[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6395674A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6395674A
JPS6395674A JP24247186A JP24247186A JPS6395674A JP S6395674 A JPS6395674 A JP S6395674A JP 24247186 A JP24247186 A JP 24247186A JP 24247186 A JP24247186 A JP 24247186A JP S6395674 A JPS6395674 A JP S6395674A
Authority
JP
Japan
Prior art keywords
film
layer
substrate
insulating film
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24247186A
Other languages
Japanese (ja)
Inventor
Toshiharu Tanpo
反保 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24247186A priority Critical patent/JPS6395674A/en
Publication of JPS6395674A publication Critical patent/JPS6395674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve yield by removing stress difference with a sub strate by the three layer structure of two kinds of insulating films having tensile stress and compressive stress on the substrate and inhibiting the fluctuation of the drain currents, threshold voltage and drain breakdown strength of an FET formed onto the substrate. CONSTITUTION:GaAsFETs 2, 2' are shaped onto a substrate 1, and the film thickness of source electrodes 4, 4', drain electrodes 5, 5' and gate electrodes 6, 6' is isolated by an silicon oxide film 3. A plasma CVDSiN film 8 as a first layer is deposited onto the GaAs substrate, a CVDSiO2 film 9 as a second layer is deposited onto the first layer, and a plasma CVDSiN film 10 as a third layer is deposited onto the second layer. Contact holes 11 for wiring are formed through photoetching, and the source electrodes for the FETs are wired 12 through a photolithographic technique and a plating technique. Tensile stress works on the GaAs substrate in the CVDSiN film, and compressive stress operates on the CVDSiO2 film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、層間絶縁膜を有する半導体装置の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device having an interlayer insulating film.

従来の技術 従来、FIT(電界効果トランジスタ)間を配線するた
めに用いている層間絶縁膜は、ポリイミド系の有機絶縁
膜や、 5i02.SiNなどのシリコン系絶縁膜を単
体で用いている。
BACKGROUND ART Conventionally, interlayer insulating films used for wiring between FITs (field effect transistors) are polyimide-based organic insulating films, 5i02. A silicon-based insulating film such as SiN is used alone.

発明が解決しようとする問題点 従来、有機絶縁膜、シリコン系絶縁膜を単体で層間絶縁
膜と用いた場合1基板との応力差によシ、FETのドレ
イン電流、閾値電圧、ドレイン耐圧を劣化させ、ICの
歩留りを低下させる問題がある。
Problems to be Solved by the Invention Conventionally, when an organic insulating film or a silicon-based insulating film was used alone as an interlayer insulating film, the drain current, threshold voltage, and drain breakdown voltage of the FET deteriorated due to the stress difference between the two substrates. This poses a problem of lowering the yield of ICs.

問題点を解決するだめの手段 前記問題点を解決するだめに1基板に対し引張応力を持
つ絶縁膜と圧縮応力を持つ絶縁膜との3層構造とするこ
とにより、基板との応力差をなくする。
Means for solving the problem In order to solve the above problem, the difference in stress between the substrate and the substrate can be eliminated by forming a three-layer structure for each substrate, consisting of an insulating film with tensile stress and an insulating film with compressive stress. do.

作用 基板に対し引張応力と圧縮応力とを持つ2種類の絶縁膜
の3層構造によシ、基板との応力差がなくなり、基板上
に形成されたFETのドレイン電流、閾値電圧、ドレイ
ン耐圧の変動がおさえられ歩留りが著しく向上する。
Due to the three-layer structure of two types of insulating films that have tensile stress and compressive stress on the working substrate, there is no stress difference between the substrate and the drain current, threshold voltage, and drain breakdown voltage of the FET formed on the substrate. Fluctuations are suppressed and yields are significantly improved.

実施例 以下5本発明の一実施例をGaAsFXT  を例に説
明する。
EXAMPLE 5 An example of the present invention will be described below using GaAsFXT as an example.

第1図に本発明の一実施例を示す。第1図aにおいてe
ars半絶縁性基板1上にG&λ5FET  2 。
FIG. 1 shows an embodiment of the present invention. In Figure 1 a, e
G&λ5FET 2 on ars semi-insulating substrate 1.

2′が形成され、ソース電極4.4’、ドレイン電極5
.5’、ゲート電極6.6′は膜厚が4000人のシリ
コン酸化膜3で分離している。
2' are formed, a source electrode 4.4', a drain electrode 5
.. 5' and gate electrodes 6 and 6' are separated by a silicon oxide film 3 having a thickness of 4000 nm.

第2図すにおいてFITが形成されたGaAs基板上に
第1層のプラズマCVD5iN膜8を300 ’Cで2
00人/winの堆積速度で1000人堆積し1第1層
上に第24 (D CVD5i02 膜9を300°C
で100人/winの堆積速度で1000人堆積し、第
2層上に第3層のプラズマCVD5iN 膜1o ヲ3
00°Cで200人/winの堆積速度で6ooO人堆
積する。第1図eにおいて配線用のコンタクトホール1
1をホトエツチングにより形成する。
In Fig. 2, a first layer of plasma CVD 5iN film 8 is deposited at 300'C on the GaAs substrate on which the FIT is formed.
The 24th (D CVD5i02 film 9 was deposited on the 1st layer at 300°C.
1000 people were deposited at a deposition rate of 100 people/win, and a third layer of plasma CVD 5iN film 1o was deposited on the second layer.
At 00°C, 600 people are deposited at a deposition rate of 200 people/win. Contact hole 1 for wiring in Figure 1e
1 is formed by photo-etching.

第1図dにおいて、ホトリソ技術とメッキ技術によりF
ETのソース電極間の配線12を行なう。
In Fig. 1d, F is
Wiring 12 between the source electrodes of ET is performed.

この方法は層間絶縁膜にプラズマCVD5iN膜8/ 
CVD5iN膜9/プラズマCvD膜10(7)3層構
造を用いることにより基板間の応力緩和性なう。プラズ
マCVD5iN膜はGaAs基板に対して引張応力が作
用し、 CVDSiO2膜は圧縮応力が作用するため両
者の膜厚を調整することによりGaAs基板に対して層
間絶縁膜の応力を緩和できる。3層構造とすることによ
υ、第1層のプラズマCVD5iN膜で電極間分離膜の
CVD5iO,、膜と電極間の応力を緩和し、第2層の
CVD5iO2膜、第3層のプラズマCVD5iN膜で
G4ムS基板との応力差を緩和することができる。第2
図にGaAs基板に対するプラズマCVD5iN膜とC
VD5iO2膜の膜厚に対する内部応力を示す。膜厚と
基板との応力差は比例関係にあることがわかる。本実施
例で全応力を算定するとCVD5i02 膜が4ooO
人、1000人でフ。
This method uses a plasma CVD 5iN film 8/
By using the three-layer structure of CVD5iN film 9/plasma CVD film 10 (7), stress relaxation between the substrates is achieved. Since tensile stress acts on the plasma CVD 5iN film on the GaAs substrate, and compressive stress acts on the CVDSiO2 film, the stress of the interlayer insulating film on the GaAs substrate can be alleviated by adjusting the thickness of both films. By having a three-layer structure, the first layer of plasma CVD5iN film is used as the inter-electrode separation film, CVD5iO, the stress between the film and the electrode is relaxed, the second layer of CVD5iO2 film, and the third layer of plasma CVD5iN film. This can alleviate the stress difference between the G4 and S substrates. Second
The figure shows a plasma CVD 5iN film on a GaAs substrate and a C
It shows the internal stress with respect to the film thickness of the VD5iO2 film. It can be seen that there is a proportional relationship between the film thickness and the stress difference between the substrate and the film thickness. In this example, when the total stress is calculated, the CVD5i02 film is 4ooO
1000 people is enough.

ラス? CVD5iN膜が1000人、5QOO人であ
るから第2図より0.5 X 109dyn / (J
の圧縮応力となり、 GaAs基板に対して安定である
ことがわかる。
Russ? Since the CVD5iN film has 1000 people and 5QOO people, from Figure 2 it is 0.5 x 109dyn / (J
It can be seen that the compressive stress is stable for the GaAs substrate.

第3図に第1層のプラズマCVD5iN膜を1000 
 ・人、第2層(7) CVD5i02 膜を1000
人と固定し、第3層のプラズマCVD5iN膜の膜厚を
変化した場合のGaAsFXT  のドレイン耐圧の変
化を示す。第3図より第3層のプラズマCVD8il膜
の膜厚を60oO人とすればドレイン耐圧が最大となる
ことがわかる。
Figure 3 shows the first layer of plasma CVD 5iN film.
・People, 2nd layer (7) CVD5i02 film 1000
The graph shows the change in drain breakdown voltage of GaAsFXT when fixed with a person and the thickness of the third layer plasma CVD 5iN film is changed. It can be seen from FIG. 3 that the drain breakdown voltage is maximized when the thickness of the third layer plasma CVD 8il film is 60 μm.

なお基板はGaAs基板に限らずInPやZn5aなど
の化合物半導体であればよい。また第1.3層の絶縁膜
と第2層の絶縁膜はプラズマCVD5iN膜とCVDS
iO2膜に限らず、TiN、A6N  ナト基板’IC
対して引張応力、圧縮応力を有する絶縁膜であればよい
Note that the substrate is not limited to a GaAs substrate, but may be any compound semiconductor such as InP or Zn5a. In addition, the 1st and 3rd layer insulation film and the 2nd layer insulation film are plasma CVD 5iN film and CVDS film.
Not limited to iO2 film, TiN, A6N nano-substrate IC
On the other hand, any insulating film having tensile stress or compressive stress may be used.

発明の効果 以上のように本発明によれば、基板に対し引張応力と圧
縮応力とを持つ2種類の絶縁膜の3層構造により、基板
との応力差がなくなり、基板上に形成されたFRTのド
レイン電流、閾値電圧、ドレイン耐圧の変動がおさえら
れ歩留りが著しく向上した。
Effects of the Invention As described above, according to the present invention, the three-layer structure of two types of insulating films that have tensile stress and compressive stress on the substrate eliminates the stress difference between the substrate and the FRT formed on the substrate. Fluctuations in drain current, threshold voltage, and drain breakdown voltage were suppressed, and yields were significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるGaAsFICT間
の配線工程を示す工程断面図、第2図はプラズマCVD
5iN膜とCVD5iO2膜の膜厚K 対t ルGaA
s基板との応力差を示す特性図、第3図は第3層のプラ
ズマCVD5iN膜の膜厚を変化した場合のGaAsF
IET のドレイン耐圧の変動を示す特性図である。 1・・・・・・GaAs半絶縁性基板、2.2′・・・
・・・GaAsFICT 、 3 、3’ 、−・・−
・CVD5iO□ 膜 4 、4/・・・・・・ソース
電極、5.5’・・・・・・ドレイン電極、6゜6′・
・・・・・ゲート電極、8・・・・・・第1層のプラズ
マCVD5iN膜、9・・・・・・第2 層ノCVD5
i02 膜、10・・・・・・第3層のプラズマCVD
5 iN膜、11・・・・・・コンタクトホール、12
・・・・・・配線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 ;\ 凶 −咄
FIG. 1 is a process cross-sectional view showing the wiring process between GaAsFICT in one embodiment of the present invention, and FIG. 2 is a plasma CVD
Film thickness of 5iN film and CVD 5iO2 film K vs. GaA
A characteristic diagram showing the stress difference with the s-substrate, Figure 3 shows the characteristics of GaAsF when the film thickness of the third layer plasma CVD 5iN film is changed.
FIG. 3 is a characteristic diagram showing variations in drain breakdown voltage of IET. 1...GaAs semi-insulating substrate, 2.2'...
...GaAsFICT, 3, 3', --...-
・CVD5iO□ film 4, 4/... Source electrode, 5.5'... Drain electrode, 6°6'
... Gate electrode, 8 ... First layer plasma CVD 5iN film, 9 ... Second layer CVD 5
i02 film, 10...3rd layer plasma CVD
5 iN film, 11...contact hole, 12
······wiring. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure;

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の一主面に複数の電界効果トランジス
タが形成され前記複数の電界効果トランジスタ各々のソ
ース電極、ドレイン電極、ゲート電極を配線するに際し
、前記複数の電界効果トランジスタが形成された前記半
導体基板の一主面上に第1の絶縁膜を形成する工程と、
前記第1の絶縁膜上に前記第1の絶縁膜と組成の異なる
第2の絶縁膜を形成する工程と、第2の絶縁膜上に前記
第1の絶縁膜と同等の組成からなる第3の絶縁膜を形成
する工程と、前記電界効果トランジスタのソース電極、
ドレイン電極、ゲート電極上の前記第1、第2、第3の
絶縁膜をホトエッチングする工程と、前記複数の電界効
果トランジスタの各々のソース電極、ドレイン電極、ゲ
ート電極を形成する工程とを含んでなる半導体装置の製
造方法。
(1) A plurality of field effect transistors are formed on one principal surface of a semiconductor substrate, and when wiring a source electrode, a drain electrode, and a gate electrode of each of the plurality of field effect transistors, forming a first insulating film on one main surface of the semiconductor substrate;
forming a second insulating film having a composition different from that of the first insulating film on the first insulating film; and forming a third insulating film having the same composition as the first insulating film on the second insulating film. a step of forming an insulating film, and a source electrode of the field effect transistor;
The method includes the steps of photoetching the first, second, and third insulating films on the drain electrode and gate electrode, and forming the source electrode, drain electrode, and gate electrode of each of the plurality of field effect transistors. A method for manufacturing a semiconductor device.
(2)第1および第3の絶縁膜と第2の絶縁膜の関係が
半導体基板に対し引張応力と圧縮応力または圧縮応力と
引張応力と相反する内部応力を持つ絶縁膜である特許請
求の範囲第1項記載の半導体装置の製造方法。
(2) Claims in which the relationship between the first and third insulating films and the second insulating film is that the insulating film has internal stress that is opposite to the tensile stress and the compressive stress or the compressive stress and the tensile stress with respect to the semiconductor substrate. 2. A method for manufacturing a semiconductor device according to item 1.
JP24247186A 1986-10-13 1986-10-13 Manufacture of semiconductor device Pending JPS6395674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24247186A JPS6395674A (en) 1986-10-13 1986-10-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24247186A JPS6395674A (en) 1986-10-13 1986-10-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6395674A true JPS6395674A (en) 1988-04-26

Family

ID=17089575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24247186A Pending JPS6395674A (en) 1986-10-13 1986-10-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6395674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166084A (en) * 2010-04-05 2010-07-29 Fujitsu Ltd Semiconductor device and method for manufacturing the same
US8003916B2 (en) 2005-08-29 2011-08-23 Panasonic Corporation Industrial robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745931A (en) * 1980-09-04 1982-03-16 Fujitsu Ltd Semiconductor device with multilayer passivation film and manufacture thereof
JPS598378A (en) * 1982-07-06 1984-01-17 Nec Corp Gaas fet
JPS60126839A (en) * 1983-12-13 1985-07-06 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745931A (en) * 1980-09-04 1982-03-16 Fujitsu Ltd Semiconductor device with multilayer passivation film and manufacture thereof
JPS598378A (en) * 1982-07-06 1984-01-17 Nec Corp Gaas fet
JPS60126839A (en) * 1983-12-13 1985-07-06 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003916B2 (en) 2005-08-29 2011-08-23 Panasonic Corporation Industrial robot
JP2010166084A (en) * 2010-04-05 2010-07-29 Fujitsu Ltd Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2015001863A1 (en) Method for manufacturing silicon carbide semiconductor device
JPH03252164A (en) Thin-film transistor
JPS6395674A (en) Manufacture of semiconductor device
JP2653092B2 (en) Complementary thin film transistor and method of manufacturing the same
JPH0384963A (en) Thin film transistor
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
JPS5950564A (en) Manufacture of thin film transistor
JPH0231507B2 (en) HANDOTAISOCHI
JPH02143462A (en) Thin film transistor
JP2707582B2 (en) Semiconductor device
JP2558466B2 (en) Semiconductor device
JPS628575A (en) Semiconductor device
JPS5835979A (en) Semiconductor device
JPH02201932A (en) Mos field-effect transistor with high withstand voltage
JPH0341774A (en) Thin film transistor
JPH11135727A (en) Semiconductor and its manufacture
JPH01166541A (en) Semiconductor device and manufacture thereof
JPH07211861A (en) Manufacture of semiconductor device
JPS59136973A (en) Semiconductor device
JPS62115776A (en) Manufacture of semiconductor device
JPH01225177A (en) Field effect transistor
JPS6221275A (en) Manufacture of mis type semiconductor element
JPS59194451A (en) Manufacture of semiconductor device
JPS61283144A (en) Formation of multilayer interconnection
JPS6140060A (en) Manufacture of semiconductor device