JP2951045B2 - Ultrasonic reflection intensity measurement device - Google Patents
Ultrasonic reflection intensity measurement deviceInfo
- Publication number
- JP2951045B2 JP2951045B2 JP3148155A JP14815591A JP2951045B2 JP 2951045 B2 JP2951045 B2 JP 2951045B2 JP 3148155 A JP3148155 A JP 3148155A JP 14815591 A JP14815591 A JP 14815591A JP 2951045 B2 JP2951045 B2 JP 2951045B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- transmission
- white noise
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、超音波により水中ター
ゲットの探索および量的計測を行う超音波反射強度測定
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic reflection intensity measuring apparatus for searching and quantitatively measuring an underwater target using ultrasonic waves.
【0002】[0002]
【従来の技術】従来の超音波反射強度測定装置は、距離
分解能の向上を計るためにパルス圧縮処理を行うものを
除いて、一般に図4に示す回路構成が採用されている。
図において、3は送信パルス発生回路、4は電力増幅回
路、6はTVG増幅回路、7は受信用帯域フィルタ、8
は検波回路、9は正弦波発振回路、11は狭帯域の送受
波器である。正弦波発振回路9で発生する正弦波信号を
送信パルス発生回路3が発生する送信パルスでゲート処
理して送信用バースト信号を得、この送信用バースト信
号を電力増幅した後、送受波器11で超音波パルスに変
換して水中に送信する。水中に送信した超音波パルスが
水中ターゲットで反射されて返ってくる反射信号を送受
波器11で受信し、TVG増幅器6で伝播減衰の補正を
施した後、受信用帯域フィルタ7を通し、検波回路8で
検波して出力する。2. Description of the Related Art A conventional ultrasonic reflection intensity measuring apparatus generally employs a circuit configuration shown in FIG. 4 except for a device which performs a pulse compression process in order to improve a distance resolution.
In the figure, 3 is a transmission pulse generation circuit, 4 is a power amplifier circuit, 6 is a TVG amplifier circuit, 7 is a bandpass filter for reception, 8
Is a detection circuit, 9 is a sine wave oscillation circuit, and 11 is a narrow band transmitter / receiver. The sine wave signal generated by the sine wave oscillating circuit 9 is gate-processed with the transmission pulse generated by the transmission pulse generation circuit 3 to obtain a transmission burst signal, and the transmission burst signal is power-amplified. Converted into ultrasonic pulses and transmitted underwater. An ultrasonic pulse transmitted underwater is reflected by an underwater target, and a reflected signal returned is received by a transmitter / receiver 11, the propagation attenuation is corrected by a TVG amplifier 6, and then passed through a reception band-pass filter 7 to be detected. The signal is detected by the circuit 8 and output.
【0003】上記のような構成の装置の場合、送信周波
数が単一周波数であるため、他船が同一周波数の超音波
パルスを送信している時は、超音波パルスの相互干渉に
より受信信号が乱されるという問題があった。また、送
信パルス幅内に水中ターゲットが複数存在する場合、水
中ターゲットの位置関係により反射波の位相は各ターゲ
ットごとに異なり、異なる位相の反射波の重畳に起因す
る受信信号の振幅変動を除去することができず、水中タ
ーゲットの量的計測を行う場合に誤差が生ずるという問
題があった。In the case of the apparatus having the above-described configuration, the transmission frequency is a single frequency. Therefore, when another ship is transmitting ultrasonic pulses of the same frequency, the received signal is generated due to mutual interference of the ultrasonic pulses. There was a problem of being disturbed. In addition, when a plurality of underwater targets exist within the transmission pulse width, the phase of the reflected wave differs for each target due to the positional relationship of the underwater target, and the amplitude fluctuation of the received signal caused by the superposition of the reflected waves having different phases is removed. However, there is a problem that an error occurs when performing quantitative measurement of the underwater target.
【0004】上記の問題に鑑みて、従来、図5に示す回
路構成を有し、異なる周波数の複数の送信周波数を使用
し、各周波数毎の検波後の信号を加算平均回路10でア
ナログ的に加算平均することにより、受信信号の変動を
減少させ、水中ターゲットの量を正確に計測する方式の
ものが実用化されている(公告番号昭64−565
5)。In view of the above problem, conventionally, a circuit configuration shown in FIG. 5 is used, a plurality of transmission frequencies of different frequencies are used, and a signal after detection for each frequency is analogously converted by an averaging circuit 10. A system has been put into practical use in which the variation of the received signal is reduced by averaging to accurately measure the amount of the underwater target (publication number: 64-64).
5).
【0005】[0005]
【発明が解決しようとする課題】従来の図4に示す回路
構成の超音波反射強度測定装置は、他船の同一周波数の
超音波パルスにより受信信号が乱されるという問題と、
送信パルス幅内に水中ターゲットが複数存在する場合水
中ターゲットの量的計測に誤差が生ずるという問題があ
り、図5に示す回路構成のものは、他船の送信パルスと
の相互干渉と水中ターゲットの位置関係に起因する受信
信号の変動は軽減されるが、送信周波数に対応する数だ
け送受信回路が必要で、装置が複雑になり、高価になる
という問題があった。本発明は上記の問題に鑑みてなさ
れたもので、比較的簡単な回路構成で、他船の送信パル
スにより受信信号が乱されることなく、水中ターゲット
の位置関係に起因する受信信号の変動の少ない超音波反
射強度測定装置を提供することを目的とする。The conventional ultrasonic reflection intensity measuring apparatus having the circuit configuration shown in FIG. 4 has a problem that a received signal is disturbed by an ultrasonic pulse of the same frequency from another ship.
When a plurality of underwater targets exist within the transmission pulse width, there is a problem that an error occurs in the quantitative measurement of the underwater target. The circuit configuration shown in FIG. Although the fluctuation of the received signal due to the positional relationship is reduced, the number of transmitting and receiving circuits is required by the number corresponding to the transmission frequency, and there is a problem that the apparatus becomes complicated and expensive. The present invention has been made in view of the above-described problem, and has a relatively simple circuit configuration and does not disturb a received signal due to a transmission pulse of another ship. It is an object of the present invention to provide an ultrasonic reflection intensity measuring device with a small number.
【0006】[0006]
【課題を解決するための手段】本発明の超音波反射強度
測定装置は、白色性雑音を発生する白色雑音発生回路
と、白色性雑音のうち必要な周波数帯域の信号のみを抽
出する送信用帯域フィルタと、送信パルス発生回路と、
前記送信用帯域フィルタからの出力信号を送信パルスで
ゲート処理した後に電力増幅する電力増幅回路と、前記
電力増幅回路の出力の送信用バースト波を超音波パルス
に変換して水中に送信し水中ターゲットからの反射信号
を受信する広帯域送受波器と、前記広帯域送受波器にて
受信された反射信号に対して伝播減衰の補正を施すTV
G増幅器と、TVG増幅信号のうち必要な周波数帯域の
信号のみを抽出する受信用帯域フィルタと、前記受信用
帯域フィルタの出力信号を包絡線検波する検波回路とを
備えたことを特徴とする。An ultrasonic reflection intensity measuring apparatus according to the present invention comprises a white noise generating circuit for generating white noise, and a transmission band for extracting only a signal of a required frequency band from the white noise. A filter, a transmission pulse generation circuit,
A power amplifying circuit that amplifies power after gating an output signal from the transmission band-pass filter with a transmission pulse, and converts a transmission burst wave output from the power amplifying circuit into an ultrasonic pulse and transmits the underwater target to the underwater target; And a TV for performing propagation attenuation correction on the reflected signal received by the broadband transducer
It is characterized by comprising a G amplifier, a reception bandpass filter for extracting only a signal of a required frequency band from the TVG amplified signal, and a detection circuit for performing envelope detection on an output signal of the reception bandpass filter.
【0007】[0007]
【作用】帯域制限された白色性雑音を送信信号として用
いることにより、送信パルス内の搬送波の周波数と位相
は時々刻々変化するので、複数の周波数の超音波パルス
を位相を変化させながら送信することと等しい効果が得
られる。このため、単一周波数による送受信系とほぼ同
じ簡単な回路構成で、複数の周波数による送受信系と同
様の効果が得られる。By using band-limited white noise as a transmission signal, the frequency and phase of the carrier in the transmission pulse change every moment, so that ultrasonic pulses of a plurality of frequencies are transmitted while changing the phase. The same effect can be obtained. For this reason, the same effect as the transmission / reception system using a plurality of frequencies can be obtained with the same simple circuit configuration as the transmission / reception system using a single frequency.
【0008】[0008]
【実施例】図1は本発明の一実施例の回路構成を示す。
図において、3,4,6,7,8は図4の同一符号と同
一または相当するものを示し、1は白色雑音発生回路、
2は送信用帯域フィルタ、5は広帯域送受波器である。
図2は実施例における送信系の各回路の信号スペクトル
分布の一例を示し、図3は本発明の一実施例の各回路に
おける信号波形の一例を示す。FIG. 1 shows a circuit configuration of an embodiment of the present invention.
In the figure, 3, 4, 6, 7, and 8 denote the same or corresponding components as those in FIG. 4, 1 denotes a white noise generating circuit,
2 is a transmission bandpass filter, and 5 is a wideband transducer.
FIG. 2 shows an example of a signal spectrum distribution of each circuit of the transmission system in the embodiment, and FIG. 3 shows an example of a signal waveform in each circuit of the embodiment of the present invention.
【0009】先ず、本発明の実施例によると、他船の送
信パルスの干渉を受ける確率が減少するとともに、受信
信号の変動が減少する動作について説明する。白色雑音
発生回路1で発生した白色性雑音は、周波数と位相が時
々刻々変化しており、図2(a)のように、全周波数領
域に渡ってスペクトルが一様に分布している。この白色
性雑音を送信用帯域フィルタ2により帯域制限すると、
図2(b)のように、中心周波数f0 、帯域幅Δfの周
波数特性を有する有色性信号となる。この有色性信号を
送信パルス発生回路3が発生する送信パルスでゲート処
理を行い、送信用バースト信号を得る。この送信用バー
スト信号は、図2(c)の周波数特性を有する有色性信
号であり、送信パルス幅内で周波数と位相が不規則に変
化する。前記送信用バースト信号は電力増幅回路4で電
力増幅された後、広帯域送受波器5により電気音響変換
され、超音波パルスとして水中に送信される。水中ター
ゲットで反射された超音波パルスは広帯域送受波器5で
受信され、TVG増幅回路6により伝播減衰の補正が施
された後、受信用帯域フィルタ7,検波回路8を経て、
反射エコーの包絡線成分が出力される。この包絡線成分
は、単一周波数による包絡線成分と比較して、他船との
相互干渉と水中ターゲットの位置関係に起因する受信信
号の変動が大幅に軽減されている。他船との相互干渉に
ついては、送信用バースト信号が、送信パルス幅内で周
波数と位相が不規則に変化していることにより、干渉を
受ける確率が大幅に減少することが明らかである。First, according to the embodiment of the present invention, an operation will be described in which the probability of receiving the interference of the transmission pulse of another ship is reduced and the fluctuation of the received signal is reduced. The frequency and phase of the white noise generated by the white noise generating circuit 1 change every moment, and the spectrum is uniformly distributed over the entire frequency region as shown in FIG. When this white noise is band-limited by the transmission band-pass filter 2,
As shown in FIG. 2B, a color signal having a frequency characteristic of a center frequency f 0 and a bandwidth Δf is obtained. The colored signal is gated with a transmission pulse generated by the transmission pulse generation circuit 3 to obtain a transmission burst signal. This transmission burst signal is a colored signal having the frequency characteristic shown in FIG. 2C, and its frequency and phase change irregularly within the transmission pulse width. After the transmission burst signal is power-amplified by the power amplification circuit 4, it is subjected to electro-acoustic conversion by the broadband transmitter / receiver 5, and transmitted as underwater as ultrasonic pulses. The ultrasonic pulse reflected by the underwater target is received by the broadband transmitter / receiver 5, the propagation attenuation is corrected by the TVG amplifier circuit 6, and then passes through the reception bandpass filter 7 and the detection circuit 8.
The envelope component of the reflected echo is output. In this envelope component, the fluctuation of the received signal caused by the mutual interference with another ship and the positional relationship of the underwater target is significantly reduced as compared with the envelope component by a single frequency. Regarding mutual interference with other ships, it is clear that the probability of interference is significantly reduced because the frequency and phase of the transmission burst signal vary irregularly within the transmission pulse width.
【0010】以下、受信信号の変動の減少について説明
する。水中ターゲットからの反射エコーの受波音圧の瞬
時値Prは、送信パルス幅内の単体ターゲットからの反
射エコーの音圧をパルス幅内の全ターゲット数(例えば
魚群を探知する場合の全尾数N)について合成された値
であり、送信周波数が単一の場合、次式で与えられる。[0010] Hereinafter, a description will be given of a reduction in fluctuation of a received signal. The instantaneous value Pr of the received sound pressure of the reflected echo from the underwater target is obtained by calculating the sound pressure of the reflected echo from the single target within the transmission pulse width by the total number of targets within the pulse width (for example, the total number of fish N when detecting a school of fish). , And is given by the following equation when the transmission frequency is single.
【0011】[0011]
【数1】 (Equation 1)
【0012】また、パルス幅内に存在する全尾数による
受波音圧のパワーの瞬時値Pr2 は、送信周波数が単一
の場合、次式で与えられる。Further, the instantaneous value Pr 2 of the power of the received sound pressure based on the total number of tails existing within the pulse width is given by the following equation when the transmission frequency is single.
【0013】[0013]
【数2】 (Equation 2)
【0014】ここで、PriおよびPrjはそれぞれターゲ
ットiおよびターゲットjの反射強度であり、ψi,ψ
jは搬送波wにおけるターゲットiとターゲットjの初
期位相である。上記式(2) の第1項は、各ターゲットか
らの反射強度の2乗和であり、第2項はターゲット相互
間の位置関係に起因する干渉によって生ずる受信信号の
変動成分である。単一周波数の場合、受信信号の変動成
分を受信毎に除去することは不可能である。送信信号と
して前記送信用バースト信号を用いた場合、式(2) の初
期位相ψi,ψjは、送信パルス幅内の搬送周波数毎に
異なるので、Here, Pri and Prj are the reflection intensities of the target i and the target j, respectively, and {i,}
j is the initial phase of the target i and the target j in the carrier wave w. The first term of the above equation (2) is the sum of squares of the reflection intensity from each target, and the second term is a fluctuation component of the received signal caused by interference due to the positional relationship between the targets. In the case of a single frequency, it is impossible to remove the fluctuation component of the received signal for each reception. When the transmission burst signal is used as the transmission signal, the initial phases ψi and ψj in equation (2) differ for each carrier frequency within the transmission pulse width,
【0015】[0015]
【数3】 (Equation 3)
【0016】となり、受信信号の変動成分は受信毎に除
去され、前記包絡線信号は、ターゲットからの反射のみ
を反映した安定な信号となる。Thus, the fluctuation component of the received signal is removed each time the signal is received, and the envelope signal becomes a stable signal reflecting only the reflection from the target.
【0017】次に、詳細な動作について説明する。白色
雑音発生回路1で発生した白色性雑音は、送信用帯域フ
ィルタ2で広帯域送受波器5が送受信できる周波数帯域
に帯域制限された有色性信号として出力される。図3
(a)は白色雑音発生回路1の出力信号波形、図3
(b)は送信用帯域フィルタ2の振幅を一定にした出力
信号波形である。前記有色性信号を送信パルス発生回路
3が発生する送信パルスでゲート処理して送信用バース
ト信号を得る。図3(c)は送信用バースト信号波形で
ある。この送信用バースト信号が電力増幅回路4で電力
増幅された後、広帯域送受波器5により電気音響変換さ
れ、超音波パルスとして水中に送信される。水中ターゲ
ットで反射されて返ってきた超音波パルスは前記広帯域
送受波器5により音響電気変換され、TVG増幅回路6
で伝播減衰の補正が施された後、受信用帯域フィルタ7
で帯域制限されて検波回路8に送られる。受信用帯域フ
ィルタ7には、中心周波数がf0 、帯域幅が前記送信用
帯域フィルタ2の帯域幅Δfより広いものを使用する。
受信用帯域フィルタ7の出力信号は検波回路8で包絡線
検波され、直流信号に変換される。検波回路8の時定数
は、送信パルス幅の逆数(パルス幅をTとした場合、時
定数1/T)と等しい値とする。図3(d)は受信用帯
域フィルタ7の出力信号波形、図3(e)は検波回路8
の出力信号波形であり、水中ターゲットの反射強度を正
確に反映した変動の少ない信号である。Next, a detailed operation will be described. The white noise generated by the white noise generating circuit 1 is output by the transmission band-pass filter 2 as a color signal whose band is limited to a frequency band that can be transmitted and received by the wideband transmitter / receiver 5. FIG.
FIG. 3A shows an output signal waveform of the white noise generating circuit 1 and FIG.
(B) is an output signal waveform in which the amplitude of the transmission band-pass filter 2 is constant. The colored signal is gated with a transmission pulse generated by the transmission pulse generation circuit 3 to obtain a transmission burst signal. FIG. 3C shows a transmission burst signal waveform. After the transmission burst signal is power-amplified by the power amplification circuit 4, the transmission burst signal is subjected to electroacoustic conversion by the broadband transmitter / receiver 5 and transmitted underwater as ultrasonic pulses. The returned ultrasonic pulse reflected by the underwater target is subjected to acoustoelectric conversion by the broadband transducer 5, and a TVG amplifier 6
After the propagation attenuation is corrected by the
And is sent to the detection circuit 8. The reception band-pass filter 7 has a center frequency f 0 and a bandwidth wider than the bandwidth Δf of the transmission band-pass filter 2.
The output signal of the reception band-pass filter 7 is envelope-detected by the detection circuit 8 and converted into a DC signal. The time constant of the detection circuit 8 is set to a value equal to the reciprocal of the transmission pulse width (time constant 1 / T when the pulse width is T). FIG. 3D shows an output signal waveform of the reception band-pass filter 7, and FIG.
The output signal waveform is a signal with a small variation that accurately reflects the reflection intensity of the underwater target.
【0018】上記のように動作して、複数の送受信回路
を必要とする複数の異なった送信周波数によることな
く、単一の送受信回路構成で、水中ターゲットの反射強
度に対応した安定な信号が得られ、この信号の振幅を数
値表示またはグラフ表示することによって、例えば、魚
群量の正確な把握ができる。By operating as described above, a stable signal corresponding to the reflection intensity of the underwater target can be obtained with a single transmitting / receiving circuit configuration without using a plurality of different transmitting frequencies requiring a plurality of transmitting / receiving circuits. By displaying the amplitude of this signal numerically or graphically, for example, the amount of fish school can be accurately grasped.
【0019】[0019]
【発明の効果】以上説明したように、本発明によれば、
単一の送受信回路構成で、他船との相互干渉を大幅に減
少させ、さらに、水中ターゲットの位置関係に起因する
受信信号の変動を大幅に軽減させ、正確な反射強度を得
ることが可能となり、構成の簡素化、装置規模の縮小化
に寄与する効果が大である。As described above, according to the present invention,
With a single transmission / reception circuit configuration, it is possible to significantly reduce mutual interference with other ships, further reduce fluctuations in received signals due to the positional relationship of underwater targets, and obtain accurate reflection intensity. The effect of contributing to the simplification of the configuration and the reduction of the device scale is great.
【図1】本発明の一実施例の回路構成を示すブロック図
である。FIG. 1 is a block diagram showing a circuit configuration of an embodiment of the present invention.
【図2】本発明の一実施例における送信系の各回路の信
号スペクトル分布の一例を示す図である。FIG. 2 is a diagram illustrating an example of a signal spectrum distribution of each circuit of a transmission system according to an embodiment of the present invention.
【図3】本発明の一実施例における各回路の信号波形の
一例を示す図である。FIG. 3 is a diagram showing an example of a signal waveform of each circuit in one embodiment of the present invention.
【図4】従来の単一周波数による超音波反射強度測定装
置の一例の回路構成を示すブロック図である。FIG. 4 is a block diagram showing a circuit configuration of an example of a conventional ultrasonic reflection intensity measuring apparatus using a single frequency.
【図5】従来の複数の周波数による超音波反射強度測定
装置の一例の回路構成を示すブロック図である。FIG. 5 is a block diagram showing a circuit configuration of an example of a conventional ultrasonic reflection intensity measuring device using a plurality of frequencies.
1 白色雑音発生回路 2 送信用帯域フィルタ 3 送信パルス発生回路 4 電力増幅回路 5 広帯域送受波器 6 TVG増幅回路 7 受信用帯域フィルタ 8 検波回路 DESCRIPTION OF SYMBOLS 1 White noise generation circuit 2 Transmission bandpass filter 3 Transmission pulse generation circuit 4 Power amplification circuit 5 Broadband transmitter / receiver 6 TVG amplification circuit 7 Reception bandpass filter 8 Detection circuit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−257288(JP,A) 特開 昭55−107968(JP,A) 特開 平3−87682(JP,A) 特開 平4−311109(JP,A) 特開 昭59−151075(JP,A) 実開 平4−69787(JP,U) 特公 昭64−5655(JP,B2) 特公 昭49−43832(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G01S 7/52 - 7/64 G01S 15/00 - 15/96 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-257288 (JP, A) JP-A-55-107968 (JP, A) JP-A-3-87682 (JP, A) JP-A-4- 311109 (JP, A) JP-A-59-151075 (JP, A) JP-A-4-69787 (JP, U) JP-B 64-5655 (JP, B2) JP-B-49-43832 (JP, B2) (58) Field surveyed (Int.Cl. 6 , DB name) G01S 7/52-7/64 G01S 15/00-15/96
Claims (1)
び量的計測を行う超音波反射強度測定装置において、白
色性雑音を発生する白色雑音発生回路と、前記白色雑音
発生回路が発生する白色性雑音のうち必要な周波数帯域
の信号のみを抽出する送信用帯域フィルタと、送信パル
スを発生する送信パルス発生回路と、前記送信用帯域フ
ィルタからの出力信号を前記送信パルス発生回路が発生
する送信パルスでゲート処理した後に電力増幅する電力
増幅回路と、前記電力増幅回路の出力の送信用バースト
波を超音波パルスに変換して水中に送信し水中ターゲッ
トからの反射信号を受信する広帯域送受波器と、前記広
帯域送受波器にて受信された反射信号に対して伝播減衰
の補正を施すTVG増幅回路と、前記TVG増幅回路の
出力のTVG増幅信号のうち必要な周波数帯域の信号の
みを抽出する受信用帯域フィルタと、前記受信用帯域フ
ィルタの出力信号を包絡線検波する検波回路とを備えた
ことを特徴とする超音波反射強度測定装置。1. An ultrasonic reflection intensity measuring apparatus for searching for and quantitatively measuring an underwater target by using an ultrasonic wave, comprising: a white noise generating circuit for generating white noise; and a white noise generating circuit for generating white noise generated by the white noise generating circuit. A transmission bandpass filter for extracting only a signal in a necessary frequency band, a transmission pulse generation circuit for generating a transmission pulse, and an output signal from the transmission bandpass filter gated by a transmission pulse generated by the transmission pulse generation circuit. A power amplification circuit that amplifies power after processing, a broadband transducer that converts a transmission burst wave output from the power amplification circuit into an ultrasonic pulse, transmits the underwater wave, and receives a reflected signal from an underwater target, A TVG amplifying circuit for correcting propagation attenuation of a reflected signal received by the broadband transducer, and a TVG amplifying signal output from the TVG amplifying circuit 1. An ultrasonic reflection intensity measuring apparatus comprising: a reception bandpass filter for extracting only a signal of a required frequency band from a signal; and a detection circuit for performing envelope detection of an output signal of the reception bandpass filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3148155A JP2951045B2 (en) | 1991-05-24 | 1991-05-24 | Ultrasonic reflection intensity measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3148155A JP2951045B2 (en) | 1991-05-24 | 1991-05-24 | Ultrasonic reflection intensity measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04346092A JPH04346092A (en) | 1992-12-01 |
JP2951045B2 true JP2951045B2 (en) | 1999-09-20 |
Family
ID=15446491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3148155A Expired - Fee Related JP2951045B2 (en) | 1991-05-24 | 1991-05-24 | Ultrasonic reflection intensity measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2951045B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180069603A (en) * | 2016-12-15 | 2018-06-25 | 한양대학교 산학협력단 | Imaging device using non-linear property of utrasonic wave and method for the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3930166B2 (en) * | 1998-11-10 | 2007-06-13 | 株式会社カイジョーソニック | Weighing fish finder |
US20200292656A1 (en) * | 2019-03-11 | 2020-09-17 | Dsp Group Ltd. | Proximity sensing |
WO2021059474A1 (en) * | 2019-09-27 | 2021-04-01 | 本多電子株式会社 | Ultrasonic detection device and method and ultrasonic detection program |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4943832B2 (en) | 2005-12-29 | 2012-05-30 | デラヴァン・インコーポレーテッド | Valve assembly for regulating fuel flow to a gas turbine engine |
-
1991
- 1991-05-24 JP JP3148155A patent/JP2951045B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4943832B2 (en) | 2005-12-29 | 2012-05-30 | デラヴァン・インコーポレーテッド | Valve assembly for regulating fuel flow to a gas turbine engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180069603A (en) * | 2016-12-15 | 2018-06-25 | 한양대학교 산학협력단 | Imaging device using non-linear property of utrasonic wave and method for the same |
KR101883987B1 (en) * | 2016-12-15 | 2018-08-30 | 한양대학교 산학협력단 | Imaging device using non-linear property of utrasonic wave and method for the same |
Also Published As
Publication number | Publication date |
---|---|
JPH04346092A (en) | 1992-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5086775A (en) | Method and apparatus for using Doppler modulation parameters for estimation of vibration amplitude | |
US8021302B2 (en) | Ultrasonic apparatus and ultrasonic diagnostic method | |
US4453238A (en) | Apparatus and method for determining the phase sensitivity of hydrophones | |
JP2951045B2 (en) | Ultrasonic reflection intensity measurement device | |
JPH06245932A (en) | Ultrasonic doppler diagnostic device | |
JPH0228116B2 (en) | ||
JP3390673B2 (en) | Water level measurement method | |
JP3050200B2 (en) | Sonar signal processing device and processing method | |
JP2948092B2 (en) | Fish frequency response measuring device | |
JP2569582Y2 (en) | Ultrasound diagnostic equipment | |
JP3022108B2 (en) | Ultrasound transceiver | |
JPH02218353A (en) | Ultrasonic wave diagnosing device | |
JPS63249071A (en) | Pulse compression circuit in searching apparatus | |
JPS6053133A (en) | Ultrasonic diagnostic apparatus | |
JPH095310A (en) | Ultrasonic inspection method | |
JPS5873345A (en) | Ultrasonic diagnostic apparatus | |
JPH0395477A (en) | Ultrasonic detection device | |
JP2820315B2 (en) | Ultrasonic ranging device | |
JPS6359106B2 (en) | ||
JPH0518943A (en) | Method and device for detecting internal defect | |
JPH02262082A (en) | Fish-finder | |
JPH07239227A (en) | Layer thickness measuring method and device | |
JP3136635B2 (en) | Exploration method and device | |
JPH0326607B2 (en) | ||
JPS58118975A (en) | Fish mass measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |