[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6354693B2 - - Google Patents

Info

Publication number
JPS6354693B2
JPS6354693B2 JP54132403A JP13240379A JPS6354693B2 JP S6354693 B2 JPS6354693 B2 JP S6354693B2 JP 54132403 A JP54132403 A JP 54132403A JP 13240379 A JP13240379 A JP 13240379A JP S6354693 B2 JPS6354693 B2 JP S6354693B2
Authority
JP
Japan
Prior art keywords
cmc
weight
treated
mesh
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54132403A
Other languages
Japanese (ja)
Other versions
JPS5657719A (en
Inventor
Kimihiko Takeo
Yorio Uesugi
Toichiro Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13240379A priority Critical patent/JPS5657719A/en
Publication of JPS5657719A publication Critical patent/JPS5657719A/en
Publication of JPS6354693B2 publication Critical patent/JPS6354693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、経口投与される固形状医薬品を製造
するにあつて、特殊処理を行なつた水膨潤性のカ
ルボキシメチルセルロース・ナトリウムを添加す
る溶出速度の優れた医薬品の製造法に関する。 従来より、錠剤、顆粒剤及び顆粒剤を充填した
カプセル剤等の固形状医薬品は、その崩壊時間を
短縮し、かつ薬効成分の溶出率を高める努力がな
されており、この目的のために、賦形剤あるいは
崩壊剤の改良が行なわれてきた。 固形状医薬品の崩壊時間を短縮するために今日
用いられている添加剤としては、l−HPC
(低置換度ヒドロキシプロピルセルロース;信越
化学製)、CMC−Ca(カルボキシメチルセルロー
ス・カルシウム;ニチリン化学製、日本薬局方収
載品)、Polyplasdone XL (クロスリンクト・
ポリビニルピロリドン)、Explotab (化学的変
性スターチ;Edward Mondell Co.Inc.製)、Sta
−Rx 1500(物理的変性スターチ;Colorcon
Co.製)及び未変性でんぷん(日本薬局方収載品)
等があるが、それぞれ一長一短があり、満足でき
るものではない。例えば、l−HPC 、Sta−
Rx 1500、未変性でんぷんは崩壊時間を短縮さ
せるには比較的多量の添加が必要であるし、
Polyplasdone XL 、Explotad は多量添加は
必要としないまでも、例えば錠剤に使用して高圧
成形するとその崩壊時間が著しく延長したり、キ
ヤツピング現象を惹起するという問題がある。
CMC−Caは、崩壊剤として卓越した効果を有し
ているが、Ca塩が固形状医薬品中に含まれる薬
効成分の安定性を阻害したり、低PH領域、例えば
人工胃液(PH約1.2)等では膨潤力が十分でなく
崩壊作用が弱まるという問題がある。 経口投与される固形状医薬品の場合、その崩壊
時間の長短は、薬効成分の溶出率の大小となつて
現われることが多く、薬効成分の体内利用率を高
める上からも崩壊時間を短縮することは重要な場
合が多い。 一方製剤工学的見地からは、製剤の安定性の観
点から吸湿膨潤作用のある添加剤は可能な限り少
量添加で済ませたいし、かつこのことは最近流行
の製剤の小型化の点からも要求されることであ
る。 従つて、経口投与される医薬品に対し、その崩
壊速度を改善するために使用される添加物、即ち
崩壊剤としては、可能な限り少量添加で有効であ
りかつ錠剤等に応用された場合、錠剤硬度を低下
せしめたり、キヤツピングを生じたりすることの
ない成形機能をも有したものであることが望まし
い。 本発明者らは上記観点のもとに、優秀な崩壊剤
探索を目的に種々製剤研究を行なつた結果、次の
ことを発見した。 即ち、本発明は従来より医薬品の製造に利用さ
れて来た水溶性のカルボキシメチルセルロース・
ナトリウムを変性して使用することにより、目的
とする良好な固形状医薬品の製造が可能となるこ
とを見出した。 水溶性のカルボキシメチルセルロース・ナトリ
ウム(CAC−Naと略記する)は、そのままでは
固形状医薬品に添加しても崩壊作用をもたらすこ
とは殆どない。これはCMC−Naに限らず、水溶
性のガム類に一般的に言えることであるが、無限
膨潤し水に完全溶解するような水溶性ガムを固形
状医薬品に添加すると、溶解速度が大きすぎるた
めにその表面でママコを形成し、水の迅速な浸透
が損われるためである。 従つてCMC−Naを崩壊剤として使用するに
は、水不溶性とし、膨潤作用だけ発揮させる必要
がある。CMC−Naを水不溶性とし膨潤作用だけ
賦与するには、例えば特公昭54−52189号に記載
されたように、CMC−Naをエピクロルヒドリ
ン、ホルムアルデヒド、ジビニルスルホン等の架
橋剤で交叉結合させる方法がある。又、これに類
似の方法で、水吸収性の水不溶性セルロースエー
テルを製造する方法として、特開昭50−85689号、
特開昭50−80376号、特開昭51−136769号がある。
これらは、イソプロパノール中でアルカリセルロ
ースをエーテル化するとき交叉結合剤を加え架橋
させようとするものである。これらの処理により
得られる架橋されたCMC−Naは著しく大きい吸
水膨潤能力を有するものであるが、生体に経口投
与される固形状医薬品の製造を前提として考えた
場合、ホルムアルデヒド、エピクロルヒドリン等
の使用は可能であれば避けるべきであり、仮に水
洗等により残留量を零とすべく精製しようとする
と著し製造コストアツプを招くことは明瞭であ
る。このような理由から、架橋剤を使用した水不
溶性CMC−Naの利用は、専ら、、土譲改良材や、
ナプキン、生理用品等にその使用が限定されてい
るのが現状である。 本願発明者らは以上の事情に鑑み、架橋剤を使
用せず、水不溶性のCMC−Naを製造する方法に
ついて検討した結果、CMC−Naをある方法に従
つて加熱処理することにより、水不溶性でかつ膨
潤作用の大きなCMC−Naの製造が可能となるこ
とを見出した。以下、CMC−Naの処理法につい
て述べる。 繊維状もしくは非繊維状のCMC−Naを、水性
媒体中に分散させてスラリー状となし、鉱酸にて
一旦スラリーのPHを酸性剤に調整し、次いで液の
PHが6〜7になるよう洗浄した後、加熱処理す
る。好ましいPHの範囲は、およそPH2〜5の範囲
である。これは、CMC−Naが酸性側で凝集性を
持ち、洗浄が容易になるためである。加熱処理
後、不溶化させて後洗浄する方法も洗浄を容易に
する方法の一つであるが、この場合はPHの酸性に
調整する必要はない。 上記処理法に於いて水性媒体とは、メタノー
ル、エタノール、プロパノール、イソプロパノー
ル、アセトン、ジオキサン等を水と自由な割合で
相容させた水溶液を言い、有機溶媒/水の配合比
率は、該水溶液中にCMC−Naが無限膨潤して溶
解するのを妨げるような割合で有機溶媒を添加す
ればよく、有機溶媒の種類によつて異なるが、
20/80以上、好ましくは50/50以上である。 使用される鉱酸とは、塩酸、硝酸、硼酸、炭酸
を指し、塩酸が好ましい。これは、CMC−Na中
のCOONa基の一部が遊離酸型の−COOHとなる
際生じるNa+が塩酸と反応し、人体に無害な食塩
NaClとなるからである。 水性媒体スラリーを酸性化した後の洗浄による
精製は、塩酸、硝酸等の有用な酸を除くために行
なわれるが、酸処理しただけのCMC−Naはまだ
水に可溶であるから、CMC−Naのゲル化或いは
凝集沈降させ得る水性媒体もしくは有機溶剤単独
液を洗浄液として用いるのがよい。 PHが約6〜7になる迄洗浄した後、湿潤した
CMC−Naは、その湿潤媒体が残存する間は、そ
の沸点以下の温度で乾燥され、湿潤媒体が蒸発逸
散した後は100℃以上、好ましくは120〜200℃の
範囲で加熱される。CMC−Naは230〜240℃で絶
乾すると褐変乃至淡黄色化するようになり好まし
くないので、加熱の上限は220℃である。 加熱条件のうち時間に関しては比較的広い範囲
で選択できる。加熱温度が高ければ高い程短時間
加熱で意図するようなCMC−Naを得ることがで
きるのは事実であるが、加熱温度と加熱時間との
熱力学或は動力学的相互関係は見出されていな
い。単に加熱時間の範囲について記載すれば、数
10秒〜数時間がその範囲であり、具体的例で示せ
ば、加熱温度200℃のときは50秒、加熱温度120℃
のときは約3時間程度である。 これらの加熱処理は、大気中もしくは不活性ガ
ス雰囲気中で行ない得る。 こうして得られた熱処理CMC−Na(以下HT−
CMC−Naと略す)は、水不溶性でかつ吸水性を
示すようになるが、本発明の意図する少量で有効
な、成形機能を有するHT−CMC−Naを得るに
は、これだけでは不十分であり、その形状を規制
する必要がある。 HT−CMC−Naはそれ自体非結晶であり、例
えば錠剤等に応用して圧縮成形されると、塑性変
形に併せて弾性変形部分を残し、それが原因とな
り、錠剤のキヤツピング現象を惹起する傾向があ
る。 これを軽減するには、HT−CMC−Naを或る
粒径以下に細断・粉砕すればよいが、膨潤体であ
るHT−CMC−Naの粒径(正確には繊維長)と、
錠剤或いは顆粒剤に対する崩壊効果とには大なる
相関があり、あまり微粉化すると、迅速かつ強力
な崩壊作用は得られなくなる。勿論、当然のこと
乍ら、HT−CMC−Naの繊維長が長すぎても崩
壊作用(錠剤或いは顆粒が崩壊するの意)は弱ま
るし、それ以外の欠点として繊維状HT−CMC
−Naは製剤そのものを困難にする。 従つて、HT−CMC−Naには、製剤に適する
最適な粒径が存するのであり、タイラー42メツシ
ユ篩残留量が実質的に零であり、同200メツシユ
篩を少くとも50重量%以上通過し、かつ325メツ
シユ篩通過分が30重量%未満でなければならな
い。 タイラー42メツシユ篩残留分が多いと、篩過、
混合、練合、打錠等の錠剤化工程、篩過、混合、
練合等の顆粒化工程に種々の困難或いは障害をも
たらす。それは、例えば篩過時間の延長、混合の
不均一、練合の不均一、打錠時のキヤツピング等
である。 タイラー200メツシユ篩通過量は、同325メツシ
ユ篩通過量と一部相関性もあるが、200メツシユ
篩通過量が50重量%未満の場合、換言すると粒子
が粗大すぎる場合は、錠剤或いは顆粒剤中に存在
するHT−CMC−Naの粒子の数が少くなるため、
錠剤或いは顆粒剤は崩壊中に粗大なブロツク状塊
を多く作り溶出速度の改善等に貢献しなくなると
共に、崩壊時間そのものも延長する。 タイラー325メツシユ篩通過分が300重量%を越
すような場合、即ちHT−CMC−Naが細かすぎ
るような場合は、崩壊作用が極端に低下する。 HT−CMC−Naを製剤に応用する場合、粒度
分布以外にもう一点留意すべき事項がある。 錠剤にしろ顆粒剤にしろ、その製造工程中、篩
過、秤量、混合の各単位操作では必ず粉体として
扱われる。また特に錠剤の場合、粉体のまま圧縮
成形される直接打錠法(以下直打と呼ぶ)がある
し、一旦顆粒を作成後、圧縮成形前に崩壊剤を加
える後未添加法がある。以上述べた粉体のままで
HT−CMC−Naを扱うような製剤工程にあつて
は、粉体の嵩の大小が、粉体の取扱い性(作業
性)や製品物性に重大な影響をもたらす。 例えば、通常バツチ式で行なわれる混合工程で
は、嵩高過ぎる粉体の場合は一回当りの仕込み量
が減り効率的でない。また嵩高過ぎる粉体の場合
は、直打による白への充填及び成形が困難となり
錠剤充填重量のバラツキを大きくする。この圧縮
成形における困難性は、後未添加法でも同じであ
る。また、顆粒剤を製造する場合を考えてみて
も、粉体の嵩が高すぎると、押出造粒が困難とな
つたり、流動層造粒法で得られた顆粒そのものの
嵩を高くするので好ましくない。 一方、嵩が低すぎる場合の欠点はそれ程重大で
ない場合が多いが、直打及び後末添加法ではキヤ
ツピング現象を招くことがある。また、嵩の大小
は、粉体自身の粒度分布と絡み、おのずと定まる
ことが多い。特に本願発明の場合、細か過ぎる
HT−CMC−Naを嫌い、Tyler325メツシユ篩通
過分を30重量%以下と規定しているが、この制約
条件、および加熱処理条件、後述するCMC−Na
の置換度等の絡みで嵩の最小値は殆ど定まり、残
る要因としては粒子形状があるだけである。 本願発明の場合、HT−CMC−Naの嵩は上述
したような諸要因によりその範囲が定まり、粗比
容積値が約1.8〜3.4c.c./gの範囲になければなら
ない。 熱処理によつて得たHT−CMC−Naの崩壊能
力を保証するには、出発原料であるCMC−Naの
置換度がある範囲にあることが必要である。置換
度が0.4以下では、HT−CMC−Naの崩壊能力が
極端に落ちるし、置換度が2.0を越すと、CMC−
Naの製造コストが上昇することと併せて、親水
辛性が強すぎて、ままこ現象が残るためか崩壊能
力は低下する。かつまた置換度の高すぎるCMC
−Naを用いた場合は、酸処理後の洗浄が困難と
なつたり、圧縮成形時の塑性変形量が減少するた
めか、直打に用いると成形性が落ちる。 上述したHT−CMC−Naが何故通常のCAC−
Naでは考えられないような崩壊能を有するよう
になるのかその作用機構は定かでないが、次のよ
うな機構が考えられる。 (1) 加熱処理によりCMC−Na表面が一部結晶化
してCMC−Naとしての溶解性を遅らせる。 (2) 鉱酸処理によつて生じた−COOH基が、
CMC−Na分子鎖中に存する他の−COOH基或
いは−OH基と脱水縮合する。 いずれにしても、置換度約0.4〜2.0を有する
CMC−Naを一旦酸性条件下に置き、次いで洗
浄、乾燥加熱して得たHT−CMC−Naであつて、
Tyler42メツシユ篩残留が実質的に零であり、同
200メツシユ篩通過分が50重量%以上であり、か
つ同325メツシユ篩通過分が30重量%以下であつ
て、その粗比容積値が約1.8〜3.4c.c./gの範囲に
あるようなHT−CMC−Naの白色粉末は、錠剤
及び顆粒剤用崩壊剤として良好な機能を発揮す
る。 上記HT−CMC−Naは、直打及び湿式打錠
(湿打)により製造される錠剤、及び押出造粒法、
遠心造粒法、破砕造粒法、流動層造粒法等によつ
て製造される顆粒の崩壊剤に利用できる。 本発明の溶出速度の優れた医薬品の製造法は次
のように行ない得る。 先ず、錠剤の製造法について述べれば、直打及
び湿打、さらに湿打の変法としての後末添加法が
あるが、これらは公知の手順により行ない得る。 直打の場合は、薬効成分にHT−CMC−Naを
加え、更に賦形剤、結合剤、滑沢剤、増流動化剤
等の、必要により加えられる添加剤を配合し、混
合後粉体のまま圧縮成形し錠剤を得る。 湿打の場合は、薬効成分にHT−CMC−Naを
加え、更に賦形剤(固形状)結合剤等を加えて混
合し、水又は結合剤液を加えて造粒し、乾燥後篩
過して、得られる顆粒を圧縮成形すればよい。勿
論、滑沢剤は、粉体混合時、及び/又は圧縮成形
値前で加えて良い。 後末添加法は、湿打と類似しており、乾燥顆粒
作成後、HT−CMC−Na単独またはHT−CMC
−Naと滑沢剤を添加し、顆粒と混合し圧縮成形
する。 以上の錠剤の場合、HT−CMC−Naの添加量
は、錠剤重量に対し、0.5〜10重量%、好ましく
は、1.0〜3.0重量%の範囲であることが望まし
い。0.5重量%未満では崩壊作用が不十分である
し、10重量%を越すHT−CMC−Naの添加は、
その添加量に見合うだけの崩壊効果がなく、不経
済である。 次に顆粒剤(含むピル)の製造は次のように行
なわれる。薬効成分にHT−CMC−Naを加え、
必要により加えられる賦形剤等を配合して、混
合、造粒を行ない、乾燥後篩過して顆粒剤を得
る。造粒は公知の各種造粒機を用い得る。造粒時
の結合剤(液状又は固形状)の使用は自由であ
る。 以上の顆粒剤の場合、HT−CMC−Naの添加
量は、0.5〜8重量%、好ましくは1.0〜3.0重量%
であることが望ましい。 以上述べた、錠剤、顆粒剤の製造法は、崩壊速
度或いは溶出速度を著しく改善する。従つて、特
に、水に対する溶解度が1.0g/100ml(20℃)以
下であるような水に溶け難い薬効成分を用いるよ
うな場合は特に本願発明は有効に作用する。 従来のCMC−Na或いはCMC−Naを崩壊剤と
して使用した製剤法により得られた錠剤および顆
粒剤の崩壊性は、崩壊液のPHによりその時間が延
長することがあつたが、本発明で得られたもの
は、PH依存性がないので、製剤のアベイラビリテ
イー向上に貢献するものと考える。 尚、本願発明で得た錠剤、顆粒剤を、常法に従
つてフイルムコーテイングしたり、糖衣掛けする
のは自由である。 実施例 1 市販のCMC−Na(置換度0.3〜2.5)をn−プロ
パノールと水の比が80:20の液中に固形分濃度5
重量%のスラリーとして分散させる。撹拌しなが
ら、5%塩酸を少量宛加え、PHを約2〜5に調整
した後30分間放置した。次いで遠心分離法で上澄
を捨て、n−プロパノールと水の比が80:20の水
性媒体で再スラリーとし、再度遠心分離法で上澄
みを捨てるという操作を繰返し、液のPHを約6.2
に調整し、遠心分離して固形分を回収した。当固
形分を、オーブン中で100℃、20分間処理し湿潤
媒体を完全に蒸発させた後、170℃で15分間加熱
し、冷却してHT−CMC−Naを得た。 得られたHT−CMC−Naは、粒度分布が大き
な側にあつたので、気流粉砕機に掛け、平均粒径
を約45〜60μに調節した。得られたHT−CMC−
Naの粉体物性等を表1に示す。なお、各測定は、
下記方法により行つた。 粒度分布 試料100グラムを採り、Tyler規格篩(42200、
325各メツシユ)を用いて、ロー・タツプ篩振盪
試験機により約30分間振盪後、各留分を測定す 粗比容積 試料25グラムを精秤し、100ml容メスシリンダ
ーに、振動を与えないように少量宛注下堆積させ
る。全試料注入後、毛筆を用い堆積粉体上面を平
滑に揃え、その時示す堆積容積を試料重量で除
す。 HT−CMC−Na置換度 (1) HT−CMC−Na2gを精秤し、灰化した後冷
却し、1:1硫酸で湿潤させる (2) 硫酸ヒユームの発生がなくなる迄加熱する。 (3) 800〜850℃の雰囲気で完全に焼成する(約30
分間) (4) 同上サンプルをデシケーター中で放冷する (5) 精秤して、次式により灰分:Cを計算する 残留物重量/試料重量(100−%H2O/100)×100=C
(1) (6) HT−CMC−Na約1gを精秤して、ガラス
すり合せ共栓付三角フラスコ(500ml容)に移
す (7) 10%NaCl溶液300mlを加える (8) 0.1NNaOH25mlを正確に加える (9) 密栓し、時々振り混ぜながら5分間放置する (10) メタクレゾール・パープル指示薬(メタクレ
ゾール・パープル0.1gを0.01N NaOH13ml中
に溶かし100mlに水で希釈したもの)5滴を加
える。 (11) 次に、ビユーレツトで0.1N HCl約15mlを加
える (12) 密栓し振盪する。もし溶液が紫色であつた
ら、溶液が黄色になるまで、0.1N HClを1ml
ずつ加えて行く。酸を加えるたびに振盪が必要
である。 0.1N HClは1mlずつ加えられるので、過剰
のHClを修正するため0.1N NaOHで逆適定す
る必要がある (13) 紫色の終点を出すため正確に0.1N NaOH
で調整する (14) 逆滴定に要したml数を記録し、先の25mlと
合わせ、次式により、M(m、eq/g;
NaOH)を計算する (ml×N NaOH)−(ml×N HCl)/試料重量(100−%
H2O/100)=M(2) (15) 以上得られたC及びMを用い、遊離酸型の
カルボキシメチル置換度:Aと、塩型のナトリ
ウムカルボキシメチル置換度:Sを計算する。 162+80S)M/1000−(58×M)=A (3) (162×58A)C/7102−(80×C)=S (4) 但し、 162=セルロースの無水グルコース単位の分子
式量 80=ナトリウム・カルボキシメチル基が付加
する毎に増える分子量値 58=カルボキシメチル基が付加する毎に増え
る分子量値 7102=硫酸ナトリウムの式量を100倍したもの なお、CMC−Na置換度は、上記(1)〜(14)
を用いて測定する。
The present invention relates to a method for producing a solid drug for oral administration that has an excellent dissolution rate by adding specially treated water-swellable sodium carboxymethyl cellulose. Conventionally, efforts have been made to shorten the disintegration time of solid pharmaceuticals such as tablets, granules, and capsules filled with granules, and to increase the dissolution rate of medicinal ingredients. Improvements have been made in the form or disintegrant. Excipients used today to shorten the disintegration time of solid pharmaceuticals include l-HPC.
(low-substituted hydroxypropylcellulose; manufactured by Shin-Etsu Chemical), CMC-Ca (carboxymethylcellulose/calcium; manufactured by Nichirin Chemical, listed in the Japanese Pharmacopoeia), Polyplasdone XL (cross-linked
Polyvinylpyrrolidone), Explotab (chemically modified starch; manufactured by Edward Mondell Co.Inc.), Sta
−Rx 1500 (physically modified starch; Colorcon
Co.) and unmodified starch (listed in the Japanese Pharmacopoeia)
etc., but each has its advantages and disadvantages, and none of them are satisfactory. For example, l-HPC, Sta-
Rx 1500, unmodified starch requires relatively large addition to shorten disintegration time,
Polyplasdone XL and Explotad do not need to be added in large amounts, but when used in tablets and molded under high pressure, the disintegration time is significantly prolonged and the capping phenomenon occurs.
CMC-Ca has an outstanding effect as a disintegrant, but Ca salt may inhibit the stability of medicinal ingredients contained in solid pharmaceuticals, or it may be used in low pH ranges, such as artificial gastric fluid (PH approximately 1.2). etc., there is a problem that the swelling power is insufficient and the disintegrating effect is weakened. In the case of solid drugs that are orally administered, the length of the disintegration time is often reflected in the elution rate of the medicinal ingredient, and it is important to shorten the disintegration time in order to increase the bioavailability of the medicinal ingredient. often important. On the other hand, from a pharmaceutical engineering standpoint, it is desirable to add as few additives as possible that have a hygroscopic swelling effect in order to maintain the stability of the formulation, and this is also required in view of the recent trend toward miniaturization of formulations. Is Rukoto. Therefore, additives used to improve the disintegration rate of orally administered pharmaceuticals, that is, disintegrants, are effective when added in the smallest possible amount, and when applied to tablets, etc. It is desirable that the material also has a molding function that does not reduce hardness or cause capping. Based on the above viewpoint, the present inventors conducted various formulation studies for the purpose of searching for an excellent disintegrant, and as a result, discovered the following. That is, the present invention utilizes water-soluble carboxymethylcellulose, which has been used in the production of pharmaceuticals.
We have discovered that by using modified sodium, it is possible to produce the desired solid pharmaceutical product. Water-soluble sodium carboxymethylcellulose (abbreviated as CAC-Na) hardly causes disintegration effects even when added to solid pharmaceuticals as is. This applies not only to CMC-Na but also to water-soluble gums in general, but when a water-soluble gum that swells infinitely and completely dissolves in water is added to solid pharmaceuticals, the dissolution rate is too high. This is because a lump forms on the surface, impairing the rapid penetration of water. Therefore, in order to use CMC-Na as a disintegrant, it must be made water-insoluble and exhibit only a swelling effect. In order to make CMC-Na water-insoluble and give it only a swelling effect, there is a method of cross-linking CMC-Na with a cross-linking agent such as epichlorohydrin, formaldehyde, divinyl sulfone, etc., as described in Japanese Patent Publication No. 54-52189. . In addition, as a method for producing water-absorbing water-insoluble cellulose ether using a method similar to this, JP-A No. 50-85689,
There are JP-A-50-80376 and JP-A-51-136769.
These are intended to cause crosslinking by adding a crosslinking agent when alkali cellulose is etherified in isopropanol. The cross-linked CMC-Na obtained by these treatments has a significantly high water absorption and swelling ability, but when considering the production of solid pharmaceuticals that are orally administered to living organisms, the use of formaldehyde, epichlorohydrin, etc. is prohibited. It should be avoided if possible, and it is clear that if an attempt is made to purify the residual amount by washing with water or the like to reduce the residual amount to zero, it will lead to a significant increase in manufacturing costs. For these reasons, the use of water-insoluble CMC-Na using a crosslinking agent is limited to soil improvement materials,
Currently, its use is limited to napkins, sanitary products, etc. In view of the above circumstances, the inventors of the present application investigated a method for producing water-insoluble CMC-Na without using a crosslinking agent. We have discovered that it is possible to produce CMC-Na that is large and has a large swelling effect. The treatment method for CMC-Na will be described below. Fibrous or non-fibrous CMC-Na is dispersed in an aqueous medium to form a slurry, the pH of the slurry is adjusted to an acidic agent with mineral acid, and then the liquid is
After washing so that the pH becomes 6 to 7, heat treatment is performed. The preferred PH range is approximately PH2-5. This is because CMC-Na has a flocculating property on the acidic side, making cleaning easier. A method of insolubilizing and post-washing after heat treatment is also a method for facilitating washing, but in this case there is no need to adjust the pH to acidity. In the above treatment method, the aqueous medium refers to an aqueous solution in which methanol, ethanol, propanol, isopropanol, acetone, dioxane, etc. are compatible with water in a free ratio, and the blending ratio of organic solvent/water is determined in the aqueous solution. It is sufficient to add an organic solvent to the solution at a rate that prevents CMC-Na from infinitely swelling and dissolving.
It is 20/80 or more, preferably 50/50 or more. The mineral acids used include hydrochloric acid, nitric acid, boric acid, and carbonic acid, with hydrochloric acid being preferred. This is because the Na + produced when a part of the COONa group in CMC-Na becomes the free acid form -COOH reacts with hydrochloric acid, resulting in the formation of common salt, which is harmless to the human body.
This is because it becomes NaCl. Purification by washing after acidifying the aqueous medium slurry is performed to remove useful acids such as hydrochloric acid and nitric acid, but CMC-Na that has only been acid-treated is still soluble in water. It is preferable to use an aqueous medium or an organic solvent alone that is capable of gelling or coagulating and precipitating Na as the cleaning liquid. After washing until the pH is about 6 to 7, it is moistened.
CMC-Na is dried at a temperature below its boiling point while the wetting medium remains, and after the wetting medium has evaporated away, it is heated to a temperature of 100°C or higher, preferably in the range of 120 to 200°C. When CMC-Na is completely dried at 230 to 240°C, it becomes brown or pale yellow, which is not preferable, so the upper limit of heating is 220°C. Among the heating conditions, time can be selected within a relatively wide range. It is true that the higher the heating temperature, the faster the desired CMC-Na can be obtained by heating, but no thermodynamic or kinetic correlation between heating temperature and heating time has been found. Not yet. If you simply describe the heating time range, the number
The range is from 10 seconds to several hours, and to give a specific example, when the heating temperature is 200℃, it is 50 seconds, and when the heating temperature is 120℃.
In this case, it takes about 3 hours. These heat treatments can be performed in the air or in an inert gas atmosphere. The heat treated CMC-Na (hereinafter HT-
CMC-Na) becomes water-insoluble and water-absorbing, but this alone is not sufficient to obtain HT-CMC-Na that is effective in a small amount and has a molding function as intended by the present invention. There is a need to regulate its shape. HT-CMC-Na itself is amorphous, and when it is compressed into tablets, for example, it tends to leave an elastically deformed part along with the plastic deformation, which causes the capping phenomenon of the tablets. There is. In order to reduce this, HT-CMC-Na can be shredded and pulverized to a certain particle size or less, but the particle size (more precisely, fiber length) of HT-CMC-Na, which is a swollen product,
There is a strong correlation between the disintegrating effect on tablets or granules, and if the powder is too finely divided, a rapid and strong disintegrating effect cannot be obtained. Of course, if the fiber length of HT-CMC-Na is too long, the disintegration effect (meaning that the tablet or granule will disintegrate) will be weakened, and other disadvantages include the fact that fibrous HT-CMC-Na
-Na makes the formulation itself difficult. Therefore, HT-CMC-Na has an optimum particle size suitable for the formulation, and the amount remaining on a Tyler 42 mesh sieve is essentially zero, and at least 50% by weight passes through a Tyler 200 mesh sieve. , and the amount passing through the 325 mesh sieve must be less than 30% by weight. If there is a lot of residue on the Tyler 42 mesh sieve, it will pass through the sieve,
Tableting processes such as mixing, kneading, and tabletting, sieving, mixing,
This causes various difficulties or obstacles in the granulation process such as kneading. These include, for example, prolonged sieving time, non-uniform mixing, non-uniform kneading, and capping during tabletting. The amount that passes through the Tyler 200 mesh sieve has some correlation with the amount that passes through the 325 mesh sieve, but if the amount that passes through the Tyler 200 mesh sieve is less than 50% by weight, in other words, if the particles are too coarse, the amount that passes through the Tyler 200 mesh sieve may be partially correlated with the amount that passes through the Tyler 325 mesh sieve. Because the number of HT-CMC-Na particles present in
During disintegration, tablets or granules form many coarse block-like masses, which do not contribute to improving dissolution rate, etc., and also prolong the disintegration time itself. When the amount passing through the Tyler 325 mesh exceeds 300% by weight, that is, when the HT-CMC-Na is too fine, the disintegration effect is extremely reduced. When applying HT-CMC-Na to pharmaceutical preparations, there is another point to keep in mind in addition to particle size distribution. Whether it is a tablet or a granule, it is always treated as a powder in each unit operation of sieving, weighing, and mixing during the manufacturing process. Particularly in the case of tablets, there is a direct tableting method (hereinafter referred to as direct compression) in which the powder is compression-molded, and there is a method in which a disintegrant is added after the granules have been created and then a disintegrant is added before compression molding. As mentioned above, the powder remains as is.
In formulation processes that involve handling HT-CMC-Na, the bulk of the powder has a significant impact on the handling (workability) of the powder and the physical properties of the product. For example, in the mixing process which is usually carried out in batches, if the powder is too bulky, the amount charged per batch is reduced and it is not efficient. In addition, if the powder is too bulky, it becomes difficult to fill and mold the powder by direct compression, increasing the variation in tablet filling weight. This difficulty in compression molding is the same in the non-additive method. Also, considering the case of manufacturing granules, if the bulk of the powder is too high, extrusion granulation becomes difficult or the bulk of the granules obtained by fluidized bed granulation becomes high, so it is preferable. do not have. On the other hand, the drawbacks when the bulk is too low are often not so serious, but direct injection and late addition methods can lead to capping phenomena. In addition, the bulk is often determined by itself, depending on the particle size distribution of the powder itself. Especially in the case of the claimed invention, it is too small.
HT-CMC-Na is disliked, and the content passing through the Tyler 325 mesh sieve is specified to be 30% by weight or less, but this constraint, the heat treatment conditions, and the CMC-Na
The minimum value of the bulk is almost determined by factors such as the degree of substitution, and the only remaining factor is the particle shape. In the case of the present invention, the range of the volume of HT-CMC-Na is determined by the various factors mentioned above, and the crude specific volume value must be in the range of about 1.8 to 3.4 cc/g. In order to guarantee the disintegration ability of HT-CMC-Na obtained by heat treatment, it is necessary that the degree of substitution of CMC-Na, which is the starting material, is within a certain range. When the degree of substitution is less than 0.4, the decay ability of HT−CMC−Na is extremely reduced, and when the degree of substitution exceeds 2.0, CMC−
In addition to the increase in the production cost of Na, the hydrophilicity is too strong and the mako phenomenon remains, resulting in a decrease in disintegration ability. And CMC with too high degree of substitution
When -Na is used, moldability decreases when used for direct punching, perhaps because cleaning after acid treatment becomes difficult or the amount of plastic deformation during compression molding decreases. Why is HT-CMC-Na mentioned above different from normal CAC-?
The mechanism of action is not clear whether it has a disintegrating ability that is unimaginable for Na, but the following mechanism is thought to be possible. (1) The heat treatment partially crystallizes the CMC-Na surface, which delays the solubility of CMC-Na. (2) -COOH group generated by mineral acid treatment,
It undergoes dehydration condensation with other -COOH or -OH groups present in the CMC-Na molecular chain. In any case, it has a degree of substitution of about 0.4-2.0
HT-CMC-Na obtained by once placing CMC-Na under acidic conditions, then washing, drying and heating,
Tyler42 mesh sieve residue is virtually zero and the same
HT--, in which the amount passing through the 200 mesh sieve is 50% by weight or more, the amount passing through the 325 mesh sieve is 30% by weight or less, and the gross specific volume value is in the range of about 1.8 to 3.4 cc/g. The white powder of CMC-Na exhibits good functionality as a disintegrant for tablets and granules. The above HT-CMC-Na can be used for tablets produced by direct compression and wet tableting (wet compression), as well as by extrusion granulation method.
It can be used as a disintegrant for granules produced by centrifugal granulation, crushing granulation, fluidized bed granulation, etc. The method for producing a pharmaceutical product with an excellent dissolution rate according to the present invention can be carried out as follows. First, regarding the manufacturing method of tablets, there are direct compression, wet compression, and a powder addition method as a modified method of wet compression, and these can be carried out by known procedures. In the case of direct compression, HT-CMC-Na is added to the medicinal ingredients, and additives such as excipients, binders, lubricants, and fluid thickeners are added as necessary, and after mixing, the powder is Compression mold the raw material to obtain tablets. In the case of wet application, HT-CMC-Na is added to the medicinal ingredient, an excipient (solid) binder, etc. is added and mixed, water or binder liquid is added and granulated, and after drying, it is sieved. The resulting granules may be compression molded. Of course, the lubricant may be added during powder mixing and/or before compression molding. The powder addition method is similar to wet pulverization, and after making dry granules, HT-CMC-Na alone or HT-CMC
- Add Na and lubricant, mix with granules and compression mold. In the case of the above tablets, the amount of HT-CMC-Na added is preferably in the range of 0.5 to 10% by weight, preferably 1.0 to 3.0% by weight, based on the weight of the tablet. If it is less than 0.5% by weight, the disintegration effect is insufficient, and if it exceeds 10% by weight,
It is uneconomical because it does not have a disintegrating effect commensurate with the amount added. Next, granules (including pills) are manufactured as follows. Adding HT-CMC-Na to the medicinal ingredients,
Excipients added as necessary are blended, mixed, and granulated. After drying, the mixture is sieved to obtain granules. For granulation, various known granulators can be used. The use of a binder (liquid or solid) during granulation is free. In the case of the above granules, the amount of HT-CMC-Na added is 0.5 to 8% by weight, preferably 1.0 to 3.0% by weight.
It is desirable that The above-described method for producing tablets and granules significantly improves the disintegration rate or dissolution rate. Therefore, the present invention is particularly effective when using medicinal ingredients that are difficult to dissolve in water and have a solubility in water of 1.0 g/100 ml (20°C) or less. The disintegration time of tablets and granules obtained by conventional formulation methods using CMC-Na or CMC-Na as a disintegrant was sometimes extended depending on the PH of the disintegrating liquid, but this Since the obtained drug is not dependent on pH, it is thought that it will contribute to improving the availability of the preparation. Note that the tablets and granules obtained according to the present invention may be coated with a film or coated with sugar according to a conventional method. Example 1 Commercially available CMC-Na (degree of substitution 0.3 to 2.5) was dissolved in a liquid with a ratio of n-propanol and water of 80:20 at a solid concentration of 5.
% by weight slurry. While stirring, a small amount of 5% hydrochloric acid was added to adjust the pH to about 2 to 5, and the mixture was left to stand for 30 minutes. Next, the supernatant was discarded by centrifugation, re-slurried in an aqueous medium with a ratio of n-propanol and water of 80:20, and the process of discarding the supernatant by centrifugation was repeated until the pH of the liquid was approximately 6.2.
The solid content was collected by centrifugation. The solid content was treated in an oven at 100°C for 20 minutes to completely evaporate the wetting medium, then heated at 170°C for 15 minutes and cooled to obtain HT-CMC-Na. Since the obtained HT-CMC-Na had a large particle size distribution, it was subjected to an air flow mill to adjust the average particle size to about 45 to 60μ. Obtained HT−CMC−
Table 1 shows the powder physical properties of Na. In addition, each measurement is
This was done by the following method. Particle size distribution Take 100 grams of sample and pass through a Tyler standard sieve (42200,
After shaking for about 30 minutes using a low-tap sieve shaking tester, each fraction was measured using a 100 ml graduated cylinder. Deposit a small amount under the order. After injecting all the samples, use a brush to smooth the top surface of the deposited powder, and divide the deposited volume shown at that time by the sample weight. Degree of substitution of HT-CMC-Na (1) Accurately weigh 2 g of HT-CMC-Na, incinerate, cool, and moisten with 1:1 sulfuric acid (2) Heat until no sulfuric acid fume is generated. (3) Completely bake in an atmosphere of 800 to 850℃ (approximately 30
(4) Leave the sample as above to cool in a desiccator. (5) Weigh accurately and calculate the ash content: C using the following formula: Residue weight/sample weight (100-%H 2 O/100) x 100 = C
(1) (6) Accurately weigh about 1 g of HT-CMC-Na and transfer it to a ground glass Erlenmeyer flask (500 ml volume) with a stopper. (7) Add 300 ml of 10% NaCl solution. (8) Accurately weigh 25 ml of 0.1N NaOH. (9) Seal tightly and leave for 5 minutes while shaking occasionally. (10) Add 5 drops of metacresol purple indicator (0.1 g of metacresol purple dissolved in 13 ml of 0.01N NaOH and diluted with water to 100 ml). . (11) Next, add approximately 15 ml of 0.1N HCl using a beer bottle (12) Seal the bottle tightly and shake. If the solution is purple, add 1 ml of 0.1N HCl until the solution turns yellow.
Add them one by one. Shaking is required after each addition of acid. Since 0.1N HCl is added in 1 ml increments, it is necessary to back-titer with 0.1N NaOH to correct for excess HCl (13).
(14) Record the number of ml required for back titration, combine it with the previous 25 ml, and calculate M (m, eq/g;
Calculate (ml x N NaOH) - (ml x N HCl) / sample weight (100-%
H2O /100)=M(2) (15) Using C and M obtained above, the free acid type carboxymethyl substitution degree: A and the salt type sodium carboxymethyl substitution degree: S are calculated. 162+80S) M/1000-(58×M)=A (3) (162×58A)C/7102-(80×C)=S (4) However, 162=Molecular formula weight of anhydroglucose unit of cellulose 80=Sodium・Molecular weight value that increases each time a carboxymethyl group is added 58 = Molecular weight value that increases each time a carboxymethyl group is added 7102 = Formula weight of sodium sulfate multiplied by 100 The degree of CMC-Na substitution is based on (1) above. ~(14)
Measure using.

【表】 # # #
+42 、−200 、−325 とはそれぞれ42
メツシユ篩残留分、200メツシユ篩通
過分、325メツシユ通過分を示す
実施例 2 市販のアスピリン末(局方品)40重量%、微結
晶セルロース30重量%、DMV100メツシユ乳糖
24.5重量%、ステアリン酸マグネシウム0.5重量
%、実施例1で得たHT−CMC−Na5重量%を配
合し(全量1Kg)を10容V型ブレンダーで30分
間混合し、菊水製作所製ロータリー打錠機(RT
−S22型、35rpm、8mmφ臼杵、12R標準杵)に
て成形圧力を200〜600Kg/cm2の範囲で変化させ直
打した。直打錠の物性は表−2の通りである。
【table】 # # #
+42, -200, -325 are 42 each
Example 2 showing the amount remaining on a mesh sieve, the amount passed through a 200 mesh sieve, and the amount passed through a 325 mesh 2 Commercially available aspirin powder (pharmaceutical product) 40% by weight, microcrystalline cellulose 30% by weight, DMV 100 mesh lactose
24.5% by weight of magnesium stearate, 0.5% by weight of magnesium stearate, and 5% by weight of HT-CMC-Na obtained in Example 1 (total amount 1 kg) were mixed for 30 minutes in a 10-volume V-type blender, and then processed into a rotary tablet press manufactured by Kikusui Seisakusho. (RT
The molding pressure was varied in the range of 200 to 600 Kg/cm 2 and the molding pressure was varied in the range of 200 to 600 Kg/cm 2 . The physical properties of the direct compression tablets are shown in Table 2.

【表】【table】

【表】 実施例 3 精製リンター(DP800)を用いアルカリセルロ
ースとし、モノクロル醋酸を反応させた後、イソ
プロパノールを加えてCMC−Naを析出させると
いう通常のエーテル化法を用いてCMC−Naを作
製した後、イソプロパノール/水の比率が50/50
の水性媒体で洗い、遠心脱水と洗浄を繰返した
後、硝酸を用いてCMC−Na−イソプロパノー
ル/水スラリーをPH4に調節し、2時間静置した
後、再び遠心脱水と洗浄を繰返し、実施例1と同
様脱水後オーブン中で加熱した。加熱条件は、
145℃×30分間とした。オーブンから出して放冷
させHT−CMC−Naを得た。尚、予めサンプリ
ングしておいたCMC−Naの置換度は0.75であ
り、最終のHT−CMC−Naの酸型置換と塩型置
換の比率は0.8であつた。 上記HT−CMC−Naは出発原料の形状を反映
してか粒子が大きく(繊維長が長く)、かつ粗比
容積が4.6c.c./gと大であつたので、ピン型ハン
マーミルを用い、排出スクリーン孔径を調節し、
粒度分布と粗比容積を低減させた。 得られた粉体のあるものはエアー式ミニセパレ
ーターで分級し粗大粒子をカツトし表−3のよう
な試料を得た。
[Table] Example 3 CMC-Na was produced using a normal etherification method in which purified linter (DP800) was used to make alkali cellulose, reacted with monochloroacetic acid, and then isopropanol was added to precipitate CMC-Na. After that, the isopropanol/water ratio is 50/50.
After washing with an aqueous medium, repeating centrifugal dehydration and washing, adjust the CMC-Na-isopropanol/water slurry to pH 4 using nitric acid, leave it to stand for 2 hours, repeat centrifugal dehydration and washing, and then repeat centrifugal dehydration and washing. After dehydration as in 1, it was heated in an oven. The heating conditions are
The temperature was 145°C for 30 minutes. It was taken out of the oven and allowed to cool to obtain HT-CMC-Na. The degree of substitution of CMC-Na sampled in advance was 0.75, and the ratio of acid type substitution to salt type substitution of the final HT-CMC-Na was 0.8. The above HT-CMC-Na had large particles (long fiber length) reflecting the shape of the starting material and a large crude specific volume of 4.6 cc/g, so a pin-type hammer mill was used to discharge it. Adjust the screen hole diameter,
Particle size distribution and coarse specific volume were reduced. Some of the obtained powder was classified using an air mini-separator to cut out coarse particles to obtain the samples shown in Table 3.

【表】【table】

【表】 この試料(#8〜#11)を用い、実施例2と同
じ組成及び実施例2と同じ直打処方で錠剤を製造
し、評価を行つた。その評価結果を表−4に示
す。
[Table] Using these samples (#8 to #11), tablets were manufactured with the same composition and the same direct compression formulation as in Example 2, and were evaluated. The evaluation results are shown in Table 4.

【表】 除し%換算したものであり、通常3%以下が
望ましい。
実施例 4 実施例1の方法に準じて、置換度0.8のCMC−
Na粉末を用い、HT−CMC−Naを作製した。但
し、PH調整はPH3.5で30分間とし、加熱処理条件
を120℃、2〜180分間とした。得られたHT−
CMC−Naは、ピン型ハンマーミルで軽く粉砕
し、すべてTyler42メツシユ篩残留分が零で200
メツシユ篩通過分が75〜85重量%、325メツシユ
篩通過分は20〜28重量%にコントロールした。 局方フエナセチン末40重量%、結晶セルロース
30重量%、DMV100メツシユ乳糖24.5重量%、ス
テアリン酸マグネシウム0.5重量%、上記のHT−
CMC−Na5重量%の処方を作り(全量1.5Kg)、
10容V型ブレンダーにて30分間混合し、その後
実施例2の条件で直打製剤した。その評価結果を
表−5に示す。
[Table] Calculated as a percentage, usually 3% or less is desirable.
Example 4 According to the method of Example 1, CMC- with a degree of substitution of 0.8
HT-CMC-Na was produced using Na powder. However, the pH was adjusted to PH3.5 for 30 minutes, and the heat treatment conditions were 120° C. for 2 to 180 minutes. Obtained HT−
CMC-Na is lightly ground with a pin-type hammer mill and passed through a Tyler 42 mesh sieve with zero residue.
The content passing through the mesh sieve was controlled at 75 to 85% by weight, and the content passing through the 325 mesh sieve was controlled at 20 to 28% by weight. Pharmacopoeia phenacetin powder 40% by weight, crystalline cellulose
30% by weight, DMV100 mesh lactose 24.5% by weight, magnesium stearate 0.5% by weight, HT- as above
Create a prescription of CMC-Na 5% by weight (total amount 1.5Kg),
The mixture was mixed for 30 minutes in a 10-volume V-type blender, and then a direct formulation was prepared under the conditions of Example 2. The evaluation results are shown in Table-5.

【表】 実施例 5 表−6の処方で湿打製剤を行ない、錠剤物性を
評価した。表−6の中で崩壊剤としては、l−
HPC (A)、CMC−Ca(B)、Explotab (C)、STa
−Rx 1500(D)、コーンスターチ(E)、HT−CMC
−Na(F)を選んだ。但し、HT−CMC−Na(F)とし
ては、実施例4のNo.3を利用した。
[Table] Example 5 A wet compression formulation was prepared according to the formulation shown in Table 6, and the physical properties of the tablet were evaluated. In Table 6, l-
HPC (A), CMC−Ca (B), Explotab (C), STa
-Rx 1500(D), Cornstarch (E), HT-CMC
−Na(F) was selected. However, as HT-CMC-Na(F), No. 3 of Example 4 was used.

【表】 製剤方法は次の通りである。先ず、フエナセチ
ン、結晶セルロース、崩壊剤の三者を十分に混合
し、5容プラネタリーミキサー(品川工業(株)
製)に移し、結合剤液を加え5分間練合した後、
不二パウダル(株)製フラツシユミル、FL−200型に
て孔径3mmの有孔板をスクリーンとして破砕造粒
した。得られた顆粒を60℃の熱風乾燥機で8時間
乾燥させ、12メツシユ及び100メツシユ篩を通し
て粗大顆粒と微粉を除き、対顆粒重量0.5重量%
のステアリン酸マグネシウムを加えて混合し、実
施例2に記載した打錠機を用いて製剤した。得ら
れた錠剤物性の評価結果を表−7に示す。
[Table] The formulation method is as follows. First, the three components, phenacetin, crystalline cellulose, and disintegrant, were thoroughly mixed and mixed in a 5-volume planetary mixer (Shinagawa Kogyo Co., Ltd.).
After adding the binder solution and kneading for 5 minutes,
The mixture was crushed and granulated using a FL-200 flat mill manufactured by Fuji Paudal Co., Ltd. using a perforated plate with a hole diameter of 3 mm as a screen. The obtained granules were dried in a hot air dryer at 60°C for 8 hours, and passed through a 12-mesh and 100-mesh sieve to remove coarse granules and fine powder, and the weight of the granules was 0.5% by weight.
of magnesium stearate was added, mixed and formulated using the tablet press described in Example 2. Table 7 shows the evaluation results of the obtained tablet physical properties.

【表】【table】

【表】 実施例 6 フエナセチン40重量%、結晶セルロース5重量
%、DMV200メツシユ乳糖40重量%、メチルセ
ルロース2重量%、コーンスターチ8重量%、
HT−CMC−Na5重量%(実施例4のNo.3を利
用)の配合比で粉体混合した後、常法により水を
加えて混練し、不二パウダル(株)製タテ型押出し機
(スクリーン孔径0.8mmφ)にて造粒し、乾燥後、
12メツシユ篩で篩過し、顆粒剤を得た。本品は、
日本薬局方顆粒剤の規格に合致する粒度を有して
いたが、その純水37℃中に於ける崩壊性は3分以
内であり迅速な崩壊性を有していることが確認さ
れた。 一方、HT−CMC−Naを除き、その代替にコ
ーンスターチを増量した系で同様に造粒して得ら
れた顆粒剤は、崩壊時間が18分と非常に長かつ
た。
[Table] Example 6 Phenacetin 40% by weight, crystalline cellulose 5% by weight, DMV200 mesh lactose 40% by weight, methylcellulose 2% by weight, cornstarch 8% by weight,
After mixing the powders at a blending ratio of 5% by weight of HT-CMC-Na (using No. 3 in Example 4), water was added and kneaded by a conventional method, and the mixture was heated using a vertical extruder (manufactured by Fuji Powdal Co., Ltd.). After granulation and drying,
The mixture was sieved through a 12-mesh sieve to obtain granules. This product is
Although it had a particle size that met the Japanese Pharmacopoeia granule specifications, it was confirmed that it disintegrated quickly in pure water at 37°C within 3 minutes. On the other hand, granules obtained by granulation in the same manner using a system in which HT-CMC-Na was removed and corn starch was increased in its place had a very long disintegration time of 18 minutes.

Claims (1)

【特許請求の範囲】 1 置換度0.4〜2.0のカルボキシメチルセルロー
ス・ナトリウムを鉱酸処理、洗浄、加熱処理及び
粉砕処理した粒度がタイラー42メツシユ残量が
零、200メツシユ50重量%以上通過、325メツシユ
通過30重量%以下の範囲にあり、かつ、粗比容積
が1.8〜3.4c.c./gである熱処理カルボキシメチル
セルロース・ナトリウムの白色粉末を、薬効成分
を含む組成物に添加配合し、賦形することを特徴
とする医薬品の製造法。 2 熱処理カルボキシメチルセルロース・ナトリ
ウムが、置換度0.4〜2.0であるカルボキシメチル
セルロース・ナトリウムを水性媒体中に分散し、
鉱酸を加えて一旦酸性条件下におき、次いでPHが
6〜7になるように洗浄したのち、温度100〜200
℃で加熱処理されたものであることを特徴とする
特許請求の範囲第1項記載の医薬品の製造法。 3 水性媒体が、メタノール、エタノール、プロ
パノール、イソプロパノールから選れた少なくと
も1種と水の混合溶液であり、鉱酸が塩酸、硝酸
の単独または混合物であり、かつ、加熱温度が
120〜200℃であることを特徴とする特許請求の範
囲第2項記載の医薬品の製造法。 4 薬効成分が、20℃で1.0g/100ml以下の溶解
度を有するものであることを特徴とする特許請求
の範囲第1項記載の医薬品の製造法。
[Scope of Claims] 1 Sodium carboxymethyl cellulose with a degree of substitution of 0.4 to 2.0 is treated with mineral acid, washed, heated and pulverized, and the particle size is such that the residual amount of Tyler 42 mesh is zero, 50% by weight or more passes through 200 mesh, and 325 mesh. A white powder of heat-treated sodium carboxymethyl cellulose having a passing content of 30% by weight or less and a gross specific volume of 1.8 to 3.4 cc/g is added to a composition containing a medicinal ingredient and then shaped. Characteristic manufacturing method of pharmaceutical products. 2 Heat-treated carboxymethylcellulose sodium with a degree of substitution of 0.4 to 2.0 is dispersed in an aqueous medium,
Add mineral acid and place under acidic conditions, then wash so that the pH is 6 to 7, and then heat to a temperature of 100 to 200.
2. The method for producing a pharmaceutical according to claim 1, wherein the pharmaceutical product is heat-treated at ℃. 3 The aqueous medium is a mixed solution of at least one selected from methanol, ethanol, propanol, and isopropanol and water, the mineral acid is hydrochloric acid or nitric acid alone or a mixture, and the heating temperature is
The method for producing a pharmaceutical according to claim 2, characterized in that the temperature is 120 to 200°C. 4. The method for producing a pharmaceutical according to claim 1, wherein the medicinal ingredient has a solubility of 1.0 g/100 ml or less at 20°C.
JP13240379A 1979-10-16 1979-10-16 Preparation of pharmaceutical Granted JPS5657719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13240379A JPS5657719A (en) 1979-10-16 1979-10-16 Preparation of pharmaceutical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13240379A JPS5657719A (en) 1979-10-16 1979-10-16 Preparation of pharmaceutical

Publications (2)

Publication Number Publication Date
JPS5657719A JPS5657719A (en) 1981-05-20
JPS6354693B2 true JPS6354693B2 (en) 1988-10-28

Family

ID=15080571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13240379A Granted JPS5657719A (en) 1979-10-16 1979-10-16 Preparation of pharmaceutical

Country Status (1)

Country Link
JP (1) JPS5657719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134007U (en) * 1988-03-09 1989-09-12
JPH0413510U (en) * 1990-05-28 1992-02-04

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650716A (en) * 1985-05-14 1987-03-17 Hercules Incorporated Novel salts of carboxymethylcellulose
US4689408A (en) * 1985-05-14 1987-08-25 Hercules Incorporated Method of preparing salts of carboxymethylcellulose
US4734285A (en) * 1985-10-28 1988-03-29 The Dow Chemical Company Sustained release compositions
US4704285A (en) * 1985-11-18 1987-11-03 The Dow Chemical Company Sustained release compositions comprising hydroxypropyl cellulose ethers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086323A (en) * 1963-07-18 1967-10-11 Courtaulds Ltd Derivative of carboxy methyl cellulose
JPS5163927A (en) * 1974-11-28 1976-06-02 Shinetsu Chemical Co Ketsugoseiryokonajozaihokaizaino seizohoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086323A (en) * 1963-07-18 1967-10-11 Courtaulds Ltd Derivative of carboxy methyl cellulose
JPS5163927A (en) * 1974-11-28 1976-06-02 Shinetsu Chemical Co Ketsugoseiryokonajozaihokaizaino seizohoho

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134007U (en) * 1988-03-09 1989-09-12
JPH0413510U (en) * 1990-05-28 1992-02-04

Also Published As

Publication number Publication date
JPS5657719A (en) 1981-05-20

Similar Documents

Publication Publication Date Title
TWI600665B (en) Low-substituted hydroxypropyl cellulose powder and its production method
ES2688273T3 (en) Pregelatinized starch in a controlled release formulation
US9655851B2 (en) Granular material for dosage forms
JPH10502056A (en) Modifiable starch acetate compositions and methods of making and using the same
KR20110105341A (en) Low-substituted hydroxypropylcellulose and solid preparation comprising the same
JP3212534B2 (en) Low substituted hydroxypropylcellulose powder
JP2002104956A (en) Base for dry direct compressing hydroxypropylcellulose having low substitution degree
JPS6354693B2 (en)
WO2012019633A1 (en) Pharmaceutical granulate comprising imatinib mesylate
JP3004758B2 (en) Processed starch with excellent binding and disintegration properties
FI119353B (en) Slow release filler
JP4774739B2 (en) Kampo extract-containing tablet composition and method for producing the same
US7009046B2 (en) Low-substituted hydroxypropyl cellulose and agent serving both as binder and disintegrant for dry direct compression
US3214341A (en) Prolonged action medicament
JP4370050B2 (en) Clarithromycin tablets and method for producing the same
JP4290417B2 (en) Low substituted hydroxypropyl cellulose and dry direct hitting binder and disintegrant
KR100788454B1 (en) Rapid-acting fomulation containing nateglinide as an active ingredient
RU2233154C1 (en) Sulfadimezine-base antibacterial agent
JP2676305B2 (en) Cytarabine ocfosfate hard capsule
WUNIA'H et al. APPLICATION OF SYNTHESIZED SODIUM CARBOXYMETHYL STARCH AS A DISINTEGRANT IN METRONIDAZOLE TABLETS.
CN116370417A (en) Rasagiline granule composition and pharmaceutical composition thereof
JP3815705B2 (en) Solid drug and method for producing the same
JPH04164025A (en) Production of sustained release tablet
Eraga et al. Investigation of the effect of alkali modification of mucin on some properties of metronidazole bioadhesive tablets
KR20100052253A (en) Method for preparing solid oral formulation comprising valsartan