[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6382647A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus

Info

Publication number
JPS6382647A
JPS6382647A JP61229174A JP22917486A JPS6382647A JP S6382647 A JPS6382647 A JP S6382647A JP 61229174 A JP61229174 A JP 61229174A JP 22917486 A JP22917486 A JP 22917486A JP S6382647 A JPS6382647 A JP S6382647A
Authority
JP
Japan
Prior art keywords
correction value
magnetic resonance
resonance imaging
imaging apparatus
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61229174A
Other languages
Japanese (ja)
Inventor
浩 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61229174A priority Critical patent/JPS6382647A/en
Publication of JPS6382647A publication Critical patent/JPS6382647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、磁気共鳴イメージング装置に関し、特゛にそ
の受信系でのゲイン、位相等の補正に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a magnetic resonance imaging apparatus, and particularly relates to correction of gain, phase, etc. in a receiving system thereof.

(従来の技術) 磁気共鳴イメージング(以下、MRIと略記する)装置
では、高周波を送信コイルより被検体に送信し、該被検
体より得られるMRI信号を受信コイルで受け、増幅、
検波、フィルター、ADC(アナログ−ディジタル変換
)、FFT(高速フーリエ変換)及びディジタルフィル
ターなどを通して画像化を行うものである。このとぎ、
受信系の伝達関数は中心周波数foを中心とした士△f
の関心周波数帯域において、以下の特性が要求されてい
る。即ち、第3図(A)に示すように前記関心周波数帯
域fO±Δfにおいて一定の1辰幅特性を有すること、
第3図(B)に示すように同上領域において線形的な位
相特性を有すること、及び、第3図(C)に示すように
直交検波の位相差θが同上領域で90’となることであ
る。
(Prior Art) In a magnetic resonance imaging (hereinafter abbreviated as MRI) device, high frequency waves are transmitted from a transmitting coil to a subject, and an MRI signal obtained from the subject is received by a receiving coil, amplified,
Imaging is performed through detection, filters, ADC (analog-digital conversion), FFT (fast Fourier transform), digital filters, and the like. This moment,
The transfer function of the receiving system is Δf centered around the center frequency fo.
The following characteristics are required in the frequency band of interest: That is, as shown in FIG. 3(A), it has a constant one-stroke width characteristic in the frequency band of interest fO±Δf;
As shown in Figure 3 (B), it has a linear phase characteristic in the above region, and as shown in Figure 3 (C), the phase difference θ of quadrature detection is 90' in the same region. be.

(発明が解決しようとする問題点) 上述した3つの特性を冑るために、従来装置におっては
中心周波数foでの特性にのみ基づいて、Ill定系の
ハード又はソフトの処理を行なっていた。しかしながら
、このような従来装置での処理によれば中心周波数fo
付近では適正な特性をせIられるが、それ以外の領域で
は振幅のゆらぎ及び位相の非線形性が生じ、また、直交
検波の位相差が90’以外となることがめった。
(Problems to be Solved by the Invention) In order to improve the above-mentioned three characteristics, conventional devices perform hardware or software processing of Ill constant system based only on the characteristics at the center frequency fo. Ta. However, according to the processing in such a conventional device, the center frequency fo
Appropriate characteristics can be obtained in the vicinity, but amplitude fluctuations and phase nonlinearity occur in other regions, and the phase difference of quadrature detection rarely becomes other than 90'.

そこで、本発明の目的とするところは、上述した従来の
欠点を解消し、受信系での処理により生ずる振幅のゆら
ぎ、位相の非線形等の周波数特性を補正し、関心周波数
帯域において一定の振幅特性、線形的な位相特性等の理
想的な周波数特性を得ることができる磁気共鳴イメージ
ング装置を提供することにおる。
Therefore, an object of the present invention is to eliminate the above-mentioned conventional drawbacks, correct frequency characteristics such as amplitude fluctuations and phase nonlinearity caused by processing in the receiving system, and maintain constant amplitude characteristics in the frequency band of interest. The present invention aims to provide a magnetic resonance imaging apparatus that can obtain ideal frequency characteristics such as linear phase characteristics.

[発明の構成] (問題点を解決するための手段) 本発明は被検体からのMRI信号を受信コイルで受信し
、これを少なくとも増幅被検波部、アナログ−ディジタ
ル変換部及びフーリエ変換部で処理して画像化を行う磁
気共鳴イメージング装置において、前記受信コイルから
フーリエ変換部直前までの受信姦の周波数特性を補正す
る補正値を、少なくとも関心周波数帯域について記憶し
た記・旧都と、この記憶部内の補正値に基づき前記受信
系を介して得られた画像データを補正する補正部とを設
けた構成とした。
[Structure of the Invention] (Means for Solving the Problems) The present invention receives an MRI signal from a subject with a receiving coil, and processes it in at least an amplified test wave section, an analog-digital conversion section, and a Fourier transform section. In a magnetic resonance imaging apparatus that performs imaging, a correction value for correcting the frequency characteristics of the received signal from the receiving coil to immediately before the Fourier transform unit is stored at least for the frequency band of interest; and a correction section that corrects the image data obtained via the receiving system based on the correction value.

(作 用) 本発明では、例えば送信部からの周波数掃引信号によっ
て受信コイルからフーリエ変換部直前までの受信系の周
波数特性を予め全処理として求めて、これを補正する補
正値を記゛巨部に記憶してあき、実際の画像データ収集
時に前記受信系からの出力に対して前記補正値に基づき
ゲイン、位相等を補正することで、受信系の処理により
生ずる1辰幅のゆらぎ及び位相の非線形性等を補正して
理想的な周波数特性を得ることができる。
(Function) In the present invention, for example, the frequency characteristics of the receiving system from the receiving coil to just before the Fourier transform section are obtained in advance as a whole process using a frequency sweep signal from the transmitting section, and a correction value for correcting this is stored in the large section. By correcting the gain, phase, etc. based on the correction values for the output from the receiving system during actual image data collection, one-stroke width fluctuations and phase fluctuations caused by processing in the receiving system can be corrected. Ideal frequency characteristics can be obtained by correcting nonlinearity and the like.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第9図は、本発明に係わるMRI装置の受信系のブロッ
ク図で必る。
FIG. 9 is a block diagram of a receiving system of an MRI apparatus according to the present invention.

1は送信部でおり、画像データ収集時には高周波(RF
パルス)を送信コイルを介して被検体に送信するもので
あるが、本実施例では画像データ収集前の処理として受
信系の振幅特性及び位相特性を測定するために、この送
信部1より周波数掃引信号が発せられるようになってい
る。 3は前記送信コイル2より送信された高周波によ
り生ずる被検体からのMRI信号を受信するものでおる
が、前処理としての前記周波数掃引信号をも受信するよ
うになっている。そして、この受信コイル3の後段には
、この送信コイル3をも含めたMRI装置の受信系とし
てプリアンプ4.増幅検波部5、ADC6,フーリエ変
換部としてのFFT7が設けられている。
1 is a transmitter, which transmits high frequency (RF) when collecting image data.
In this embodiment, as a process before image data collection, a frequency sweep is sent from this transmitter 1 to measure the amplitude and phase characteristics of the receiving system. A signal is being emitted. 3 receives the MRI signal from the subject generated by the high frequency transmitted from the transmitting coil 2, and also receives the frequency sweep signal as pre-processing. After this receiving coil 3, a preamplifier 4. An amplification/detection section 5, an ADC 6, and an FFT 7 as a Fourier transform section are provided.

9は記憶部であり、前処理としての周波数掃引によって
測定された周波数特性の補正値を記憶するものである。
Reference numeral 9 denotes a storage unit that stores correction values of frequency characteristics measured by frequency sweep as preprocessing.

即ち、周波数掃引信号を受信系で受信することにより、
この受信系の伝達関数が求められる。これらは、受信コ
イル3からFFT7の直前までのハード(及びソフト)
の特性でおるので、コイル3.プリンアンプ4等のハー
ド(又はソフト)の一部又は全部を変えないかぎり一定
の伝達関数を有するものと考えてよい。尚、場合によっ
ては被検体毎にこのような測定を行なった方が精度が向
上する。
That is, by receiving the frequency sweep signal in the receiving system,
The transfer function of this receiving system is found. These are the hardware (and software) from reception coil 3 to just before FFT 7.
Therefore, coil 3. Unless some or all of the hardware (or software) such as the preamplifier 4 is changed, it can be considered to have a constant transfer function. Note that in some cases, accuracy may be improved by performing such measurements for each subject.

そして、前記記憶部9の前段に設けられている補正値算
出部8では、前処理によって求められた伝達関数のうち
の周波数特性が、理想的な受信系での周波数特性となる
ように補正するための補正値を痺出し、この算出結果を
各周波数と対応付けて前記記憶部9に記憶するようにな
っている。ここで、補正値の一例を第2図(A)、(B
)。
Then, a correction value calculation unit 8 provided before the storage unit 9 corrects the frequency characteristics of the transfer function obtained by preprocessing so that they become the frequency characteristics of an ideal receiving system. The calculation result is stored in the storage unit 9 in association with each frequency. Here, an example of the correction value is shown in Fig. 2 (A) and (B).
).

(C)に示す。第2図(A>、(B)、(C)はそれぞ
れ振幅特性2位相特性、直交検波の位相差特性に関する
補正値を示すもので、各図におけるGf、θf、θfは
それぞれ上記各特性についての理想的特性を示すもので
、 Gf’ 、θf t、θf′はそれぞれ実測された各特
性を示している。ここで、GfとGf’ との差である
ΔGが振幅の補正値、θfとθf′との差であるΔOが
位相の補正値、θfとθf′との差であるΔ会が位相差
の補正値となり、周波数に対応付けて上記の各補正値が
記憶部9に記・臣されることになる。
Shown in (C). Figure 2 (A>, (B), and (C) shows the correction values for the amplitude characteristic, two-phase characteristic, and the phase difference characteristic of quadrature detection, respectively. Gf, θf, and θf in each figure are for each of the above characteristics, respectively. Gf', θf t, and θf' indicate the actually measured characteristics.Here, ΔG, which is the difference between Gf and Gf', is the amplitude correction value, and θf and ΔO, which is the difference between θf' and θf', is the phase correction value, and ΔO, which is the difference between θf and θf', is the phase difference correction value. He will become a vassal.

10は補正部であり、前記記憶部9からの補正値に基づ
き、被検体からの画像データに対して例えばFFT後に
第3図(A>、(B)、(C)に示す理想的なゲイン特
性2伎相特性及び位相差特性となるように補正するもの
でおる。この結果、理想的な受信系で得た時の画像デー
タを得ることができる。
Reference numeral 10 denotes a correction unit which, based on the correction values from the storage unit 9, calculates the ideal gain shown in FIG. This is corrected so that the characteristics are 2. Phase characteristics and phase difference characteristics.As a result, image data obtained with an ideal receiving system can be obtained.

11は画像再構成部であり、補正部10からのデータに
基づき被検体断面を再構成して画像化するものである。
Reference numeral 11 denotes an image reconstruction section, which reconstructs the cross section of the subject based on the data from the correction section 10 and images it.

このようなMRI装置によれば、画像データの収集前に
先ず送信部1より周波数掃引信号を出力し、これを送信
コイル2より送信する。そして、この周波数掃引信号を
受信コイル3で受信し、以下、実際の画像データ処理と
同一の処理を受信系において行う。そして、この処理後
のデータを補正値算出部8に入力することで、受信コイ
ル3よりFFT7の直前までの受信系の伝達関数が求め
られ、これと理想的特性との差を補正値として算出して
記憶部9に記憶しておく。
According to such an MRI apparatus, before collecting image data, the transmitter 1 first outputs a frequency sweep signal, and the transmitter coil 2 transmits this signal. This frequency sweep signal is then received by the receiving coil 3, and the same processing as the actual image data processing is then performed in the receiving system. Then, by inputting the data after this processing to the correction value calculation unit 8, the transfer function of the reception system from the reception coil 3 to just before the FFT 7 is calculated, and the difference between this and the ideal characteristics is calculated as the correction value. and stores it in the storage unit 9.

このような前処理は、′上述したように受信系のハード
又はソフトを変更しない限り一定の伝達関数を有するも
のと考えられるので、−回行うだけで足りるが、さらに
精度の向上を図るためには被検体毎に行ってもよい。
This kind of preprocessing is considered to have a constant transfer function unless the hardware or software of the receiving system is changed as described above, so it is sufficient to perform it only - times, but in order to further improve the accuracy, may be performed for each subject.

そして、このような前処理により一旦記憶部9に補正値
を記憶した後は、実際に被検体からの画像データを収集
し、FFT7での処理後に補正部10で、前記記憶部9
からの補正値に基づき一定の1辰幅特性、線形的な位相
特性及び直交検波の位相差が90°となるように補正を
行う。この結果、第3図(A>、(B)、(C)に示す
ような理想的な特性を有する受信系で画像データを得た
ものと同一のデータを収集することができ、振幅ゆらぎ
1位相の非線形性及び直交検波の位相差が90’以外に
なることを関心周波数帯域内で確実に補正することがで
きる。
After the correction values are once stored in the storage unit 9 through such pre-processing, image data from the subject is actually collected, and after being processed by the FFT 7, the correction value is stored in the storage unit 9 in the correction unit 10.
Based on the correction value from , correction is performed so that the fixed one-line width characteristic, the linear phase characteristic, and the phase difference of quadrature detection become 90°. As a result, it is possible to collect the same data as the image data obtained with the receiving system having ideal characteristics as shown in Fig. 3 (A>, (B), and (C)), and the amplitude fluctuation is 1. Phase nonlinearity and quadrature detection phase differences other than 90' can be reliably corrected within the frequency band of interest.

尚、本発明は上記実施例に限定されるものではなく、本
発明の要旨の範囲内で種々の変形実施が可能である。。
Note that the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the gist of the present invention. .

周波数特性に関する補正値としては、上記の3つの各特
性につぎ全て備える必要はなく、いずれか一つ以上でお
ればよい。また、補正部9は必ずしもFFT7の後段に
設けて周波数空間で補正するものに限らず、FFT7の
前段側で時間空間上で補正、するようにしてもよい。
It is not necessary to provide all of the above-mentioned three characteristics as correction values related to the frequency characteristics, and it is sufficient to have one or more of them. Further, the correction unit 9 is not necessarily provided after the FFT 7 to perform correction in frequency space, but may be provided before the FFT 7 to perform correction in time space.

[発明の効果] 以上説明したように、本発明によれば受信系の周波数特
性を前もって測定しておぎ、この実測された周波数特性
を理想化する補正値に基づいて補正することで、関心周
波数帯域で一定振幅、線形的な位相等の理想的な特性を
得ることかできる。
[Effects of the Invention] As explained above, according to the present invention, the frequency characteristics of the receiving system are measured in advance, and the frequency characteristics of interest are corrected based on correction values that idealize the measured frequency characteristics. It is possible to obtain ideal characteristics such as constant amplitude and linear phase in the band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気共鳴イメージング装置のブロ
ック図、第2図(A)、(B)、(C)はそれぞれ受信
系の振幅特性2位相特性、直交検波の位相差特性につい
ての補正値を示す特性図、第3図(A>、(B)、(C
)はそれぞれ理想的な受信系の振幅特性1位相iQr性
及び直受検波の相差特性を示す特性図で市る。 1・・・送信部、2・・・送信コイル、3・・・受信コ
イ4・・・プリアンプ、5・・・増幅検波部。 6・・・アナログ−ディジタル変換部。 7・・・フーリエ変換部、9・・・記゛n部。 10・・・補正部。 代理人 弁理士 三  澤  正  義(C) 第2図
Figure 1 is a block diagram of the magnetic resonance imaging apparatus according to the present invention, and Figures 2 (A), (B), and (C) are corrections for the amplitude characteristics of the receiving system, the two-phase characteristics, and the phase difference characteristics of quadrature detection, respectively. Characteristic diagram showing the values, Figure 3 (A>, (B), (C
) are characteristic diagrams showing the amplitude characteristic of an ideal receiving system, 1-phase iQr characteristic, and the phase difference characteristic of direct detection, respectively. DESCRIPTION OF SYMBOLS 1... Transmission part, 2... Transmission coil, 3... Receiving coil 4... Preamplifier, 5... Amplification detection part. 6...Analog-digital conversion section. 7... Fourier transform section, 9... Record n section. 10... Correction section. Agent Patent Attorney Masayoshi Misawa (C) Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)送信部より発せられた高周波を送信コイルを介し
て被検体に送信し、被検体からのMRI信号を受信コイ
ルで受信し、これを少なくとも増幅被検波部、アナログ
−ディジタル変換部及びフーリエ変換部で処理して画像
化を行う磁気共鳴イメージング装置において、前記受信
コイルからフーリエ変換部直前までの受信系の周波数特
性を補正する補正値を、少なくとも関心周波数帯域につ
いて記憶した記憶部と、この記憶部内の補正値に基づき
前記受信系を介して得られた画像データを補正する補正
部とを設けたことを特徴とする磁気共鳴イメージング装
置。
(1) The high frequency waves emitted from the transmitting section are transmitted to the subject via the transmitting coil, the MRI signal from the subject is received by the receiving coil, and this is transmitted to at least the amplified test wave section, the analog-to-digital converter, and the Fourier A magnetic resonance imaging apparatus that performs processing and image formation in a conversion unit includes a storage unit that stores correction values for correcting the frequency characteristics of the reception system from the reception coil to immediately before the Fourier transformation unit, at least for a frequency band of interest; A magnetic resonance imaging apparatus comprising: a correction section that corrects image data obtained through the reception system based on correction values in a storage section.
(2)記憶部は、前記補正値として前記関心周波数帯域
で一定振幅とする補正値を含むものである特許請求の範
囲第1項記載の磁気共鳴イメージング装置。
(2) The magnetic resonance imaging apparatus according to claim 1, wherein the storage unit includes, as the correction value, a correction value that makes the amplitude constant in the frequency band of interest.
(3)記憶部は、前記補正値として前記関心周波数帯域
で位相の非線形性を補償する補正値を含むものである特
許請求の範囲第1項又は第2項記載の磁気共鳴イメージ
ング装置。
(3) The magnetic resonance imaging apparatus according to claim 1 or 2, wherein the storage unit includes, as the correction value, a correction value that compensates for phase nonlinearity in the frequency band of interest.
(4)記憶部は、前記補正値として直交検波の位相差の
ズレを補償する補正値を含むものである特許請求の範囲
第1項乃至第3項のいずれか1項記載の磁気共鳴イメー
ジング装置。
(4) The magnetic resonance imaging apparatus according to any one of claims 1 to 3, wherein the storage unit includes, as the correction value, a correction value that compensates for a shift in phase difference of orthogonal detection.
(5)記憶部に記載される補正値は、前記送信部より出
力される周波数掃引信号を前記受信系で処理することに
より得られる周波数特性に応じて決定されるものである
特許請求の範囲第1項記載の磁気共鳴イメージング装置
(5) The correction value recorded in the storage unit is determined according to the frequency characteristics obtained by processing the frequency sweep signal output from the transmitting unit in the receiving system. 2. The magnetic resonance imaging apparatus according to item 1.
JP61229174A 1986-09-27 1986-09-27 Magnetic resonance imaging apparatus Pending JPS6382647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61229174A JPS6382647A (en) 1986-09-27 1986-09-27 Magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229174A JPS6382647A (en) 1986-09-27 1986-09-27 Magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JPS6382647A true JPS6382647A (en) 1988-04-13

Family

ID=16887948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229174A Pending JPS6382647A (en) 1986-09-27 1986-09-27 Magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JPS6382647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549620A (en) * 1991-08-28 1993-03-02 Toshiba Corp Magnetic resonance video device
JP2017227570A (en) * 2016-06-23 2017-12-28 国立大学法人 大分大学 Qd method electromagnetic horn type esr device and esr spectrum acquisition method using the same
JP2021023674A (en) * 2019-08-07 2021-02-22 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549620A (en) * 1991-08-28 1993-03-02 Toshiba Corp Magnetic resonance video device
JP2017227570A (en) * 2016-06-23 2017-12-28 国立大学法人 大分大学 Qd method electromagnetic horn type esr device and esr spectrum acquisition method using the same
JP2021023674A (en) * 2019-08-07 2021-02-22 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus

Similar Documents

Publication Publication Date Title
US4611172A (en) Reception signal processing apparatus in nuclear magnetic resonance diagnostic apparatus
JP3796446B2 (en) MRI equipment
JP2003177175A (en) Radar device, image acquisition method, control method based on image information and monitoring method using millimeter wave
JP2608274B2 (en) Nuclear magnetic resonance imaging equipment
EP0104781A2 (en) Reception signal processing apparatus in nuclear magnetic resonance diagnostic apparatus
EP0783113A3 (en) Magnetic resonance imaging system
CN110703219B (en) Method for acquiring far-field RCS of target by using multi-transmitting multi-receiving near-field linear array
JPS6382647A (en) Magnetic resonance imaging apparatus
EP0314790A1 (en) Method of correcting image distortion for nmr imaging apparatus
US4713616A (en) Nuclear magnetic resonance imaging apparatus
GB2171803A (en) Method of correcting phase and shading in nuclear magnetic resonance tomographic devices
EP0370692A2 (en) Magnetic resonance imaging methods and apparatus
CA2356476C (en) A method for calibrating a wideband direction finding system
US5184073A (en) Method for correcting phase errors in a nuclear magnetic resonance signal and device for realizing same
US6594198B2 (en) Digital signal demodulator calibration system and method for optical hydrophones
JPS62227342A (en) Quadrature detector
JP7265933B2 (en) Self-compensating radar system
EP0192708B1 (en) Nmr tuning procedure
US4902974A (en) Phase correcting method in a magnetic resonance imaging system and device for realizing the same
EP0371349A2 (en) A method of phase and amplitude correction of NMR signals using a reference marker
JP3114955B2 (en) Nuclear magnetic resonance equipment
JP2951045B2 (en) Ultrasonic reflection intensity measurement device
KR870001353B1 (en) Apparatus in nuclear magnetic resonance
JPS5614146A (en) Sweep type nuclear magnetic resonator
JP3139039B2 (en) NMR equipment receiver