[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7524617B2 - Strongly acidic cation exchanger and its manufacturing method - Google Patents

Strongly acidic cation exchanger and its manufacturing method Download PDF

Info

Publication number
JP7524617B2
JP7524617B2 JP2020098475A JP2020098475A JP7524617B2 JP 7524617 B2 JP7524617 B2 JP 7524617B2 JP 2020098475 A JP2020098475 A JP 2020098475A JP 2020098475 A JP2020098475 A JP 2020098475A JP 7524617 B2 JP7524617 B2 JP 7524617B2
Authority
JP
Japan
Prior art keywords
group
strongly acidic
acid
cation exchanger
acidic cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020098475A
Other languages
Japanese (ja)
Other versions
JP2021191564A (en
Inventor
洋 井上
英一 東郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020098475A priority Critical patent/JP7524617B2/en
Publication of JP2021191564A publication Critical patent/JP2021191564A/en
Application granted granted Critical
Publication of JP7524617B2 publication Critical patent/JP7524617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

本発明は、強酸性陽イオン交換体及びその製造方法に関するものである。 The present invention relates to a strongly acidic cation exchanger and a method for producing the same.

強酸性陽イオン交換体は強酸性陽イオン交換基を有しているため、カルボキシル基等の弱酸性陽イオン交換基を有する陽イオン交換体とは異なり、pHが中性域であっても陽イオンの捕捉が可能であり、イオン交換体として優れた特性を有している。この優れたイオン交換特性を利用して、強酸性陽イオン交換体はイオン交換樹脂やイオン交換膜として純水・超純水製造装置や電気透析装置、糖類の精製や異性化、クロマト充填剤、触媒、燃料電池等幅広い分野で用いられている。しかし、従来の強酸性陽イオン交換体は、ポリスチレンやスチレン-ジビニルベンゼン共重合体、フッ素系ポリマー等の母体ポリマーにスルホン酸基などの強酸性陽イオン交換基を導入したものであるため母体ポリマーの疎水性が強く、疎水吸着により油等の疎水性物質や疎水部を有するタンパク質等がイオン交換体に吸着し、イオン交換体を汚染、イオン交換特性が低下するといった問題点があった。 Strongly acidic cation exchangers have strong acidic cation exchange groups, and therefore, unlike cation exchangers with weakly acidic cation exchange groups such as carboxyl groups, they can capture cations even in the neutral pH range, and have excellent properties as ion exchangers. Taking advantage of these excellent ion exchange properties, strongly acidic cation exchangers are used as ion exchange resins and ion exchange membranes in a wide range of fields, such as pure water and ultrapure water production equipment, electrodialysis equipment, sugar purification and isomerization, chromatography packing materials, catalysts, and fuel cells. However, conventional strongly acidic cation exchangers are made by introducing strongly acidic cation exchange groups such as sulfonic acid groups into parent polymers such as polystyrene, styrene-divinylbenzene copolymers, and fluoropolymers, and therefore the parent polymers are highly hydrophobic, and hydrophobic substances such as oils and proteins with hydrophobic parts are adsorbed to the ion exchanger due to hydrophobic adsorption, contaminating the ion exchanger and reducing the ion exchange properties.

一方、親水性の高い多糖類を母体ポリマーに選定し、硫酸基等の強酸性陽イオン交換基を導入して強酸性陽イオン交換体を製造することが提案されている(例えば、特許文献1~3参照。)。母体ポリマーに多糖類を用いることで疎水吸着の抑制は可能になったが、これらの方法では、硫酸基導入反応時母体ポリマーの分子鎖切断反応も併発するため強酸性陽イオン交換体の分子量が低下し、機械的特性が著しく低下してしまうといった問題点を有していた。 On the other hand, it has been proposed to produce a strongly acidic cation exchanger by selecting a highly hydrophilic polysaccharide as the base polymer and introducing strongly acidic cation exchange groups such as sulfate groups (see, for example, Patent Documents 1 to 3). Although it is possible to suppress hydrophobic adsorption by using a polysaccharide as the base polymer, these methods have the problem that the molecular chain scission reaction of the base polymer occurs simultaneously during the sulfate group introduction reaction, resulting in a decrease in the molecular weight of the strongly acidic cation exchanger and a significant decrease in mechanical properties.

多糖類に官能基を導入する方法としては、カチオン性モノマーをアニオン性多糖類にグラフト重合する方法が特許文献4に、海藻由来の多糖類に酢酸ビニルをグラフト重合することが特許文献5に開示されているが、多糖類へのアニオン性モノマーのグラフト重合については記載がない。 As a method for introducing functional groups into polysaccharides, Patent Document 4 discloses a method of graft polymerizing a cationic monomer onto an anionic polysaccharide, and Patent Document 5 discloses graft polymerizing vinyl acetate onto a polysaccharide derived from seaweed, but there is no description of graft polymerization of an anionic monomer onto a polysaccharide.

特開昭59-133201号公報Japanese Unexamined Patent Publication No. 59-133201 特開2005-344073号公報JP 2005-344073 A 特開2008-27767号公報JP 2008-27767 A 特表2008-516891号公報Special Publication No. 2008-516891 特表2016-500721号公報Special table 2016-500721 publication

本発明の目的は、従来技術では困難であった強酸性陽イオン交換容量が大きく、かつ、高分子量の強酸性陽イオン交換体を提供することにある。 The object of the present invention is to provide a strong acid cation exchanger with a large strong acid cation exchange capacity and a high molecular weight, which was difficult to achieve with conventional technology.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、特定の条件下で多糖類にスルホン酸基を有するモノマーをグラフト重合することで、強酸性陽イオン交換容量が大きく、かつ、高分子量の強酸性陽イオン交換体が得られることを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that by graft polymerizing a monomer having a sulfonic acid group onto a polysaccharide under specific conditions, a strong acid cation exchanger having a large strong acid cation exchange capacity and a high molecular weight can be obtained, and thus completed the present invention.

すなわち、本発明の各態様は、以下に示す[1]~[3]に係るものである。
[1]多糖類にスルホン酸基を有するポリマーセグメントがグラフトした強酸性陽イオン交換体であり、重量平均分子量が30,000~3,000,000であり、強酸性陽イオン交換容量が2.5~4.9meq/gである強酸性陽イオン交換体。
[2]下記一般式(1)で示される構造である請求項1に記載の強酸性陽イオン交換体。
That is, each aspect of the present invention relates to [1] to [3] shown below.
[1] A strongly acidic cation exchanger in which a polymer segment having a sulfonic acid group is grafted to a polysaccharide, the strongly acidic cation exchanger having a weight average molecular weight of 30,000 to 3,000,000 and a strongly acidic cation exchange capacity of 2.5 to 4.9 meq/g.
[2] The strongly acidic cation exchanger according to claim 1, which has a structure represented by the following general formula (1):


(式中、m及びnは互いに独立して1以上の整数を表し、Rは同一でも異なっていてもよくそれぞれ水素、アルカリ金属、アルカリ土類金属または-R-OHで示される基を表し、Rは炭素数2~6の2価の炭化水素基を表し、Rは同一でも異なっていてもよくそれぞれスルホン酸基を有するポリマーセグメントまたは水素を表し、Rの少なくとも一つはスルホン酸基を有するポリマーセグメントである。)
[3]極性溶媒中、多糖類にスルホン酸基含有ビニルモノマーをグラフト重合させる強酸性陽イオン交換体の製造方法であって、極性溶媒に不溶の多糖類を用い、スラリー系で反応させることを特徴とする、強酸性陽イオン交換体の製造方法。

(In the formula, m and n are each independently an integer of 1 or greater; R 1 may be the same or different and each represents hydrogen, an alkali metal, an alkaline earth metal or a group represented by -R 3 -OH; R 3 represents a divalent hydrocarbon group having 2 to 6 carbon atoms; R 2 may be the same or different and each represents a polymer segment having a sulfonic acid group or hydrogen, and at least one of R 2 is a polymer segment having a sulfonic acid group.)
[3] A method for producing a strongly acidic cation exchanger by graft polymerizing a sulfonic acid group-containing vinyl monomer onto a polysaccharide in a polar solvent, characterized in that a polysaccharide insoluble in the polar solvent is used and the reaction is carried out in a slurry system.

本発明によれば、親水性に優れた多糖類を母体ポリマーとし、強酸性陽イオン交換容量が大きく、かつ、高分子量の強酸性陽イオン交換体を提供することができる。 According to the present invention, it is possible to provide a strong acid cation exchanger having a large strong acid cation exchange capacity and a high molecular weight, using a highly hydrophilic polysaccharide as the base polymer.

本発明の強酸性陽イオン交換体は、イオン交換容量が大きく機械的特性にも優れるため、イオン交換樹脂やイオン交換膜として純水・超純水製造装置や電気透析装置、糖類の精製や異性化、クロマト充填剤、触媒、燃料電池等幅広い分野に応用でき、実用性に優れたものである。 The strong acid cation exchanger of the present invention has a large ion exchange capacity and excellent mechanical properties, and therefore has excellent practical applications in a wide range of fields, such as as an ion exchange resin or ion exchange membrane in pure water/ultrapure water production equipment, electrodialysis equipment, sugar purification and isomerization, chromatography packing, catalysts, and fuel cells.

実施例1で製造したグラフトポリマーの塩化カルシウム水溶液不溶部のGPC溶出曲線であり、RI検出器とUV検出器を併用して測定した。1 is a GPC elution curve of the part of the graft polymer produced in Example 1 that is insoluble in an aqueous calcium chloride solution, which was measured using a combination of an RI detector and a UV detector. 実施例1で製造したグラフトポリマーの塩化カルシウム水溶液可溶部のGPC溶出曲線であり、RI検出器とUV検出器を併用して測定した。1 is a GPC elution curve of the calcium chloride aqueous solution soluble portion of the graft polymer produced in Example 1, which was measured using a combination of an RI detector and a UV detector. 実施例3で製造したグラフトポリマーの1H-NMRスペクトルである。1 is a 1H-NMR spectrum of the graft polymer produced in Example 3.

以下、本発明をその好適な実施形態に即して詳細に説明する。 The present invention will be described in detail below with reference to preferred embodiments.

本発明の一態様である強酸性陽イオン交換体は、多糖類にスルホン酸基を有するポリマーセグメントをグラフトしたグラフトポリマーである。 The strongly acidic cation exchanger according to one embodiment of the present invention is a graft polymer in which a polymer segment having a sulfonic acid group is grafted onto a polysaccharide.

多糖類とは、単糖がグリコシド結合により多数連結した構造を有するものを指す。多糖類の例としては、アミロース、アミロペクチン、デキストリン、グリコーゲン、セルロース、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、アセチルセルロース、ペクチン、プルラン、カードラン、キチン、キトサン、アガロース、キサンタンガム、グアーガム、ジェランガム、ローカストビーンガム、カラギーナン、アルギン酸、アルギン酸塩、アルギン酸エステル、ヘパリン、ヒアルロン酸、コンドロイチン硫酸、キシログルカン、グルコマンナン等が挙げられる。本発明においては、中性多糖類や酸性多糖類が好ましく用いられ、具体例としては、アミロース、アミロペクチン、セルロース、カルボキシメチルセルロース、グアーガム、ジェランガム、アルギン酸、アルギン酸塩、アルギン酸エステル、アガロース、カラギーナン、カードラン、キサンタンガム、コンドロイチン硫酸が挙げられる。更に好ましい多糖類としては、下記一般式(2)で示されるアルギン酸、アルギン酸塩、アルギン酸エステルが挙げられる。 Polysaccharides refer to those having a structure in which a large number of monosaccharides are linked together by glycosidic bonds. Examples of polysaccharides include amylose, amylopectin, dextrin, glycogen, cellulose, carboxymethylcellulose, hydroxyalkylcellulose, acetylcellulose, pectin, pullulan, curdlan, chitin, chitosan, agarose, xanthan gum, guar gum, gellan gum, locust bean gum, carrageenan, alginic acid, alginates, alginic acid esters, heparin, hyaluronic acid, chondroitin sulfate, xyloglucan, glucomannan, etc. In the present invention, neutral polysaccharides and acidic polysaccharides are preferably used, and specific examples include amylose, amylopectin, cellulose, carboxymethylcellulose, guar gum, gellan gum, alginic acid, alginates, alginic acid esters, agarose, carrageenan, curdlan, xanthan gum, and chondroitin sulfate. More preferred polysaccharides include alginic acid, alginates, and alginate esters represented by the following general formula (2):


(式中、m及びnは互いに独立して1以上の整数を表し、Rは同一でも異なっていてもよくそれぞれ水素、アルカリ金属、アルカリ土類金属または-R-OHで示される基を表し、Rは炭素数2~6の2価の炭化水素基を表す。)
の炭素数2~6の炭化水素基としては、エチレン基、エチリデン基、ビニレン基、トリメチレン基、メチルエチレン基、1-メチルエチリデン基、プロペニレン基、テトラメチレン基、メチルトリメチレン基、ジメチルエチレン基、1-エチルエチリデン基、エチルエチレン基、ペンタメチレン基、メチルテトラメチレン基、ジメチルトリメチレン基、メチルエチルエチレン基、ヘキサメチレン基、シクロへキシレン基、シクロヘキシリデン基が挙げられ、-R-OHで示される基としては、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシシクロヘキシル基等が挙げられる。

(In the formula, m and n are each independently an integer of 1 or more, R 1 may be the same or different and each represents hydrogen, an alkali metal, an alkaline earth metal or a group represented by -R 3 -OH, and R 3 represents a divalent hydrocarbon group having 2 to 6 carbon atoms.)
Examples of the hydrocarbon group having 2 to 6 carbon atoms for R3 include an ethylene group, an ethylidene group, a vinylene group, a trimethylene group, a methylethylene group, a 1-methylethylidene group, a propenylene group, a tetramethylene group, a methyltrimethylene group, a dimethylethylene group, a 1-ethylethylidene group, an ethylethylene group, a pentamethylene group, a methyltetramethylene group, a dimethyltrimethylene group, a methylethylethylene group, a hexamethylene group, a cyclohexylene group, and a cyclohexylidene group. Examples of the group represented by -R3 -OH include a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxypentyl group, a hydroxyhexyl group, and a hydroxycyclohexyl group.

アルギン酸とは、式(2)中のRが全て水素の場合であり、アルギン酸塩とは式(2)中のRの少なくとも一部がアルカリ金属(例えば、リチウム、ナトリウム、カリウム)やアルカリ土類金属(例えば、マグネシウム、カルシウム)の場合であり、アルキギン酸エステルとは式(2)中のRの少なくとも一部が-R-OH(Rは炭素数2~6の炭化水素基)で示される基の場合を指し、このようなアルギン酸エステルはアルギン酸とエポキシ化合物を反応させることにより製造できる。 Alginic acid refers to the case where all of R 1 in formula (2) are hydrogen. Alginate refers to the case where at least a part of R 1 in formula (2) is an alkali metal (e.g., lithium, sodium, potassium) or an alkaline earth metal (e.g., magnesium, calcium). Alginic acid ester refers to the case where at least a part of R 1 in formula (2) is a group represented by -R 3 -OH (R 3 is a hydrocarbon group having 2 to 6 carbon atoms). Such alginic acid ester can be produced by reacting alginic acid with an epoxy compound.

アルギン酸の構成成分であるマンヌロン酸とグルロン酸の比率は任意であり、柔軟なゲルを生成するマンヌロン酸比率の高いアルギン酸、剛直なゲルが得られるグルロン酸比率の高いアルギン酸、いずれも用いることができる。 The ratio of mannuronic acid and guluronic acid, which are the components of alginic acid, can be any ratio, and either alginic acid with a high ratio of mannuronic acid, which produces a flexible gel, or alginic acid with a high ratio of guluronic acid, which produces a rigid gel, can be used.

強酸性陽イオン交換体に導入されているスルホン酸基は、塩基性塩のみならずNaClやCaCl等の中性塩もイオン交換可能な強酸性陽イオン交換基である。スルホン酸基を有するポリマーセグメントからなるグラフト鎖の導入位置は、多糖類の2位炭素および/または3位炭素である。スルホン酸基は再生型(-SOH)であっても良いが、スルホン酸基の水素イオンがアルカリ金属イオンにイオン交換されたスルホン酸アルカリ金属塩基(-SOM’、M‘はアルカリ金属を表す)であっても良い。 The sulfonic acid group introduced into the strongly acidic cation exchanger is a strongly acidic cation exchange group capable of ion-exchanging not only basic salts but also neutral salts such as NaCl and CaCl2 . The position of introduction of the graft chain consisting of a polymer segment having a sulfonic acid group is the 2-carbon and/or 3-carbon of the polysaccharide. The sulfonic acid group may be a regenerated type ( -SO3H ), but may also be an alkali metal sulfonate base ( -SO3M ', M' represents an alkali metal) in which the hydrogen ion of the sulfonic acid group is ion-exchanged with an alkali metal ion.

グラフトセグメント中に含まれるスルホン酸基由来の強酸性陽イオン交換容量(中性塩分解容量)は、2.5~4.9meq/gであり、好ましくは2.7~4.9meq/gである。イオン交換容量が2.5meq/g未満であるとイオン交換特性が十分でないため好ましくなく、一方、イオン交換容量が4.9meq/gを超えると、強酸性陽イオン交換体中のグラフト鎖の分率が高くなりすぎて、多糖類由来の優れた特性が消失してしまうため好ましくない。 The strong acid cation exchange capacity (neutral salt decomposition capacity) derived from the sulfonic acid groups contained in the graft segment is 2.5 to 4.9 meq/g, preferably 2.7 to 4.9 meq/g. An ion exchange capacity of less than 2.5 meq/g is undesirable because the ion exchange properties are insufficient, while an ion exchange capacity of more than 4.9 meq/g is undesirable because the proportion of graft chains in the strong acid cation exchanger becomes too high, causing the excellent properties derived from the polysaccharide to be lost.

グラフトセグメントの種類としてはスルホン酸基が含まれていれば特に制約はなく、その若干の例としては、ポリ(2-スルホエチルメタクリレート)、ポリ(2-スルホエチルアクリレート)、ポリ(3-スルホプロピルメタクリレート)、ポリ(3-スルホプロピルアクリレート)、ポリ(4-スルホブチルメタクリレート)、ポリ(4-スルホブチルアクリレート)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリ(2-メタクリルアミド-2-メチルプロパンスルホン酸)、ポリ(ビニルスルホン酸)、ポリ(スチレンスルホン酸)及びこれらの塩や、上記セグメントを構成するスルホン酸基を有するビニルモノマー間の共重合体や、上記セグメントを構成するスルホン酸基を有するビニルモノマーとスルホン酸基を有しないビニルモノマーとの共重合体等が挙げられる。 There are no particular restrictions on the type of graft segment as long as it contains a sulfonic acid group, and some examples include poly(2-sulfoethyl methacrylate), poly(2-sulfoethyl acrylate), poly(3-sulfopropyl methacrylate), poly(3-sulfopropyl acrylate), poly(4-sulfobutyl methacrylate), poly(4-sulfobutyl acrylate), poly(2-acrylamido-2-methylpropanesulfonic acid), poly(2-methacrylamido-2-methylpropanesulfonic acid), poly(vinyl sulfonic acid), poly(styrenesulfonic acid), and salts thereof, as well as copolymers between vinyl monomers having sulfonic acid groups that constitute the above segments, and copolymers of vinyl monomers having sulfonic acid groups and vinyl monomers not having sulfonic acid groups that constitute the above segments.

強酸性陽イオン交換体の分子量は、重量平均分子量で30,000~3,000,000である。重量平均分子量が30,000未満であるとイオン交換体が脆くなり、機械的特性に劣るため好ましくなく、一方、重量平均分子量が3,000,000を超えると、グラフト重合時に系の粘性が大きくなりすぎて重合の制御が困難になるため好ましくない。なお、主鎖である多糖類の分子量に制約はないが、強酸性陽イオン交換体の機械的特性が主鎖骨格である多糖類の特性を反映するため、重量平均分子量は20,000~1,500,000の範囲が好ましい。また、グラフトセグメントの分子量にも特に制約はないが、陽イオン交換容量と機械的特性のバランスを考慮すると、重量平均分子量は10,000~2,000,000の範囲が好ましい。 The molecular weight of the strong acid cation exchanger is 30,000 to 3,000,000 in weight average molecular weight. If the weight average molecular weight is less than 30,000, the ion exchanger becomes brittle and has poor mechanical properties, which is undesirable. On the other hand, if the weight average molecular weight exceeds 3,000,000, the viscosity of the system becomes too high during graft polymerization, making it difficult to control the polymerization, which is undesirable. There is no restriction on the molecular weight of the main chain polysaccharide, but since the mechanical properties of the strong acid cation exchanger reflect the properties of the main chain polysaccharide, the weight average molecular weight is preferably in the range of 20,000 to 1,500,000. There is also no particular restriction on the molecular weight of the graft segment, but considering the balance between cation exchange capacity and mechanical properties, the weight average molecular weight is preferably in the range of 10,000 to 2,000,000.

また、前記一般式(1)中のm及びnは、互いに独立してそれぞれ1以上の整数であればよいが、それぞれ30~3000であることが好ましい。 In addition, m and n in the general formula (1) may each independently be an integer of 1 or more, but each is preferably 30 to 3000.

本発明の一態様である強酸性陽イオン交換体の製造方法は、極性溶媒中、極性溶媒に不溶の多糖類を用い、スラリー系で反応させることを特徴とする。極性溶媒に可溶の多糖類を用いると、重合系の粘度が著しく上昇してしまい重合反応が不均一になり、強酸性陽イオン交換体の品質が低下する、重合熱の除熱が困難となり重合反応が暴走してしまうといった問題点が生じるため好ましくない。極性溶媒に可溶の多糖類を用いても、希薄状態で重合を行えば上記の問題点は解決できるが、生産性が著しく低下してしまうため好ましくない。 The method for producing a strong acid cation exchanger according to one aspect of the present invention is characterized in that a polysaccharide insoluble in a polar solvent is used and reacted in a slurry system in a polar solvent. The use of a polysaccharide soluble in a polar solvent is undesirable because it causes problems such as a significant increase in the viscosity of the polymerization system, which makes the polymerization reaction non-uniform, a decrease in the quality of the strong acid cation exchanger, and difficulty in removing the heat of polymerization, which causes the polymerization reaction to go out of control. Even if a polysaccharide soluble in a polar solvent is used, the above problems can be solved by carrying out the polymerization in a dilute state, but this is undesirable because it significantly reduces productivity.

強酸性陽イオン交換体の製造方法に用いられる極性溶媒とは、プロトン性極性溶媒や非プロトン性極性溶媒やそれらの混合溶媒を指す。プロトン性極性溶媒は、酸性水素を有し、水素結合性があり、高い誘電率を有している。プロトン性極性溶媒の具体例としては、水;メタノール、エタノール、プロパノール、ブタノール等のアルコール類;エチレングリコール、プロピレングリコール、テトラメチレングリコール、ジエチレングリコール等のグリコール類;ギ酸、酢酸、プロピオン酸、安息香酸等のカルボン酸類やそれらの混合溶媒が挙げられる。一方、非プロトン性極性溶媒とは、酸性水素は有していないが高い誘電率と高い双極子モーメントを有している溶媒であり、それらの具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトニトリル;ジメチルスルホキシド;ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、N,N’-ジメチルプロピレン尿素等の尿素系溶媒;炭酸エチレン、炭酸プロピレン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒が挙げられる。 The polar solvent used in the method for producing a strong acid cation exchanger refers to a protic polar solvent, an aprotic polar solvent, or a mixture of these. A protic polar solvent has acidic hydrogen, hydrogen bonding properties, and a high dielectric constant. Specific examples of protic polar solvents include water; alcohols such as methanol, ethanol, propanol, and butanol; glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, and diethylene glycol; carboxylic acids such as formic acid, acetic acid, propionic acid, and benzoic acid, and mixtures thereof. On the other hand, aprotic polar solvents are solvents that do not have acidic hydrogen but have a high dielectric constant and a high dipole moment. Specific examples of such solvents include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate, isopropyl acetate, and butyl acetate; ethers such as diethyl ether, tetrahydrofuran, and dioxane; acetonitrile; dimethyl sulfoxide; amide-based solvents such as formamide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, and hexamethylphosphoric acid triamide; urea-based solvents such as 1,3-dimethyl-2-imidazolidinone, tetramethylurea, and N,N'-dimethylpropyleneurea; and carbonate-based solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.

強酸性陽イオン交換体の製造方法に用いられる多糖類としては極性溶媒に不溶の多糖類が好ましく、極性溶媒が水の場合は、セルロース、アルギン酸、カードラン等が用いられる。極性溶媒がアルコールの場合は、アミロース、アミロペクチン、セルロース、カルボキシメチルセルロース、グアーガム、ジェランガム、アルギン酸、アルギン酸塩、アルギン酸エステル、アガロース、カラギーナン、カードラン、キサンタンガム等を用いることができる。 The polysaccharides used in the method for producing a strongly acidic cation exchanger are preferably polysaccharides that are insoluble in polar solvents. When the polar solvent is water, cellulose, alginic acid, curdlan, etc. can be used. When the polar solvent is alcohol, amylose, amylopectin, cellulose, carboxymethylcellulose, guar gum, gellan gum, alginic acid, alginate, alginate ester, agarose, carrageenan, curdlan, xanthan gum, etc. can be used.

グラフトセグメントを構成するスルホン酸基を有するビニルモノマーの具体例としては、2-スルホエチルメタクリレート、2-スルホエチルアクリレート、3-スルホプロピルメタクリレート、3-スルホプロピルアクリレート、4-スルホブチルメタクリレート、4-スルホブチルアクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸及びこれらの塩が挙げられ、これらのモノマーは単独で用いても、二種類以上を併用してもかまわない。 Specific examples of vinyl monomers having a sulfonic acid group that constitute the graft segment include 2-sulfoethyl methacrylate, 2-sulfoethyl acrylate, 3-sulfopropyl methacrylate, 3-sulfopropyl acrylate, 4-sulfobutyl methacrylate, 4-sulfobutyl acrylate, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid, vinyl sulfonic acid, styrenesulfonic acid, and salts thereof. These monomers may be used alone or in combination of two or more.

上記スルホン酸基を有するビニルモノマーは、スルホン酸を有さないビニルモノマーと共重合してグラフトセグメントを構成することもできる。スルホン酸を有さないビニルモノマーの例としては、アクリル酸、アクリル酸メチル、アクリル酸エチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸グリシジル、アクリロニトリル、スチレン、ビニルトルエン、クロロメチルスチレン、ジビニルベンゼン、塩化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、イソブテン、ブタジエン、イソプレン、クロロプレン、酢酸ビニル、無水マレイン酸、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、フマル酸ジエチル、フマル酸ジイソプロピル、イタコン酸、無水イタコン酸、イタコン酸ジメチル、ビニレンカーボネート等が挙げられる。 The above-mentioned vinyl monomers having sulfonic acid groups can also be copolymerized with vinyl monomers not having sulfonic acid to form graft segments. Examples of vinyl monomers not having sulfonic acid include acrylic acid, methyl acrylate, ethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, acrylonitrile, styrene, vinyl toluene, chloromethylstyrene, divinylbenzene, vinyl chloride, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, isobutene, butadiene, isoprene, chloroprene, vinyl acetate, maleic anhydride, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, diethyl fumarate, diisopropyl fumarate, itaconic acid, itaconic anhydride, dimethyl itaconate, vinylene carbonate, and the like.

スルホン酸基含有ビニルモノマーのグラフト重合において用いられるラジカル重合開始剤に特に制限はなく、アゾビスイソブチロニトリル、アゾビス(4-メトキシ‐2,4-ジメチルバレロニトリル、アゾビス(2,4-ジメチルバレロニトリル)、4,4‘-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオンアミジン)、2,2’-アゾビス(2-(2-イミダゾリン‐2-イル)プロパン)等のアゾ化合物や、過酸化ベンゾイル、ジ‐t-ブチルペルオキシド、t-ブチルペルオキシド、メチルエチルケトンペルオキシド等の有機過酸化物、過酸化水素と鉄(II)塩、過硫酸塩と亜硫酸水素ナトリウムなどのレドックス開始剤、硝酸アンモニウムセリウム(IV)、過硫酸カリウムなどを用いることができる。 There are no particular limitations on the radical polymerization initiator used in the graft polymerization of the sulfonic acid group-containing vinyl monomer, and examples of the initiator include azo compounds such as azobisisobutyronitrile, azobis(4-methoxy-2,4-dimethylvaleronitrile, azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2-methylpropionamidine), and 2,2'-azobis(2-(2-imidazolin-2-yl)propane), organic peroxides such as benzoyl peroxide, di-t-butyl peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide, redox initiators such as hydrogen peroxide and iron(II) salts, persulfates and sodium hydrogen sulfite, ammonium cerium(IV) nitrate, and potassium persulfate.

グラフト重合は、一般的なグラフト重合方法を用いることができる。例えば、モノマーを極性溶媒に溶解もしくは分散させた後、多糖類を添加し撹拌してスラリーを調製し、次いで系を窒素置換した後、開始剤溶液をスラリーに滴下し撹拌下昇温してグラフト重合を行う。グラフト重合開始時のモノマー濃度は0.1~5モル/Lの範囲で適宜設定可能である。添加する多糖類の量はモノマー100重量部に対して5~200重量部の範囲であり、開始剤濃度は開始剤の種類によって変動するが、1~10ミリモル/L程度である。重合温度はモノマーの種類や開始剤の種類によって幅広く選択可能であり、10~120℃の範囲から選択できる。重合時間も同様に幅広く選択可能であり、10分~50時間の範囲から選択できる。 A general graft polymerization method can be used for the graft polymerization. For example, after dissolving or dispersing the monomer in a polar solvent, polysaccharide is added and stirred to prepare a slurry. Next, the system is replaced with nitrogen, and then an initiator solution is dropped into the slurry and heated with stirring to perform graft polymerization. The monomer concentration at the start of graft polymerization can be appropriately set in the range of 0.1 to 5 mol/L. The amount of polysaccharide added is in the range of 5 to 200 parts by weight per 100 parts by weight of monomer, and the initiator concentration varies depending on the type of initiator, but is about 1 to 10 mmol/L. The polymerization temperature can be selected from a wide range depending on the type of monomer and the type of initiator, and can be selected from a range of 10 to 120°C. The polymerization time can also be selected from a wide range, and can be selected from a range of 10 minutes to 50 hours.

重合終了後の溶液からグラフトポリマーを単離する方法についても特に制限はなく、溶媒を加熱除去しポリマーを単離する方法や、貧溶媒中に重合後の溶液を滴下してポリマーを沈殿させ、ろ過回収する方法等を用いることができる。なお、グラフト重合終了後のポリマー中には、グラフトされなかった多糖類や多糖類にグラフトしていないポリマーが含まれているので、分別沈殿等で精製することが好ましい。 There are no particular limitations on the method for isolating the graft polymer from the solution after the polymerization is completed. For example, the solvent is heated and removed to isolate the polymer, or the polymer is precipitated by dropping the solution after the polymerization into a poor solvent and then collected by filtration. Note that the polymer after the graft polymerization contains ungrafted polysaccharides and polymers that are not grafted to polysaccharides, so it is preferable to purify the polymer by fractional precipitation or the like.

上記の製造方法で得られる強酸性陽イオン交換体は、スルホン酸基がアルカリ金属塩型(-SOM’、M’はアルカリ金属を表す)になっているものが多いが、イオン交換体として用いる際にはスルホン酸基が再生型(-SOH)になっていることが好都合であり、その場合はイオン交換基であるスルホン酸基をアルカリ金属塩型から再生型にイオン交換する。上記アルカリ金属塩型から再生型へのイオン交換は、通常の強酸性イオン交換樹脂と同様に、アルカリ金属塩型の強酸性陽イオン交換体を塩酸や硫酸等に接触させることで再生型にイオン交換できる。具体的には、アルカリ金属塩型強酸性陽イオン交換体を、塩酸に溶解させ、一定時間混合した後、透析により過剰の酸及び塩を除去する。イオン交換を行う際の強酸性陽イオン交換体の濃度に特に制限はないが、濃度が高すぎると撹拌が困難になるため好ましくなく、0.1~5重量%の範囲が好ましい。イオン交換反応時間にも特に制約はなく、10分~5時間の範囲内で適宜選択可能である。 In the strong acid cation exchanger obtained by the above-mentioned production method, the sulfonic acid group is often in an alkali metal salt form (-SO 3 M', M' represents an alkali metal), but when used as an ion exchanger, it is convenient that the sulfonic acid group is in a regenerated form (-SO 3 H). In that case, the sulfonic acid group, which is an ion exchange group, is ion-exchanged from the alkali metal salt form to the regenerated form. The ion exchange from the alkali metal salt form to the regenerated form can be performed by contacting the strong acid cation exchanger in the alkali metal salt form with hydrochloric acid, sulfuric acid, or the like, as in the case of a normal strong acid ion exchange resin. Specifically, the strong acid cation exchanger in the alkali metal salt form is dissolved in hydrochloric acid, mixed for a certain period of time, and then the excess acid and salt are removed by dialysis. There is no particular restriction on the concentration of the strong acid cation exchanger when performing the ion exchange, but if the concentration is too high, stirring becomes difficult, which is not preferable, and a range of 0.1 to 5% by weight is preferable. There is also no particular restriction on the ion exchange reaction time, which can be appropriately selected within the range of 10 minutes to 5 hours.

また、本発明の強酸性陽イオン交換体は水に可溶な場合が多いが、用途によっては水中で形状を保持することが要求される。そのような場合には、適宜、母体ポリマーである多糖類を架橋させればよい。例えば、母体ポリマーがアルギン酸ナトリウムの場合、ナトリウムをカルシウムやマグネシウム、亜鉛といった二価カチオンにイオン交換することで母体ポリマーをイオン架橋し、水中でも形状保持が可能なハイドロゲルを調製することができる。 Although the strongly acidic cation exchanger of the present invention is often soluble in water, some applications require it to retain its shape in water. In such cases, the polysaccharide, which is the parent polymer, can be crosslinked as appropriate. For example, when the parent polymer is sodium alginate, the sodium can be ion-exchanged with a divalent cation such as calcium, magnesium, or zinc to ionically crosslink the parent polymer, thereby preparing a hydrogel that can retain its shape even in water.

以下に、本発明を更に詳細に実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

実施例1
エタノール30mlにスチレンスルホン酸リチウム(東ソーファインケム製、以下LiSSと略す)5.51g(29mmol)を撹拌下少量ずつ添加し、スラリー状とした。次いで、アルギン酸(株式会社キミカ製、キミカアシッドSA)1.0g(単糖ユニットとして5.7mmol)を撹拌下少量ずつ添加してスラリー状とし、窒素下で8時間撹拌を継続し、系内の酸素をパージした。アゾビス(イソブチロニトリル)(以下AIBNと略す)27mgをメタノール2.5mlに溶解させた溶液を窒素下シリンジで滴下し、滴下終了後、系を密封して昇温し60℃で15時間グラフト重合を行った。重合終了後、スラリーをテトラヒドロフラン(以下THFと略す)に滴下し、固形物をガラスフィルターで捕集し、更にTHFで洗浄した後、室温で減圧乾燥し生成物を単離した。単離収量は6.3g、収率は95%であった。なお、収率は単離収量からアルギン酸仕込量を差し引き、モノマー仕込量で除して求めた。
Example 1
5.51 g (29 mmol) of lithium styrene sulfonate (manufactured by Toso Finechem, hereinafter abbreviated as LiSS) was added little by little to 30 ml of ethanol under stirring to form a slurry. Then, 1.0 g (5.7 mmol as monosaccharide unit) of alginic acid (manufactured by Kimika Co., Ltd., Kimika Acid SA) was added little by little under stirring to form a slurry, and stirring was continued for 8 hours under nitrogen to purge oxygen in the system. A solution in which 27 mg of azobis(isobutyronitrile) (hereinafter abbreviated as AIBN) was dissolved in 2.5 ml of methanol was dropped with a syringe under nitrogen, and after the dropwise addition, the system was sealed and heated to perform graft polymerization at 60 ° C. for 15 hours. After the polymerization was completed, the slurry was dropped into tetrahydrofuran (hereinafter abbreviated as THF), and the solid matter was collected with a glass filter, washed with THF, and then dried under reduced pressure at room temperature to isolate the product. The isolated yield was 6.3 g and the yield was 95%. The yield was calculated by subtracting the amount of alginic acid charged from the isolated yield and dividing the result by the amount of monomer charged.

この単離生成物中には未反応アルギン酸やグラフトしていないポリLiSSが混入している可能性があるため、分別沈殿により精製を行った。単離生成物1gを純水15mlに溶解させ、10%塩化カルシウム水溶液に滴下すると不溶解成分が生じた。この不溶解成分をエタノールで洗浄し、単離・乾燥したところ、収量は0.14gであった。この分画を水系GPCを用いRI検出器とUV検出器を併用して測定したところ、UV吸収が主ピークに認められず(図1参照)、主ピークの重量平均分子量68,000と原料アルギン酸の重量平均分子量60,000とがほぼ一致すること、硫黄含有量が0.7%と低いことからLiSSがグラフトしていない未反応アルギン酸の分画と同定された。一方、塩化カルシウム水溶液可溶部は、エタノールに滴下・沈殿させ単離した。収量は0.84gであり、水系GPCを用いRI検出器とUV検出器を併用して測定したところ、いずれの検出器を用いてもピーク形状が同一であること(図2参照)、FT-IR測定よりアルギン酸由来のエステルカルボニルの吸収(1650cm-1)とポリLiSS由来のS=Oの吸収(1190cm-1)の両方が認められることから、グラフトポリマーの分画と同定された。数平均分子量は82,000、重量平均分子量は311,000であり、硫黄含有量は10.6重量%であった。また、下記に示す方法で測定した強酸性陽イオン交換容量(中性塩分解容量)は3.3meq/gであった。結果を表1にまとめて示すが、本発明の製造方法を用いることで、強酸性陽イオン交換容量が大きく、かつ、高分子量の強酸性陽イオン交換体を得ることができた。
(強酸性陽イオン交換容量測定方法)
反応生成物を所定量採取し水に溶解させた後、この水溶液を1N塩酸水溶液に滴下してグラフトポリマーを再生型とし、透析により塩類を除去した後、水溶液をTHF中に滴下し、生じた沈殿をろ過回収後し乾燥・単離した。得られた再生型グラフトポリマーを所定量採取し、飽和塩化ナトリウム水溶液に2時間浸漬した後、水溶液を分取して生成した塩酸量を定量(指示薬:フェノールフタレイン、水酸化ナトリウム水溶液を用いて滴定により定量)し、強酸性陽イオン交換容量を求めた。
Since there is a possibility that unreacted alginic acid or ungrafted polyLiSS may be mixed in the isolated product, purification was performed by fractional precipitation. When 1 g of the isolated product was dissolved in 15 ml of pure water and dropped into a 10% calcium chloride aqueous solution, an insoluble component was generated. When the insoluble component was washed with ethanol, isolated and dried, the yield was 0.14 g. When this fraction was measured using aqueous GPC with a RI detector and a UV detector in combination, no UV absorption was observed in the main peak (see FIG. 1), and the weight average molecular weight of the main peak of 68,000 almost coincided with the weight average molecular weight of the raw alginic acid of 60,000, and the sulfur content was low at 0.7%, it was identified as a fraction of unreacted alginic acid to which LiSS was not grafted. On the other hand, the calcium chloride aqueous solution soluble portion was dropped and precipitated in ethanol to isolate it. The yield was 0.84 g. When aqueous GPC was used and an RI detector and a UV detector were used in combination, the peak shape was the same regardless of which detector was used (see FIG. 2). FT-IR measurement showed both an ester carbonyl absorption (1650 cm −1 ) derived from alginic acid and an S═O absorption (1190 cm −1 ) derived from polyLiSS, and therefore the fraction was identified as a graft polymer fraction. The number average molecular weight was 82,000, the weight average molecular weight was 311,000, and the sulfur content was 10.6% by weight. The strong acid cation exchange capacity (neutral salt decomposition capacity) measured by the method described below was 3.3 meq/g. The results are summarized in Table 1. By using the production method of the present invention, a strong acid cation exchanger with a large strong acid cation exchange capacity and a high molecular weight could be obtained.
(Method for measuring strong acid cation exchange capacity)
A predetermined amount of the reaction product was collected and dissolved in water, and the aqueous solution was dropped into a 1N aqueous hydrochloric acid solution to regenerate the graft polymer. After removing salts by dialysis, the aqueous solution was dropped into THF, and the resulting precipitate was collected by filtration, dried, and isolated. A predetermined amount of the resulting regenerated graft polymer was collected and immersed in a saturated aqueous sodium chloride solution for 2 hours, and the aqueous solution was separated to determine the amount of hydrochloric acid produced (quantified by titration using indicators: phenolphthalein and an aqueous sodium hydroxide solution), and the strong acid cation exchange capacity was determined.

実施例2
モノマーとして、LiSSの代わりにLiSSとメタクリル酸3-スルホプロピルカリウム(以下SPMAKと略す)の混合物を用い、開始剤として、AIBNに代えて硝酸アンモニウムセリウム(IV)(以下CANと略す)用いたこと、および溶媒としてエタノールの代わりに水を用い、60℃で24時間重合したことを除いて、実施例1と同様の方法でグラフトポリマーを製造し、精製した。結果を表1に示す。単離収量は6.9g、収率は93%であり、精製後のグラフトポリマーの数平均分子量は80,000、重量平均分子量は570,000であり、硫黄含有量は10.2重量%、強酸性陽イオン交換容量(中性塩分解容量)は3.2meq/gであった。
Example 2
A graft polymer was produced and purified in the same manner as in Example 1, except that a mixture of LiSS and 3-sulfopropyl potassium methacrylate (hereinafter abbreviated as SPMAK) was used instead of LiSS as a monomer, ammonium cerium nitrate (IV) (hereinafter abbreviated as CAN) was used instead of AIBN as an initiator, and water was used instead of ethanol as a solvent, and polymerization was performed at 60° C. for 24 hours. The results are shown in Table 1. The isolated yield was 6.9 g, the yield was 93%, and the number average molecular weight of the purified graft polymer was 80,000, the weight average molecular weight was 570,000, the sulfur content was 10.2 wt%, and the strong acid cation exchange capacity (neutral salt decomposition capacity) was 3.2 meq/g.

実施例3
アルギン酸仕込量を0.75gとしたこと、モノマーとしてSPMAKを単独で用いたこと、重合条件を55℃にて15時間としたことを除いて、実施例2と同様の方法でグラフトポリマーを製造し、精製した。結果を表1に示す。単離収量は3.6g、収率は101%であり、精製後のグラフトポリマーの数平均分子量は60,000、重量平均分子量は270,000であり、硫黄含有量は9.0重量%、強酸性陽イオン交換容量(中性塩分解容量)は2.8meq/gであった。また、精製後のグラフトポリマーについて1H-NMR測定を行った。NMRスペクトルを図3に示すが、4.5~5.0ppmにアルギン酸の1位由来のピークが、0.8~3.0ppmにSPMAKポリマー由来のピークが認められたことから、グラフトポリマーの生成が確認できた。
Example 3
A graft polymer was produced and purified in the same manner as in Example 2, except that the amount of alginic acid charged was 0.75 g, SPMAK was used alone as the monomer, and the polymerization conditions were 55 ° C. and 15 hours. The results are shown in Table 1. The isolated yield was 3.6 g, the yield was 101%, and the number average molecular weight of the purified graft polymer was 60,000, the weight average molecular weight was 270,000, the sulfur content was 9.0 wt%, and the strong acid cation exchange capacity (neutral salt decomposition capacity) was 2.8 meq / g. In addition, 1H-NMR measurement was performed on the purified graft polymer. The NMR spectrum is shown in Figure 3, and a peak derived from the 1st position of alginic acid was observed at 4.5 to 5.0 ppm, and a peak derived from the SPMAK polymer was observed at 0.8 to 3.0 ppm, confirming the generation of the graft polymer.

実施例4
アルギン酸としてキミカアシッドGを0.2g用いたことを除いて実施例3と同様の方法でグラフトポリマーを製造し、精製した。結果を表1に示す。単離収量は3.0g、収率は100%であり、精製後のグラフトポリマーの数平均分子量は90,000、重量平均分子量は430,000であり、硫黄含有量は9.5重量%、強酸性陽イオン交換容量(中性塩分解容量)は3.0meq/gであった。
Example 4
A graft polymer was produced and purified in the same manner as in Example 3, except that 0.2 g of Chimica Acid G was used as the alginic acid. The results are shown in Table 1. The isolated yield was 3.0 g, the yield was 100%, and the number average molecular weight of the purified graft polymer was 90,000, the weight average molecular weight was 430,000, the sulfur content was 9.5 wt%, and the strong acid cation exchange capacity (neutral salt decomposition capacity) was 3.0 meq/g.

実施例5
アルギン酸仕込量を1.0gとしたことと、モノマーとしてSPMAKの代わりに2-アクリルアミド-2-メチルプロパンスルホン酸リチウム(以下AMPSLiと略す)を用いたことを除いて、実施例43と同様の方法でグラフトポリマーを製造し、精製した。結果を表1に示す。単離収量は4.4g、収率は56%であり、精製後のグラフトポリマーの数平均分子量は70,000、重量平均分子量は1,300,000であり、硫黄含有量は9.3重量%、強酸性陽イオン交換容量(中性塩分解容量)は2.9meq/gであった。
Example 5
A graft polymer was produced and purified in the same manner as in Example 43, except that the amount of alginic acid charged was 1.0 g and that lithium 2-acrylamido-2-methylpropanesulfonate (hereinafter abbreviated as AMPSLi) was used as the monomer instead of SPMAK. The results are shown in Table 1. The isolated yield was 4.4 g, the yield was 56%, and the number average molecular weight of the purified graft polymer was 70,000, the weight average molecular weight was 1,300,000, the sulfur content was 9.3 wt%, and the strong acid cation exchange capacity (neutral salt decomposition capacity) was 2.9 meq/g.

実施例6
アルギン酸仕込量を0.5gとしたことと、モノマーとしてSPMAKの代わりに2-アクリルアミド-2-メチルプロパンスルホン酸カリウム(以下AMPSKと略す)を用いたこと、重合時間を24時間としたことを除いて、実施例4と同様の方法でグラフトポリマーを製造し、精製した。結果を表1に示す。単離収量は6.7g、収率は88%であり、精製後のグラフトポリマーの数平均分子量は120,000、重量平均分子量は1,900,000であり、硫黄含有量は10.6重量%、強酸性陽イオン交換容量(中性塩分解容量)は3.3meq/gであった。
Example 6
A graft polymer was produced and purified in the same manner as in Example 4, except that the amount of alginic acid charged was 0.5 g, potassium 2-acrylamido-2-methylpropanesulfonate (hereinafter abbreviated as AMPSK) was used as the monomer instead of SPMAK, and the polymerization time was 24 hours. The results are shown in Table 1. The isolated yield was 6.7 g, the yield was 88%, and the number average molecular weight of the purified graft polymer was 120,000, the weight average molecular weight was 1,900,000, the sulfur content was 10.6 wt%, and the strong acid cation exchange capacity (neutral salt decomposition capacity) was 3.3 meq/g.

実施例7
モノマーとしてAMPSKの代わりに2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(以下AMPSNaと略す)を用いたことを除いて、実施例6と同様の方法でグラフトポリマーを製造し、精製した。結果を表1に示す。単離収量は6.9g、収率は90%であり、精製後のグラフトポリマーの数平均分子量は180,000、重量平均分子量は2,400,000であり、硫黄含有量は10.6重量%、強酸性陽イオン交換容量(中性塩分解容量)は3.3meq/gであった。
Example 7
A graft polymer was produced and purified in the same manner as in Example 6, except that sodium 2-acrylamido-2-methylpropanesulfonate (hereinafter abbreviated as AMPSNa) was used as the monomer instead of AMPSK. The results are shown in Table 1. The isolated yield was 6.9 g, the yield was 90%, and the number average molecular weight of the purified graft polymer was 180,000, the weight average molecular weight was 2,400,000, the sulfur content was 10.6% by weight, and the strong acid cation exchange capacity (neutral salt decomposition capacity) was 3.3 meq/g.

比較例1
多糖類としてアルギン酸ナトリウム(株式会社キミカ製、キミカアルギンI-3G)を用いたことを除いて、実施例3と同様の方法でグラフトポリマーを製造しようとしたが、系の粘性が高すぎて撹拌ができなかったため、グラフト重合を断念した。(表1参照)
Comparative Example 1
An attempt was made to produce a graft polymer in the same manner as in Example 3, except that sodium alginate (Kimika Algin I-3G, manufactured by Kimika Co., Ltd.) was used as the polysaccharide, but the viscosity of the system was too high to stir, and the graft polymerization was abandoned (see Table 1).

本発明の強酸性陽イオン交換体は、イオン交換容量が大きく機械的特性にも優れ、親水性が高く耐汚染性にも優れるため、イオン交換樹脂やイオン交換膜として純水・超純水製造装置や電気透析装置、糖類の精製や異性化、クロマト充填剤、触媒、燃料電池等幅広い分野に応用可能である。 The strong acid cation exchanger of the present invention has a large ion exchange capacity, excellent mechanical properties, high hydrophilicity, and excellent resistance to contamination, and therefore can be used as an ion exchange resin or ion exchange membrane in a wide range of fields, such as in pure water/ultrapure water production equipment, electrodialysis equipment, sugar purification and isomerization, chromatography packing materials, catalysts, and fuel cells.

Claims (2)

多糖類にスルホン酸基を有するポリマーセグメントがグラフトした強酸性陽イオン交換体であり、重量平均分子量が30,000~3,000,000であり、強酸性陽イオン交換容量が2.5~4.9meq/gであり、下記一般式(1)で示される構造である強酸性陽イオン交換体。
(式中、m及びnは互いに独立して1以上の整数を表し、R は同一でもことなっていてもよくそれぞれ水素、アルカリ金属、アルカリ土類金属または-R -OHで示される基を表し、R は炭素数2~6の2価の炭化水素基を表し、R は同一でも異なっていてもよくそれぞれスルホン酸基を有するポリマーセグメントまたは水素を表し、R の少なくとも一つはスルホン酸基を有するポリマーセグメントである。)
The strongly acidic cation exchanger is a polysaccharide to which a polymer segment having a sulfonic acid group is grafted, the strongly acidic cation exchanger having a weight average molecular weight of 30,000 to 3,000,000 and a strongly acidic cation exchange capacity of 2.5 to 4.9 meq/g , and having a structure represented by the following general formula (1) :
(In the formula, m and n are each independently an integer of 1 or more; R 1 may be the same or different and each represents hydrogen, an alkali metal, an alkaline earth metal or a group represented by -R 3 -OH; R 3 represents a divalent hydrocarbon group having 2 to 6 carbon atoms; R 2 may be the same or different and each represents a polymer segment having a sulfonic acid group or hydrogen, and at least one of R 2 is a polymer segment having a sulfonic acid group.)
極性溶媒中、多糖類にスルホン酸基含有ビニルモノマーをグラフト重合させる強酸性陽イオン交換体の製造方法であって、極性溶媒に不溶の下記一般式(2)で示されるアルギン酸、アルギン酸塩、またはアルギン酸エステルを前記多糖類として用い、スラリー系で反応させることを特徴とする、強酸性陽イオン交換体の製造方法。
(式中、m及びnは互いに独立して1以上の整数を表し、R は同一でも異なっていてもよくそれぞれ水素、アルカリ金属、アルカリ土類金属または-R -OHで示される基を表し、R は炭素数2~6の2価の炭化水素基を表す。)
A method for producing a strongly acidic cation exchanger by graft polymerizing a sulfonic acid group-containing vinyl monomer onto a polysaccharide in a polar solvent, characterized in that the polysaccharide is an alginic acid, an alginate, or an alginate ester represented by the following general formula (2) which is insoluble in polar solvents, and the reaction is carried out in a slurry system.
(In the formula, m and n are each independently an integer of 1 or more, R 1 may be the same or different and each represents hydrogen, an alkali metal, an alkaline earth metal or a group represented by -R 3 -OH, and R 3 represents a divalent hydrocarbon group having 2 to 6 carbon atoms.)
JP2020098475A 2020-06-05 2020-06-05 Strongly acidic cation exchanger and its manufacturing method Active JP7524617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098475A JP7524617B2 (en) 2020-06-05 2020-06-05 Strongly acidic cation exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098475A JP7524617B2 (en) 2020-06-05 2020-06-05 Strongly acidic cation exchanger and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021191564A JP2021191564A (en) 2021-12-16
JP7524617B2 true JP7524617B2 (en) 2024-07-30

Family

ID=78945598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098475A Active JP7524617B2 (en) 2020-06-05 2020-06-05 Strongly acidic cation exchanger and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7524617B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355564A (en) 2001-05-31 2002-12-10 Asahi Kasei Corp Ion adsorbing body
JP2010001392A (en) 2008-06-20 2010-01-07 Nhv Corporation Anion exchanger and method for producing it
JP2010095673A (en) 2008-10-20 2010-04-30 Dic Corp Curable resin composition, coating material, and coated article
JP2011529508A (en) 2008-07-30 2011-12-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Graft copolymer for ion exchange chromatography
JP2014061411A (en) 2007-03-29 2014-04-10 Nobles Medical Technologies Inc Suture device and system for closing patent foramen ovale
JP2017221928A (en) 2016-06-17 2017-12-21 日立化成株式会社 Separation material and column
JP2018159039A (en) 2017-03-23 2018-10-11 東京応化工業株式会社 Surface treatment liquid, surface treatment method, cation adsorbent, cation removing device, and cation removing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355564A (en) 2001-05-31 2002-12-10 Asahi Kasei Corp Ion adsorbing body
JP2014061411A (en) 2007-03-29 2014-04-10 Nobles Medical Technologies Inc Suture device and system for closing patent foramen ovale
JP2010001392A (en) 2008-06-20 2010-01-07 Nhv Corporation Anion exchanger and method for producing it
JP2011529508A (en) 2008-07-30 2011-12-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Graft copolymer for ion exchange chromatography
JP2010095673A (en) 2008-10-20 2010-04-30 Dic Corp Curable resin composition, coating material, and coated article
JP2017221928A (en) 2016-06-17 2017-12-21 日立化成株式会社 Separation material and column
JP2018159039A (en) 2017-03-23 2018-10-11 東京応化工業株式会社 Surface treatment liquid, surface treatment method, cation adsorbent, cation removing device, and cation removing method

Also Published As

Publication number Publication date
JP2021191564A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
EP2536787B1 (en) Thermoplastic nanocomposite material based on nanocrystalline cellulose (ncc)
CN107722301B (en) Preparation method of chemical/ionic double-crosslinking interpenetrating network hydrogel
CN113061266B (en) High-strength ionic gel based on multiple non-covalent crosslinking effects
Apopei et al. Graft copolymerization of acrylonitrile onto potatoes starch by ceric ion
CN102585097B (en) Method for preparing amphoteric starch
JP7524617B2 (en) Strongly acidic cation exchanger and its manufacturing method
CN115572351A (en) Cation modified guar gum and synthesis process thereof
JPS5835531B2 (en) How to improve the performance of cation exchange membranes
JPH0535162B2 (en)
Tian et al. Synthesis and flocculation characteristics of konjac glucomannan-g-polyacrylamide
JP3629795B2 (en) Anion exchanger
CN114369203B (en) Ion exchange resin and preparation method thereof
CN115353836B (en) Sulfur-containing octanoic acid anion terpolymer adhesive and preparation method thereof
McCormick et al. Water‐soluble copolymers. VII. Cerium (IV) induced graft copolymerization of acrylamide and sodium‐2‐acrylamido‐2‐methylpropane sulfonate onto dextran
CN107746446B (en) Preparation method of ternary copolymerization amphoteric polyacrylamide
JP2021095553A (en) Strong acid cation exchanger and method for producing the same
CN115403697A (en) Temperature-sensitive fluorescent nano material and preparation method thereof
CN112940430A (en) Preparation method of composite super absorbent resin
CN114506139A (en) Main chain fluorocarbon alkali-resistant bipolar membrane and preparation method thereof
Zhang et al. Reed hemicellulose-based hydrogel prepared by glow discharge electrolysis plasma and its adsorption properties for heavy metal ions
CN114316098A (en) Attapulgite-acrylamide double-network interpenetrating hydrogel with high water absorption and retention and synthesis process thereof
CN110036045B (en) Method for producing polyacrylonitrile
CN112851973A (en) Preparation and application of cyclodextrin-polyacrylic acid composite hydrogel based on RAFT
JPH0521123B2 (en)
CN112980000B (en) Preparation method of lignin stannous chelate hydrogel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240701

R150 Certificate of patent or registration of utility model

Ref document number: 7524617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150