[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2004051091A1 - Diffuser for centrifugal compressor and manufacturing method thereof - Google Patents

Diffuser for centrifugal compressor and manufacturing method thereof Download PDF

Info

Publication number
JPWO2004051091A1
JPWO2004051091A1 JP2004556912A JP2004556912A JPWO2004051091A1 JP WO2004051091 A1 JPWO2004051091 A1 JP WO2004051091A1 JP 2004556912 A JP2004556912 A JP 2004556912A JP 2004556912 A JP2004556912 A JP 2004556912A JP WO2004051091 A1 JPWO2004051091 A1 JP WO2004051091A1
Authority
JP
Japan
Prior art keywords
diffuser
blade
diffuser blade
cross
centrifugal compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004556912A
Other languages
Japanese (ja)
Inventor
東森 弘高
弘高 東森
久間 啓司
啓司 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2004051091A1 publication Critical patent/JPWO2004051091A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

従来使用されている二次元翼形状のディフューザ翼の負圧面のすくなくともスロート部をボールエンドミルで切削して、凹面状とする。スロート部においては、凹面の底に向かうほど気体の圧力は高圧となるので、凹面底からハブ端及びシェラウド端に向かって気体が流動し、ハブ端及びシェラウド端に形成される境界層は薄くなる。At least the throat portion of the suction surface of the conventionally used two-dimensional wing-shaped diffuser blade is cut with a ball end mill to form a concave surface. In the throat portion, the gas pressure increases toward the bottom of the concave surface, so that the gas flows from the concave bottom toward the hub end and the shroud end, and the boundary layer formed at the hub end and the shroud end becomes thin. .

Description

本発明は、遠心圧縮機用ディフューザ及びその製造方法に係り、特にインシデンス損失を低減可能で、かつ、スロート部の減速損失を低減可能な遠心圧縮機用ディフューザ及びその製造方法に関する。  The present invention relates to a diffuser for a centrifugal compressor and a method for manufacturing the same, and more particularly, to a diffuser for a centrifugal compressor that can reduce an incidence loss and reduce a deceleration loss of a throat portion, and a method for manufacturing the same.

気体を圧縮して昇圧する圧縮機の一形式として、遠心圧縮機が公知である。
図1は遠心圧縮機の断面図であって、回転軸11に取り付けられたインペラ12とケーシング13から構成される。ケーシング13の内部にはインペラ格納部、ディフューザ部及び渦巻き状のスクロールが形成されている。
インペラ12には羽根14が取り付けられており、矢印15方向に流入した気体はインペラ12によって加速され、遠心圧縮機の半径方向16に流出する。インペラ12外周のディフューザ部には、半径方向16に流出した流体の動圧を靜圧に変換するディフューザ翼17が配置されている。即ち、ディフューザ翼17はケーシング13のディフューザ部の前方内壁に嵌めこまれた輪状円盤18上に取り付けられており、ディフューザ翼17はケーシング内ディフューザ部の後方内壁に向かって(高さ方向に)伸延する。
図2は従来使用されているディフューザの斜視図であって、輪状円盤18に翼形状の二次元ディフューザ翼17が複数枚取り付けられている。なお、ディフューザ17翼のA−A断面は矩形である。ディフューザ翼17と輪状円盤18の接続部を円弧状面とするとともに、この円弧状面の曲率半径の中心を結ぶ曲線がディフューザ翼17に沿う滑らかな曲線となって、ディフューザ翼17の上流側で交差し、交差点により峰線を形成することにより失速さらにはサージングを防止できるディフューザ翼も提案されており、例えば特開平10−77997号公報に開示されている。
インペラ12から流出した気体は矢印20方向からディフューザ部に流入するが、この気体の速度ベクトルが輪状円盤18の円周に沿う軸となす角度を流れ角αと称する。流れ角αはディフューザ翼17の輪状円盤18への取り付け側(シュラウド端S)とケーシング後方内壁側(ハブ端H)においてはほぼ零であり、中間領域において正となる放物線状の高さ方向分布を有する。
図3は流れ角のディフューザ翼高さ方向の分布を示すグラフであって、横軸はディフューザ翼高さを、縦軸は流れ角αを表す。ディフューザ翼17はディフューザ設置部のインペラからスクロールに向かう方向(長さ方向)に斜めに輪状円盤18に取り付けられているが、ディフューザ17に流入する気体が衝突する面を負圧面、負圧面の裏面を圧力面と呼ぶ。負圧面及び圧力面が輪状円盤18の円周に沿う軸となす角度をそれぞれ負圧面翼角αksuc及び圧力面翼角αkpreと呼ぶが、負圧面翼角αksuc及び圧力面翼角αkpreはディフューザ翼17の高さ方向でほぼ一定である。
ここで、流れ角αと負圧面翼角αksucの差(α−αksuc)をインシデンスInと定義すると、ディフューザ翼17のハブ端H及びシェラウド端S近傍(図3の斜線部)でインシデンスInは負となる。このため、ディフューザ翼17のハブ端H及びシェラウド端S近傍の負圧面で境界層厚さが増し、損失が増大する。
Centrifugal compressors are known as one type of compressor that compresses and pressurizes gas.
FIG. 1 is a cross-sectional view of a centrifugal compressor, which includes an impeller 12 and a casing 13 attached to a rotating shaft 11. An impeller storage portion, a diffuser portion, and a spiral scroll are formed inside the casing 13.
Blades 14 are attached to the impeller 12, and the gas flowing in the direction of the arrow 15 is accelerated by the impeller 12 and flows out in the radial direction 16 of the centrifugal compressor. A diffuser blade 17 for converting the dynamic pressure of the fluid that has flowed out in the radial direction 16 into a negative pressure is disposed on the diffuser portion on the outer periphery of the impeller 12. That is, the diffuser blade 17 is mounted on a ring-shaped disk 18 fitted in the front inner wall of the diffuser portion of the casing 13, and the diffuser blade 17 extends toward the rear inner wall of the diffuser portion in the casing (in the height direction). To do.
FIG. 2 is a perspective view of a conventionally used diffuser, and a plurality of blade-shaped two-dimensional diffuser blades 17 are attached to a ring-shaped disk 18. In addition, the AA cross section of the diffuser 17 blades is rectangular. A connecting portion between the diffuser blade 17 and the ring-shaped disk 18 has an arcuate surface, and a curve connecting the centers of the radii of curvature of the arcuate surface becomes a smooth curve along the diffuser blade 17, and upstream of the diffuser blade 17. A diffuser blade that can prevent stall and surging by intersecting and forming a ridgeline at the intersection has also been proposed, for example, disclosed in JP-A-10-77997.
The gas flowing out of the impeller 12 flows into the diffuser portion from the direction of the arrow 20, and the angle formed by the velocity vector of this gas with the axis along the circumference of the annular disk 18 is referred to as a flow angle α. The flow angle α is substantially zero on the side where the diffuser blade 17 is attached to the annular disk 18 (the shroud end S) and the casing rear inner wall side (the hub end H), and is a parabolic height distribution that is positive in the intermediate region. Have
FIG. 3 is a graph showing the distribution of the flow angle in the height direction of the diffuser blade. The horizontal axis represents the diffuser blade height, and the vertical axis represents the flow angle α. The diffuser blade 17 is attached to the ring-shaped disk 18 obliquely in the direction (length direction) from the impeller of the diffuser installation portion to the scroll, but the surface on which the gas flowing into the diffuser 17 collides is the suction surface and the back surface of the suction surface. Is called the pressure surface. The angles formed by the suction surface and the pressure surface with the axis along the circumference of the annular disk 18 are referred to as the suction surface blade angle α ksuc and the pressure surface blade angle α kpre , respectively, but the suction surface blade angle α ksuc and the pressure surface blade angle α kpre. Is substantially constant in the height direction of the diffuser blade 17.
Here, if the difference (α−α ksuc ) between the flow angle α and the suction surface blade angle α ksuc is defined as the incidence In, the incidence In is near the hub end H and the shroud end S of the diffuser blade 17 (shaded portion in FIG. 3). Becomes negative. For this reason, the boundary layer thickness increases on the suction surface near the hub end H and the shroud end S of the diffuser blade 17 and the loss increases.

本発明は上記課題に鑑みなされたものであって、ディフューザ翼のハブ端及びシェラウド端近傍での負圧面の境界層の生成を抑制し、圧損を低減することの可能な遠心圧縮機用ディフューザ及びその製作方法を提供することを目的とする。
第一の発明に係る遠心圧縮機用ディフューザは、流体の流れ方向に直角な断面形状の負圧面が、圧力面に向う凹形であるディフューザ翼を具備する。
第二の発明に係る遠心圧縮機用ディフューザは、流体の流れ方向に直角な断面形状の負圧面と、シェラウド面及びハブ面と成す角度の少なくとも一方が鋭角であるディフューザ翼を具備する。
第三の発明に係る遠心圧縮機用ディフューザは、少なくともスロート部及びその上流の流体の流れ方向に直角な断面形状の負圧面が、圧力面に向う凹形であるディフューザ翼を具備する。
第四の発明に係る遠心圧縮機用ディフューザは、少なくともスロート部及びその上流の流体の流れ方向に直角な断面形状の負圧面と、シェラウド面及びハブ面と成す角度の少なくとも一方が鋭角であるディフューザ翼を具備する。
第一から第四の発明にあっては、少なくともスロート部の負圧面が凹面に形成され、シェラウド端及びハブ端近傍の負圧面における境界層の生成が抑制される。
第五の遠心圧縮機用ディフューザの製造方法は、二次元翼形状のディフューザ翼を製造するディフューザ翼製造段階と、ディフューザ翼製造段階で製造されたディフューザ翼の一方の側面をボールエンドミルで凹形に切削する切削段階を具備する。
第五の発明にあっては、ディフューザ翼は二次元翼形状のディフューザ翼の一方の側面をボールエンドミルで切削することにより製造される。
The present invention has been made in view of the above problems, and it is possible to suppress the generation of the boundary layer of the suction surface near the hub end and the shroud end of the diffuser blade, and reduce the pressure loss. It aims at providing the production method.
A diffuser for a centrifugal compressor according to a first aspect of the present invention includes a diffuser blade whose suction surface having a cross-sectional shape perpendicular to the fluid flow direction is concave toward the pressure surface.
A diffuser for a centrifugal compressor according to a second aspect of the present invention includes a negative pressure surface having a cross-sectional shape perpendicular to the fluid flow direction, and a diffuser blade having an acute angle at least one of an angle formed with the shroud surface and the hub surface.
A diffuser for a centrifugal compressor according to a third aspect of the present invention includes a diffuser blade having at least a throat portion and a suction surface having a cross-sectional shape perpendicular to the fluid flow direction upstream of the throat portion and a concave shape facing the pressure surface.
A diffuser for a centrifugal compressor according to a fourth aspect of the present invention is a diffuser in which at least one of the suction surface having a cross-sectional shape perpendicular to the flow direction of the throat portion and its upstream fluid, and the angle between the shroud surface and the hub surface is an acute angle. It has wings.
In the first to fourth inventions, at least the suction surface of the throat portion is formed as a concave surface, and generation of a boundary layer on the suction surface near the shroud end and the hub end is suppressed.
The fifth method for manufacturing a diffuser for a centrifugal compressor includes a diffuser blade manufacturing stage for manufacturing a diffuser blade having a two-dimensional blade shape, and one side surface of the diffuser blade manufactured at the diffuser blade manufacturing stage is formed into a concave shape by a ball end mill. A cutting stage for cutting is provided.
In the fifth invention, the diffuser blade is manufactured by cutting one side surface of the two-dimensional blade-shaped diffuser blade with a ball end mill.

図1は、遠心圧縮機の断面図である。
図2は、遠従来使用されているディフューザの斜視図である。
図3は、遠流れ角のディフューザ翼高さ方向の分布を示すグラフである。
図4Aは、遠本発明に係るディフューザで使用されるディフューザ翼の斜視図である。
図4Bは、図4Aの矢視線1に沿うディフューザ翼の断面図である。
図4Cは、図4Aの矢視線IIに沿うディフューザ翼の断面図である。
図4Dは、図4Aの矢視線IIIに沿うディフューザ翼の断面図である。
図4Eは、図4Aの矢視線IVに沿うディフューザ翼の断面図である。
図4Fは、図4Aの矢視線Vに沿うディフューザ翼の断面図である。
図5は、遠本発明における流れ角のディフューザ翼高さ方向の分布を示すグラフである。
図6は、遠本発明に係るディフューザで使用される第二のディフューザ翼の断面図である。
図7Aは、遠本発明に係るディフューザの上面図である。
図7Bは、図7Aの矢視線B−Bに沿うディフューザ翼の断面図である。
図8A〜図8Cは、遠本発明に係るディフューザで使用されるディフューザ翼の製作手順を示した図である。
図8Dは、図8CにおいてIIIで示す部分の断面図である。
図8Eは、図8CにおいてII、IVで示す部分の断面図である。
図8Fは、図8CにおいてI、Vで示す部分の断面図である。
発明を実施する最良の態様
図4Aは、本発明に係るディフューザで使用されるディフューザ翼の斜視図であり、図4B〜図4Fはディフューザ翼40の長さ方向に上流側からI〜Vにおける断面を表す。ディフューザ翼4の負圧面401は背面の圧力面402に向かってへこんだ凹面となっている。即ち、ディフューザ翼4のハブ端H近傍において負圧面とケーシング内壁の成す角度δH及びシェラウド端S近傍において負圧面と輪状円盤の成す角度δSの少なくとも一方が鋭角に形成されている。
なお図4A〜図4Fにおいては、負圧面が滑らかな曲面で構成されているものとしている。
図5は、本発明における流れ角のディフューザ翼高さ方向の分布を示すグラフであって、負圧面角αksucはディフューザ翼4のハブ端H及びシェラウド端S近傍で小さくなり、ディフューザ翼4の高さ方向の中央部で大きくなる。従って、本発明に係るディフューザで使用されるディフューザ翼のインシデンスIn=(αksuc−α)は、ディフューザ翼4のハブ端H及びシェラウド端S近傍で負になるもののその絶対値は従来のディフューザ翼より小さくなる。
これは、ディフューザ翼4のハブ端H及びシェラウド端S近傍の負圧面の境界層の厚さが薄くなることを意味し、従来のディフューザ翼に比してインシデンス損失は低減する。
図6は本発明に係るディフューザで使用される第二のディフューザ翼の断面図であって、曲面でなく折り曲げ平面で構成されている。
図7Aは本発明に係るディフューザの上面図であり、図7Bは、図7Aにおいて矢視線B−Bに沿うディフューザ翼の断面図である。図7Aには二枚のディフューザ翼41、42および翼間流路の気体の等圧線が示されている。第二のディフューザ翼42の上流端から第一のディフューザ翼41の長さ方向中心線に引いた垂線と第一のディフューザ翼41の上流端までのC−Cの領域をスロート、第一のディフューザ翼41の上流端からスロートC−Cまでの長さをスロートまでの長さXTというが、第一のディフューザ翼41の上流端からスロートC−Cまでのスロート領域では第二のディフューザ翼42の上流端を中心とした扇型の圧力分布となり、翼上流端を結ぶ領域aの圧力は低圧であり、第二のディフューザ翼42の上流端と第一のディフューザ翼42のスロート領域中央を結ぶ領域bは高圧となる。
図7Bはスロート領域で第一のディフューザ翼41の長さ方向中心線に直角な線B−Bに沿う断面を示しているが、気体の圧力分布は第一のディフューザ翼41に近づくほど圧力は高くなる。従って、気体には第一のディフューザ翼41の負圧面から第二のディフューザ翼42の圧力面に向かう2次流れ43が生じ、第一のディフューザ翼41の負圧面のハブ端H及びシェラウド端S近傍の負圧面に形成される境界層を薄くし、かつ、第一のディフューザ翼41の上流端からスロートC−Cまでのスロート領域での圧力情報に伴う減速損失が低減する。
なお、スロート領域下流の第一のディフューザ翼41と第二のディフューザ翼42が重なり合う領域では、等圧線は第一のディフューザ翼41と第二のディフューザ翼42の長さ方向中心線と直角となるので、気体には第一のディフューザ翼41の負圧面から第二のディフューザ翼42の圧力面に向かう流れは生じない。従って、スロート部及びその上流の負圧面を凹面に形成することが特に重要であって、スロート部下流は特に凹面に形成しなくてもよい。
図8A〜図8Fは、本発明に係るディフューザで使用されるディフューザ翼の製作手順の説明図であって、まず断面が矩形の二次元ディフューザ翼を製作する(図8A)。
次にボールエンドミルで二次元ディフューザ翼の負圧面を切削し、負圧面を凹面に形成する。二次元ディフューザ翼の一端に沿って切削した(図8B)後に、他端に沿って切削すれば負圧面は凹面となり(図8C)、負圧面がディフューザ翼のハブ面及びシェラウド面と成す角度δH及びδSは鋭角となる。
ボールエンドミルの切削深さを一定とすれば、本発明に係るディフューザ翼の製作課程は簡単となる。
通常二次元ディフューザ翼は長さ方向の中央で最大厚さとなるので、本発明に係るディフューザ翼の断面は、中央部(III)に関して長さ方向に対称となる。即ち、中央部(III)の断面形状は図8Dに示すようになり、部分(II)及び(IV)の断面形状は図8Eに示すようになり、部分(I)及び(V)の断面形状は図8Fに示すような形状となる。
上記実施形態においては、本発明に係るディフューザが遠心圧縮機に適用される場合について説明したが、本発明に係るディフューザは遠心ブロアあるいは遠心ポンプに適用可能であることは明らかである。
本発明に係る遠心圧縮機用ディフューザによれば、ディフューザ翼のシェラウド端及びハブ端近傍の負圧面に生成される境界層は薄くなり、インシデンス損失を低減すると共に、減速損失を低減可能となる。
本発明に係る遠心圧縮機用ディフューザの製造方法によれば、二次元翼形状のディフューザ翼をボールエンドミルで切削することにより、ディフューザ翼を容易に製造することが可能となる。
FIG. 1 is a cross-sectional view of a centrifugal compressor.
FIG. 2 is a perspective view of a diffuser that has been used far away.
FIG. 3 is a graph showing the distribution of the far flow angle in the height direction of the diffuser blade.
FIG. 4A is a perspective view of a diffuser blade used in the diffuser according to the present invention.
FIG. 4B is a cross-sectional view of the diffuser blade taken along line 1 of FIG. 4A.
FIG. 4C is a cross-sectional view of the diffuser blade taken along line II of FIG. 4A.
FIG. 4D is a cross-sectional view of the diffuser blade taken along line III of FIG. 4A.
FIG. 4E is a cross-sectional view of the diffuser blade taken along line IV of FIG. 4A.
FIG. 4F is a cross-sectional view of the diffuser blade taken along line V of FIG. 4A.
FIG. 5 is a graph showing the distribution of the flow angle in the distance direction of the diffuser blade according to the present invention.
FIG. 6 is a sectional view of a second diffuser blade used in the diffuser according to the present invention.
FIG. 7A is a top view of a diffuser according to the present invention.
FIG. 7B is a cross-sectional view of the diffuser blade taken along line BB in FIG. 7A.
8A to 8C are diagrams showing a manufacturing procedure of a diffuser blade used in the diffuser according to the present invention.
FIG. 8D is a cross-sectional view of the portion indicated by III in FIG. 8C.
FIG. 8E is a cross-sectional view of the portion indicated by II and IV in FIG. 8C.
8F is a cross-sectional view of a portion indicated by I and V in FIG. 8C.
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 4A is a perspective view of a diffuser blade used in a diffuser according to the present invention, and FIGS. 4B to 4F are cross sections taken along the length IV of the diffuser blade 40 from upstream to downstream. Represents. The negative pressure surface 401 of the diffuser blade 4 is a concave surface that is recessed toward the pressure surface 402 on the back surface. That is, at least one of an angle δH formed between the suction surface and the casing inner wall in the vicinity of the hub end H of the diffuser blade 4 and an angle δS formed between the suction surface and the ring-shaped disk in the vicinity of the shroud end S is formed at an acute angle.
4A to 4F, the suction surface is assumed to be a smooth curved surface.
FIG. 5 is a graph showing the distribution of the flow angle in the height direction of the diffuser blade according to the present invention. The suction surface angle α ksuc decreases near the hub end H and the shroud end S of the diffuser blade 4, and It becomes larger at the center in the height direction. Therefore, although the incidence In = (α ksuc −α) of the diffuser blade used in the diffuser according to the present invention is negative near the hub end H and the shroud end S of the diffuser blade 4, its absolute value is the conventional diffuser blade. Smaller.
This means that the thickness of the boundary layer on the suction surface near the hub end H and the shroud end S of the diffuser blade 4 is reduced, and the incidence loss is reduced as compared with the conventional diffuser blade.
FIG. 6 is a cross-sectional view of a second diffuser blade used in the diffuser according to the present invention, which is not a curved surface but a bent plane.
FIG. 7A is a top view of a diffuser according to the present invention, and FIG. 7B is a cross-sectional view of a diffuser blade taken along line BB in FIG. 7A. FIG. 7A shows two diffuser blades 41 and 42 and gas isobaric lines in the passage between the blades. The first diffuser blade throats a CC line extending from the upstream end of the second diffuser blade 42 to the vertical center line of the first diffuser blade 41 and the upstream end of the first diffuser blade 41. The length from the upstream end of the blade 41 to the throat CC is referred to as the length XT to the throat. In the throat region from the upstream end of the first diffuser blade 41 to the throat CC, the second diffuser blade 42 A fan-shaped pressure distribution centered on the upstream end, the pressure in the region a connecting the blade upstream ends is low, and the region connecting the upstream end of the second diffuser blade 42 and the center of the throat region of the first diffuser blade 42 b is a high pressure.
FIG. 7B shows a cross section along the line BB perpendicular to the longitudinal center line of the first diffuser blade 41 in the throat region. The pressure distribution of the gas becomes closer to the first diffuser blade 41. Get higher. Accordingly, a secondary flow 43 is generated in the gas from the suction surface of the first diffuser blade 41 toward the pressure surface of the second diffuser blade 42, and the hub end H and the shroud end S of the suction surface of the first diffuser blade 41 are generated. The boundary layer formed on the nearby suction surface is thinned, and the deceleration loss associated with pressure information in the throat region from the upstream end of the first diffuser blade 41 to the throat CC is reduced.
In the region where the first diffuser blade 41 and the second diffuser blade 42 are overlapped downstream of the throat region, the isobaric line is perpendicular to the longitudinal center line of the first diffuser blade 41 and the second diffuser blade 42. The gas does not flow from the negative pressure surface of the first diffuser blade 41 toward the pressure surface of the second diffuser blade 42. Therefore, it is particularly important to form the throat portion and the suction surface upstream thereof as a concave surface, and the downstream side of the throat portion may not be formed as a concave surface.
FIG. 8A to FIG. 8F are explanatory diagrams of the manufacturing procedure of the diffuser blade used in the diffuser according to the present invention. First, a two-dimensional diffuser blade having a rectangular cross section is manufactured (FIG. 8A).
Next, the suction surface of the two-dimensional diffuser blade is cut with a ball end mill to form the suction surface as a concave surface. After cutting along one end of the two-dimensional diffuser blade (FIG. 8B), if cutting along the other end, the suction surface becomes concave (FIG. 8C), and the angle δH formed by the suction surface with the hub surface and the shroud surface of the diffuser blade And δS are acute angles.
If the cutting depth of the ball end mill is constant, the production process of the diffuser blade according to the present invention is simplified.
Usually, since the two-dimensional diffuser blade has the maximum thickness at the center in the length direction, the cross section of the diffuser blade according to the present invention is symmetrical in the length direction with respect to the central portion (III). That is, the cross-sectional shape of the central portion (III) is as shown in FIG. 8D, the cross-sectional shapes of the portions (II) and (IV) are as shown in FIG. 8E, and the cross-sectional shapes of the portions (I) and (V) are as shown in FIG. Has a shape as shown in FIG. 8F.
In the above embodiment, the case where the diffuser according to the present invention is applied to a centrifugal compressor has been described. However, it is obvious that the diffuser according to the present invention can be applied to a centrifugal blower or a centrifugal pump.
According to the diffuser for a centrifugal compressor according to the present invention, the boundary layer generated on the suction surface in the vicinity of the sheroud end and the hub end of the diffuser blade becomes thin, and it is possible to reduce the incidence loss and reduce the deceleration loss.
According to the method for manufacturing a diffuser for a centrifugal compressor according to the present invention, it is possible to easily manufacture a diffuser blade by cutting the diffuser blade having a two-dimensional blade shape with a ball end mill.

Claims (5)

流体の流れ方向に直角な断面の負圧面が、圧力面に向う凹形であるディフューザ翼を具備する遠心圧縮機用ディフューザ。A diffuser for a centrifugal compressor, comprising a diffuser blade whose suction surface having a cross section perpendicular to a fluid flow direction is concave toward the pressure surface. 流体の流れ方向に直角な断面の負圧面と、シェラウド面及びハブ面と成す角度の少なくとも一方が鋭角であるディフューザ翼を具備する遠心圧縮機用ディフューザ。A diffuser for a centrifugal compressor, comprising: a suction surface having a cross section perpendicular to a fluid flow direction; and a diffuser blade having an acute angle at least one of an angle formed with a shroud surface and a hub surface. 少なくともスロート部及びその上流の流体の流れ方向に直角な断面の負圧面が、圧力面に向う凹形であるディフューザ翼を具備する遠心圧縮機用ディフューザ。A diffuser for a centrifugal compressor, comprising a diffuser blade having at least a suction surface having a cross section perpendicular to a flow direction of a fluid in a throat portion and an upstream thereof, which is concave toward the pressure surface. 少なくともスロート部及びその上流の流体の流れ方向に直角な断面の負圧面と、シェラウド面及びハブ面と成す角度の少なくとも一方が鋭角であるディフューザ翼を具備する遠心圧縮機用ディフューザ。A diffuser for a centrifugal compressor, comprising: a suction surface having a cross section perpendicular to the flow direction of fluid at least in the throat portion and upstream thereof; and a diffuser blade having an acute angle at least one of an angle formed with a shroud surface and a hub surface. 二次元翼形状のディフューザ翼を製造するディフューザ翼製造段階と、前記ディフューザ翼製造段階で製造されたディフューザ翼の一方の側面をボールエンドミルで凹形に切削する切削段階を具備する遠心圧縮機用ディフューザの製造方法。A diffuser for a centrifugal compressor, comprising: a diffuser blade manufacturing stage for manufacturing a diffuser blade having a two-dimensional blade shape; and a cutting step of cutting one side surface of the diffuser blade manufactured in the diffuser blade manufacturing stage into a concave shape with a ball end mill. Manufacturing method.
JP2004556912A 2002-12-04 2003-12-04 Diffuser for centrifugal compressor and manufacturing method thereof Pending JPWO2004051091A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002352327 2002-12-04
JP2002352327 2002-12-04
PCT/JP2003/015553 WO2004051091A1 (en) 2002-12-04 2003-12-04 Diffuser for centrifugal compressor and method of producing the same

Publications (1)

Publication Number Publication Date
JPWO2004051091A1 true JPWO2004051091A1 (en) 2006-03-30

Family

ID=32463224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556912A Pending JPWO2004051091A1 (en) 2002-12-04 2003-12-04 Diffuser for centrifugal compressor and manufacturing method thereof

Country Status (4)

Country Link
US (1) US20050163610A1 (en)
EP (1) EP1568891A4 (en)
JP (1) JPWO2004051091A1 (en)
WO (1) WO2004051091A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006013703D1 (en) * 2005-09-13 2010-05-27 Ingersoll Rand Co DIFFUSER FOR A RADIAL COMPRESSOR
FR2958346B1 (en) * 2010-03-30 2012-04-20 Turbomeca TURBOMACHINE COMPRESSOR
JP5766595B2 (en) * 2011-12-15 2015-08-19 三菱重工業株式会社 Centrifugal turbomachine
DE102015219556A1 (en) 2015-10-08 2017-04-13 Rolls-Royce Deutschland Ltd & Co Kg Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor
JP2017096196A (en) * 2015-11-26 2017-06-01 三菱重工業株式会社 Stationary vane and centrifugal compressor including the stationary vane
US10352237B2 (en) * 2016-05-26 2019-07-16 Rolls-Royce Corporation Diffuser having shaped vanes
DE102017101590A1 (en) * 2017-01-27 2018-08-02 Man Diesel & Turbo Se Centrifugal compressor and turbocharger
US11333171B2 (en) * 2018-11-27 2022-05-17 Honeywell International Inc. High performance wedge diffusers for compression systems
US10871170B2 (en) * 2018-11-27 2020-12-22 Honeywell International Inc. High performance wedge diffusers for compression systems
US11098730B2 (en) 2019-04-12 2021-08-24 Rolls-Royce Corporation Deswirler assembly for a centrifugal compressor
JP2021032106A (en) * 2019-08-22 2021-03-01 三菱重工業株式会社 Vaned diffuser and centrifugal compressor
KR102261509B1 (en) * 2019-11-28 2021-06-07 주식회사 인지니어스 Hermetic Blower for high-temperature gas
US11286952B2 (en) 2020-07-14 2022-03-29 Rolls-Royce Corporation Diffusion system configured for use with centrifugal compressor
US11441516B2 (en) 2020-07-14 2022-09-13 Rolls-Royce North American Technologies Inc. Centrifugal compressor assembly for a gas turbine engine with deswirler having sealing features
US11578654B2 (en) 2020-07-29 2023-02-14 Rolls-Royce North American Technologies Inc. Centrifical compressor assembly for a gas turbine engine
CN112627980B (en) * 2020-11-16 2023-04-18 株洲丰发精工实业有限公司 Diffuser for aircraft engine and machining method thereof
KR102372946B1 (en) * 2021-01-07 2022-03-10 주식회사 인지니어스 Energy Generation System of Solid Oxide Fuel Cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419669A (en) * 1942-05-08 1947-04-29 Fed Reserve Bank Diffuser for centrifugal compressors
US2708883A (en) * 1950-03-03 1955-05-24 Escher Wyss Ag Arrangement for use in radial centrifugal compressors and pumps for the conversion of kinetic energy of the flowing medium into pressure energy
US3719430A (en) * 1971-08-24 1973-03-06 Gen Electric Diffuser
US3778186A (en) * 1972-02-25 1973-12-11 Gen Motors Corp Radial diffuser
SE382342B (en) * 1973-06-18 1976-01-26 United Turbine Ab & Co SEWER DIFFUSER FOR CENTRIFUGAL COMPRESSOR
DE2544612C3 (en) * 1974-10-14 1980-04-10 Leningradskoe Specialnoe Konstruktorskoe Bjuro Tyaschelych I Unikalnych Stankov, Leningrad (Sowjetunion) Round milling process
US4027997A (en) * 1975-12-10 1977-06-07 General Electric Company Diffuser for a centrifugal compressor
US4260304A (en) * 1979-10-10 1981-04-07 Dresser Industries, Inc. Method for machining an impeller cover
JPS5771799U (en) * 1980-10-21 1982-05-01
US4798518A (en) * 1982-03-09 1989-01-17 Wilhelm Gebhardt Gmbh Fan unit for use with duct systems
CH673244A5 (en) * 1987-11-20 1990-02-28 Starrfraesmaschinen Ag
JPH09502932A (en) * 1993-09-29 1997-03-25 シーメンス アクチエンゲゼルシヤフト Milling method for turbine blade cross section extending along the main axis
JP3153409B2 (en) * 1994-03-18 2001-04-09 株式会社日立製作所 Manufacturing method of centrifugal compressor
WO1999061801A1 (en) * 1998-05-28 1999-12-02 Ebara Corporation Turbomachinery
US6077002A (en) * 1998-10-05 2000-06-20 General Electric Company Step milling process

Also Published As

Publication number Publication date
EP1568891A4 (en) 2006-01-04
WO2004051091A1 (en) 2004-06-17
US20050163610A1 (en) 2005-07-28
EP1568891A1 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JPWO2004051091A1 (en) Diffuser for centrifugal compressor and manufacturing method thereof
JP5333170B2 (en) Centrifugal compressor and design method thereof
US7517193B2 (en) Centrifugal compressor and manufacturing method for impeller
JP5316365B2 (en) Turbo fluid machine
US9163642B2 (en) Impeller and rotary machine
US5178516A (en) Centrifugal compressor
CN110234887B (en) Centrifugal compressor and turbocharger
JP5608062B2 (en) Centrifugal turbomachine
JP5879103B2 (en) Centrifugal fluid machine
JP5766595B2 (en) Centrifugal turbomachine
NZ569987A (en) Improved impeller for a ventilation fan that has an aerofoil section and a centrifugal accelerator portion
JP6034162B2 (en) Centrifugal fluid machine
JP5351941B2 (en) Centrifugal compressor, its impeller, its operating method, and impeller design method
JP2016514791A (en) Radial or mixed flow compressor diffuser with vanes
JP2011021492A (en) Impeller and rotary machine
CN110107539B (en) A return guide vane structure for fluid machinery
JP6064003B2 (en) Centrifugal fluid machine
WO2019172422A1 (en) Diffuser vane and centrifugal compressor
CN110939603A (en) Blade and axial flow impeller using same
JP2002021785A (en) Centrifugal compressor
JP7386333B2 (en) Impeller and centrifugal compressor
JPH11257290A (en) Diffuser of centrifugal compressor
JPS6135399B2 (en)
TWM575830U (en) Centrifugal fan
JP2018091299A (en) Turbocharger

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527