天然繊維および/または化学繊維(B)として、ポリエステル系低融点バインダー繊維を少なくとも10重量部含むことが好ましい。   In the present invention, 100 parts by weight of the flame-retardant fabric of the present invention is produced from 10 parts by weight or more of the flame-retardant synthetic fiber (A) and 90 parts by weight or less of the natural fiber and / or chemical fiber (B). The mixing ratio is the water resistance, texture, moisture absorption, touch, design, product strength, washing resistance, durability, as well as the flame resistance required for the final product manufactured from the resulting flame retardant nonwoven fabric. It is determined according to the quality. Generally, the total of synthetic fiber (A) 95 to 10 parts by weight, preferably 60 to 20 parts by weight, natural fiber and / or chemical fiber (B) 5 to 90 parts by weight, preferably 80 to 40 parts by weight is 100 parts by weight. It is compounded to become. When the hot melt bonding method is selected during the production of the nonwoven fabric, it is preferable that at least 10 parts by weight of polyester-based low-melting-point binder fibers are included as natural fibers and / or chemical fibers (B).

難燃性合成繊維(A)の量が10重量部未満の場合、激しい炎に長時間晒されたときに寝具や家具に用いられる綿やウレタンフォームへの着炎を防ぐための炭化層形成が不充分で自己消火性にも乏しいため所望とする高度な難燃性能を得ることが難しい。   When the amount of the flame retardant synthetic fiber (A) is less than 10 parts by weight, the formation of a carbonized layer for preventing flames from being applied to cotton and urethane foam used for bedding and furniture when exposed to intense flames for a long time. Insufficient and poor self-extinguishing properties make it difficult to obtain the desired high flame retardant performance.

本発明の難燃繊維複合体は、前述のごとき繊維(A)、(B)が複合したものであり、織物編物、不織布などの布帛、スライバーやウエブなどの繊維の集合体、紡績糸や合糸・撚糸などの糸状物、編み紐、組み紐などのヒモ状物のごとき形態のものである。   The flame retardant fiber composite of the present invention is a composite of the fibers (A) and (B) as described above, a fabric such as a woven fabric and a nonwoven fabric, a collection of fibers such as a sliver and a web, a spun yarn and a composite. It is in the form of a string-like material such as a thread or twisted yarn, a string-like material such as a braided string or a braided string.

前記複合したとは、繊維(A)、(B)をさまざまな方法で混ぜ合わせて所定の比率で含有する布帛などを得ることをいい、混綿、紡績、撚糸、織り、編みの段階でそれぞれの繊維や糸を組み合わせることを意味する。   The composite means that the fibers (A) and (B) are mixed by various methods to obtain a cloth containing the fibers in a predetermined ratio, and each of the mixed cotton, spinning, twisting, weaving and knitting stages. It means combining fiber and yarn.

本発明の難燃繊維複合体は炎遮蔽バリア用不織布として好適に用いられる。ここでいう炎遮蔽バリアとは、難燃性不織布が炎に晒された際に難燃性不織布が繊維の形態を維持したまま炭化することで炎を遮蔽し、反対側に炎が移るのを防ぐことであり、具体的にはマットレスや布張り家具等の表面生地と内部構造体であるウレタンフォームや詰め綿等との間に本発明の難燃性不織布をはさむことで、火災の際に内部構造物への炎の着火を防ぎ、被害を最小限に食い止めることができるものである。難燃性不織布の製造方法としては一般的な熱溶融接着法、ケミカルボンド法、ウォータージェット法、ニードルパンチ法、ステッチボンド法等の不織布作成方法が用いることが可能であり、複数の種類の繊維を混綿した後にカードにより開繊、ウェブ作成を行い、このウェブを不織布製造装置にかけることにより作成される。装置の簡便さからはニードルパンチ方式、ポリエステル系低融点バインダー繊維を用れば熱溶融接着方式による製造が一般的で生産性が高いため好ましいがこれらに限定されるものではない。   The flame retardant fiber composite of the present invention is suitably used as a nonwoven fabric for flame shielding barriers. The flame-shielding barrier here means that when the flame-retardant nonwoven fabric is exposed to flame, the flame-retardant nonwoven fabric is carbonized while maintaining the fiber form to shield the flame, and the flame moves to the opposite side. Specifically, in the event of a fire, the flame-retardant nonwoven fabric of the present invention is sandwiched between a surface fabric such as a mattress or upholstered furniture and an internal structure such as urethane foam or stuffed cotton. This prevents flames from igniting internal structures and minimizes damage. As a method for producing a flame retardant nonwoven fabric, it is possible to use a nonwoven fabric creation method such as a general hot melt bonding method, chemical bond method, water jet method, needle punch method, stitch bond method, etc. After the cotton is blended, it is opened by a card, a web is created, and the web is applied to a nonwoven fabric manufacturing apparatus. From the viewpoint of simplicity of the apparatus, it is preferable to use a needle punch method or a polyester-based low-melting-point binder fiber because the production by the hot melt bonding method is general and the productivity is high, but it is not limited thereto.

本発明の難燃繊維複合体には、必要に応じて帯電防止剤、熱着色防止剤、耐光性向上剤、白度向上剤、失透性防止剤などを含有せしめてもよいし、染料や顔料などによる着色や染色を行っても何ら支障ない。   The flame retardant fiber composite of the present invention may contain an antistatic agent, a thermal coloring inhibitor, a light fastness improver, a whiteness improver, a devitrification preventive agent, and the like as necessary. There is no problem with coloring or dyeing with pigments.

このようにして得られる本発明の難燃繊維複合体は、所望の難燃性を有し、風合い、触感、吸湿性、意匠性などに優れた特性を有する。   The flame retardant fiber composite of the present invention thus obtained has desired flame retardancy and has excellent properties such as texture, touch, hygroscopicity, and design.

本発明の布張り家具は、前述の難燃繊維複合体によって布張りされた、ベッドマットレス等の寝具、椅子、ソファー、車両用座席等に関する。   The upholstered furniture of the present invention relates to bedding such as a bed mattress, a chair, a sofa, a vehicle seat, and the like upholstered by the above-mentioned flame-retardant fiber composite.

ベッドマットレスとしては、例えば、金属製のコイルが内部に用いられたポケットコイルマットレス、ボックスコイルマットレス、あるいはスチレンやウレタン樹脂などを発泡させたインシュレーターが内部に使用されたマットレス等がある。本発明に使用される難燃複合体による防炎性が発揮されることにより、前記マットレス内部の構造体への延焼が防止出来るため、何れの構造のマットレスおいても、難燃性と同時に優れた風合いや触感に優れたマットレスを得ることができる。   Examples of the bed mattress include a pocket coil mattress in which a metal coil is used, a box coil mattress, a mattress in which an insulator in which styrene, urethane resin, or the like is foamed is used. By exhibiting flame retardancy due to the flame retardant composite used in the present invention, it is possible to prevent the spread of fire to the internal structure of the mattress. A mattress with excellent texture and touch can be obtained.

一方、椅子としては、屋内にて使用される、ストゥール、ベンチ、サイドチェア、アームチェア、ラウンジチェア・ソファー、シートユニット(セクショナルチェア、セパレートチェア)、ロッキングチェア、フォールディングチェア、スタッキングチェア、スィーブルチェア、あるいは屋外で車両用座席等に使用される、自動車シート、船舶用座席、航空機用座席、列車用座席などが挙げられるが、これらにおいても通常の家具として要求される外観や触感と同時に内部の延焼を防止する機能を有する布張り製品を得ることができる。   On the other hand, as chairs used indoors, tools, benches, side chairs, armchairs, lounge chairs and sofas, seat units (sectional chairs, separate chairs), rocking chairs, folding chairs, stacking chairs, swivel chairs, Or automobile seats, marine seats, aircraft seats, train seats, etc., used outdoors for vehicle seats, etc., but also in these, the internal fire spreads at the same time as the appearance and feel required for normal furniture It is possible to obtain a upholstered product having a function of preventing the above.

また、テンピュール素材(テンピュールワールド社製、Tempur World,Inc.)に代表される圧力分散機能を有する低反発ウレタンフォームを使用したマットレスや椅子においては通常のスチレンやウレタン樹脂を発泡させたフォーム材料を用いたマットレスや椅子に比べて極めて易燃性であるが、本発明に使用される難燃繊維複合体による防炎性が発揮されることにより、マットレスや椅子の内部構造体である低反発ウレタンフォームへの延焼が防止出来る。   In addition, in mattresses and chairs using low-resilience urethane foam having a pressure dispersion function typified by Tempur material (Tempur World, Inc.), foam materials made of foamed ordinary styrene or urethane resin are used. Although it is extremely flammable compared to the mattress and chair used, the flame retardant property of the flame retardant fiber composite used in the present invention demonstrates the low resilience urethane that is the internal structure of the mattress and chair Fire spread to foam can be prevented.

布張り家具製品に対する本発明の難燃繊維複合体の用い方としては、表面の布地に織布やニットの形態で用いてもよいし、表面の布地と内部構造物、例えばウレタンフォームや詰め綿の間に織布やニット、不織布の形態で挟み込んでも良い。表面の布地に用いる場合には従来の表面の布地に替えて本発明の難燃繊維複合体よりなる布地を用いればよい。また、表面生地と内部構造物の間に織布やニットを挟む場合には、表面生地を2枚重ねる要領で挟み込んでも良いし、内部構造物を本発明の難燃繊維複合体よりなる織布やニットで覆っても良い。表面生地と内部構造物の間に炎遮蔽バリア用布織布として挟む場合には、内部構造物全体に、少なくとも表面の布地と接する部分については必ず内部構造物の外側に本発明の難燃繊維複合体よりなる不織布をかぶせ、その上から表面の布地を張ることになる。   As a method of using the flame-retardant fiber composite of the present invention for upholstered furniture products, the surface fabric may be used in the form of woven fabric or knit, or the surface fabric and internal structure such as urethane foam or stuffed cotton. It may be sandwiched in the form of woven fabric, knit or non-woven fabric. When used for the surface fabric, the fabric made of the flame retardant fiber composite of the present invention may be used instead of the conventional surface fabric. In addition, when a woven fabric or a knit is sandwiched between the surface fabric and the internal structure, the surface fabric may be sandwiched in the manner of overlapping two sheets, or the internal structure is a woven fabric made of the flame retardant fiber composite of the present invention. Or it may be covered with knit. When sandwiched between the surface fabric and the internal structure as a woven fabric for a flame-shielding barrier, the flame retardant fiber of the present invention must be placed on the entire internal structure, and at least the portion in contact with the surface fabric outside the internal structure. A non-woven fabric made of a composite is covered, and the surface fabric is stretched over it.

本発明の難燃繊維複合体を用いて布張り家具を製造すると、本発明の難燃繊維複合体が有する優れた特性、すなわち高度に優れた難燃性を有し、風合い、触感、吸湿性、意匠性などにも優れた特性を有する布張り家具製品が得られる。   When producing upholstered furniture using the flame retardant fiber composite of the present invention, the flame retardant fiber composite of the present invention has excellent characteristics, that is, highly excellent flame retardancy, texture, touch, and moisture absorption. Thus, a upholstered furniture product having excellent design characteristics can be obtained.

以下、実施をあげて本発明をさらに詳しく説明するが、本発明はかかる実施例のみに限定されるものではない。なお実施例における繊維の難燃性は、下記のようにして測定、判断した。なお総合判定は、難燃性評価試験(LOI値、不織布の難燃性、コヨリ消火時間)、加熱時の残存率、これら四方法の結果を総合して、合格○、不合格×と判定した。
(難燃性評価法1)
(LOI値による難燃性評価)
以下の製造例に従って作成した繊維を2g取り、これを8等分して約6cmのコヨリを8本作成し酸素指数測定器(スガ試験機(SUGA TEST INSTRUMENT Co.,LTD.)製ON−1型、)のホルダーに直立させ、この試料が5cm燃え続けるのに必要な最小酸素濃度を測定し、これをLOI値とした。LOI値が大きいほど燃えにくく、難燃性が高いことを示す。
(不織布による難燃性評価)
1)難燃性評価試験用不織布の作成
以下の製造例に従って作成した繊維をローラーカードにより開繊した後、ニードルパンチ法により、目付け300g/m2、縦20cm×横20cmの不織布を作成した。
2)難燃性評価試験方法
縦200mm×横200mm×厚さ10mmのパーライト板の中心に直径15cmの穴をあけたものを準備し、その上に難燃性評価試験用不織布を置き、加熱時に難燃性評価試験用不織布が収縮しないよう4辺をクリップで固定した。この試料を難燃性評価試験用不織布の面を上にして、ガスコンロ((株)パロマ工業製PA−10H−2)にバーナー面より40mmの所に試料の中心とバーナーの中心が合うようにセットした。燃料ガスは純度99%以上のプロパンを用い、炎の高さは25mmとし、接炎時間は180秒とした。
この時に難燃性評価試験用不織布の炭化層に貫通した穴があいておらずひびもない場合を○、穴もひびもある場合を×とし、○を合格とした。
(コヨリ消火時間測定による難燃性評価)
以下の製造例に従って作成した繊維を2g取り、これを8等分して約6cmのコヨリを8本作成した。コヨリの一端にメンディングテープ(住友スリーエム(株)製スコッチメンディングテープ)を幅13mmで2回巻きつけた後、水平に保持した状態で本末端に2
秒間接炎した。その状態で放置し、自然消火するまでの時間(消火時間)を測定した。消火時間が短いほど、自己消火効果が高く、難燃性が高いことを示す。
(加熱時の残存率(炭化物重量)の測定方法)
以下の製造例に従って作成した繊維を約5mgとり、熱重量測定装置(セイコーインスツルメンツ(株)製 TG/DTA220 使用ガス:空気 ガス流量:200ml/min、昇温速度:3℃/min)にて測定した。初期重量を100%とし、500℃における残存物(炭化物)重量を比率で表した。数字が大きいほど残存物(炭化物)量が大きく、優れている事を示す。
(繊維中のハロゲン含有量の測定方法)
得られた共重合体を元素分析測定器((株)ヤナコ製 CHNコーダーMT−5)によりC元素、H元素、N元素に関する元素分析を行い、N原子をアクリロニトリル由来のものとし、N原子含有量より重合体中のアクリロニトリル成分含有量を求めた。さらにp−スチレンスルホン酸ソーダは全量共重合したと仮定し、残りをハロゲンモノマー由来成分とし、計算により得られたハロゲン含有共重合体中のハロゲン含有量を求めた。
(製造例1)
アクリロニトリル51%、塩化ビニリデン48%およびp−スチレンスルホン酸ソーダ1%よりなる共重合体(ハロゲン原子割合:35%)をジメチルホルムアミドに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂重量に対して表1、2に示す添加量において亜鉛化合物として酸化亜鉛(堺化学(株)製 酸化亜鉛3種)、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリン(エンゲルハード社製 カオリンASP170)または、水酸化アルミニウムを添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mmおよび孔数1000ホールのノズルを用い、50%ジメチルホルムアミド水溶液中へ押し出し、水洗したのち120℃で乾燥し、ついで3倍に延伸してから、さらに150℃で5分間熱処理、さらに切断することでハロゲン含有繊維を得た。得られた繊維は繊度5.6dtexであり、カット長51mmの短繊維であった。
(製造例2)
アクリロニトリル49%、塩化ビニル50.5%およびp−スチレンスルホン酸ソーダ0.5%よりなる共重合体(ハロゲン原子割合:34%)をジメチルホルムアミドに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂重量に対して表3、4に示す添加量において亜鉛化合物として酸化亜鉛(堺化学(株)製 酸化亜鉛3種)、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリン(エンゲルハード社製 カオリンASP170)または、水酸化アルミニウムを添加し、紡糸原液とした。
この紡糸原液をノズル孔径0.10mmおよび孔数1000ホールのノズルを用い、50%ジメチルホルムアミド水溶液中へ押し出し、水洗したのち120℃で乾燥し、ついで3倍に延伸してから、さらに130℃で5分間熱処理、さらに切断することでハロゲン含有繊維を得た。得られた繊維は繊度5.6dtexであり、カット長51mmの短繊維であった。
(実施例1〜4、比較例1〜3)
製造例1に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリンを表1の量で添加したハロゲン含有繊維を作成し、LOI値、不織布での難燃性評価、及び熱重量測定による燃焼時の残存率測定を実施した。結果を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples. In addition, the flame retardance of the fiber in an Example was measured and judged as follows. In addition, the comprehensive judgment was determined as pass ○, fail × by combining the results of these four methods, flame retardancy evaluation test (LOI value, flame retardance of nonwoven fabric, cogging fire extinguishing time), residual rate during heating, and the results of these four methods. .
(Flame retardance evaluation method 1)
(Flame resistance evaluation by LOI value)
Take 2g of the fiber prepared according to the following production example, divide this into 8 parts, and make 8 ridges of about 6cm to make an oxygen index measuring instrument (SUGA TEST INSTRUMENT Co., LTD. ON-1 The minimum oxygen concentration required for this sample to continue to burn for 5 cm was measured, and this was taken as the LOI value. It shows that it is hard to burn, so that a flame retardance is high, so that LOI value is large.
(Flame resistance evaluation by non-woven fabric)
1) Preparation of non-woven fabric for flame retardancy evaluation test Fibers prepared according to the following production examples were opened with a roller card, and then a non-woven fabric having a basis weight of 300 g / m 2 and a length of 20 cm × width 20 cm was prepared by a needle punch method.
2) Flame Retardancy Evaluation Test Method Prepare a pearlite plate with a length of 200 mm × width 200 mm × thickness 10 mm with a hole with a diameter of 15 cm at the center, and place a non-woven fabric for flame retardant evaluation test on it. Four sides were fixed with clips so that the nonwoven fabric for flame retardancy evaluation test did not shrink. With this sample facing the non-woven fabric for flame retardancy evaluation test, the center of the sample and the center of the burner are aligned with a gas stove (PA-10H-2 manufactured by Paloma Kogyo Co., Ltd.) 40 mm from the burner surface. I set it. The fuel gas used was propane with a purity of 99% or more, the flame height was 25 mm, and the flame contact time was 180 seconds.
At this time, a case where there was no hole penetrating through the carbonized layer of the non-woven fabric for flame retardancy evaluation test was marked with ◯, a case where the hole was cracked was marked with ×, and a mark was marked with ◯.
(Flame retardant evaluation by measuring fire extinguishing time)
2 g of the fiber prepared according to the following production example was taken, and this was divided into 8 equal parts to prepare 8 pieces of about 6 cm twist. After winding a mending tape (Scotch Mending Tape manufactured by Sumitomo 3M Co., Ltd.) twice with a width of 13 mm around one end of the coyori, 2
A second indirect flame. It was allowed to stand in that state, and the time until extinguishing the fire spontaneously (fire extinguishing time) was measured. The shorter the fire extinguishing time, the higher the self-extinguishing effect and the higher the flame retardancy.
(Measurement method of residual rate (carbide weight) during heating)
About 5 mg of the fiber prepared according to the following production example was taken and measured with a thermogravimetric measuring device (TG / DTA220 manufactured by Seiko Instruments Inc., used gas: air, gas flow rate: 200 ml / min, temperature increase rate: 3 ° C./min). did. The initial weight was 100%, and the weight of residue (carbide) at 500 ° C. was expressed as a ratio. The larger the number, the greater the amount of residue (carbide), indicating better performance.
(Measurement method of halogen content in fiber)
The obtained copolymer is subjected to elemental analysis on C element, H element, and N element by an elemental analyzer (CHN coder MT-5 manufactured by Yanaco Co., Ltd.), N atom is derived from acrylonitrile, and N atom is contained. The acrylonitrile component content in the polymer was determined from the amount. Further, it was assumed that the total amount of p-styrene sulfonic acid soda was copolymerized, the remainder was regarded as a component derived from a halogen monomer, and the halogen content in the halogen-containing copolymer obtained by calculation was determined.
(Production Example 1)
A resin obtained by dissolving a copolymer (halogen atom ratio: 35%) of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrenesulfonic acid soda in dimethylformamide so that the resin concentration is 30%. Zinc oxide (3 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.), antimony trioxide as the antimony compound, and kaolin (Engelhard, Inc.) as the other inorganic compound in the addition amounts shown in Tables 1 and 2 with respect to the resin weight of the solution Kaolin ASP170) or aluminum hydroxide was added to prepare a spinning dope. This spinning dope was extruded into a 50% aqueous dimethylformamide solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water, dried at 120 ° C., then stretched 3 times, and further at 150 ° C. A halogen-containing fiber was obtained by heat treatment for 5 minutes and further cutting. The obtained fiber was a fine fiber having a fineness of 5.6 dtex and a cut length of 51 mm.
(Production Example 2)
A copolymer of 49% acrylonitrile, 50.5% vinyl chloride and 0.5% sodium p-styrenesulfonate (halogen atom ratio: 34%) was dissolved in dimethylformamide so that the resin concentration was 30%. Zinc oxide (3 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.), antimony trioxide as antimony compound, and kaolin as other inorganic compound in the addition amounts shown in Tables 3 and 4 with respect to the resin weight of the obtained resin solution (Kaolin ASP170 manufactured by Engelhard) or aluminum hydroxide was added to prepare a spinning dope.
This spinning dope was extruded into a 50% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water, dried at 120 ° C., then stretched 3 times, and further at 130 ° C. A halogen-containing fiber was obtained by heat treatment for 5 minutes and further cutting. The obtained fiber was a fine fiber having a fineness of 5.6 dtex and a cut length of 51 mm.
(Examples 1-4, Comparative Examples 1-3)
According to Production Example 1, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and kaolin as the other inorganic compound in the amounts shown in Table 1, and evaluated the LOI value, flame retardancy evaluation in the nonwoven fabric, and The residual rate at the time of combustion was measured by thermogravimetry. The results are shown in Table 1.

実施例1〜4の燃焼試験結果は良好であった。LOI値も高く、不織布試験においてはガスコンロによる加熱後、良好な炭化層を形成し穴明きやひび割れの発生もなく合格し、加熱時の残存率も高いことから、高度な難燃性を有していると判断し総合判定には合格した。実施例4も高度な難燃性を有しているが、実施例3は実施例4と酸化亜鉛及びカオリン量は同量であるが、三酸化アンチモンを含有しているためコヨリ消火時間がより短く、より高度な難燃性を有していることが判る。   The combustion test results of Examples 1 to 4 were good. The LOI value is high, and in non-woven fabric testing, after heating with a gas stove, it forms a good carbonized layer, passes without the occurrence of drilling or cracking, and has a high residual rate during heating, so it has high flame resistance. We judged that we were doing and passed general judgment. Although Example 4 also has a high flame retardancy, Example 3 has the same amount of zinc oxide and kaolin as Example 4, but contains antimony trioxide, so the fire extinguishing time is longer. It can be seen that it is short and has a higher degree of flame retardancy.

これに対して比較例1は、三酸化アンチモン量および添加剤の合計量は実施例1と同量であるが、カオリンがないため良好な炭化層が形成できずに不織布に穴が生じ、またLOI値や加熱時の残存率も低いことから総合判定が不合格となった。   In contrast, in Comparative Example 1, the amount of antimony trioxide and the total amount of additives was the same as in Example 1, but since there was no kaolin, a good carbonized layer could not be formed and holes were formed in the nonwoven fabric. Since the LOI value and the residual rate at the time of heating were low, the comprehensive judgment failed.

比較例2は三酸化アンチモン量および添加剤の合計量は実施例1と同量であるが、酸化亜鉛がないため良好な炭化層が形成できずに不織布に穴が生じ、またLOI値や加熱時の残存率も低いことから総合判定が不合格となった。   In Comparative Example 2, the amount of antimony trioxide and the total amount of additives was the same as in Example 1, but because there was no zinc oxide, a good carbonized layer could not be formed, and a hole was formed in the nonwoven fabric. The overall judgment was rejected due to the low survival rate.

比較例3は、酸化亜鉛量、カオリン量の合計が少ないため、良好な炭化層が形成できずに不織布に穴が生じ、高度な難燃性を有しているとは判断できず総合判定が不合格となった。実施例1〜4、および比較例1〜3の難燃性評価試験結果を表1に示す。   In Comparative Example 3, since the total amount of zinc oxide and kaolin is small, a good carbonized layer cannot be formed, a hole is formed in the nonwoven fabric, and it cannot be determined that it has high flame retardancy, and a comprehensive judgment is made. It was rejected. The flame retardancy evaluation test results of Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1.

Figure 2006040873
(実施例5〜9、比較例4、5)
製造例1に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物として水酸化アルミニウムを表2の量で添加したハロゲン含有繊維を作成し、LOI値、不織布での難燃性評価、及び熱重量測定による燃焼時の残存率測定を実施した。結果を表2に示す。
Figure 2006040873
(Examples 5 to 9, Comparative Examples 4 and 5)
According to Production Example 1, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and aluminum hydroxide as the other inorganic compound in the amounts shown in Table 2, and evaluated the LOI value and flame retardancy of the nonwoven fabric. And the residual rate measurement at the time of combustion was performed by thermogravimetry. The results are shown in Table 2.

実施例5〜9の燃焼試験結果は良好であった。LOI値も高く、不織布試験においてはガスコンロによる加熱後、良好な炭化層を形成し穴明きやひび割れの発生もなく合格し、加熱時の残存率も高いことから、高度な難燃性を有していると判断し総合判定には合格した。実施例8も高度な難燃性を有しているが、実施例7は実施例8と酸化亜鉛及び水酸化アルミニウム量は同量であるが、三酸化アンチモンを含有しているためコヨリ消火時間がより短く、より高度な難燃性を有していることが判る。   The combustion test results of Examples 5 to 9 were good. The LOI value is high, and in non-woven fabric testing, after heating with a gas stove, it forms a good carbonized layer, passes without the occurrence of drilling or cracking, and has a high residual rate during heating, so it has high flame resistance. We judged that we were doing and passed general judgment. Example 8 also has high flame retardancy, but Example 7 has the same amount of zinc oxide and aluminum hydroxide as Example 8, but contains antimony trioxide, so Is shorter and has a higher degree of flame retardancy.

比較例4は、三酸化アンチモン量および添加剤の合計量は実施例4と同量であるが、酸化亜鉛がないため良好な炭化層が形成できずに不織布に穴が生じ、燃焼時の残存率も低いため総合判定が不合格となった。   In Comparative Example 4, the amount of antimony trioxide and the total amount of additives was the same as in Example 4, but because there was no zinc oxide, a good carbonized layer could not be formed, and holes were formed in the nonwoven fabric, which remained after combustion. The overall judgment failed because the rate was low.

比較例5は、酸化亜鉛量、水酸化アルミニウム量の合計が少ないため、良好な炭化層が形成できずに不織布に穴が生じ、高度な難燃性を有しているとは判断できず総合判定が不合格となった。実施例5〜9、および比較例4、5の難燃性評価試験結果を表2に示す。   In Comparative Example 5, since the total amount of zinc oxide and aluminum hydroxide is small, a good carbonized layer cannot be formed, holes are formed in the nonwoven fabric, and it cannot be determined that it has high flame retardancy. Judgment failed. The flame retardancy evaluation test results of Examples 5 to 9 and Comparative Examples 4 and 5 are shown in Table 2.

Figure 2006040873
(実施例10、11、比較例6)
製造例2に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリンを表3の量で添加したハロゲン含有繊維を作成し、LOI値、不織布での難燃性評価、及び熱重量測定による燃焼時の残存率測定を実施した。結果を表3に示す。
Figure 2006040873
(Examples 10 and 11, Comparative Example 6)
According to Production Example 2, a halogen-containing fiber was prepared by adding zinc oxide as a zinc compound, antimony trioxide as an antimony compound, and kaolin as the other inorganic compound in the amounts shown in Table 3, and evaluated the LOI value, flame retardancy evaluation with a nonwoven fabric, and The residual rate at the time of combustion was measured by thermogravimetry. The results are shown in Table 3.

実施例10、11の燃焼試験結果は良好であった。LOI値も高く、不織布試験においてはガスコンロによる加熱後、良好な炭化層を形成し穴明きやひび割れの発生もなく合格し、加熱時の残存率も高いことから、高度な難燃性を有していると判断し総合判定には合格した。   The combustion test results of Examples 10 and 11 were good. The LOI value is high, and in non-woven fabric testing, after heating with a gas stove, it forms a good carbonized layer, passes without the occurrence of drilling or cracking, and has a high residual rate during heating, so it has high flame resistance. We judged that we were doing and passed general judgment.

これに対して比較例6は、三酸化アンチモン量およびカオリン量は実施例9、10と同量であるが、酸化亜鉛がないため良好な炭化層が形成できずに不織布に穴が生じ、また加熱時の残存率も低いことから総合判定が不合格となった。実施例10、11、および比較例6の難燃性評価試験結果を表3に示す。   In contrast, in Comparative Example 6, the amount of antimony trioxide and the amount of kaolin were the same as those in Examples 9 and 10, but because there was no zinc oxide, a good carbonized layer could not be formed, and a hole was formed in the nonwoven fabric. Since the residual rate at the time of heating was low, the comprehensive judgment was rejected. Table 3 shows the results of the flame retardancy evaluation tests of Examples 10 and 11 and Comparative Example 6.

Figure 2006040873
(実施例12、13、比較例7)
製造例2に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物として水酸化アルミニウムを表4の量で添加したハロゲン含有繊維を作成し、LOI値、不織布での難燃性評価、及び熱重量測定による燃焼時の残存率測定を実施した。結果を表3に示す。
Figure 2006040873
(Examples 12 and 13, Comparative Example 7)
In accordance with Production Example 2, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and aluminum hydroxide as the other inorganic compound in the amounts shown in Table 4, and evaluated for the LOI value and flame retardancy of the nonwoven fabric. And the residual rate measurement at the time of combustion was performed by thermogravimetry. The results are shown in Table 3.

実施例12、13の燃焼試験結果は良好であった。LOI値も高く、不織布試験においてはガスコンロによる加熱後、良好な炭化層を形成し穴明きやひび割れの発生もなく合格し、加熱時の残存率も高いことから、高度な難燃性を有していると判断し総合判定には合格した。   The combustion test results of Examples 12 and 13 were good. The LOI value is high, and in non-woven fabric testing, after heating with a gas stove, it forms a good carbonized layer, passes without the occurrence of drilling or cracking, and has a high residual rate during heating, so it has high flame resistance. We judged that we were doing and passed general judgment.

これに対して比較例7は、三酸化アンチモン量およびカオリン量は実施例11、12と同量であるが、酸化亜鉛がないため良好な炭化層が形成できずに不織布に穴が生じ、また加熱時の残存率も低いことから総合判定が不合格となった。実施例12、13、および比較例7の難燃性評価試験結果を表4に示す。   In contrast, in Comparative Example 7, the amounts of antimony trioxide and kaolin were the same as in Examples 11 and 12, but because there was no zinc oxide, a good carbonized layer could not be formed and holes were formed in the nonwoven fabric. Since the residual rate at the time of heating was low, the comprehensive judgment was rejected. Table 4 shows the flame retardancy evaluation test results of Examples 12 and 13 and Comparative Example 7.

Figure 2006040873
なお実施例における繊維の難燃性は、不織布を用いて下記のようにして測定した。難燃性合成繊維については前記難燃性評価法1にて、難燃繊維複合体に関しては難燃性評価法2にて、布張り製品家具製品に関しては難燃性評価法3にて評価した。これらは、ベッドマットレス、椅子、ソファー等の布張り家具等の表面生地と内部構造体であるウレタンフォームや詰め綿等との間に本発明の難燃性不織布をはさむことで、火災の際に内部構造物への炎の着火を防ぐことをイメージした簡易評価方法である。なお難燃性評価法2の場合、難燃性評価及び加工性評価を考慮し、総合評価を行った。合格の場合○、不合格の場合×とした。
(難燃性評価法2)
1)難燃性評価試験用不織布の作成
所定の割合で混合した繊維をカードにより開繊した後、ニードルパンチ法により、目付け200g/m2、縦20cm×横20cmの不織布を作成し、難燃性評価試験用不織布とした。
2)難燃性評価試験方法
縦200mm×横200mm×厚さ10mmのパーライト板の中心に直径15cmの穴をあけたものを準備し、その上に難燃性評価試験用不織布をセットし、加熱時に難燃性評価試験用不織布が収縮しないよう4辺をクリップで固定した。この試料を難燃性評価試験用不織布の面を上にして、株式会社パロマ工業製ガスコンロ(PA−10H−2)にバーナー面より40mmの所に試料の中心とバーナーの中心が合うようにセットした。燃料ガスは純度99%以上のプロパンを用い、炎の高さは25mmとし、着炎時間は180秒とした。この時に難燃性評価試験用不織布の炭化膜の厚み斑がなく全く穴やひびもない場合
を◎、炭化膜に貫通した穴があいていない場合、またはひびがない場合を○、穴やひびがある場合を×として評価を実施した。◎または○が合格である。
(難燃性評価法3)
1)難燃性評価試験用試料の作成
所定の割合で混合した繊維をカードにより開繊した後、ニードルパンチ法により、目付け200g/m2、縦45cm×横30cmの不織布を作成した。該不織布の下にウレタンフォーム(縦45cm×横30cm、厚み53mm)を、該不織布の上に同サイズのポリエステル製不織布(目付け300g/m2)、更にポリエステル製布帛(目付け120g/m2)を重ね、この4者をずれないようにホッチキス(登録商標)で固定し、難燃性評価試験用試料とした。
2)難燃性評価試験方法
米国カリフォルニア州のベッドの燃焼試験方法Technical Bulletin 603(以下TB603)のうち、ベッド上面試験方法に準じて実施した。すなわち試料の上面から39mmの所に水平にT字型のバーナーをセットし、プロパンガスを燃焼ガスとして、ガス圧力101KPa、ガス流量12.9L/分の条件にて、70秒間接炎した。この時に不織布の炭化膜に厚み斑がなく全く穴やひびもない場合を◎、炭化膜に貫通した穴があいていない場合、またはひびがない場合を○、穴やひびがあり下部のウレタンフォームに着炎した場合を×として評価を実施した。◎または○が合格である。
(加工性評価)
該不織布作成時のカード通過性(加工の容易性)が良好な場合◎、可能な場合○、落綿等が発生し困難な場合×とした。◎または○が合格である。
(製造例3)
アクリロニトリル51%、塩化ビニリデン48%およびp−スチレンスルホン酸ソーダ1%よりなる共重合体(ハロゲン原子割合:35%)をジメチルホルムアミドに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂重量に対して表1、2、5、6に示す添加量において亜鉛化合物として酸化亜鉛(堺化学(株)製 酸化亜鉛3種)、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリン(エンゲルハード社製 カオリンASP170)または、水酸化アルミニウムを添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mmおよび孔数1000ホールのノズルを用い、
50%ジメチルホルムアミド水溶液中へ押し出し凝固させ、次いで水洗したのち120℃で乾燥し、ついで3倍に延伸してから、さらに150℃で5分間熱処理、さらに切断することでハロゲン含有繊維を得た。得られた繊維は繊度5.6dtexであり、カット長51mmの短繊維であった。
(製造例4)
アクリロニトリル49%、塩化ビニル50.5%およびp−スチレンスルホン酸ソーダ0.5%よりなる共重合体(ハロゲン原子割合:34%)をジメチルホルムアミドに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂重量に対して表3、4に示す添加量において亜鉛化合物として酸化亜鉛(堺化学(株)製 酸化亜鉛3種)、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリン(エンゲルハード社製 カオリンASP170)または、水酸化アルミニウムを添加し、紡糸原液とした。
この紡糸原液をノズル孔径0.10mmおよび孔数1000ホールのノズルを用い、50%ジメチルホルムアミド水溶液中へ押し出し、水洗したのち120℃で乾燥し、ついで3倍に延伸してから、さらに130℃で5分間熱処理、さらに切断することでハロゲン含有繊維を得た。得られた繊維は繊度5.6dtexであり、カット長51mmの短繊維であった。
(実施例14〜19、比較例8〜11)
製造例3に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリンを表5の量で添加したハロゲン含有繊維を作成し、得られたハロゲン含有繊維、ポリエステル繊維(6.6dtex、カット長51mm)、レーヨン繊維(1.5dtex、カット長38mm)が所定の割合からなる不織布を作成し、難燃性評価法1に基づき実施した。結果を表5に示す。
Figure 2006040873
In addition, the flame retardance of the fiber in an Example was measured as follows using the nonwoven fabric. The flame retardant synthetic fiber was evaluated by the above flame retardant evaluation method 1, the flame retardant fiber composite was evaluated by the flame retardant evaluation method 2, and the upholstered furniture products were evaluated by the flame retardant evaluation method 3. . In the event of a fire, the flame retardant nonwoven fabric of the present invention is sandwiched between surface fabrics such as upholstered furniture such as bed mattresses, chairs, sofas, etc. and urethane foam or stuffed cotton that is an internal structure. This is a simple evaluation method based on the image of preventing the ignition of internal structures. In addition, in the case of the flame retardancy evaluation method 2, comprehensive evaluation was performed in consideration of flame retardancy evaluation and workability evaluation. In the case of pass, it was marked as ◯, and in the case of fail, it was marked as x.
(Flame retardance evaluation method 2)
1) Preparation of non-woven fabric for flame retardancy evaluation test Fibers mixed at a predetermined ratio are opened with a card, and then a non-woven fabric having a basis weight of 200 g / m 2 , 20 cm in length and 20 cm in width is prepared by a needle punch method. It was set as the nonwoven fabric for a property evaluation test.
2) Flame Retardancy Evaluation Test Method Prepare a pearlite plate with a length of 200 mm x width 200 mm x thickness 10 mm with a hole with a diameter of 15 cm, set a non-woven fabric for flame retardant evaluation test on it, and heat At times, the four sides were fixed with clips so that the nonwoven fabric for flame retardancy evaluation test did not shrink. Set this sample with the non-woven fabric for flame retardancy evaluation test facing up, and set it on a gas stove (PA-10H-2) manufactured by Paloma Industry Co., Ltd. so that the center of the sample is aligned with the center of the burner at 40 mm from the burner surface. did. The fuel gas used was propane with a purity of 99% or more, the flame height was 25 mm, and the flame time was 180 seconds. At this time, the case where there is no unevenness in the thickness of the carbonized film of the non-woven fabric for flame retardancy evaluation test and there are no holes or cracks, ◯ that there are no holes or cracks in the carbonized film, or there are no cracks. The evaluation was carried out with x when there was. ◎ or ○ is a pass.
(Flame retardance evaluation method 3)
1) Preparation of flame retardant evaluation test sample After the fibers mixed at a predetermined ratio were opened with a card, a nonwoven fabric having a basis weight of 200 g / m 2 , a weight per unit area of 45 cm and a width of 30 cm was prepared. A urethane foam (length 45 cm × width 30 cm, thickness 53 mm) is placed under the nonwoven fabric, a polyester nonwoven fabric (weighing 300 g / m 2 ) of the same size is placed on the nonwoven fabric, and a polyester fabric (weight is 120 g / m 2 ). Again, these four were fixed with Stapler (registered trademark) so as not to deviate, and used as a flame retardant evaluation test sample.
2) Flame Retardancy Evaluation Test Method Of the bed combustion test method Technical Bulletin 603 (hereinafter referred to as TB603) in California, USA, the test was performed according to the bed top surface test method. That is, a T-shaped burner was set horizontally at a position 39 mm from the upper surface of the sample, and propane gas was used as a combustion gas, and an indirect flame was performed for 70 seconds under conditions of a gas pressure of 101 KPa and a gas flow rate of 12.9 L / min. At this time, ◎ if the carbonized film of the nonwoven fabric has no thickness spots and no holes or cracks, ○ if there is no through hole in the carbonized film, or if there are no cracks, ○, and there is a hole or crack in the lower urethane foam The case where the flame was ignited was evaluated as x. ◎ or ○ is a pass.
(Processability evaluation)
When the card passing property (ease of processing) at the time of producing the nonwoven fabric was good, it was marked as ◎, when possible, ◯, when cotton falling and the like were difficult, and x. ◎ or ○ is a pass.
(Production Example 3)
A resin obtained by dissolving a copolymer (halogen atom ratio: 35%) of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrenesulfonic acid soda in dimethylformamide so that the resin concentration is 30%. Zinc oxide (3 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.), antimony trioxide as antimony compound, and kaolin as other inorganic compound in addition amounts shown in Tables 1, 2, 5, and 6 with respect to the resin weight of the solution (Kaolin ASP170 manufactured by Engelhard) or aluminum hydroxide was added to prepare a spinning dope. Using this spinning dope, a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes,
It was extruded and coagulated in a 50% aqueous dimethylformamide solution, then washed with water, dried at 120 ° C., then stretched 3 times, further heat treated at 150 ° C. for 5 minutes, and further cut to obtain a halogen-containing fiber. The obtained fiber was a fine fiber having a fineness of 5.6 dtex and a cut length of 51 mm.
(Production Example 4)
A copolymer of 49% acrylonitrile, 50.5% vinyl chloride and 0.5% sodium p-styrenesulfonate (halogen atom ratio: 34%) was dissolved in dimethylformamide so that the resin concentration was 30%. Zinc oxide (3 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.), antimony trioxide as antimony compound, and kaolin as other inorganic compound in the addition amounts shown in Tables 3 and 4 with respect to the resin weight of the obtained resin solution (Kaolin ASP170 manufactured by Engelhard) or aluminum hydroxide was added to prepare a spinning dope.
This spinning dope was extruded into a 50% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water, dried at 120 ° C., then stretched 3 times, and further at 130 ° C. A halogen-containing fiber was obtained by heat treatment for 5 minutes and further cutting. The obtained fiber was a fine fiber having a fineness of 5.6 dtex and a cut length of 51 mm.
(Examples 14 to 19, Comparative Examples 8 to 11)
According to Production Example 3, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and kaolin as the other inorganic compound in the amounts shown in Table 5, and the resulting halogen-containing fiber and polyester fiber (6. 6 dtex, cut length 51 mm) and non-woven fabric having rayon fibers (1.5 dtex, cut length 38 mm) in a predetermined ratio were prepared and carried out based on the flame retardancy evaluation method 1. The results are shown in Table 5.

実施例14〜19の燃焼試験結果は良好であり、難燃性評価試験用不織布はガスコンロによる加熱後も亀裂や穴明きの発生がなく、良好な炭化膜を形成した。   The combustion test results of Examples 14 to 19 were good, and the non-woven fabric for flame retardancy evaluation test was free of cracks and holes after heating with a gas stove, and formed a good carbonized film.

これに対して比較例8〜9では、難燃剤の合計量は実施例14と同量であるが、比較例8ではその他無機化合物のカオリンが、比較例9では亜鉛化合物の酸化亜鉛がそれぞれ含まれていないため良好な炭化膜が形成できず、不織布に穴が生じた。   On the other hand, in Comparative Examples 8 to 9, the total amount of the flame retardant is the same as Example 14, but Comparative Example 8 contains kaolin as another inorganic compound, and Comparative Example 9 contains zinc oxide as a zinc compound. As a result, a good carbonized film could not be formed, and holes were formed in the nonwoven fabric.

比較例11では、ハロゲン含有繊維の量が少なく良好な炭化膜が形成されなかった。   In Comparative Example 11, a good carbonized film was not formed with a small amount of halogen-containing fibers.

比較例12では、ハロゲン含有繊維の割合が100%であるために難燃性は良好であるが、天然繊維および/または化学繊維を含まないために不織布作成時の加工性に問題が見られた。実施例14〜19、および比較例8〜11の難燃性評価試験結果を表5に示す。   In Comparative Example 12, the ratio of the halogen-containing fiber is 100%, and thus the flame retardancy is good. However, since natural fibers and / or chemical fibers are not included, there is a problem in processability when creating a nonwoven fabric. . Table 5 shows the flame retardancy evaluation test results of Examples 14 to 19 and Comparative Examples 8 to 11.

Figure 2006040873
(実施例20〜27、比較例12〜14)
製造例3に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物として水酸化アルミニウムを表6の量で添加したハロゲン含有繊維を作成し、得られたハロゲン含有繊維、ポリエステル繊維(6.6dtex、カット長51mm)、レーヨン繊維(1.5dtex、カット長38mm)及び木綿繊維が所定の割合からなる不織布を作成し、難燃性評価法2に基づき実施した。結果を表6に示す。
Figure 2006040873
(Examples 20 to 27, Comparative Examples 12 to 14)
According to Production Example 3, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and aluminum hydroxide as the other inorganic compound in the amounts shown in Table 6, and the resulting halogen-containing fiber and polyester fiber ( A non-woven fabric having a predetermined ratio of 6.6 dtex, cut length 51 mm), rayon fiber (1.5 dtex, cut length 38 mm) and cotton fiber was prepared and carried out based on the flame retardancy evaluation method 2. The results are shown in Table 6.

実施例20〜27の燃焼試験結果は良好であり、難燃性評価試験用不織布はガスコンロによる加熱後も亀裂や穴明きの発生がなく、良好な炭化膜を形成した。   The combustion test results of Examples 20 to 27 were good, and the non-woven fabric for flame retardancy evaluation test did not generate cracks or holes after heating with a gas stove, and formed a good carbonized film.

これに対して比較例12〜14では、難燃剤の合計量は実施例14と同量であるが、比較例12では亜鉛化合物の酸化亜鉛が含まれていないため良好な炭化膜が形成できず、不織布に穴が生じた。   On the other hand, in Comparative Examples 12 to 14, the total amount of the flame retardant is the same as that in Example 14, but in Comparative Example 12, since a zinc oxide of a zinc compound is not included, a good carbonized film cannot be formed. A hole was formed in the nonwoven fabric.

比較例13では、ハロゲン含有繊維の量が少なく良好な炭化膜が形成されなかった。   In Comparative Example 13, a good carbonized film was not formed with a small amount of halogen-containing fibers.

比較例14では、ハロゲン含有繊維の割合が100%であるために難燃性は良好であるが、天然繊維および/または化学繊維を含まないために不織布作成時の加工性に問題が見られた。実施例20〜27、および比較例12〜14の難燃性評価試験結果を表6に示す。   In Comparative Example 14, the flame retardancy was good because the proportion of the halogen-containing fiber was 100%, but there was a problem in processability during the production of the nonwoven fabric because it did not contain natural fibers and / or chemical fibers. . Table 6 shows the flame retardancy evaluation test results of Examples 20 to 27 and Comparative Examples 12 to 14.

Figure 2006040873
(実施例28〜30、比較例15)
製造例4に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリンを表7の量で添加したハロゲン含有繊維を作成し、得られたハロゲン含有繊維、ポリエステル繊維(6.6dtex、カット長51mm)、レーヨン繊維(1.5dtex、カット長38mm)が所定の割合からなる不織布を作成し、難燃性評価法2に基づき実施した。結果を表7に示す。
Figure 2006040873
(Examples 28 to 30, Comparative Example 15)
According to Production Example 4, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and kaolin as the other inorganic compound in the amounts shown in Table 7, and the resulting halogen-containing fiber and polyester fiber (6. 6 dtex, cut length 51 mm) and a non-woven fabric comprising rayon fibers (1.5 dtex, cut length 38 mm) in a predetermined ratio were prepared and carried out based on the flame retardancy evaluation method 2. The results are shown in Table 7.

実施例28〜30の燃焼試験結果は良好であり、難燃性評価試験用不織布はガスコンロによる加熱後も亀裂や穴明きの発生がなく、良好な炭化膜を形成した。   The combustion test results of Examples 28 to 30 were good, and the non-woven fabric for flame retardancy evaluation test was free of cracks and holes after heating with a gas stove, and formed a good carbonized film.

比較例15では、アンチモン化合物量およびカオリン量は実施例28〜30と同量だが、亜鉛化合物の酸化亜鉛が含まれていないため、良好な炭化膜が形成できず、不織布に穴が生じた。実施例28〜30、および比較例15の難燃性評価試験結果を表7に示す。   In Comparative Example 15, the amount of antimony compound and the amount of kaolin were the same as those in Examples 28 to 30, but since a zinc compound zinc oxide was not included, a good carbonized film could not be formed, and holes were formed in the nonwoven fabric. Table 7 shows the flame retardancy evaluation test results of Examples 28 to 30 and Comparative Example 15.

Figure 2006040873
(実施例31〜33、比較例16)
製造例4に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物として水酸化アルミニウムを表8の量で添加したハロゲン含有繊維を作成し、得られたハロゲン含有繊維、ポリエステル繊維(6.6dtex、カット長51mm)、レーヨン繊維(1.5dtex、カット長38mm)が所定の割合からなる不織布を作成し、難燃性評価法2に基づき実施した。結果を表8に示す。
Figure 2006040873
(Examples 31-33, Comparative Example 16)
According to Production Example 4, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and aluminum hydroxide as the other inorganic compound in the amounts shown in Table 8, and the resulting halogen-containing fiber and polyester fiber ( A non-woven fabric having a predetermined ratio of 6.6 dtex, cut length 51 mm) and rayon fiber (1.5 dtex, cut length 38 mm) was prepared and carried out based on the flame retardancy evaluation method 2. The results are shown in Table 8.

実施例31〜33の燃焼試験結果は良好であり、難燃性評価試験用不織布はガスコンロによる加熱後も亀裂や穴明きの発生がなく、良好な炭化膜を形成した。   The combustion test results of Examples 31 to 33 were good, and the non-woven fabric for flame retardancy evaluation test was free of cracks and holes after heating with a gas stove, and formed a good carbonized film.

比較例16では、アンチモン化合物量およびカオリン量は実施例18〜20と同量だが、亜鉛化合物の酸化亜鉛が含まれていないため、良好な炭化膜が形成できず、不織布に穴が生じた。実施例31〜33、および比較例16の難燃性評価試験結果を表8に示す。   In Comparative Example 16, the amount of the antimony compound and the amount of kaolin were the same as those in Examples 18 to 20, but since the zinc compound zinc oxide was not included, a good carbonized film could not be formed, and holes were formed in the nonwoven fabric. Table 8 shows the flame retardancy evaluation test results of Examples 31 to 33 and Comparative Example 16.

Figure 2006040873
(実施例34〜36、比較例17)
製造例3に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリンを表9の量で添加したハロゲン含有繊維を作成し、得られたハロゲン含有繊維、ポリエステル繊維(6.6dtex、カット長51mm)、レーヨン繊維(1.5dtex、カット長38mm)が所定の割合からなる不織布を作成し、難燃性評価法3に基づき実施した。結果を表9に示す。
Figure 2006040873
(Examples 34 to 36, Comparative Example 17)
According to Production Example 3, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and kaolin as the other inorganic compound in the amounts shown in Table 9, and the resulting halogen-containing fiber and polyester fiber (6. 6 dtex, cut length 51 mm) and a non-woven fabric having rayon fibers (1.5 dtex, cut length 38 mm) in a predetermined ratio were prepared and carried out based on flame retardancy evaluation method 3. The results are shown in Table 9.

実施例34〜36の燃焼試験結果は良好であり、良好な炭化膜を形成しウレタンフォームへの着炎は見られなかった。   The combustion test results of Examples 34 to 36 were good, a good carbonized film was formed, and no flame was found on the urethane foam.

比較例17では、アンチモン化合物量およびカオリン量は実施例33〜35と同量だが、亜鉛化合物の酸化亜鉛が含まれていないため、良好な炭化膜が形成できず、ウレタンフォームへ着炎した。実施例34〜36、および比較例17の難燃性評価試験結果を表9に示す。   In Comparative Example 17, the amount of the antimony compound and the amount of kaolin were the same as those in Examples 33 to 35, but since the zinc compound zinc oxide was not included, a good carbonized film could not be formed and the urethane foam was flared. Table 9 shows the results of the flame retardancy evaluation tests of Examples 34 to 36 and Comparative Example 17.

Figure 2006040873
(実施例37〜39、比較例18)
製造例3に従い、亜鉛化合物として酸化亜鉛、アンチモン化合物として三酸化アンチモン、その他無機化合物としてカオリンを表9の量で添加したハロゲン含有繊維を作成し、得られたハロゲン含有繊維、ポリエステル繊維(6.6dtex、カット長51mm)、レーヨン繊維(1.5dtex、カット長38mm)が所定の割合からなる不織布を作成し、難燃性評価法3に基づき実施した。結果を表10に示す。
Figure 2006040873
(Examples 37 to 39, Comparative Example 18)
According to Production Example 3, a halogen-containing fiber was prepared by adding zinc oxide as the zinc compound, antimony trioxide as the antimony compound, and kaolin as the other inorganic compound in the amounts shown in Table 9, and the resulting halogen-containing fiber and polyester fiber (6. 6 dtex, cut length 51 mm) and a non-woven fabric having rayon fibers (1.5 dtex, cut length 38 mm) in a predetermined ratio were prepared and carried out based on flame retardancy evaluation method 3. The results are shown in Table 10.

実施例37〜39の燃焼試験結果は良好であり、良好な炭化膜を形成しウレタンフォームへの着炎は見られなかった。   The combustion test results of Examples 37 to 39 were good, a good carbonized film was formed, and no flame was found on the urethane foam.

比較例18では、アンチモン化合物量およびカオリン量は実施例37〜38と同量だが、亜鉛化合物の酸化亜鉛が含まれていないため、良好な炭化膜が形成できず、ウレタンフォームへ着炎した。実施例37〜39、および比較例18の難燃性評価試験結果を表10に示す。   In Comparative Example 18, the amount of the antimony compound and the amount of kaolin were the same as those in Examples 37 to 38, but since the zinc compound zinc oxide was not included, a good carbonized film could not be formed and the urethane foam was flared. Table 10 shows the results of the flame retardancy evaluation tests of Examples 37 to 39 and Comparative Example 18.

Figure 2006040873
Figure 2006040873

Claims (16)

ハロゲン原子を17重量%以上含む重合体100重量部に対し、亜鉛化合物3〜50重量部、アンチモン化合物0〜30重量部、および他の無機化合物3〜30重量部からなり、かつ前記亜鉛化合物とアンチモン化合物および他の無機化合物の合計が15重量部以上である難燃性合成繊維。   It consists of 3 to 50 parts by weight of a zinc compound, 0 to 30 parts by weight of an antimony compound, and 3 to 30 parts by weight of another inorganic compound with respect to 100 parts by weight of a polymer containing 17% by weight or more of halogen atoms. A flame retardant synthetic fiber having a total of 15 parts by weight or more of an antimony compound and other inorganic compounds. ハロゲン原子を17重量%以上含む重合体が、アクリロニトリル30〜70重量部、ハロゲン含有ビニルおよび/またはハロゲン含有ビニリデン単量体70〜30重量部、およびこれらと共重合可能なビニル系単量体0〜10重量部からなる請求項1の難燃性合成繊維。   The polymer containing 17% by weight or more of halogen atom is 30 to 70 parts by weight of acrylonitrile, 70 to 30 parts by weight of halogen-containing vinyl and / or halogen-containing vinylidene monomer, and vinyl monomer 0 copolymerizable therewith. The flame-retardant synthetic fiber according to claim 1, comprising from 10 to 10 parts by weight. 亜鉛化合物が、亜鉛、酸化亜鉛、硼酸亜鉛、錫酸亜鉛、炭酸亜鉛から選ばれる化合であることを特徴とする請求項1または2いずれかに記載の難燃性合成繊維。   The flame-retardant synthetic fiber according to claim 1 or 2, wherein the zinc compound is a compound selected from zinc, zinc oxide, zinc borate, zinc stannate, and zinc carbonate. 前記他の無機化合物が、カオリン、ゼオライト、モンモリロナイト、タルク、パーライト、ベントナイト、バーミキュライト、珪藻土、黒鉛等の天然もしくは合成鉱産物系化合物、水酸化アルミニウム、硫酸アルミニウム、ケイ酸アルミニウム等のアルミニウム系化合物、水酸化マグネシウム、酸化マグネシウム等のマグネシウム化合物、シリケート、ガラス等のケイ素化合物から選ばれる化合物であることを特徴とする請求項3に記載の難燃性合成繊維。   Said other inorganic compounds are kaolin, zeolite, montmorillonite, talc, perlite, bentonite, vermiculite, diatomaceous earth, graphite or other natural or synthetic mineral compounds, aluminum hydroxide, aluminum sulfate, aluminum silicate and other aluminum compounds, The flame-retardant synthetic fiber according to claim 3, which is a compound selected from magnesium compounds such as magnesium hydroxide and magnesium oxide, and silicon compounds such as silicate and glass. ハロゲン原子を17重量%以上含む重合体100重量部に対し、亜鉛化合物3〜30重量部、アンチモン化合物0〜30重量部、および他の無機化合物としてカオリンあるいは水酸化アルミニウム3〜30重量部からなり、かつ亜鉛化合物とアンチモン化合物および前記無機化合物の合計が20〜50重量部である請求項3に記載の難燃性合成繊維。   It consists of 3 to 30 parts by weight of a zinc compound, 0 to 30 parts by weight of an antimony compound, and 3 to 30 parts by weight of kaolin or aluminum hydroxide as another inorganic compound with respect to 100 parts by weight of a polymer containing 17% by weight or more of a halogen atom. The flame retardant synthetic fiber according to claim 3, wherein the total of the zinc compound, the antimony compound and the inorganic compound is 20 to 50 parts by weight. ハロゲン原子を17重量%以上含む重合体100重量部に対し、亜鉛化合物を3〜50重量部、アンチモン化合物0〜30重量部、他の無機化合物3〜30重量部を含み、かつ亜鉛化合物とアンチモン化合物および他の無機化合物の合計量が15重量部以上である繊維(A)10重量部以上と、天然繊維および/または化学繊維のうち少なくとも1種の繊維(B)90重量部以下からなる難燃繊維複合体。   3 to 50 parts by weight of a zinc compound, 0 to 30 parts by weight of an antimony compound, 3 to 30 parts by weight of another inorganic compound, and 3 to 30 parts by weight of another inorganic compound with respect to 100 parts by weight of a polymer containing 17% by weight or more of a halogen atom. Difficulty consisting of 10 parts by weight or more of fibers (A) in which the total amount of the compound and other inorganic compounds is 15 parts by weight or more, and 90 parts by weight or less of at least one kind of fiber (B) among natural fibers and / or chemical fibers Fuel fiber composite. ハロゲン原子を17重量%以上含む重合体が、アクリロニトリル30〜70重量%、ハロゲン含有ビニルおよび/またはハロゲン含有ビニリデン単量体70〜30重量%およびこれらと共重合可能なビニル系単量体0〜10重量%よりなる共重合体である請求項6に記載の難燃繊維複合体。   A polymer containing 17% by weight or more of halogen atom is 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of halogen-containing vinyl and / or halogen-containing vinylidene monomer, and vinyl monomer 0 to copolymerize with these. The flame-retardant fiber composite according to claim 6, which is a copolymer comprising 10% by weight. 亜鉛化合物が、亜鉛、酸化亜鉛、硼酸亜鉛、錫酸亜鉛、炭酸亜鉛から選ばれる化合物であることを特徴とする請求項7に記載の難燃繊維複合体。 The flame retardant fiber composite according to claim 7, wherein the zinc compound is a compound selected from zinc, zinc oxide, zinc borate, zinc stannate, and zinc carbonate. 前記その他無機化合物が、カオリン、ゼオライト、モンモリロナイト、タルク、パーライト、ベントナイト、バーミキュライト、珪藻土、黒鉛等の天然もしくは合成鉱産物系化合物、水酸化アルミニウム、硫酸アルミニウム、ケイ酸アルミニウム等のアルミニウム系化合物、水酸化マグネシウム、酸化マグネシウム等のマグネシウム化合物、シリケート、ガラス等のケイ素化合物から選ばれる化合物であることを特徴とする請求項6、7または請求項8記載の難燃繊維複合体。   The other inorganic compounds are natural or synthetic mineral compounds such as kaolin, zeolite, montmorillonite, talc, perlite, bentonite, vermiculite, diatomaceous earth, graphite, aluminum compounds such as aluminum hydroxide, aluminum sulfate, aluminum silicate, water, etc. The flame retardant fiber composite according to claim 6, 7 or 8, wherein the flame retardant fiber composite is a compound selected from magnesium compounds such as magnesium oxide and magnesium oxide, and silicon compounds such as silicate and glass. 天然繊維および/または化学繊維のうち少なくとも1種の繊維(B)の化学繊維としてポリエステル系繊維を40重量部以下含む請求項9に記載の難燃繊維複合体。   The flame-retardant fiber composite according to claim 9, comprising 40 parts by weight or less of a polyester fiber as a chemical fiber of at least one kind of natural fiber and / or chemical fiber (B). ポリエステル系繊維が低融点バインダー繊維であることを特徴とする請求項10に記載の難燃繊維複合体。   The flame-retardant fiber composite according to claim 10, wherein the polyester fiber is a low-melting-point binder fiber. 請求項6、7または請求項8のいずれかに記載の難燃繊維複合体からなる不織布。   A nonwoven fabric comprising the flame retardant fiber composite according to any one of claims 6, 7 and 8. 請求項12に記載の炎遮蔽バリア用不織布。   The nonwoven fabric for flame shielding barriers of Claim 12. 請求項6、7または請求項8のいずれかに記載の難燃繊維複合体を用いた布張り家具製品。   A upholstered furniture product using the flame retardant fiber composite according to any one of claims 6, 7 and 8. 請求項12に記載の不織布を用いた布張り家具製品。   The upholstered furniture product using the nonwoven fabric of Claim 12. 請求項13に記載の炎遮蔽バリア用不織布を用いた布張り家具製品。   The upholstered furniture product using the nonwoven fabric for flame shielding barriers of Claim 13.
JP2006540842A 2004-10-08 2005-08-10 Flame retardant synthetic fibers, flame retardant fiber composites and upholstered furniture products using the same Withdrawn JPWO2006040873A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004296443 2004-10-08
JP2004296443 2004-10-08
JP2004299406 2004-10-13
JP2004299406 2004-10-13
PCT/JP2005/014692 WO2006040873A1 (en) 2004-10-08 2005-08-10 Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product made with the same

Publications (1)

Publication Number Publication Date
JPWO2006040873A1 true JPWO2006040873A1 (en) 2008-05-15

Family

ID=36148175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006540842A Withdrawn JPWO2006040873A1 (en) 2004-10-08 2005-08-10 Flame retardant synthetic fibers, flame retardant fiber composites and upholstered furniture products using the same

Country Status (5)

Country Link
EP (1) EP1798318B1 (en)
JP (1) JPWO2006040873A1 (en)
AT (1) ATE486160T1 (en)
DE (1) DE602005024423D1 (en)
WO (1) WO2006040873A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093562A1 (en) * 2008-01-21 2009-07-30 Kaneka Corporation Flame-retardant fiber, flame-retardant fiber sheet, method for production of the fiber, and method for production of the fiber sheet
WO2011045673A1 (en) 2009-10-13 2011-04-21 Lenzing Aktiengesellschaft Flame-retardant lyocell fibers and use thereof in flame barriers
AU2011245379B2 (en) * 2010-04-30 2015-03-12 Drifire, Llc Fiber blends for garments with high thermal, abrasion resistance, and moisture management properties
EP2896634B1 (en) * 2014-01-16 2016-05-04 Formosa Plastics Corporation Method for preparing a flame retardant modified acrylonitrile-based copolymer and a flame retardant fibrous material
CN105113286A (en) * 2015-07-28 2015-12-02 太仓市宝明化纤有限公司 High-fixation high-flame retardation polyester fabric dyeing and finishing technology

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436702B2 (en) * 1972-10-18 1979-11-10
JPS526371B2 (en) * 1973-07-06 1977-02-22
US3983290A (en) * 1974-09-03 1976-09-28 Stauffer Chemical Company Fire retardant polyvinyl chloride containing compositions
US3985706A (en) * 1975-03-24 1976-10-12 The Firestone Tire & Rubber Company Smoke-retardant for chlorinated polyethylene and vinyl chloride polymers
JPS5930803B2 (en) * 1976-08-24 1984-07-28 鐘淵化学工業株式会社 Acrylic synthetic fiber with excellent flame retardancy
JPS6189339A (en) * 1984-10-05 1986-05-07 鐘淵化学工業株式会社 Composite fire retardant fiber
US5342874A (en) * 1989-07-21 1994-08-30 Alcan International Limited Flame retardant polymer formulation
JP3004107B2 (en) * 1991-11-26 2000-01-31 鐘淵化学工業株式会社 Flame retardant fiber composite
JP3525237B2 (en) * 1996-06-12 2004-05-10 鐘淵化学工業株式会社 Flame retardant fiber composite using halogen-containing fiber
DE60044507D1 (en) * 1999-11-04 2010-07-15 Kaneka Corp FLAME-INHIBITING MIXED TISSUE
JP3797170B2 (en) * 2001-09-25 2006-07-12 株式会社カネカ Acrylic synthetic fibers and fiber composites thereof

Also Published As

Publication number Publication date
WO2006040873A1 (en) 2006-04-20
EP1798318A1 (en) 2007-06-20
ATE486160T1 (en) 2010-11-15
DE602005024423D1 (en) 2010-12-09
EP1798318B1 (en) 2010-10-27
EP1798318A4 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
TWI408266B (en) Flame retardant synthetic fiber, flame retardant fiber composite, production method therefor and textile product
JP4308820B2 (en) Flame retardant fiber composite and fabric produced using the same
TWI530597B (en) A flame retardant fiber aggregate and a method for manufacturing the same, and a fiber product
KR102654523B1 (en) Flame retardant fiber composites and flame retardant coveralls
WO2005103346A1 (en) Flame-retardant synthetic fiber and frame-retarded textile goods made by using the same
JPWO2006040873A1 (en) Flame retardant synthetic fibers, flame retardant fiber composites and upholstered furniture products using the same
JP2007291570A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and nonwoven fabric as flame-blocking barrier
JP4346566B2 (en) Flame-retardant synthetic fiber, flame-retardant fiber composite using the flame-retardant synthetic fiber, and upholstered furniture products using the flame-retardant fiber composite
WO2006121160A1 (en) Flame-retardant nonwoven fabric and upholstered furniture product made with the same
JP2007291571A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and flame-retardant mattress using the same
JP4777892B2 (en) Flame retardant synthetic fiber, flame retardant fiber composite and upholstered furniture product using the same
US20070237953A1 (en) Flame resistant synthetic fiber, flame resistant fiber composite and upholstered furniture products using the same
JP2007270409A (en) Flame-retardant synthetic fiber and flame-retardant mattress using the same
JP2009242957A (en) Flame-retardant synthetic fiber, flame shielding cloth using the same, and flame-retardant upholstered product
JP2007270411A (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product using the same
WO2010010639A1 (en) Flame-retardant synthetic fiber, process for production of the same, flame-retarddant fiber composites and textile products
JP2007308849A (en) Flame-retardant synthetic fiber, frame-retardant fiber composite material and upholstered furniture using the same
JPWO2006008958A1 (en) Flame-retardant synthetic fibers, flame-retardant fiber composites and upholstered furniture products using flame-retardant fiber composites
WO2022181337A1 (en) Flame-resistant acrylic fibers, flame-resistant fiber composite, and flame-resistant mattress
WO2023100484A1 (en) Flame-retardant fabric, and flame retardant mattress including same
JP2024049407A (en) Flame-retardant acrylic synthetic fiber and flame-retardant fiber composite comprising the same
JP2007169794A (en) Flame retardant synthetic fiber, flame retardant composite fiber and upholstered furniture product using the same
JP2007270408A (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080305

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104