【発明の詳細な説明】[Detailed description of the invention]
本発明は、60℃以上の温度においても変性する
ことのない高分子多糖にアクリル系モノマーをグ
ラフトさせたグラフト共重合体の合成法に関する
ものである。
従来、高分子多糖にアクリル系モノマーをグラ
フトさせたグラフト共重合体は知られている。し
かし従来法によつて合成されたグラフト共重合体
は、その水溶液を約60℃の温度以上に加熱すると
き、変性して急激な粘度低下を示すため、原油の
強制回収への利用に際して広い温度範囲での利用
が制限されていた。
本発明者らは、このような60℃程度の温度で粘
度が急激に降下することなく、さらに高い温度、
例えば80℃あるいはそれ以上まで安定な粘度の水
溶液を与える高分子多糖グラフト共重合体を見出
すべく研究を重ねた結果、60℃以上の温度におい
ても粘度変化の極めて小さい水溶液を提供しうる
高分子多糖を主鎖とするアクリル系グラフト共重
合体の製造方法を見出し、本発明に到達した。
すなわち、本発明は、水中にコロイド状に分散
している高分子多糖の分散液を60℃以上の温度に
加熱して、該高分子多糖を分子状に分散させたの
ち、セリウム塩の存在下にアクリル系モノマーを
グラフト重合させることを特徴とする高分子多糖
から誘導されるグラフト共重合体の合成法を提供
するものである。
本発明において、アクリル系モノマーがグラフ
トする幹ポリマーとしての高分子多糖は、グルコ
ースを原料として微生物によつて産出される高分
子多糖類であつて、特にキサントモナス・キヤン
ペストリス(Xanthomonas campestris)によつ
て産出されるキサンタン・ガム(Xanthan
Gum)やエルウイニア・タヒチカ(Erwinia
tahitica)あるいはアゾトバクター・インジカム
(azotobacter indicum)などの菌体によつて同
様に産出される基本分子構造の主鎖又は側鎖の一
部に解離性の基を有する高分子電解質類である。
また、本発明の方法において、高分子多糖にグ
ラフトさせるアクリル系モノマーは、一般式
(式中、Rは水素原子又はメチル基であり、
R′は−NH2、−OH、−NH(CH3)、−N(CH3)2、−
NH・C(CH3)2−CH2−SO3H又は−NH・C
(CH3)2−CH2−SO3Naである)
で表わされる実質的に水溶性のモノマー類であつ
て、これらは1種で用いてもよいし、2種以上を
組み合わせて用いることもできる。
本発明においては、上記高分子多糖を水に加
え、そのコロイド状分散液を60℃以上の温度に加
熱して高分子多糖を分子状に分散させた状態で上
記アクリル系モノマーをグラフト重合させること
が重要であるが、そのグラフト重合を促進させる
ために、重合系に重合触媒としてセリウム塩が添
加使用され、その酸化還元能が有利に利用され
る。その中でも好ましいものは第二セリウム塩で
ある。そのようなセリウム塩触媒としては、例え
ば硫酸第二セリウムアンモニウム、硫酸第二セリ
ウム、、硝酸第二セリウムアンモニウムなどを挙
げることができる。これらの塩は、通常それぞれ
対応する1〜2規定程度の硫酸水溶液あるいは硝
酸水溶液に溶解して用いられる。そのセリウム塩
の共重合系における濃度は、例えば高分子多糖の
繰り返し構造単位3〜5ミリモルの水溶液に対
し、0.1〜1ミリモル程度が適当であり、この場
合のモノマーの総量は5〜500ミリモルの範囲で
選ぶのがよい。
グラフト重合におけるモノマーの添加は、高分
子多糖の水溶液を60℃以上に加熱して、高分子多
糖を分子状に分散させ、反応容器内の空気を、例
えば窒素ガスのような不活性ガスで置換するとと
もに、反応系に溶存する酸素を可及的に除去して
セリウム塩溶液を添加し活性化したのち行われ
る。その際アクリル系モノマーは、そのまま添加
してもよいが、水溶液として加えるのが好まし
い。グラフト重合反応は、通常0.5〜数時間程度
で完了するから、反応系中に空気を吹き込むこと
によつて反応を停止させる。
このようにして形成されたグラフト共重合体
は、反応液をかきまぜている大量のメタノール中
に注加することにより、フイブリル状の沈殿とし
て析出し、容易に分離することができる。この場
合、反応液は、系全体のPHを5以下に保つた状態
でそのままメタノール中に注加してもよいし、ま
た水酸化カリウムなどのアルカリ水溶液を添加し
てPHを8以上に調整し、約10分間程度よくかきま
ぜたのち、メタノール中に注加してもよい。
このようにして析出したグラフト共重合体は、
液と分離したのち、常法に従つて乾燥する。
本発明の方法によつて製造された高分子多糖を
幹ポリマーとするアクリル系グラフト共重合体
は、従来法で得られたものの水溶液が約60℃附近
の温度で急激な粘度低下をきたすのに対し、60℃
以上の温度においても極めて安定した粘度を有す
る水溶液となる。従来法による高分子多糖のコロ
イド状分散液にアクリルモノマーをグラフトさせ
て得られたグラフト共重合体の水溶液の60℃附近
での急激な粘度低下の理由は明確ではないが、高
分子多糖本来の微細構造がグラフト重合によつて
変化することなくそのまま保持され、その構造が
60℃以上の温度で崩壊することによるものと考え
られている。これに対し本発明に係るグラフト共
重合体は、分子状に分散した高分子多糖にアクリ
ル系モノマーをグラフト重合させて得られたもの
であつて、熱に対して極めて安定化されており、
微細構造の異なる新規のグラフト共重合体であ
る。すなわち、本発明に係る高分子多糖グラフト
共重合体は、その水溶液の粘度の温度依存性が極
めて小さく、特に20〜80℃の温度範囲において、
温度上昇に伴つて粘度がゆるやかに直線的に低下
する傾向がみられるに過ぎず、従来のグラフト共
重合体やグラフト処理しない高分子多糖のような
急激な粘度低下現象のない実用性の優れた望まし
いものである。
次に、実施例により本発明をさらに詳細に説明
する。
実施例 1
ガス導入管並びに排出管、温度計、原料投入口
及びかきまぜ機を備えた500mlの四つ口フラスコ
に脱イオン水400mlを入れ、これを60℃に加熱し、
かきまぜながら、粉末状キサンタンゴム3gを加
え、次いで窒素ガスを導入管より1時間吹き込
み、実質的に酸素ガスを含まない高分子多糖の分
子状に分散した水溶液を調製した。
これとは別に、触媒として硫酸第二セリウムア
ンモニウム0.63gを1規定の硫酸20mlに溶解し、
窒素ガスにより酸素を除去したもの、及びアクリ
ルアミド7.1gを水80mlに溶解した水溶液を窒素
ガスで脱酸素処理したものをそれぞれあらかじめ
調製した。
上記の調製したキサンタンゴム水溶液を72℃の
温度に保ち、これに上記のあらかじめ調製した硫
酸第二セリウムアンモニウムの硫酸水溶液を加え
て20分間激しくかきまぜたのち、これにさらに上
記アクリルモノマー水溶液を注加して窒素ガスを
連続的に導入しながら30分間グラフト重合させ
た。次いで窒素ガスの導入を停止し、大量の空気
を送り込んで重合を終了させた。
得られた重合反応液をPH調整することなく、か
きまぜている大量のメタノール中に注加し、フイ
ブリル状の沈殿を析出させた。これをろ別して分
離し、減圧乾燥して、約95%の収率でグラフト共
重合体を得た。
得られたグラフト共重合体の濃度5000ppmの水
溶液の温度20℃における粘度は約1000cpsであり、
その水溶液を80℃まで昇温させたときの粘度の温
度依存性をしらべたところ、極めて緩やかな直線
的低下が確認され、60℃附近での急激な粘度降下
は全く認められなかつた。
これに対し、従来法によつて製造された高分子
多糖グラフト共重合体の5000ppm水溶液の20℃に
おける粘度は約1600であるが、約60℃附近で急激
な粘度降下が認められた。
実施例 2〜3
実施例1において、重合触媒として硫酸第二セ
リウムアンモニウム0.315gを1規定硫酸10mlに
溶解したものを用い、モノマーとしてアクリルア
ミド3.55gを90mlの水に溶解したもの又はアクリ
ルアミド1.8gを90mlの水に溶解したものを用い
るほかは、全く同様に操作してそれぞれの高分子
多糖グラフト共重合体を得た。
実施例 4〜5
実施例1において、触媒として硝酸第二セリウ
ムアンモニウム0.55gを1規定硝酸20mlに溶解し
たもの又は0.275gを1規定硝酸10mlに溶解した
ものを用い、またモノマーとしてアクリルアミド
7.1gを80mlの水に溶かしたもの(実施例4)又
はアクリルアミド3.5gを90mlの水に溶かしたも
のを用いる以外は実質的に同様に操作して、それ
ぞれのグラフト共重合体を得た。操作において
は、硝酸第二セリウムアンモニウム触媒の場合に
は、反応の進行につれて大量の泡が発生して反応
容器外にあふれることがあるので、モノマーの添
加速度を若干低くし、注意深く行つた点が僅かに
異なるだけである。
このようにして各実施例で得られた高分子多糖
グラフト共重合体の5000ppm水溶液の各種温度に
おける粘度の測定結果を次表にまとめて示す。比
較のために、従来知られた高分子多糖アクリル系
モノマーグラフト共重合体の同様の測定値を併記
した。なお、粘度はEM型粘度計により測定した
値である。
The present invention relates to a method for synthesizing a graft copolymer in which an acrylic monomer is grafted onto a high-molecular polysaccharide that does not denature even at temperatures of 60° C. or higher. Graft copolymers in which acrylic monomers are grafted onto high-molecular polysaccharides have been known. However, when the aqueous solution of graft copolymers synthesized by conventional methods is heated to a temperature of approximately 60°C or higher, the viscosity of the graft copolymer denatures and rapidly decreases. Usage was restricted. The present inventors have found that the viscosity does not suddenly drop at a temperature of about 60°C, and at even higher temperatures,
For example, as a result of repeated research to find a polymeric polysaccharide graft copolymer that can provide an aqueous solution with a stable viscosity up to 80°C or higher, we have found that a polymeric polysaccharide that can provide an aqueous solution with extremely small viscosity change even at temperatures of 60°C or higher. The present invention was achieved by discovering a method for producing an acrylic graft copolymer having a main chain of That is, in the present invention, a dispersion of a polymeric polysaccharide colloidally dispersed in water is heated to a temperature of 60°C or higher to disperse the polymeric polysaccharide in a molecular form, and then the dispersion is heated in the presence of a cerium salt. The present invention provides a method for synthesizing a graft copolymer derived from a high-molecular polysaccharide, which comprises graft-polymerizing an acrylic monomer to a polysaccharide. In the present invention, the polymeric polysaccharide as the backbone polymer to which the acrylic monomer is grafted is a polymeric polysaccharide produced by microorganisms using glucose as a raw material, and in particular by Xanthomonas campestris. Xanthan gum (Xanthan gum)
Gum) and Erwinia tahitica (Erwinia
It is a polymer electrolyte having a dissociable group in a part of the main chain or side chain of the basic molecular structure, which is similarly produced by bacteria such as Azotobacter tahitica or Azotobacter indicum. Furthermore, in the method of the present invention, the acrylic monomer to be grafted onto the polymeric polysaccharide has the general formula (In the formula, R is a hydrogen atom or a methyl group,
R′ is −NH 2 , −OH, −NH(CH 3 ), −N(CH 3 ) 2 , −
NH・C(CH 3 ) 2 −CH 2 −SO 3 H or −NH・C
(CH 3 ) 2 -CH 2 -SO 3 Na) These are substantially water-soluble monomers that can be used alone or in combination of two or more. can. In the present invention, the above-mentioned polymeric polysaccharide is added to water, and the colloidal dispersion thereof is heated to a temperature of 60°C or higher to disperse the polymeric polysaccharide in molecular form, and then the acrylic monomer is graft-polymerized. is important, and in order to promote the graft polymerization, a cerium salt is added to the polymerization system as a polymerization catalyst, and its redox ability is advantageously utilized. Among these, preferred are ceric salts. Examples of such cerium salt catalysts include ceric ammonium sulfate, ceric ammonium sulfate, and ceric ammonium nitrate. These salts are usually used by being dissolved in a corresponding 1 to 2N aqueous sulfuric acid solution or nitric acid aqueous solution. The appropriate concentration of the cerium salt in the copolymerization system is, for example, about 0.1 to 1 mmol for an aqueous solution of 3 to 5 mmol of repeating structural units of the polymeric polysaccharide; in this case, the total amount of monomers is 5 to 500 mmol. It is best to choose within a range. Addition of monomers in graft polymerization involves heating an aqueous solution of high-molecular polysaccharide to 60°C or higher to disperse the high-molecular polysaccharide into molecules, and replacing the air in the reaction vessel with an inert gas such as nitrogen gas. At the same time, oxygen dissolved in the reaction system is removed as much as possible, and a cerium salt solution is added to activate the reaction system. At this time, the acrylic monomer may be added as is, but it is preferably added as an aqueous solution. Since the graft polymerization reaction is usually completed in about 0.5 to several hours, the reaction is stopped by blowing air into the reaction system. The thus-formed graft copolymer is poured into a large amount of methanol while stirring the reaction solution, and is precipitated as a fibrillar precipitate, which can be easily separated. In this case, the reaction solution may be directly poured into methanol while keeping the pH of the entire system below 5, or the pH may be adjusted to 8 or above by adding an alkaline aqueous solution such as potassium hydroxide. After stirring well for about 10 minutes, it may be poured into methanol. The graft copolymer precipitated in this way is
After separating it from the liquid, dry it according to the usual method. The acrylic graft copolymer having a polymeric polysaccharide as the backbone polymer produced by the method of the present invention has the advantage that an aqueous solution of the one obtained by the conventional method exhibits a rapid viscosity decrease at a temperature of about 60°C. On the other hand, 60℃
Even at temperatures above, the resulting aqueous solution has an extremely stable viscosity. The reason for the rapid viscosity decrease around 60°C of an aqueous solution of a graft copolymer obtained by grafting an acrylic monomer to a colloidal dispersion of a polymeric polysaccharide by a conventional method is not clear, but The microstructure remains unchanged through graft polymerization, and the structure remains unchanged.
It is thought that this is due to the disintegration at temperatures above 60°C. In contrast, the graft copolymer according to the present invention is obtained by graft polymerizing an acrylic monomer to a molecularly dispersed polymeric polysaccharide, and is extremely stable against heat.
This is a new graft copolymer with a different microstructure. That is, the polymer polysaccharide graft copolymer according to the present invention has extremely low temperature dependence of the viscosity of its aqueous solution, particularly in the temperature range of 20 to 80°C.
The viscosity only tends to decrease slowly and linearly as the temperature rises, and it has excellent practicality without the sudden viscosity decrease phenomenon that occurs with conventional graft copolymers and non-grafted polymer polysaccharides. It is desirable. Next, the present invention will be explained in more detail with reference to Examples. Example 1 400 ml of deionized water was placed in a 500 ml four-necked flask equipped with a gas inlet and outlet pipe, a thermometer, a raw material inlet, and a stirrer, and heated to 60°C.
While stirring, 3 g of powdered xanthan rubber was added, and then nitrogen gas was blown through the inlet tube for 1 hour to prepare an aqueous solution containing molecularly dispersed polymeric polysaccharide substantially free of oxygen gas. Separately, 0.63 g of ceric ammonium sulfate as a catalyst was dissolved in 20 ml of 1N sulfuric acid,
One was prepared in advance by removing oxygen with nitrogen gas, and the other was by deoxidizing an aqueous solution of 7.1 g of acrylamide dissolved in 80 ml of water with nitrogen gas. The xanthan rubber aqueous solution prepared above was kept at a temperature of 72°C, the sulfuric acid aqueous solution of ceric ammonium sulfate prepared above was added thereto, and the mixture was vigorously stirred for 20 minutes, and then the acrylic monomer aqueous solution was added thereto. Graft polymerization was carried out for 30 minutes while continuously introducing nitrogen gas. Next, the introduction of nitrogen gas was stopped, and a large amount of air was introduced to terminate the polymerization. The obtained polymerization reaction solution was poured into a large amount of stirring methanol without adjusting the pH to precipitate fibrils. This was separated by filtration and dried under reduced pressure to obtain a graft copolymer with a yield of about 95%. The viscosity of an aqueous solution of the obtained graft copolymer at a concentration of 5000 ppm at a temperature of 20°C is approximately 1000 cps,
When the temperature dependence of the viscosity was examined when the aqueous solution was heated to 80°C, an extremely gradual linear decrease was confirmed, and no rapid viscosity drop was observed at around 60°C. On the other hand, a 5000 ppm aqueous solution of a polymer polysaccharide graft copolymer produced by the conventional method had a viscosity of about 1600 at 20°C, but a rapid drop in viscosity was observed at around 60°C. Examples 2 to 3 In Example 1, 0.315 g of ceric ammonium sulfate dissolved in 10 ml of 1N sulfuric acid was used as the polymerization catalyst, and 3.55 g of acrylamide dissolved in 90 ml of water or 1.8 g of acrylamide was used as the monomer. Each polymeric polysaccharide graft copolymer was obtained in exactly the same manner except that it was dissolved in 90 ml of water. Examples 4 to 5 In Example 1, 0.55 g of ceric ammonium nitrate dissolved in 20 ml of 1N nitric acid or 0.275 g dissolved in 10 ml of 1N nitric acid were used as the catalyst, and acrylamide was used as the monomer.
The respective graft copolymers were obtained by substantially the same procedure except that 7.1 g of acrylamide dissolved in 80 ml of water (Example 4) or 3.5 g of acrylamide dissolved in 90 ml of water were used. In the case of the ceric ammonium nitrate catalyst, a large amount of bubbles may be generated as the reaction progresses and may overflow outside the reaction vessel, so the monomer addition rate was slightly lowered and the process was carried out carefully. They are only slightly different. The measurement results of the viscosity at various temperatures of the 5000 ppm aqueous solutions of the polymeric polysaccharide graft copolymers thus obtained in each example are summarized in the following table. For comparison, similar measured values for a conventionally known polymeric polysaccharide acrylic monomer graft copolymer are also shown. Note that the viscosity is a value measured using an EM type viscometer.
【表】
上記結果から分るように、本発明に係る高分子
多糖アクリル系グラフト共重合体は、従来法で得
られた同様のグラフト共重合体に比べて、それら
水溶液の温度依存性は極めて小さく、60℃附近で
の変性による急激な粘度低下もなく、本質的に異
なる新規なグラフト共重合体であつて、その用途
の大幅な拡大が期待できる実用上望ましいもので
ある。[Table] As can be seen from the above results, the polymer polysaccharide acrylic graft copolymers of the present invention have extremely low temperature dependence of their aqueous solutions compared to similar graft copolymers obtained by conventional methods. It is a novel graft copolymer that is small in size and does not suffer from a sudden drop in viscosity due to modification at around 60°C, and is practically desirable as it can be expected to greatly expand its applications.