[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0879983A - Dc power source system - Google Patents

Dc power source system

Info

Publication number
JPH0879983A
JPH0879983A JP21234494A JP21234494A JPH0879983A JP H0879983 A JPH0879983 A JP H0879983A JP 21234494 A JP21234494 A JP 21234494A JP 21234494 A JP21234494 A JP 21234494A JP H0879983 A JPH0879983 A JP H0879983A
Authority
JP
Japan
Prior art keywords
charger
storage battery
impedance
regular
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21234494A
Other languages
Japanese (ja)
Inventor
Masashi Sugiyama
政司 杉山
Hirobumi Satoie
博文 郷家
Hiroaki Ota
浩章 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP21234494A priority Critical patent/JPH0879983A/en
Publication of JPH0879983A publication Critical patent/JPH0879983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To suppress the charge of a storage battery by reducing the discharge amount from the battery when a charger and a storage battery system in which a spare charger are separated in a disposing manner is backed up. CONSTITUTION: An impedance 16 for compensating an electric circuit impedance and an electromagnetic switch 10 for short-circuiting the impedance 16 for short-circuiting it at the normal time are provided at the outlet of the storage battery 18 of a normal service charger 4 side. At the time of serving by a spare charger 3, the switch 10 for short-circuiting the impedance 16 is opened by the close signal 23 of the receiving breaker 8 of the charger 3 side of the charger 4. The output voltage of the charger 3 is raised by the signal 23 of the breaker 8 of the charger 4 of the charger 3 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直流電源システムに係
り、特に、原子力発電所のように複数の常用充電器,蓄
電池系が系統分離の要求上、配置的に場所が離れて設置
され、これらに共用の予備充電器が設備される場合に好
適な直流電源システム。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power supply system, and in particular, as in a nuclear power plant, a plurality of regular chargers and storage battery systems are installed at different locations due to the requirement of system separation. A DC power supply system that is suitable when a common precharger is installed.

【0002】[0002]

【従来の技術】本発明に近い公知例として、特開昭58−
51741 号公報を説明する。
2. Description of the Related Art As a known example close to the present invention, Japanese Patent Laid-Open No.
The 51741 publication will be described.

【0003】特開昭58−51741 号公報は、定電流制御方
式に関するもので、事故電流の大きさによって定電流制
御系の時定数が切換わるようにし、事故の様相により急
速な定電流制御を可能とした。
Japanese Unexamined Patent Publication No. 58-51741 discloses a constant current control system, in which the time constant of the constant current control system is switched depending on the magnitude of the fault current so that the constant current control can be performed rapidly depending on the aspect of the fault. Made possible

【0004】[0004]

【発明が解決しようとする課題】原子力発電所では、複
数の常用充電器,蓄電池が設けられ、かつそれらの間の
独立性を保つため、これらは場所的にも離れたところに
設置される。
In a nuclear power plant, a plurality of regular chargers and accumulators are provided, and in order to maintain independence between them, they are installed at locations remote from each other.

【0005】ここで、複数の常用充電器に対して、共用
の予備充電器が設けられている場合、必然的に、いずれ
かの常用充電器,蓄電池と予備充電器の間は距離が長く
なる。従って、プラント定検中で交流電源や常用充電器
保守点検時に予備充電器で運用する場合、予備充電器と
直流負荷間,蓄電池と直流負荷間を考えると前者の距離
の方が後者の距離よりも長くなり、前者の電路のケーブ
ル等による電圧降下の為、負荷電流の大半を蓄電池が分
担し、蓄電池が放電することが起こり得る。
Here, when a common preliminary charger is provided for a plurality of regular chargers, the distance between any regular charger or storage battery and the preliminary charger is inevitably long. . Therefore, when operating with a pre-charger during AC power supply and regular charger maintenance inspection during plant regular inspection, considering the pre-charger and DC load, and between the storage battery and DC load, the former distance is better than the latter distance. Since the voltage drops due to the cable of the former electric path, the storage battery shares most of the load current, and the storage battery may be discharged.

【0006】予備充電器は、本来、常用充電器のバック
アップとして、蓄電池の放電なしに直流負荷への電力供
給をはかるための設備であり、極力、蓄電池が放電しな
いようにできることが望ましい。
Originally, the pre-charger is a facility for supplying power to the DC load without discharging the storage battery as a backup of the regular charger, and it is desirable that the storage battery be prevented from discharging as much as possible.

【0007】本発明の目的は、このように予備充電器が
距離的に離れた蓄電池と並列されて、直流負荷に電力を
供給する場合に、蓄電池側からの放電量を極力小さくし
て、予備充電器が直流負荷への電力の大半を供給できる
直流電源システムを提供することにある。
An object of the present invention is to reduce the amount of discharge from the storage battery side as much as possible in the case where the precharger is arranged in parallel with the storage battery that is distant in distance and supplies electric power to the DC load. It is to provide a DC power supply system in which the charger can supply most of the power to the DC load.

【0008】[0008]

【課題を解決するための手段】上記目的は、複数の常用
充電器と蓄電池及びこれらに共用の予備充電器で構成さ
れる直流電源システムにおいて、蓄電池出口に予備充電
器と直流負荷までの電路インピーダンス以上に相当する
抵抗とこれを通常時に短絡するための手段として配線用
遮断器や電磁接触器等を設けることで達成される。
SUMMARY OF THE INVENTION The above object is to provide a direct-current power supply system comprising a plurality of regular chargers, a storage battery, and a pre-charger shared by them, and a circuit impedance between the pre-charger and the DC load at the storage battery outlet. This can be achieved by providing a resistance equivalent to the above and a circuit breaker for wiring, an electromagnetic contactor, or the like as means for short-circuiting the resistance during normal operation.

【0009】また、請求項2の場合には、充電器出力電
圧の制御回路に予備充電器使用中の信号で、その設定出
力電圧を上げる回路を設けることで達成される。
Further, the present invention can be achieved by providing a control circuit for controlling the charger output voltage with a circuit for increasing the set output voltage according to a signal indicating that the precharger is in use.

【0010】[0010]

【作用】本発明によれば、予備充電器で運用する際、蓄
電池出口にインピーダンスが挿入され、予備充電器出力
電圧と蓄電池電圧が等しい場合、直流負荷の必要とする
電流は、予備充電器と直流負荷間電路のインピーダン
ス:R2 と蓄電池と直流負荷間電路のインピーダンス:
1 及び蓄電池出口に挿入されたインピーダンス:R3
の和、即ち、(R1+R3)により、(R1+R3):R2
のインピーダンスの比に反比例して分担される。
According to the present invention, when the precharger is operated and an impedance is inserted at the outlet of the storage battery and the output voltage of the precharger is equal to the voltage of the storage battery, the current required by the DC load is the same as that of the precharger. Impedance of the circuit between the DC load: R 2 and impedance of the circuit between the storage battery and the DC load:
Impedance inserted at R 1 and battery outlet: R 3
By the sum of (R 1 + R 3 ), (R 1 + R 3 ): R 2
It is shared in inverse proportion to the impedance ratio of.

【0011】従って、予備充電器と直流負荷の間の距離
が長く、予備充電器と直流負荷間電路のインピーダン
ス:R2 が蓄電池と直流負荷間電路のインピーダンス:
1 より大きく、R2>R1となっていて、直流負荷の必
要とする電流の分担率が蓄電池の方が大きい場合に、蓄
電池出口にインピーダンス:R3 を挿入して、R2
(R1+R3)とすることで、直流負荷の必要とする電流
の分担率を予備充電器側の方が大きくなるようにするこ
とができる。
Therefore, the distance between the precharger and the DC load is long, and the impedance R 2 between the precharger and the DC load is the impedance between the storage battery and the DC load.
When R 2 is larger than R 1 and R 2 > R 1, and the share of the current required by the DC load is larger in the storage battery, impedance R 3 is inserted at the storage battery outlet, and R 2 <
By setting (R 1 + R 3 ), the share of the current required by the DC load can be increased on the precharger side.

【0012】また、直流負荷端での電圧:V1 は一つの
値であるので、予備充電器の出力電圧:V3 を上げれ
ば、予備充電器と直流負荷間電路のインピーダンス:R
2 と予備充電器の出力電流:I2 とによる電路での電圧
降下:I22と直流負荷端での電圧V1との和(V1+I
22)=V3 となり、蓄電池側は、蓄電池と直流負荷間
電路のインピーダンス:R1 と蓄電池の出力電流:I1
とによる電路での電圧降下:I11と直流負荷端での電
圧V1 との和(V1+I11)が蓄電池電圧:V2と等し
くなる。
Further, since the voltage at the DC load end: V 1 has a single value, if the output voltage V 3 of the precharger is increased, the impedance between the precharger and the DC load is R:
2 and the output current of the precharger: I 2 , the voltage drop in the electric path: I 2 R 2 and the voltage V 1 at the DC load end (V 1 + I
2 R 2 ) = V 3 , and on the storage battery side, the impedance between the storage battery and the DC load is R 1 and the output current of the storage battery is I 1
The sum (V 1 + I 1 R 1 ) of the voltage drop in the electric path due to and: I 1 R 1 and the voltage V 1 at the DC load end becomes equal to the storage battery voltage: V 2 .

【0013】(V1+I11)=V 従って、R>R1の場合でも、V3>V2とすれば、I2
>I1とすることができる。
(V1+ I1R1) = VTwo  Therefore, RTwo> R1Even if V3> V2If so, I2
> I1It can be.

【0014】更に前記の二つの方法を組み合せれば、更
に蓄電池側の出力電流I1 を低減することができる。
Further, by combining the above two methods, the output current I 1 on the storage battery side can be further reduced.

【0015】[0015]

【実施例】以下、本発明の第1の実施例を図1,図2を
参照しながら説明する。図1に示すように交流電源1よ
り受電し、交流を整流して直流に変換する複数の常用充
電器2と4をもち、これら複数の常用充電器2,4に対
して、共用の予備充電器3を持つ直流電源システムは、
通常は、以下のように運転されている。すなわち、常用
充電器2側では、常用充電器2の出力遮断器5が閉じ、
蓄電池11の出力遮断器12が閉じ、常用充電器2の予
備充電器3側の受電遮断器6が開いており、常用充電器
2は、交流電源1より受電し、交流を整流して直流電源
に変換し、常用充電器2側の直流負荷13に電力を供給
するとともに常用充電器2側の蓄電池11の電圧を常用
充電器2の出力電圧と同じに保っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, it has a plurality of regular chargers 2 and 4 that receive power from an alternating current power source 1, rectify alternating current and convert it into direct current. The DC power supply system with the
Normally, the operation is as follows. That is, on the regular charger 2 side, the output circuit breaker 5 of the regular charger 2 is closed,
The output circuit breaker 12 of the storage battery 11 is closed and the power receiving circuit breaker 6 on the side of the pre-charger 3 of the service charger 2 is open. The service charger 2 receives power from the AC power supply 1 and rectifies the AC power to generate the DC power supply. And supplies the electric power to the DC load 13 on the regular charger 2 side, and keeps the voltage of the storage battery 11 on the regular charger 2 side the same as the output voltage of the regular charger 2.

【0016】同様に、常用充電器4側では、常用充電器
4側の出力遮断器9が閉じ、蓄電池18の出力遮断器1
7が閉じ、常用充電器4の予備充電器3側の受電遮断器
8が開いており、常用充電器4は、交流電源1より受電
し、交流を整流して直流電源に変換し、常用充電器4側
の直流負荷15に電力を供給するとともに常用充電器4
側の直流負荷15に電力を供給するとともに常用充電器
4側の蓄電池18の電圧を常用充電器4の出力電圧と同
じに保っている。
Similarly, on the service charger 4 side, the output circuit breaker 9 on the service charger 4 side is closed, and the output circuit breaker 1 of the storage battery 18 is closed.
7 is closed, and the power receiving breaker 8 on the side of the pre-charger 3 of the regular charger 4 is open. The regular charger 4 receives power from the AC power source 1, rectifies the AC and converts it to a DC power source, and performs regular charging. Power is supplied to the DC load 15 on the charger 4 side and the regular charger 4
While supplying power to the DC load 15 on the side, the voltage of the storage battery 18 on the side of the regular charger 4 is kept the same as the output voltage of the regular charger 4.

【0017】この様に構成される直流電源システムにお
いて、予備充電器3と近接の常用充電器2を保守等のた
めに停止する場合には、常用充電器2の出力遮断器5を
開くとともに、予備充電器3の出力遮断器7,常用充電
器2の予備充電器3側の受電遮断器6を閉じて、予備充
電器3と常用充電器2側の蓄電池11により常用充電器
2側の直流負荷13へ電源を供給する。この場合、常用
充電器2と予備充電器3は、共に常用充電器2側の蓄電
池11よりも常用充電器2側の直流負荷13に近いの
で、常用充電器2側の直流負荷13への電力供給は、予
備充電器3により代替できる。
In the DC power supply system configured as described above, when the precharger 3 and the regular charger 2 in the vicinity are stopped for maintenance or the like, the output breaker 5 of the regular charger 2 is opened and The output circuit breaker 7 of the pre-charger 3 and the power receiving circuit breaker 6 of the pre-charger 3 side of the regular charger 2 are closed, and the direct current of the pre-charger 3 and the regular charger 2 is connected to the DC of the regular charger 2 side. Power is supplied to the load 13. In this case, since the service charger 2 and the pre-charger 3 are both closer to the DC load 13 on the service charger 2 side than the storage battery 11 on the service charger 2 side, the power to the DC load 13 on the service charger 2 side is reduced. The supply can be replaced by the precharger 3.

【0018】また、一方、予備充電器3と離れた常用充
電器4を保守等のために停止する場合には、常用充電器
4の出力遮断器9を開くとともに予備充電器3,出力遮
断器7,常用充電器4の予備充電器3側の受電遮断器8
を閉じて、予備充電器3と常用充電器4側の蓄電池18
により常用充電器4側の直流負荷15へ電源を供給す
る。この時、常用充電器4の予備充電器3側の受電遮断
器8の閉信号23により、常用充電器4側の蓄電池18
の出口に設けた通常時閉の電路インピーダンス補償用イ
ンピーダンス16短絡用の電磁開閉器10を開放し、常
用充電器4側の蓄電池18の出口に電路インピーダンス
補償用のインピーダンス16を挿入する。以上の構成を
等価回路で示したのが図2である。
On the other hand, when the regular charger 4 separated from the preliminary charger 3 is stopped for maintenance or the like, the output breaker 9 of the regular charger 4 is opened and the preliminary charger 3 and the output breaker are opened. 7. Power receiving circuit breaker 8 on the pre-charger 3 side of the regular charger 4
Closed and the storage battery 18 on the side of the pre-charger 3 and the regular charger 4 is closed.
Thus, power is supplied to the DC load 15 on the side of the regular charger 4. At this time, due to the closing signal 23 of the power receiving breaker 8 on the pre-charger 3 side of the service charger 4, the storage battery 18 on the service charger 4 side is closed.
The normally closed electrical circuit impedance compensating impedance 16 provided at the outlet is opened and the electromagnetic switch 10 for short circuit is opened, and the electrical circuit impedance compensating impedance 16 is inserted into the outlet of the storage battery 18 on the regular charger 4 side. FIG. 2 shows the above configuration by an equivalent circuit.

【0019】図2は、予備充電器3が常用充電器4側の
蓄電池18と並列に常用充電器4側の直流負荷15に給
電している状態を示す。この時、予備充電器3と常用充
電器4側の直流負荷15の間には、予備充電器3と常用
充電器4間のケーブルのインピーダンス21:R2 が、
そして、常用充電器4側の蓄電池18と常用充電器4側
の直流負荷15間のケーブルのインピーダンス20:R
1 及び通常時閉の電路インピーダンス補償用インピーダ
ンス16短絡用の電磁開閉器10が開放されることによ
り挿入された電路インピーダンス補償用インピーダンス
16:R3 が存在する。
FIG. 2 shows a state in which the precharger 3 is supplying power to the DC load 15 on the regular charger 4 side in parallel with the storage battery 18 on the regular charger 4 side. At this time, the impedance 21: R 2 of the cable between the precharger 3 and the regular charger 4 is between the DC load 15 on the precharger 3 side and the regular charger 4 side.
The impedance 20: R of the cable between the storage battery 18 on the regular charger 4 side and the DC load 15 on the regular charger 4 side.
1 and the normally closed circuit impedance compensating impedance 16 The circuit circuit impedance compensating impedance 16: R 3 inserted by opening the electromagnetic switch 10 for short circuit exists.

【0020】予備充電器3の出力電圧26:V3 と常用
充電器側の蓄電池18の端子電圧25:V2 が等しい
時、常用充電器4側の蓄電池18が分担する常用充電器
4側の直流負荷15の電流:I1はI2・R2/(R1+R
3)となる。
When the output voltage 26: V 3 of the pre-charger 3 and the terminal voltage 25: V 2 of the storage battery 18 on the side of the regular charger are equal, the storage battery 18 on the side of the regular charger 4 shares the voltage on the regular charger 4 side. Current of DC load 15: I 1 is I 2 · R 2 / (R 1 + R
3 )

【0021】従って、(R1+R3)> R2となるような
値の電路インピーダンス補償用インピーダンス16:R
3 を挿入すれば、常用充電器4側の蓄電池18が分担す
る電流:I1を小さくすることができる。
Therefore, the impedance 16: R for compensating the impedance of the electric path, which has a value such that (R 1 + R 3 )> R 2
By inserting 3 , the current I 1 shared by the storage battery 18 on the regular charger 4 side can be reduced.

【0022】次に、本発明の第二の実施例を図3ないし
図5を参照しながら説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.

【0023】図3は、直流電源システムを示す。ここ
で、予備充電器3と離れた常用充電器4を保守等のため
に停止する場合には、常用充電器4の出力遮断器9を開
放し予備充電器3,出力遮断器7,常用充電器4の予備
充電器3側の受電遮断器8を閉じて、予備充電器3と常
用充電器4側の蓄電池18により常用充電器4側の直流
負荷15へ電源を供給する。この時、常用充電器4の予
備充電器3側の受電遮断器8の閉信号23を予備充電器
3のサイリスタゲート制御回路に送り、予備充電器3の
サイリスタ制御角を制御することにより予備充電器3の
出力電圧V3 を上げる。
FIG. 3 shows a DC power supply system. Here, when the regular charger 4 separated from the preliminary charger 3 is stopped for maintenance or the like, the output circuit breaker 9 of the regular charger 4 is opened to open the preliminary charger 3, the output circuit breaker 7, and the regular charging. The power receiving breaker 8 on the side of the preliminary charger 3 of the charger 4 is closed, and power is supplied to the DC load 15 on the side of the regular charger 4 by the storage battery 18 on the side of the preliminary charger 3 and the regular charger 4. At this time, the close signal 23 of the power receiving circuit breaker 8 on the precharger 3 side of the regular charger 4 is sent to the thyristor gate control circuit of the precharger 3 to control the thyristor control angle of the precharger 3 to perform the precharge. Increase the output voltage V 3 of the device 3.

【0024】以上の構成を等価回路で示したのが図4で
ある。
FIG. 4 shows the above configuration by an equivalent circuit.

【0025】図4は、予備充電器3が常用充電器4側の
蓄電池18と並列に常用充電器4側の直流負荷15に給
電している状態を示す。この時、予備充電器3の出力電
圧V3 を常用充電器4側の蓄電池18の端子電圧25:
2 よりも高くする。
FIG. 4 shows a state in which the precharger 3 is supplying power to the DC load 15 on the regular charger 4 side in parallel with the storage battery 18 on the regular charger 4 side. At this time, the output voltage V 3 of the pre-charger 3 is set to the terminal voltage 25 of the storage battery 18 on the regular charger 4 side:
Make it higher than V 2 .

【0026】ここで、常用充電器4側の直流負荷15の
端子電圧24:V1 は両者に共通なので、蓄電池18の
出力電流I1 と予備充電器3の出力電流I2 は、常用充
電器4と常用充電器4側の蓄電池18間ケーブルのイン
ピーダンス:R1 、予備充電器3と常用充電器4間のケ
ーブルのインピーダンス:R2 を用いて表すと、V3
22+V1 ,V2=I11+V1となる。この関係を図
5に示す。
[0026] Here, the terminal voltage of the conventional charger 4 side of the DC load 15 24: Since V 1 was common to both, the output current I 2 of the output current I 1 and the precharge unit 3 of the storage battery 18 is conventional charger 4 and the storage battery 18 on the regular charger 4 side, the impedance of the cable: R 1 , and the impedance of the cable between the pre-charger 3 and the regular charger 4: R 2 , V 3 =
I 2 R 2 + V 1 and V 2 = I 1 R 1 + V 1 . This relationship is shown in FIG.

【0027】従って、R2>R1の場合でも、V3>V2
2/R1とすれば、I2<I1となる。即ち、予備充電器
3の出力電圧26:V3 を上げることにより、蓄電池1
8の出力電流I1 を低減することができる。
Therefore, even if R 2 > R 1 , V 3 > V 2 ·
If R 2 / R 1 , then I 2 <I 1 . That is, by increasing the output voltage 26: V 3 of the pre-charger 3, the storage battery 1
The output current I 1 of 8 can be reduced.

【0028】[0028]

【発明の効果】本発明によれば、以下の効果がある。The present invention has the following effects.

【0029】第一の実施例の場合、予備充電器3で予備
充電器3より離れた常用充電器4をバックアップする
時、常用充電4側の蓄電池18の出口に電路インピーダ
ンス補償用インピーダンス16を挿入することにより、
予備充電器3と常用充電器4側の直流負荷15間ケーブ
ル14のインピーダンス21:R1 と電路インピーダン
ス補償用インピーダンス16:R3 の合計をR2<(R1
+R3)とする。
In the case of the first embodiment, when the precharger 3 backs up the service charger 4 which is separated from the precharger 3, the impedance 16 for compensating the circuit path is inserted into the outlet of the storage battery 18 on the service charging 4 side. By doing
The sum of the impedance 21: R 1 of the cable 14 between the pre-charger 3 and the DC load 15 on the side of the regular charger 4 and the impedance 16: R 3 for compensating the impedance of the circuit is R 2 <(R 1
+ R 3 ).

【0030】予備充電器3の出力電流:I2 と蓄電池1
8の出力電流:I1 には、I1(R1+R3)=I22
関係があるので、(R1+R3)>R2とすることによ
り、蓄電池18の出力電流:I1 を低減することができ
るので、蓄電池18からの放電量を低減する効果があ
る。
Output current of precharger 3: I 2 and storage battery 1
Since the output current of 8: I 1 has a relation of I 1 (R 1 + R 3 ) = I 2 R 2 , the output current of the storage battery 18: I 2 by setting (R 1 + R 3 )> R 2. Since 1 can be reduced, there is an effect of reducing the amount of discharge from the storage battery 18.

【0031】また、第二の実施例の場合、前記と同じ運
転状態において、予備充電器3の出力電圧26:V3
常用充電器4側の蓄電池18の端子電圧25:V2 に対
して、V3>V2・R2/R1まで上昇されることにより、
2=I11+V1 ,I3=I22+V1 の関係から、I
1<I2とし、蓄電池18の出力電流:I1 を低減するこ
とができるので、蓄電池18からの放電料を低減する効
果がある。
Further, in the case of the second embodiment, in the same operating condition as described above, the output voltage 26: V 3 of the precharger 3 is compared with the terminal voltage 25: V 2 of the storage battery 18 on the regular charger 4 side. , V 3 > V 2 · R 2 / R 1
From the relationship of I 2 = I 1 R 1 + V 1 and I 3 = I 2 R 2 + V 1 ,
Since 1 <I 2 and the output current I 1 of the storage battery 18 can be reduced, there is an effect of reducing the discharge charge from the storage battery 18.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す回路図。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】図1の構成の直流電源システムで予備充電器が
距離的に遠い方の常用充電器をバックアップしている時
の等価回路図。
FIG. 2 is an equivalent circuit diagram of the direct-current power supply system having the configuration of FIG. 1 when the pre-charger backs up the service charger that is far from the distance.

【図3】発明の第二の実施例を示す回路図。FIG. 3 is a circuit diagram showing a second embodiment of the invention.

【図4】図3の構成の直流電源システムで予備充電器が
距離的に遠い方の常用充電器をバックアップしている時
の等価回路図。
FIG. 4 is an equivalent circuit diagram of the direct-current power supply system having the configuration of FIG. 3 when the backup charger backs up the regular charger that is farther away.

【図5】図4の等価回路における各部電圧の大きさを示
す説明図。
5 is an explanatory diagram showing the magnitude of each voltage in the equivalent circuit of FIG.

【符号の説明】[Explanation of symbols]

1…交流電源、2,4…常用充電器、3…予備充電器、
5,7,9,17…出力遮断器、6,8…受電遮断器、
10…電磁開閉器、11,18…蓄電池、12…遮断
器、13,15…直流負荷、14,19…ケーブル、1
6…インピーダンス、23…閉信号。
1 ... AC power supply, 2, 4 ... Regular charger, 3 ... Pre-charger,
5, 7, 9, 17 ... Output breaker, 6, 8 ... Receiving breaker,
10 ... Electromagnetic switch, 11, 18 ... Storage battery, 12 ... Circuit breaker, 13, 15 ... DC load, 14, 19 ... Cable, 1
6 ... impedance, 23 ... closed signal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田 浩章 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Ota 3-2-1, Sachimachi, Hitachi, Ibaraki Prefecture Hitachi Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】交流電源を整流して直流に変換する複数か
つ配置上場所の離れた常用充電器と前記常用充電器と並
列に継がれた蓄電池及び前記複数の常用充電器に対し
て、共用で、離れた方の前記常用充電器,前記蓄電池側
とはケーブル等で結ばれた予備充電器を有し、それぞれ
直流負荷に電源を供給する直流電源システムにおいて、
前記予備充電器が場所的に離れた方の前記常用充電器を
バックアップをする時に、対応する前記蓄電池の出口
に、前記予備充電器から直流負荷までのケーブル等のイ
ンピーダンスの値以上に相当するインピーダンスを挿入
することを特徴とする直流電源システム。
1. A common use for a plurality of service chargers that rectify an AC power source and convert it into a DC power supply, and storage batteries that are connected in parallel with the service chargers and a plurality of service chargers that are connected in parallel to each other. In the direct-current power supply system for supplying power to a direct-current load, the remote-use charger having a remote side and the preliminary charger connected to the storage battery side with a cable or the like,
When the pre-charger backs up the regular charger that is distant in location, at the outlet of the corresponding storage battery, an impedance corresponding to the impedance value of the cable from the pre-charger to the DC load or more DC power supply system characterized by inserting.
【請求項2】請求項1において、前記予備充電器が場所
的に離れた方の常用充電器をバックアップする時に、前
記予備充電器の出力電圧を、前記予備充電器から直流負
荷までのケーブル等のインピーダンスによる電圧降下分
相当以上に上昇させる直流電源システム。
2. The output voltage of the precharger according to claim 1, when the precharger backs up a service charger that is remote in location, a cable from the precharger to a DC load, etc. DC power supply system that raises more than the voltage drop due to the impedance of.
【請求項3】請求項1または2において、前記蓄電池の
出口にインピーダンスを挿入するとともに前記予備充電
器の出力電圧も上昇させる直流電源システム。
3. The DC power supply system according to claim 1, wherein impedance is inserted into the outlet of the storage battery and the output voltage of the precharger is increased.
JP21234494A 1994-09-06 1994-09-06 Dc power source system Pending JPH0879983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21234494A JPH0879983A (en) 1994-09-06 1994-09-06 Dc power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21234494A JPH0879983A (en) 1994-09-06 1994-09-06 Dc power source system

Publications (1)

Publication Number Publication Date
JPH0879983A true JPH0879983A (en) 1996-03-22

Family

ID=16620988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21234494A Pending JPH0879983A (en) 1994-09-06 1994-09-06 Dc power source system

Country Status (1)

Country Link
JP (1) JPH0879983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027731A (en) * 2019-08-06 2021-02-22 日立Geニュークリア・エナジー株式会社 Control apparatus for charging device and charging facility
JP2021136078A (en) * 2020-02-25 2021-09-13 日立Geニュークリア・エナジー株式会社 Short circuit current cutoff device of dc power supply facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027731A (en) * 2019-08-06 2021-02-22 日立Geニュークリア・エナジー株式会社 Control apparatus for charging device and charging facility
JP2021136078A (en) * 2020-02-25 2021-09-13 日立Geニュークリア・エナジー株式会社 Short circuit current cutoff device of dc power supply facility

Similar Documents

Publication Publication Date Title
US20220407307A1 (en) Quick battery disconnect system for high current circuits
US11046202B2 (en) Power supply and recharging assembly and method for an electric vehicle, and electric vehicle comprising the power supply and recharging assembly
US11338690B2 (en) Power-supply and recharge groups
US6281602B1 (en) Backup battery recharge controller for a telecommunications power system
CN115603400A (en) Battery control system
US7843169B1 (en) Pack assembly having interconnected battery packs configured to be individually disconnected from assembly
CN115320377A (en) Power system for vehicle
KR20180056175A (en) Power relay assembly for electric vehicle and driving method thereof
JP3417117B2 (en) Maintenance method of uninterruptible power supply
CN108377010B (en) Charging circuit with DC voltage converter and method for charging an electrical energy storage system
US4468572A (en) Feeder voltage compensating apparatus for electric railway
JPH0879983A (en) Dc power source system
EP1102295A2 (en) Commutation type direct-current breaker
CN113381466A (en) Battery system
US20210028642A1 (en) Electrical energy storage system and method for operating same
KR102668602B1 (en) Power system
WO2021106345A1 (en) Vehicle-mounted battery system
US6885879B1 (en) Battery reconnect system for a telecommunications power system
JP3813090B2 (en) Uninterruptible DC supply system
US11878605B1 (en) Battery modules with integrated module converters and methods of operating thereof
JPH01298649A (en) Discharge control circuit for fuel cell
US11545834B1 (en) Balancing power from electric vehicle in vehicle-to-building supply
JPH0530679A (en) Battery power storage system
JP7168913B2 (en) vehicle power system
JP3355818B2 (en) Overvoltage protection device for section switching device in AC feeding equipment