[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6135399B2 - - Google Patents

Info

Publication number
JPS6135399B2
JPS6135399B2 JP5027979A JP5027979A JPS6135399B2 JP S6135399 B2 JPS6135399 B2 JP S6135399B2 JP 5027979 A JP5027979 A JP 5027979A JP 5027979 A JP5027979 A JP 5027979A JP S6135399 B2 JPS6135399 B2 JP S6135399B2
Authority
JP
Japan
Prior art keywords
flow path
guide vane
cross
vane
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5027979A
Other languages
Japanese (ja)
Other versions
JPS55142997A (en
Inventor
Tomoyoshi Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5027979A priority Critical patent/JPS55142997A/en
Publication of JPS55142997A publication Critical patent/JPS55142997A/en
Publication of JPS6135399B2 publication Critical patent/JPS6135399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は斜流ポンプに係り、特に案内羽根の
羽根間流路の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a mixed flow pump, and particularly to an improvement in the flow path between guide vanes.

〔従来の技術〕[Conventional technology]

従来のこの種の斜流ポンプの構造を第2図〜第
9図について説明する。第2図において、1はケ
ーシング、2はこのケーシング1に収納された羽
根車で回転軸3に固定されており、図示しない原
動機によつて回転せしめられるようになつてい
る。4は羽根車2の後方に配置された案内羽根で
あり、ケーシング5,6間に配列されている。
The structure of a conventional mixed flow pump of this type will be explained with reference to FIGS. 2 to 9. In FIG. 2, 1 is a casing, and 2 is an impeller housed in the casing 1, which is fixed to a rotating shaft 3 and rotated by a prime mover (not shown). Reference numeral 4 denotes guide vanes arranged behind the impeller 2, and arranged between the casings 5 and 6.

羽根車2の回転に伴なつて水は吸込口aから吸
込まれて羽根車2によりエネルギーが与えられ、
案内羽根4を通つて水の持つ動圧は静圧に変換さ
れ吐出口bより軸方向に吐出されるようになつて
いる。
As the impeller 2 rotates, water is sucked in from the suction port a and energy is given by the impeller 2.
The dynamic pressure of the water through the guide vane 4 is converted into static pressure and is discharged from the discharge port b in the axial direction.

第3図a,bは案内羽根4のチツプ側4′およ
びハブ側4″の展開図を示したものであり、また
第4図は二枚の案内羽根4で構成される羽根間流
路の概略斜視図を示したものである。このよう
に、案内羽根4は3次元の曲がりを伴ないながら
流れに圧力回復をもたらす曲がりデイフユーザを
構成している。
FIGS. 3a and 3b show developed views of the tip side 4' and hub side 4'' of the guide vane 4, and FIG. This is a schematic perspective view.As described above, the guide vanes 4 constitute a curved diff user that restores pressure to the flow while being accompanied by three-dimensional bending.

尚、この種の装置に関連するものに実公昭41−
15480号が挙げられる。
In addition, the Utility Public Policy Act 1977- related to this type of equipment
No. 15480 is mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図に示すように、ハブ面6から回転軸心
3′までの距離が最大となる点から少し下流部の
E点を含み、軸心3′に垂直なA―A′断面の形状
を第6図に示す。すなわち、A―A′断面におけ
る羽根間流路のハブ面の面6aは通常半径Rの円
弧で形成されている。
As shown in Fig. 5, the shape of the A-A' cross section perpendicular to the axis 3' includes point E slightly downstream from the point where the distance from the hub surface 6 to the rotation axis 3' is maximum. It is shown in FIG. That is, the surface 6a of the hub surface of the inter-blade flow path in the AA' cross section is normally formed by a circular arc with a radius R.

一方、流れは流路に沿つて流れるから、流れが
剥離することに対し重要な影響を及ぼす流路面積
の拡大に関しては流路に直角な断面形状について
考える必要がある。そこで、第3図、第4図に示
すように上述のE点を含む流路に垂直な断面
DEFGを考える。この断面では、第5図に示すよ
うにハブのE点F点は軸心からの距離が異なり、
RE>RFである。
On the other hand, since the flow flows along the flow path, it is necessary to consider the cross-sectional shape perpendicular to the flow path when expanding the flow path area, which has an important effect on flow separation. Therefore, as shown in Figures 3 and 4, a cross section perpendicular to the flow path including the above-mentioned point E is
Think DEFG. In this cross section, as shown in Figure 5, the distances of the E and F points of the hub are different from the axis,
RE>RF.

一方、チツプ側のD点、G点の軸心からの距離
は大略同じである。従つて、断面DEFGの形状は
第7図に示す通りとなる。すなわち、大略円弧状
のDG面に同心の円弧面EF′面に比べEF面は軸心
3′側にあり、F点付近の面積が大きくなつてい
る。すなわち、F点付近の面積拡大が大となりこ
の付近で流れは剥離しやすくなる。流れが剥離す
ると損失が増し、ポンプ効率が低下するという問
題がある。
On the other hand, the distances from the axis of points D and G on the chip side are approximately the same. Therefore, the cross-sectional shape of DEFG is as shown in FIG. That is, compared to the arcuate surface EF' which is concentric with the approximately arcuate DG surface, the EF surface is located on the axis 3' side and has a larger area near point F. In other words, the area near point F increases greatly, and the flow tends to separate in this vicinity. The problem is that flow separation increases losses and reduces pump efficiency.

そこで、第8図に示すように羽根角の変化を緩
やかにしてF点がF′点と軸方向の移動距離を小
〓〓〓〓〓
と流路面積の拡大を小さくする方法が考えられ
る。しかし、そうすると第8図に破線で示すよう
に羽根の長さが長くなりポンプの大形化となる。
また第9図に破線で示すように子午面流路形状の
ハブ面の変化を緩やかにして流路面積の拡大を小
さくしても軸方向距離やチツプ側の外径の増大が
余儀なくされ、これもポンプの大形化となる。ポ
ンプの大形化は製造原価の増大となり問題であ
る。
Therefore, as shown in Fig. 8, the change in blade angle is made gradual to reduce the distance that point F moves in the axial direction from point F'.
A method can be considered to reduce the expansion of the flow path area. However, if this is done, the length of the blade becomes longer as shown by the broken line in FIG. 8, resulting in an increase in the size of the pump.
Furthermore, as shown by the broken line in Figure 9, even if the change in the hub surface of the meridional flow path shape is made gradual to reduce the expansion of the flow path area, the axial distance and the outer diameter on the chip side will inevitably increase. This also means that the pump will be larger. Increasing the size of the pump is a problem because it increases manufacturing costs.

この発明の目的とするところは案内羽根の軸方
向距離を増すことなく、剥離を防止してポンプの
性能の向上をはかることにある。
An object of the present invention is to improve the performance of a pump by preventing separation of the guide vanes without increasing the axial distance of the guide vanes.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点回転軸に垂直な断面の羽根間流路の
ハブ面を、案内羽根の凹状側より凸状側に向かつ
て回転軸心に対して遠くなるような傾斜面に形成
することによつて解決される。
The above-mentioned problem: By forming the hub surface of the inter-vane flow path, which has a cross section perpendicular to the rotational axis, into an inclined surface that becomes farther from the rotational axis as it goes from the concave side to the convex side of the guide vane. resolved.

〔作用〕[Effect]

案内羽根の凸状側における流路の急拡大が緩和
され、流れの剥離が抑制されるから、効率のよい
案内羽根が得られる。
Rapid expansion of the flow path on the convex side of the guide vane is alleviated and flow separation is suppressed, so that a highly efficient guide vane can be obtained.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図について説
明する。
An embodiment of the present invention will be described below with reference to FIG.

図において、第2図〜第9図と同じ符号をつけ
たものは同じものを表わす。案内羽根4で構成さ
れる羽根間流路のハブ面6a、特にハブ面6aが
半径方向の内側に向かいはじめる付近から流路出
口に至るまで、案内羽根の凹状側4bにより凸状
側4aに向かつて回転軸心に対し遠くなるように
滑らかな傾斜面6bに形成されている。その他は
従来のものと同じである。
In the figures, the same reference numerals as in FIGS. 2 to 9 represent the same parts. From the hub surface 6a of the inter-vane flow path constituted by the guide vane 4, especially from the vicinity where the hub surface 6a begins to face radially inward to the flow path outlet, the concave side 4b of the guide vane directs the convex side 4a. A smooth inclined surface 6b is formed so as to be farther away from the rotation axis. The rest is the same as the conventional one.

この発明は上記構成であるので、第7図に示し
た流路に垂直な断面であるC―C′断面における
凸状側4aと凹状側4bのハブ面との交点のE点
とF点の軸心からの距離Rを等しくすることがで
き、F点付近の流路面積の急激な拡大を緩やかに
することができるので、案内羽根ケーシングの軸
方向距離を増すことなく、流れの剥離が抑制され
る。これにより、高効率の案内羽根が実現でき
る。
Since this invention has the above configuration, points E and F at the intersection of the hub surfaces of the convex side 4a and the concave side 4b in the cross section C-C', which is a cross section perpendicular to the flow path shown in FIG. Since the distance R from the axis can be made equal and the rapid expansion of the flow path area near point F can be slowed down, flow separation can be suppressed without increasing the axial distance of the guide vane casing. be done. Thereby, a highly efficient guide vane can be realized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は羽根間流路の
ハブ面を、案内羽根の凹状側より凸状側に向かつ
て回転軸心に対し遠くなるような傾斜面に形成し
たことにより、凸状側における流路の急拡大が緩
和され、流れの剥離が抑制されるから、高効率の
案内羽根を得ることができる。
As explained above, this invention forms the hub surface of the inter-vane flow path into an inclined surface that is farther from the rotation axis as it goes from the concave side of the guide vane to the convex side. Since the sudden expansion of the flow path is alleviated and separation of the flow is suppressed, a highly efficient guide vane can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の斜流ポンプの案内羽根の回転
軸に垂直な羽根間流路断面図、第2図〜第9図は
従来の斜流ポンプを説明する図で、第2図は斜流
ポンプの断面正面図、第3図a,bは第2図の案
内羽根のチツプ側、ハブ面の展開図、第4図は案
内羽根で構成される羽根間流路の概略斜視図、第
5図は案内羽根部の概略断面図、第6図は第5図
のA―A′断面図、第7図は案内羽根流路の回転
軸に垂直な断面図、第8図は第3図bの羽根の角
度変化を緩やかにした場合の案内羽根展開図、第
9図は案内羽根の子午面流路形状の拡大を緩やか
にした場合の断面図である。 3…回転軸、4…案内羽根、4a…案内羽根の
凸側、4b…案内羽根の凹状側、6a…案内羽根
間流路ハブ面、6b…傾斜面。 〓〓〓〓〓
Fig. 1 is a cross-sectional view of the flow path between the blades perpendicular to the rotation axis of the guide vanes of the mixed flow pump of the present invention, and Figs. 2 to 9 are diagrams illustrating a conventional mixed flow pump. 3A and 3B are developed views of the tip side and hub surface of the guide vanes in FIG. 2; FIG. Figure 5 is a schematic cross-sectional view of the guide vane section, Figure 6 is a cross-sectional view taken along line A-A' in Figure 5, Figure 7 is a cross-sectional view perpendicular to the rotation axis of the guide vane flow path, and Figure 8 is Figure 3. FIG. 9 is a developed view of the guide vane when the angle change of the vane is made gradual, and FIG. 3... Rotating shaft, 4... Guide vane, 4a... Convex side of guide vane, 4b... Concave side of guide vane, 6a... Channel hub surface between guide vanes, 6b... Inclined surface. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 案内羽根で構成される羽根間流路において、
回転軸に垂直な断面の前記羽根間流路のハブ面
を、前記案内羽根の凹状側より凸状側に向かつて
回転軸心に対し遠くなるような傾斜面に形成した
ことを特徴とする斜流ポンプ。
1 In the inter-vane flow path composed of guide vanes,
The hub surface of the inter-blade flow path having a cross section perpendicular to the rotation axis is formed into an inclined surface that becomes farther from the rotation axis as it goes from the concave side to the convex side of the guide vane. flow pump.
JP5027979A 1979-04-25 1979-04-25 Slant flow pump Granted JPS55142997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027979A JPS55142997A (en) 1979-04-25 1979-04-25 Slant flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027979A JPS55142997A (en) 1979-04-25 1979-04-25 Slant flow pump

Publications (2)

Publication Number Publication Date
JPS55142997A JPS55142997A (en) 1980-11-07
JPS6135399B2 true JPS6135399B2 (en) 1986-08-13

Family

ID=12854486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027979A Granted JPS55142997A (en) 1979-04-25 1979-04-25 Slant flow pump

Country Status (1)

Country Link
JP (1) JPS55142997A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326037B2 (en) * 2005-11-21 2008-02-05 Schlumberger Technology Corporation Centrifugal pumps having non-axisymmetric flow passage contours, and methods of making and using same

Also Published As

Publication number Publication date
JPS55142997A (en) 1980-11-07

Similar Documents

Publication Publication Date Title
EP0648939B1 (en) Centrifugal fluid machine
US2165808A (en) Pump rotor
US5797724A (en) Pump impeller and centrifugal slurry pump incorporating same
JP6785946B2 (en) Centrifugal compressor and turbocharger
WO2011007467A1 (en) Impeller and rotary machine
US3986791A (en) Hydrodynamic multi-stage pump
JP3790101B2 (en) Mixed flow pump
JPH0512560B2 (en)
CN209781249U (en) Diagonal fan
JP3841391B2 (en) Turbo machine
JPWO2004051091A1 (en) Diffuser for centrifugal compressor and manufacturing method thereof
JP4882939B2 (en) Movable blade axial flow pump
TW200537031A (en) Air outlet structure for an axial-flow fan
JP6005256B2 (en) Impeller and axial flow blower using the same
US11572890B2 (en) Blade and axial flow impeller using same
JP6746943B2 (en) Centrifugal compressor impeller
JPS6135399B2 (en)
JPS6357635B2 (en)
JP2680136B2 (en) Swirl blower
JP7386333B2 (en) Impeller and centrifugal compressor
JP4183612B2 (en) Axial flow pump
JPH05340265A (en) Radial turbine moving blade
JP3124188B2 (en) Mixed flow turbine nozzle
JPH07286598A (en) Centrifugal fan provided with fluid deflector
JPS6144000Y2 (en)