[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6352646A - Emergency dc source eqipment - Google Patents

Emergency dc source eqipment

Info

Publication number
JPS6352646A
JPS6352646A JP61192691A JP19269186A JPS6352646A JP S6352646 A JPS6352646 A JP S6352646A JP 61192691 A JP61192691 A JP 61192691A JP 19269186 A JP19269186 A JP 19269186A JP S6352646 A JPS6352646 A JP S6352646A
Authority
JP
Japan
Prior art keywords
voltage
emergency
motor
power supply
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61192691A
Other languages
Japanese (ja)
Inventor
杉山 政司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61192691A priority Critical patent/JPS6352646A/en
Publication of JPS6352646A publication Critical patent/JPS6352646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非常用直流電源設備に係り、特に、直流非常
用ポンプのサーベイランステストを行なう場合に好適な
充電器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to emergency DC power supply equipment, and particularly to a charger suitable for conducting surveillance tests of DC emergency pumps.

〔従来の技術〕[Conventional technology]

従来の直流型rX設備に設けられているシリコンドロッ
パ及びそのバイパス用コンダクタは、シリコンドロッパ
での電圧降下を利用して、負荷側への出力電圧を一定し
こするためしこ用いられている。
The silicon dropper and its bypass conductor provided in conventional DC type rX equipment are used to maintain a constant output voltage to the load side by utilizing the voltage drop across the silicon dropper.

即ち、蓄電池電圧が高い間は、シリコンドロッパに並列
されているシリコンドロッパバイパス用コンダクタを開
いて、シリコンドロッパに負荷電流を流して、シリコン
ドロッパで電圧を下げる。また、蓄電池電圧が低くなっ
てきたら順次シリコンドロッパに並列されているシリコ
ンドロッパバイパス用コンダクタを閉じて、負荷電流が
流れるシリコンドロッパの数を減らすことによりシリコ
ンドロッパでの電圧降下を減らして、出力電圧を一定に
保つもので1通信設備用直流電源設備で用いられている
That is, while the storage battery voltage is high, the silicon dropper bypass conductor connected in parallel to the silicon dropper is opened, a load current is passed through the silicon dropper, and the voltage is lowered by the silicon dropper. In addition, when the storage battery voltage becomes low, the silicon dropper bypass conductors connected in parallel with the silicon droppers are sequentially closed to reduce the number of silicon droppers through which the load current flows, thereby reducing the voltage drop at the silicon droppers and reducing the output voltage. 1. It is used in DC power supply equipment for communication equipment.

一方、非常用直流電源設備では、シリコンドロッパを次
のように用いている。
On the other hand, in emergency DC power supply equipment, silicon droppers are used as follows.

即ち、蓄電池を均等充電する時しこは、充電器出力電圧
が高いので、シリコンドロッパを介して負荷電流を供給
し、シリコンドロッパで電圧を下げて電圧を通常時に合
わせる。
That is, when uniformly charging the storage battery, since the output voltage of the charger is high, the load current is supplied through the silicon dropper, and the voltage is lowered by the silicon dropper to match the voltage to the normal voltage.

また、蓄電池を浮動充電している通常時には。Also, during normal times when the storage battery is floating charged.

シリコンドロッパバイパス用コンダクタを閉じてシリコ
ンドロッパをバイパスする。
Close the silicone dropper bypass conductor to bypass the silicone dropper.

これにより、均等充電時しこ負荷にかかる電圧を通常時
とほぼ等しくなるようにしている。
As a result, the voltage applied to the load during uniform charging is made to be approximately equal to that during normal charging.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記後の従来技術で均等充電時にシリコンドロッパを介
して負荷電流を流す方式では、蓄電池均等充電時と浮動
充電時の直流電源出力電圧を等しくすることができる。
In the conventional technique described above, in which a load current is passed through a silicon dropper during equal charging, it is possible to equalize the output voltage of the DC power supply during equal charging of the storage battery and during floating charging.

これに対し、機器側の非常用直流モータの定格電圧は、
非常用直流電源出力電圧よりも低くすることで、蓄電池
運転時の放電による蓄電池電圧の低下及び、蓄電池から
直流モータ間のケーブルでの電圧降下に対し、有利とな
るよう設計の最適化をはかつている。
On the other hand, the rated voltage of the emergency DC motor on the equipment side is
The design has been optimized to be lower than the output voltage of the emergency DC power supply, which is advantageous against a drop in battery voltage due to discharge during battery operation and a voltage drop in the cable between the battery and the DC motor. There is.

ここで、非常用直流電源設備、非常用直流モータは、交
流型@喪失時のバックアップ用として設けられており、
通常は待機状態にあるため、その健全性を確認するため
に定期的にサーベイランステストが実施される。
Here, the emergency DC power supply equipment and emergency DC motor are provided as backup in case of loss of AC type @.
Since it is normally on standby, surveillance tests are conducted periodically to confirm its health.

従って、このケースが非常用直流モータが運転される状
態として最も頻度が高くなるが、この時は、交流電源及
び充電器が健全なので、非常用直流電源出力電圧は通常
値であり、かつ、−度に運転される負荷は普通−台なの
でケーブルでの電圧降下も小さくなり、非常用直流モー
タに非常用直流電源出力電圧に近い電圧が印加される。
Therefore, this case is the most frequent state in which the emergency DC motor is operated, but at this time, the AC power supply and charger are healthy, so the emergency DC power supply output voltage is the normal value, and - Since the load being operated at a time is a normal load, the voltage drop in the cable is also small, and a voltage close to the emergency DC power supply output voltage is applied to the emergency DC motor.

ここで非常用直流モータは、ポンプ用の場合、複巻モー
タが使われることが多いが、電圧が高いと直巻特性によ
り、回転数が上がり、ポンプの軸動力が増え、ポンプ、
非常用直流モータにとって厳しい条件となる。
Here, when the emergency DC motor is used for a pump, a compound-wound motor is often used, but when the voltage is high, the series-wound characteristic increases the rotation speed and increases the shaft power of the pump.
This is a severe condition for emergency DC motors.

本発明の目的は、非常用直流モータが実際上、運転され
る機会が多いサーベイランステスト時の非常用直流電源
設備電源出力を非常用直流モータ定格電圧に近い値まで
下げることで、回転数、ポンプの軸動力を定格値に近い
値にするよう運転条件を改善することにある。
The purpose of the present invention is to lower the power output of the emergency DC power supply equipment to a value close to the rated voltage of the emergency DC motor during surveillance tests, in which the emergency DC motor is often operated in practice. The aim is to improve the operating conditions so that the shaft power of the engine is close to the rated value.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、充電器が浮動充電時と均等型時に直流電源
設備出力電圧を一定にするために設けられているシリコ
ンドロッパをサーベイランステスト時にも使用できるよ
う、シリコンドロッパバイパス用コンダクタを任意の開
閉できる操作スイッチを追設することで達成される。
The purpose of the above is to enable the silicon dropper bypass conductor to be opened and closed at will so that the silicon dropper, which is installed to keep the output voltage of the DC power supply equipment constant when the charger is floating charging or equalized, can also be used during surveillance tests. This can be achieved by adding an operation switch.

〔作用〕[Effect]

シリコンドロッパは、高低抗負荷なので電流が流れると
内部で電圧降下を生じる。
Silicon droppers have high and low load resistance, so when current flows, a voltage drop occurs internally.

従って、充電器が浮動充電状態にある通常時にシリコン
ドロッパを介して非常用直流モータを運転すると、シリ
コンドロッパで電圧が下がり、非常用直流モータに印加
される電圧を直流電源設備出力電圧よりも低くすること
ができる。
Therefore, when the emergency DC motor is operated through the silicon dropper during normal operation when the charger is in a floating charging state, the voltage is reduced by the silicon dropper, causing the voltage applied to the emergency DC motor to be lower than the DC power supply equipment output voltage. can do.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第4図により説
明する。第1図は本発明の一実施例の構成図である。第
1図で、111交流電源母線、2は充電器、3は充電器
盤と蓄電池間ケーブル、4は蓄電池、5は充電器盤、6
はシリコンドロッパ、7はシリコンドロッパバイパス用
コンダクタ、8は充電器盤と直流電源母線間ケーブル、
9は直流電源母線、1oは直流電源母線と非常用直流モ
ータ間ケーブル、llaは非常用直流モータ、116は
非常用ポンプ、12は制御電源、13は操作スイッチ、
14は操作スイッチ入接点、15は操作スイッチ切接点
、16は操作スイッチ人補助継電器、]7は操作スイッ
チ人補助継電器自己保持用接焦、18は操作スイッチ人
補助継電器す接点、19はシリコンドロッパバイパス用
コンダクタ入用補助継電器を示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a block diagram of an embodiment of the present invention. In Figure 1, 111 AC power supply bus, 2 the charger, 3 the cable between the charger board and the storage battery, 4 the storage battery, 5 the charger board, 6
is a silicon dropper, 7 is a silicon dropper bypass conductor, 8 is a cable between the charger board and the DC power bus,
9 is a DC power supply bus, 1o is a cable between the DC power supply bus and the emergency DC motor, lla is an emergency DC motor, 116 is an emergency pump, 12 is a control power supply, 13 is an operation switch,
14 is the operating switch ON contact, 15 is the operating switch OFF contact, 16 is the operating switch human auxiliary relay, ] 7 is the operating switch human auxiliary relay self-holding focus, 18 is the operating switch human auxiliary relay contact, 19 is the silicon dropper Shows an auxiliary relay that requires a bypass conductor.

また、第2図に、非常用直流電源設備各部の電圧分布を
示す。
Furthermore, Fig. 2 shows the voltage distribution of each part of the emergency DC power supply equipment.

第2図で、20は均等充電時の電圧分布、21は浮動充
電時の電圧分布、22は本発明の操作スイッチ切時電圧
分布、23は611池放電初期の電圧分布、24は蓄電
池放電末期の電圧分布、25は非常用直流モータの定格
電圧を示す。
In Figure 2, 20 is the voltage distribution during equal charging, 21 is the voltage distribution during floating charging, 22 is the voltage distribution when the operation switch of the present invention is turned off, 23 is the voltage distribution at the beginning of 611 battery discharge, and 24 is the final stage of storage battery discharge. 25 indicates the rated voltage of the emergency DC motor.

第1図、第2図で、交流電源母線1が正常なとき、蓄電
池4は、充電器2により浮動充電され、シリコンドロッ
パバイパス用コンダクタ7は、rAさおでおり、この間
の電圧分布は、浮動充電時の電圧分布21に示す通り、
はぼ同じ電圧となっており、その後、充電器盤と直流電
源母線間ケーブル8、及び、直流電源母線と非常用直流
モータ間ケーブル10での電圧降下を差し引いた電圧が
非常用直流モータに印加される。均等充電時には、均等
充電時の電圧分布20に示す通り、充電器2と蓄電池4
の電圧は高くなるが、シリコンドロッパ6により電圧が
下げられるのでシリコンドロッパ6以下の電圧分布は、
浮動充電時の電圧分布21とほぼ等しい。
In FIGS. 1 and 2, when the AC power supply bus 1 is normal, the storage battery 4 is floatingly charged by the charger 2, the silicon dropper bypass conductor 7 is rA, and the voltage distribution during this period is as follows: As shown in voltage distribution 21 during floating charging,
After that, the voltage after subtracting the voltage drop at the cable 8 between the charger panel and the DC power bus and the cable 10 between the DC power bus and the emergency DC motor is applied to the emergency DC motor. be done. During equal charging, as shown in the voltage distribution 20 during equal charging, the charger 2 and the storage battery 4
The voltage becomes high, but the voltage is lowered by the silicon dropper 6, so the voltage distribution below the silicon dropper 6 is as follows.
This is approximately equal to the voltage distribution 21 during floating charging.

一方、交流電源母線1が停電した場合には、蓄電池4か
ら電源が供給される。ここで蓄電池初期の電圧分布23
に示すように、蓄電池4の電圧は、まず、蓄電池と充電
器盤間ケーブル3で低下し、次に、充電器盤と直流電源
母線間ケーブル9、及び、直流電源母線と非常用直流モ
ータ間ケーブル10で、更に、低下する0次に、蓄電池
4の放電末期では、蓄電池放電末期の電圧分布24に示
すとおり、蓄電池4の電圧が下がり、以下蓄電池放電初
期の電圧分布23とほぼ同様に電圧は下がつて、非常用
直流モータ11の電圧に到る。
On the other hand, when the AC power supply bus 1 experiences a power outage, power is supplied from the storage battery 4. Here, voltage distribution 23 at the initial stage of the storage battery
As shown in , the voltage of the storage battery 4 first decreases at the cable 3 between the storage battery and the charger panel, and then at the cable 9 between the charger panel and the DC power supply bus, and between the DC power supply bus and the emergency DC motor. In the cable 10, the voltage of the storage battery 4 further decreases to zero order, and at the end of the discharge of the storage battery 4, as shown in the voltage distribution 24 at the end of the storage battery discharge, the voltage of the storage battery 4 decreases, and thereafter the voltage becomes almost the same as the voltage distribution 23 at the beginning of the storage battery discharge. The voltage decreases and reaches the voltage of the emergency DC motor 11.

一方、本発明では、操作スイッチ13を設けるので、こ
の操作スイッチ13を切ることにより、操作スイッチ入
接点14が閉じて、制御電源12により、操作スイッチ
入補助継電器16が励磁され、操作スイッチ人補助継電
器自己保持用接点17が閉じて、自己保持回路が形成さ
れるので、操作スイッチ入補助継電器16は励磁され続
ける。
On the other hand, in the present invention, since the operation switch 13 is provided, when the operation switch 13 is turned off, the operation switch ON contact 14 is closed, the operation switch ON auxiliary relay 16 is energized by the control power source 12, and the operation switch auxiliary relay 16 is energized by the control power source 12. Since the relay self-holding contact 17 is closed and a self-holding circuit is formed, the operating switch-on auxiliary relay 16 continues to be energized.

このときには、操作スイッチ入補助継電器6の接点は開
いて、シリコンドロッパバイパス用コンダクタ入用補助
継電器19は無励磁となり、シリコンドロッパバイパス
用コンダクタ7は開いて。
At this time, the contacts of the operation switch-on auxiliary relay 6 are opened, the silicon dropper bypass conductor-use auxiliary relay 19 is de-energized, and the silicon dropper bypass conductor 7 is opened.

負荷電流はシリコンドロッパ6を流れる。The load current flows through the silicon dropper 6.

従って、本発明の電圧分布22に示すように直流m源母
線9、非常用直流モータ11の電圧も下がり非常用直流
モータ11に印加される電圧について下記のような関係
が得られる。
Therefore, as shown in the voltage distribution 22 of the present invention, the voltages of the DC m source bus 9 and the emergency DC motor 11 also decrease, and the following relationship is obtained regarding the voltage applied to the emergency DC motor 11.

均等充電時に電圧幻浮動充電時の電圧〉蓄電池放電初期
の電圧)本発明の電圧)蓄電池放電末期の電圧 従って、本実施例によれば非常用直流モータ11の定格
電圧を本発明の電圧付近とすれば、サーベイランステス
ト時に定格電圧付近の電圧で非常用直流モータ11を運
転することができる。
Voltage during equal charging Voltage during charging> Voltage at the beginning of storage battery discharge) Voltage of the present invention) Voltage at the end of storage battery discharge Therefore, according to this embodiment, the rated voltage of the emergency DC motor 11 is set to be around the voltage of the present invention. Then, the emergency DC motor 11 can be operated at a voltage close to the rated voltage during the surveillance test.

ここで、第3図、第4図に示すように非常用直流モータ
llaは電圧が上がると回転数が上がり、非常用ポンプ
1. l bは回転数が上がると軸動力が大きくなる。
Here, as shown in FIGS. 3 and 4, the rotation speed of the emergency DC motor lla increases as the voltage increases, and the emergency pump 1. As for lb, the shaft power increases as the rotation speed increases.

従って、定格電圧付近で運転することにより不要に過負
荷運転することを避けることができる。
Therefore, by operating near the rated voltage, unnecessary overload operation can be avoided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、交流電源母線1、充電器2が健全な時
に、非常用直流モータ11に印加される電圧を下げて、
蓄電池4での非常用直流モータ11の運転時の電圧の中
間値で非常用直流モータ11を運転することができる。
According to the present invention, when the AC power supply bus 1 and the charger 2 are healthy, the voltage applied to the emergency DC motor 11 is lowered,
The emergency DC motor 11 can be operated at an intermediate value of the voltage when the emergency DC motor 11 is operated with the storage battery 4 .

従って、この電圧を非常用直流モータ11の定格電圧と
すれば、テスト時に定格電圧、定格回転数で非常用直流
モータを運転することができる。
Therefore, if this voltage is set as the rated voltage of the emergency DC motor 11, the emergency DC motor can be operated at the rated voltage and the rated rotation speed during the test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の非常用直流電源構成図、
第2図は、非常用直流電源設備各部の電圧分布図、第3
図は、非常用直流モータの電圧と回転数の関係を示す図
、第4図は非常用ポンプの電圧と回転数の関係を示す図
である。 7・・・シリコンドロッパバイパス用コンダクタ、13
・・操作スイッチ。
FIG. 1 is a configuration diagram of an emergency DC power supply according to an embodiment of the present invention;
Figure 2 is a voltage distribution diagram of each part of the emergency DC power supply equipment;
This figure is a diagram showing the relationship between the voltage and rotation speed of the emergency DC motor, and FIG. 4 is a diagram showing the relationship between the voltage and rotation speed of the emergency pump. 7... Silicon dropper bypass conductor, 13
...Operation switch.

Claims (1)

【特許請求の範囲】 1、交流電源母線、充電器、蓄電池、シリコンドロッパ
ー、シリコンドロッパバイパス用コンダクタ、直流電源
母線、直流モータ、ポンプを含む直流電源設備において
、 前記シリコンドロッパバイパス用コンダクタを任意に開
閉できる操作スイッチを設けたことを特徴とする非常用
直流電源設備。
[Claims] 1. In a DC power supply equipment including an AC power bus, a charger, a storage battery, a silicon dropper, a silicon dropper bypass conductor, a DC power bus, a DC motor, and a pump, the silicon dropper bypass conductor may be optionally provided. Emergency DC power supply equipment characterized by being equipped with an operation switch that can be opened and closed.
JP61192691A 1986-08-20 1986-08-20 Emergency dc source eqipment Pending JPS6352646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192691A JPS6352646A (en) 1986-08-20 1986-08-20 Emergency dc source eqipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192691A JPS6352646A (en) 1986-08-20 1986-08-20 Emergency dc source eqipment

Publications (1)

Publication Number Publication Date
JPS6352646A true JPS6352646A (en) 1988-03-05

Family

ID=16295440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192691A Pending JPS6352646A (en) 1986-08-20 1986-08-20 Emergency dc source eqipment

Country Status (1)

Country Link
JP (1) JPS6352646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663256B2 (en) * 2007-10-25 2010-02-16 Honda Motor Co., Ltd. Cogeneration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663256B2 (en) * 2007-10-25 2010-02-16 Honda Motor Co., Ltd. Cogeneration system

Similar Documents

Publication Publication Date Title
US20060221523A1 (en) Control system, method and product for uninterruptible power supply
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
KR20090087959A (en) Power conversion system control device and control method with instantaneous voltage drop-stop service
CN115940302A (en) Persistent DC circuit breaker
JPS6352646A (en) Emergency dc source eqipment
US7573153B2 (en) Power supply apparatus for field devices
JPH05276671A (en) Parallel redundant uninterruptible power supply
US6727603B1 (en) Automatic mode transitions for microturbine generating systems
JP2540225B2 (en) Battery switching circuit
US10826320B2 (en) Solar power system
JPS59217577A (en) Drive on service interruption of elevator
JPH1160101A (en) Controller for elevator
CN217335187U (en) Uninterrupted power supply system
CN118646141B (en) An inverter bypass switching system for UPS power supply
JPH03107332A (en) Dc power supply device for servo
CN214227934U (en) Economical single-phase dual power supply switching module
JPS62250876A (en) Voltage type inverter unit
JPH03295173A (en) Fuel cell power generating system
US4584516A (en) Charge display circuit
JPH02303326A (en) Power system fluctuation suppressing device and method
RU3497U1 (en) DEVICE FOR POWER SUPPLY OF DC SUBSTATIONS
JPH0879983A (en) Dc power source system
WO2001093403A2 (en) Backup battery recharge controller and battery reconnect system for a telecommunications power system
JPH0454883A (en) Inverter device
SU1476567A1 (en) Device for restoring electric supply to electric power consumer in incomplete-phase