JPS5930803B2 - Acrylic synthetic fiber with excellent flame retardancy - Google Patents
Acrylic synthetic fiber with excellent flame retardancyInfo
- Publication number
- JPS5930803B2 JPS5930803B2 JP10138676A JP10138676A JPS5930803B2 JP S5930803 B2 JPS5930803 B2 JP S5930803B2 JP 10138676 A JP10138676 A JP 10138676A JP 10138676 A JP10138676 A JP 10138676A JP S5930803 B2 JPS5930803 B2 JP S5930803B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- zinc
- flame retardancy
- acrylonitrile
- acrylic synthetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】
本発明は、染色性の良好でかつ難燃性に優れたアクリル
系合成繊維に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acrylic synthetic fiber that has good dyeability and excellent flame retardancy.
詳しくは、本発明は、主としてアクリロニトリルと塩化
ビニル及び又は塩化ビニリデンから成るアクリロニトリ
ル系重合体と、微粒化した蓚酸亜鉛、燐酸亜鉛又は硼酸
亜鉛とから成る染色性良好でかつ難燃強化されたアクリ
ル系合成繊維に関するものである。Specifically, the present invention provides an acrylic polymer with good dyeability and enhanced flame retardancy, which is made of an acrylonitrile polymer mainly composed of acrylonitrile, vinyl chloride, and/or vinylidene chloride, and finely divided zinc oxalate, zinc phosphate, or zinc borate. It concerns synthetic fibers.
アクリル系合成繊維のうち、塩化ビニル及び又は塩化ビ
ニリデンを比較的多(含むものは、アクリル繊維の風合
を保ちつつ、難燃性においてアクリル繊維よりはるかに
優れている事は良く知られている。It is well known that among acrylic synthetic fibers, those containing relatively high amounts of vinyl chloride and/or vinylidene chloride maintain the texture of acrylic fibers, but are far superior in flame retardancy to acrylic fibers. .
また、難燃性に対する社会的要求はますます高度になり
つつあり、本発明者等はこの要求に答えるべく、少量の
添加で難燃効果の大きい添加剤を検討して来た。In addition, social demands for flame retardancy are becoming increasingly sophisticated, and in order to meet this demand, the present inventors have been studying additives that have a large flame retardant effect even when added in small amounts.
難燃性を向上させる為の添加剤は多くのものが知られて
いるが、これらの中で、アクリル系合成繊維に少量の添
加で効果があり、しかも染色性などの実用的な面で問題
のないものは少ない。Many additives are known to improve flame retardancy, but among these, there are some that are effective when added in small amounts to acrylic synthetic fibers, but also have practical problems such as dyeability. There are few things without it.
例えば酸化亜鉛、炭酸亜鉛等の亜鉛化合物も知られてい
るが、これ等の亜鉛化合物は、アクリル系合成繊維の難
燃性の向上に少量の添加で有効であるが、カチオン染料
により染色を行なう場合染料変色を起こし、実用上使用
は難しい。For example, zinc compounds such as zinc oxide and zinc carbonate are also known, but these zinc compounds are effective in improving the flame retardance of acrylic synthetic fibers when added in small amounts, but they cannot be dyed with cationic dyes. In this case, the dye changes color, making it difficult to use practically.
そこで、本発明者等は、染料変色の問題を解決するべく
鋭意検討した結果、亜鉛化合物の中で特に蓚酸亜鉛、燐
酸亜鉛及び硼酸亜鉛を少量添加した場合には染色性をそ
こなう事なく難燃性に優れたアクリル系合成繊維の得ら
れる事を見出し本発明に到達した。Therefore, as a result of intensive studies to solve the problem of dye discoloration, the present inventors found that among zinc compounds, especially zinc oxalate, zinc phosphate, and zinc borate, when added in small amounts, flame retardancy was achieved without impairing dyeing properties. The inventors have discovered that it is possible to obtain acrylic synthetic fibers with excellent properties and have arrived at the present invention.
すなわち本発明は、アクリロニトリル20〜80重量%
と塩化ビニル及び又は塩化ビニリデン80〜20重量%
から成るアクリロニトリル系重合体に、蓚酸亜鉛、燐酸
亜鉛、硼酸亜鉛の1種又は2種以上を、アクリロニトリ
ル系重合体に対して0.4〜20重量%添加し紡糸して
なるアクリル系合成繊維である。That is, the present invention uses 20 to 80% by weight of acrylonitrile.
and vinyl chloride and/or vinylidene chloride 80-20% by weight
An acrylic synthetic fiber made by adding 0.4 to 20% by weight of zinc oxalate, zinc phosphate, and zinc borate to an acrylonitrile polymer consisting of be.
本発明に用いられるアクリロニトリル系重合体は、アク
リロニトリル20〜80重量%と塩化ビニル及び又は塩
化ビニリデン80〜20重量%から成るものであり、こ
れらと共重合可能なオレフィン系単量体を共重合させて
も一同にさしつかえない。The acrylonitrile polymer used in the present invention is composed of 20 to 80% by weight of acrylonitrile and 80 to 20% by weight of vinyl chloride and/or vinylidene chloride, and an olefinic monomer that can be copolymerized with these is copolymerized. However, I can't stand all of you.
しかしながらアクリロニトリル含量が80重量%以上で
は難燃強化するのが非常に困難であり、又20重量%以
下ではアクリル系合成繊維としての性質に欠ける。However, if the acrylonitrile content is 80% by weight or more, it is very difficult to strengthen the flame retardancy, and if the acrylonitrile content is less than 20% by weight, it lacks the properties as an acrylic synthetic fiber.
ここにおいてもオレフィン系単量体とは、アクリロニト
リル、塩化ビニル又は塩化ビニリデンと共重合し得るも
のであれば使用でき、特に限定されるものではないが、
アクリル酸メチル、メタクリル酸メチル、酢酸ビニル、
メタリルスルホン酸ソーダ、スルホプロピルメタクリル
酸ソーダ、パラスチレンスルホン酸ソーダ、アクリルア
ミド、メタクリルアミド又は臭化ビニル、臭化ビニリデ
ン等の染色性その他物性改善等の目的に用いられるもの
や、重合性乳化剤等が一般に用いられる。Here, the olefinic monomer is not particularly limited, but can be used as long as it can be copolymerized with acrylonitrile, vinyl chloride, or vinylidene chloride.
Methyl acrylate, methyl methacrylate, vinyl acetate,
Sodium methallyl sulfonate, sodium sulfopropyl methacrylate, sodium p-styrene sulfonate, acrylamide, methacrylamide, vinyl bromide, vinylidene bromide, etc. used for the purpose of improving dyeability and other physical properties, polymerizable emulsifiers, etc. is commonly used.
本発明に用いられる難燃剤は、蓚酸亜鉛、燐酸亜鉛、硼
酸亜鉛の単独又はこれらの組合わせであり、又これらと
他の難燃剤との組合わせでも使用し得る。The flame retardants used in the present invention are zinc oxalate, zinc phosphate, and zinc borate alone or in combination, and may also be used in combination with other flame retardants.
これらと組合わせる難燃剤は、例えば三酸化アンチモン
、メタスズ酸等の無機金属化合物、ヘキサブロムベンゼ
ン等の芳香族ハロゲン化物、塩化パラフィン等の脂肪族
ハロゲン化物、トリス(2・3−ジブロムグロビル)フ
ォスフェート等の含ハロゲン燐化合物、ジブチルアミノ
フォスフェート等の有機燐化合物、ポリリン酸アンモニ
ウム等の無機燐化合物などである。Flame retardants to be combined with these include, for example, inorganic metal compounds such as antimony trioxide and metastannic acid, aromatic halides such as hexabromobenzene, aliphatic halides such as chlorinated paraffin, and tris(2,3-dibromoglobyl) phosphate. These include halogen-containing phosphorus compounds such as, organic phosphorus compounds such as dibutylaminophosphate, and inorganic phosphorus compounds such as ammonium polyphosphate.
上記の蓚酸亜鉛、燐酸亜鉛、硼酸亜鉛は単独又はこれら
の併用又は他の難燃剤との組合せで用いられるが、アク
リロニトリル系重合体に対して0.4重量%以上添加す
れば難燃性が向上し、更に添加量を多(すれば難燃効果
はより太き(なる。The above-mentioned zinc oxalate, zinc phosphate, and zinc borate can be used alone, in combination, or in combination with other flame retardants, but if added at 0.4% by weight or more to the acrylonitrile polymer, the flame retardance will improve. However, if the amount added is increased, the flame retardant effect will be even greater.
添加量が0.4重量%未満では効果は明らかでなく、又
20重量%以上になると繊維の性質に悪影響を与え経済
的にも不利である。If the amount added is less than 0.4% by weight, the effect is not obvious, and if it is more than 20% by weight, it will adversely affect the properties of the fibers and is economically disadvantageous.
難燃剤として三酸化アンチモン、メタスズ酸等をこれら
の亜鉛化合物と組み合せて用いる場合も、合計難燃剤量
が20重量%までであることが好ましい。Even when antimony trioxide, metastannic acid, etc. are used as a flame retardant in combination with these zinc compounds, the total amount of flame retardant is preferably up to 20% by weight.
蓚酸亜鉛、燐酸亜鉛、硼酸亜鉛を用いた場合に染料変色
の起らない理由は明確ではないが、蓚酸亜鉛、燐酸亜鉛
、硼酸亜鉛は他の亜鉛化合物と異なり、弱酸の染色浴で
は安定で溶出しないかあるいは若干溶出しても染色浴P
Hを上昇させない為と推測される。It is not clear why dye discoloration does not occur when zinc oxalate, zinc phosphate, or zinc borate is used, but unlike other zinc compounds, zinc oxalate, zinc phosphate, and zinc borate are stable in weak acid dye baths and do not elute. Even if it does not elute or elutes slightly, the staining bath P
It is assumed that this is to prevent H from increasing.
これらの添加剤をアクリロニトリル系重合体に添加して
から紡糸するのであるが、その方法は乾式紡糸、湿式紡
糸のいずれでも良い。These additives are added to the acrylonitrile polymer before spinning, and the method may be either dry spinning or wet spinning.
その際、溶剤はアクリロニトリル系重合体を溶解するも
のであれば良く、例えばアセトン、アセトニトリル、ジ
メチルホルムアミド、ジメチルアセトアミド等がある。In this case, the solvent may be any solvent as long as it dissolves the acrylonitrile polymer, such as acetone, acetonitrile, dimethylformamide, dimethylacetamide, and the like.
次に実施例を示すが、その前に繊維の難燃性の評価法に
ついて説明する。Next, Examples will be shown, but before that, a method for evaluating the flame retardance of fibers will be explained.
難燃性の評価は酸素指数法(JIS K7201−1
972)によった。Flame retardancy was evaluated using the oxygen index method (JIS K7201-1
972).
酸素指数法は、酸素と窒素の混合比を変えていき燃焼を
継続させるのに必要な最低酸素濃度を測定するものであ
る。The oxygen index method measures the minimum oxygen concentration required to continue combustion by changing the mixing ratio of oxygen and nitrogen.
一般に、繊維の難燃性は織物の状態で評価されるが、織
物では、糸の撚り数、太さ、打込本数等により燃焼性に
差を生じ、繊維自体の難燃性の評価はしに(い。Generally, the flame retardancy of fibers is evaluated in the state of woven fabrics, but in woven fabrics, the combustibility varies depending on the number of twists, thickness, number of threads, etc., so it is difficult to evaluate the flame retardance of the fibers themselves. ni (i.
そこで、できるだけ繊維自体の難燃性を評価するために
、フィラメントに撚りをかげなわ状の試料を作りこれを
酸素指数法により評価した。Therefore, in order to evaluate the flame retardance of the fiber itself as much as possible, a twisted filament sample was prepared and evaluated using the oxygen index method.
即ち、3デニール、300本のフィラメント12本に撚
りをかけ、これを熱セットして酸素指数試験器のホルダ
ーに直立させ、この試料が5CrIL燃え続けるのに必
要な酸素パーセントの測定を行なった。That is, 12 filaments of 3 denier and 300 pieces were twisted, heat set, and stood upright in the holder of an oxygen index tester, and the percentage of oxygen required for this sample to continue burning as 5CrIL was measured.
実施例 1
繊維基材樹脂組成物がアクリロニトリル50.0重量%
、塩化ビニル46.0重量%、アクリル酸メチル3.0
重量%、パラスチレンスルホン酸ソーダ1.0重量%よ
りなるアクリロニトリル系重合体を、アセトンに樹脂濃
度で20.0重量%になる様に溶解して、これに次に示
す様な各種難燃剤を添加し紡糸原液を調整した。Example 1 Fiber base resin composition contains 50.0% by weight of acrylonitrile
, vinyl chloride 46.0% by weight, methyl acrylate 3.0
An acrylonitrile polymer consisting of 1.0% by weight of sodium p-styrene sulfonate was dissolved in acetone to a resin concentration of 20.0% by weight, and various flame retardants as shown below were added to this. was added to prepare a spinning stock solution.
次にこの原液をノズル孔径0.1φ1のノズルを用いて
アセトン−水系で紡糸し、120℃で乾燥後300%熱
延伸して、140℃で5分間熱処理を行ない、先に述べ
た方法で試料を作成し、各試料の難燃性を先に述べた酸
素指数法により評価した。Next, this stock solution was spun in an acetone-water system using a nozzle with a nozzle diameter of 0.1φ1, dried at 120°C, then hot-stretched by 300%, heat-treated at 140°C for 5 minutes, and sampled using the method described above. The flame retardancy of each sample was evaluated using the oxygen index method described above.
表1から明らかな様に、蓚酸亜鉛、燐酸亜鉛、硼酸亜鉛
を添加したものは他の亜鉛化合物を添加したものと同様
に酸素指数が増加し、難燃性の向上が認められる。As is clear from Table 1, the oxygen index increases in the materials to which zinc oxalate, zinc phosphate, and zinc borate are added, similar to those to which other zinc compounds are added, and an improvement in flame retardancy is recognized.
またこれらの難燃剤添加ファイバーを、通常行なわれて
いる条件で染色し、染色ファイバーの反射率(R)を4
20m1t、560mμ、640mμで測定し、染色変
色の度合を、Kubelka −Munk関数(K/S
)=(1−R)2/ 2Rを求めることによって判定
した。In addition, these flame retardant-added fibers were dyed under normal conditions, and the reflectance (R) of the dyed fibers was 4.
The degree of staining discoloration was measured using the Kubelka-Munk function (K/S
)=(1-R)2/2R.
結果は表1に示す通り、蓚酸亜鉛、燐酸亜鉛、硼酸亜鉛
を添加したファイバーでは染料変色は認められなかった
。As shown in Table 1, no dye discoloration was observed in the fibers to which zinc oxalate, zinc phosphate, and zinc borate were added.
染色条件
実施例 2
繊維基材樹脂組成が、アクリロニトリル54重量%、塩
化ビニル35重量%、塩化ビニリデン11重量%よりな
るアクリロニトリル系重合体を、ジメチルホルムアミド
に樹脂濃度24.0重量%になる様に溶解して、これに
硼酸亜鉛を樹脂に対して0.4〜20重量%添加して、
実施例1と同様に紡糸し実施例と同様に作成した試料の
難燃性を酸素指数法によってはかった結果は表2の通り
であった。Dyeing Condition Example 2 An acrylonitrile polymer whose fiber base resin composition is 54% by weight of acrylonitrile, 35% by weight of vinyl chloride, and 11% by weight of vinylidene chloride was added to dimethylformamide so that the resin concentration was 24.0% by weight. Dissolve and add 0.4 to 20% by weight of zinc borate based on the resin,
The flame retardancy of a sample prepared in the same manner as in Example 1 and spun in the same manner as in Example 1 was measured by the oxygen index method, and the results are shown in Table 2.
実施例 3
アクリロニトリル38.0重量%、塩化ビニル61重量
%、スルホプロピルメタクリル酸ソーダ1.0重量%よ
り成るアクリロニトリル系重合体をアセトンに樹脂濃度
が23重量%になる様に溶解し、これに下記の様に種々
の難燃剤を蓚酸亜鉛と組合わせて添加し、実施例1と同
様な条件で紡糸した。Example 3 An acrylonitrile polymer consisting of 38.0% by weight of acrylonitrile, 61% by weight of vinyl chloride, and 1.0% by weight of sulfopropyl sodium methacrylate was dissolved in acetone to a resin concentration of 23% by weight, and Various flame retardants were added in combination with zinc oxalate as described below, and spinning was carried out under the same conditions as in Example 1.
実施例1と同様に試料を作成し、測定した難燃性は表3
の通りで併用の効果が認められた。Samples were prepared in the same manner as in Example 1, and the measured flame retardance is shown in Table 3.
The effectiveness of the combination was observed.
しかも実施例1と同様染料変色は認められず良好であっ
た。Furthermore, as in Example 1, no dye discoloration was observed and the result was good.
実施例 4
塩化ビニルとアクリロニトリルの下記の割合より成るア
クリロニトリル系重合体をジメチルホルムアミドに溶解
して紡糸原液を調整し、これに燐酸亜鉛を樹脂に対して
5重量%添加して紡糸した繊維について実施例1と同様
に測定した難燃性(酸素指数)は表4の通りであった。Example 4 An acrylonitrile polymer consisting of vinyl chloride and acrylonitrile in the following proportions was dissolved in dimethylformamide to prepare a spinning stock solution, and 5% by weight of zinc phosphate was added to the resin, and the resulting fiber was spun. The flame retardance (oxygen index) measured in the same manner as in Example 1 was as shown in Table 4.
Claims (1)
び又は塩化ビニリデン80〜20重量%から成るアクリ
ロニトリル系重合体に、蓚酸亜鉛、燐酸亜鉛、硼酸亜鉛
のうちから選ばれた1種又は2種以上を、該重合体に対
して0.4〜20重量%添加し紡糸してなる染色性良好
な難燃性に優れたアクリル系合成繊維。 2 三酸化アンチモン及び又はメタスズ酸を、合計難燃
剤量が重合体に対して20重量%までとなるように添加
する特許請求の範囲第1項記載のアクリル系合成繊維。[Claims] 1. An acrylonitrile polymer consisting of 20 to 80% by weight of acrylonitrile and 80 to 20% by weight of vinyl chloride and/or vinylidene chloride, and one or more selected from zinc oxalate, zinc phosphate, and zinc borate. An acrylic synthetic fiber with good dyeability and excellent flame retardancy, which is obtained by adding two or more types in an amount of 0.4 to 20% by weight based on the polymer and spinning the fiber. 2. The acrylic synthetic fiber according to claim 1, wherein antimony trioxide and/or metastannic acid are added such that the total amount of flame retardant is up to 20% by weight based on the polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10138676A JPS5930803B2 (en) | 1976-08-24 | 1976-08-24 | Acrylic synthetic fiber with excellent flame retardancy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10138676A JPS5930803B2 (en) | 1976-08-24 | 1976-08-24 | Acrylic synthetic fiber with excellent flame retardancy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5328728A JPS5328728A (en) | 1978-03-17 |
JPS5930803B2 true JPS5930803B2 (en) | 1984-07-28 |
Family
ID=14299313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10138676A Expired JPS5930803B2 (en) | 1976-08-24 | 1976-08-24 | Acrylic synthetic fiber with excellent flame retardancy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5930803B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5789613A (en) * | 1980-11-26 | 1982-06-04 | Kanegafuchi Chem Ind Co Ltd | Flame-retardant acrylic synthetic fiber |
JP2505352B2 (en) * | 1992-07-27 | 1996-06-05 | 鐘淵化学工業株式会社 | Composite flame retardant fiber |
JP2505377B2 (en) * | 1994-07-25 | 1996-06-05 | 鐘淵化学工業株式会社 | Composite flame retardant fiber |
EP1743962B1 (en) * | 2004-04-27 | 2011-08-10 | Kaneka Corporation | Flame retardant synthetic fiber and flame retardant textile goods made by using the same. |
DE602005024423D1 (en) * | 2004-10-08 | 2010-12-09 | Kaneka Corp | FLAME-RESISTANT SYNTHETIC FIBER, FLAME-REDUCING FIBER COMPOSITE, AND CUSHIONING MACHINE MADE THEREFOR |
FR2893032A1 (en) * | 2005-11-04 | 2007-05-11 | Dgtec Soc Par Actions Simplifi | Polymer, useful in e.g. deprived dwelling, comprises e.g. carbonates of aluminum, yttrium and zinc and oxalates of magnesium, calcium, yttrium and zinc |
-
1976
- 1976-08-24 JP JP10138676A patent/JPS5930803B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5328728A (en) | 1978-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5208105A (en) | Flame-retarded composite fiber | |
US5503916A (en) | Flame-retarded clothing | |
US4127698A (en) | Composite fiber | |
JP2593987B2 (en) | Manufacturing method of flame retardant fiber composite | |
JPS5930803B2 (en) | Acrylic synthetic fiber with excellent flame retardancy | |
EP0053354A1 (en) | Fire retardant acrylic fibers | |
US4447568A (en) | Flame-retardant polyacrylonitrile fiber | |
EP0041833B1 (en) | Acrylic fiber having improved basic dyeability and process therefor | |
US4007232A (en) | Acrylic synthetic fiber superior in non-inflammability | |
EP1498523A1 (en) | Interlaced fabric with high flame retardancy | |
CN105887482B (en) | A kind of preparation method of the fire-retardant polyacrylonitrile fire resistance fibre containing high vertical structure polyacrylonitrile | |
JPS60110940A (en) | Composite fire retardant fiber | |
US3626684A (en) | Wool-like acrylic for double knits | |
JPS6336367B2 (en) | ||
JP2505352B2 (en) | Composite flame retardant fiber | |
JPH1088448A (en) | Flame retardant composite fabric having improved wear resistance | |
US4022750A (en) | Process for the production of a halogen-containing arcylic synthetic fiber improved in flame retardancy | |
US4169876A (en) | Process for spinning flame-resistant acrylonitrile polymer fibers | |
JP2505377B2 (en) | Composite flame retardant fiber | |
JP2898563B2 (en) | Flame retardant method for combustible fibers | |
JP2593988B2 (en) | Textile products for clothing | |
JP2593989B2 (en) | Interior textile products | |
US2872424A (en) | Fiber-forming composition comprising cellulose acetate and acrylonitrile copolymer and fiber consisting essentially of same | |
JPS59211617A (en) | Flame-retardant acrylic synthetic fiber | |
JP2812672B2 (en) | Manufacturing method of flame retardant fiber composite |