JPS6340771A - Normal pressure high density composite sintered body of cubic boron nitride and manufacture - Google Patents
Normal pressure high density composite sintered body of cubic boron nitride and manufactureInfo
- Publication number
- JPS6340771A JPS6340771A JP61182710A JP18271086A JPS6340771A JP S6340771 A JPS6340771 A JP S6340771A JP 61182710 A JP61182710 A JP 61182710A JP 18271086 A JP18271086 A JP 18271086A JP S6340771 A JPS6340771 A JP S6340771A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- sintered body
- density
- powder
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 56
- 229910052582 BN Inorganic materials 0.000 title claims description 53
- 239000002131 composite material Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000843 powder Substances 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 238000007796 conventional method Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 239000002245 particle Substances 0.000 description 14
- 238000010304 firing Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- -1 Alkaline earth metal borates Chemical class 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000013001 point bending Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は六方晶窒化硼素(以下「窒化硼素」という)と
、金属窒化物、金属酸化物との常圧高密度複合焼結体及
びその製造方法に関する。[Detailed Description of the Invention] Industrial Field of Application The present invention relates to an atmospheric pressure high-density composite sintered body of hexagonal boron nitride (hereinafter referred to as "boron nitride"), a metal nitride, and a metal oxide, and a method for manufacturing the same. Regarding.
ここで得られた窒化硼素の高密度複合焼結体は耐熱性、
耐熱衝撃性、潤滑性又は耐蝕性等が要求される分野にお
いてその性能が発揮される。The high-density composite sintered body of boron nitride obtained here has heat resistance,
Its performance is demonstrated in fields where thermal shock resistance, lubricity, or corrosion resistance are required.
従来の技術
窒化硼素は熱的、化学的、電気的特性に丁ぐれ、かつ潤
滑性を有し、機械加工が容易にできるなど多くのすぐれ
た性質を備えたセラミックス材料である。即ち、熱的に
は不活性雰囲気中では約3000t:’まで安定であり
、かつ熱伝導率がきわめて高く熱衝撃抵抗が大きく、又
、溶融金属にぬれ難く、反応しないなど化学的な安定性
にもすぐれており、耐熱、耐蝕材料としての用途が非常
に広い。BACKGROUND OF THE INVENTION Boron nitride is a ceramic material with many excellent properties, including excellent thermal, chemical, and electrical properties, lubricity, and ease of machining. That is, it is thermally stable up to approximately 3000 t:' in an inert atmosphere, has extremely high thermal conductivity and high thermal shock resistance, and has chemical stability such as being difficult to wet with molten metal and not reacting. It has excellent properties and has a wide range of uses as a heat-resistant and corrosion-resistant material.
又、熱的安定性に加えて潤滑性にすぐれるので、高湿潤
滑材として貴重な材料でもある。In addition, it has excellent lubricity in addition to thermal stability, making it a valuable material as a high-humidity lubricant.
更に電気抵抗が極めて大きく、これは高温になっても変
化が小さいことから広い温度範囲で使える電気絶縁材料
でもある。Furthermore, it has an extremely high electrical resistance and does not change much even at high temperatures, making it an electrically insulating material that can be used over a wide temperature range.
ところが窒化硼素はすぐれた熱的化学的特性−を有する
反面、難焼性であり、焼結体を製造するには高温及び機
械的高圧処理を必要としており、例えば黒鉛ダイスに詰
めて200から400ky/(ydで加圧しながら高周
波誘導加熱炉を用いて2DOOC付近の温度で加熱焼結
させる方法が取られている。また工業規模で窒化硼素焼
結体を製造する場合には通常、窒化硼素粉体にアルカリ
土類金属硼酸塩、例えばMダ0・B2O3,0cLO・
B2O3,SrO・B2O3等がバインダーとして数%
から10徴%混合されている。However, although boron nitride has excellent thermal and chemical properties, it is difficult to burn and requires high temperature and mechanical high pressure treatment to produce a sintered body. A method of heating and sintering at a temperature around 2 DOOC using a high-frequency induction heating furnace while pressurizing with Alkaline earth metal borates in the body, such as Mda0・B2O3,0cLO・
Several percent of B2O3, SrO, B2O3, etc. as a binder
It is mixed with 10% from
発明が解決しようとする問題点
従来の焼結体の製造には前述の如く高温、機械的高圧処
理が必要であり、そのため生産性の向上は困難であり、
また機械的高圧が必要なことから単純な形状の成形体し
か製造できず、単純な成形体から種々の形状?つくるに
は後加工に手間が掛り、また材料のロスが大きくなる。Problems to be Solved by the Invention As mentioned above, the production of conventional sintered bodies requires high temperature and mechanical high pressure treatment, which makes it difficult to improve productivity.
In addition, because high mechanical pressure is required, only molded objects with simple shapes can be manufactured, and various shapes can be produced from simple molded objects. Making it takes time and effort in post-processing, and there is also a large amount of material loss.
高価な材料のロスは焼結体製造コストの大巾なアップに
つながる。The loss of expensive materials leads to a significant increase in the cost of producing sintered bodies.
又、大型の焼結体を製造することは焼結炉並びに黒鉛ダ
イスも大型化せざるご得ず特に大型黒鉛ダイス材の作製
は技術的に容易でない。In addition, manufacturing a large sintered body requires increasing the size of the sintering furnace and graphite die, and it is technically not easy to manufacture a large graphite die material in particular.
又、焼結体はアルカリ土類金属ホウ酸塩が添加されてい
るので、次の様な問題点がある。例えば不活性雰囲気中
で約3000t:’付近まで安定な窒化硼素でもアルカ
リ土類金属硼酸塩などのバインダー相な多く含有した焼
結体では十数百度よりバインダー相が吹き出し、接触し
ている別の材料と反応したりバインダー相の揮散によっ
て付近を汚したり又窒化硼素焼結体自体に亀裂が生じる
などの現象を生ずるため使用温度が大幅に限定されてい
るのが現状である。Furthermore, since the sintered body contains alkaline earth metal borates, there are the following problems. For example, even with boron nitride, which is stable up to around 3000 tons in an inert atmosphere, in a sintered body containing a large amount of binder phase such as alkaline earth metal borate, the binder phase will blow out from a temperature of more than 100 degrees At present, the temperature at which the boron nitride can be used is severely limited because it reacts with other materials, pollutes the surrounding area due to volatilization of the binder phase, and cracks occur in the boron nitride sintered body itself.
したがって、常圧で焼成可能でしかも、アルカリ土類金
属ホウ酸塩が含有されていることに起因する上記の欠点
のない窒化硼素複合焼結体の開発が強く要望されている
。Therefore, there is a strong demand for the development of a boron nitride composite sintered body that can be fired at normal pressure and does not have the above-mentioned drawbacks due to the inclusion of alkaline earth metal borates.
間頭を解決するための手段
焼結に際して機械的な高圧処理を必要とすることは成形
体の形状2著しく制限するので、常圧焼結により実用に
供しつる複合焼結体をうろことを可能にし、かつ0CL
OO5等の使用を極力少なくする手段について種々検討
の結果、特定の窒化硼素を使用し、かつ金属酸化物、金
属窒化物と複合化し、生の成形体の密度を上げることに
より、常圧焼結で充分な密度、強度をもつ焼結体が得ら
れることを見出し本発明を完成した。Means to solve the problem: The need for mechanical high-pressure treatment during sintering severely limits the shape of the compact, so pressureless sintering makes it possible to produce a composite sintered body for practical use. and 0CL
As a result of various studies on ways to minimize the use of OO5, etc., we found that by using a specific boron nitride, compounding it with metal oxides and metal nitrides, and increasing the density of the green compact, we succeeded in atmospheric pressure sintering. The present invention was completed based on the discovery that a sintered body with sufficient density and strength could be obtained using the following method.
即ち本発明は六方晶窒化硼素に金属窒化物、金属酸化物
の少なくとも一種ご含み、かさ密度が理論密度の70%
以上である六方晶窒化硼素の常圧高密度複合焼結体およ
び振動法かさ密度が少なくとも0.5 y−/dである
高充填性六方晶窒化硼素粉体に窒化物生成可能金属粉体
の少なくとも一種又は金属酸化物の少なくとも一種ご混
合し、前者の場合は非酸化性窒業ふん囲気で、後者の場
合は不活性ふん囲気において常圧焼成することを特徴と
する前記の高密度複合焼結体の製造方法に関する。That is, the present invention contains hexagonal boron nitride, at least one of metal nitrides and metal oxides, and has a bulk density of 70% of the theoretical density.
The above atmospheric pressure high density composite sintered body of hexagonal boron nitride and the highly packed hexagonal boron nitride powder having a vibration method bulk density of at least 0.5 y-/d are combined with a metal powder capable of forming nitrides. The above-mentioned high-density composite sintering method is characterized in that at least one metal oxide or at least one metal oxide is mixed and the former is sintered in a non-oxidizing nitrogenous atmosphere, and the latter is sintered under normal pressure in an inert atmosphere. This invention relates to a method for producing a solid.
以後発明の詳細について説明する。The details of the invention will be explained below.
窒化硼素粉体は一般に硼酸無水酸化硼素又は硼砂ごアン
モニアガス中で加熱するか或いはアンモニアガスを発生
する含窒素有機化合物と混合して加熱し、得られた窒化
硼ff1F再度窒素雰囲気中で高温で加熱して結晶性ご
高め製品としている。Boron nitride powder is generally heated in ammonia gas with boric acid anhydride or borax, or mixed with a nitrogen-containing organic compound that generates ammonia gas and heated, and the resulting boron nitride ff1F is heated again at high temperature in a nitrogen atmosphere. The product is heated to increase crystallinity.
このようにして得られた市販の窒化硼素粉体は通常結晶
サイズが1μを越える程度で結晶の成長は充分でなく振
動法かさ密度で0,1〜0.6%/cIIt ある。The commercially available boron nitride powder thus obtained usually has a crystal size exceeding 1 .mu.m, and the crystal growth is insufficient, and the vibration method bulk density is 0.1 to 0.6%/cIIt.
なお振動法かさ密度とは4001の試料ごメスシリンダ
ーに入れ、築山科学器械製の振動式SS式DE−2型で
180秒間振動充填後体積を計り算出して得られる充填
密度である。The vibration method bulk density is the filling density obtained by placing a 4001 sample into a graduated cylinder, and measuring the volume after vibrating filling for 180 seconds using a vibrating SS type DE-2 manufactured by Tsukiyama Scientific Instruments.
このような窒化硼素粉体ご用いて窒化硼素複合焼結体2
作製したところまず成形段階で生の成形密度があがらず
高圧をかけて無理に密度をあげようとすると成形又は焼
成の段階で成形体中に亀裂が入り満足できる焼結体が得
られなかったQ
焼結体の密度を上げるには先づ生の成形体の密度を上げ
ることが必要と考え、種々検討した結果結晶サイズを大
きくしかつ粒度分布ご調整して得られた高充填性の窒化
硼素粉体を原料に用いれば容易に生密度の高い成形体が
得られ、これを常圧で焼成すれば密度の高い焼結体の得
られることを見い出した。Using such boron nitride powder, boron nitride composite sintered body 2
When I produced the product, the density of the raw compact did not increase during the molding stage, and when I tried to forcefully increase the density by applying high pressure, cracks occurred in the compact during the molding or firing stage, and a satisfactory sintered body could not be obtained.Q We believed that in order to increase the density of a sintered body, it was first necessary to increase the density of the green compact, and as a result of various studies, we created a highly filling boron nitride that was obtained by increasing the crystal size and adjusting the particle size distribution. It has been discovered that a molded body with high green density can be easily obtained by using powder as a raw material, and that a sintered body with high density can be obtained by firing this at normal pressure.
高充填性の窒化硼素粉体を得る一つの方法はまず、窒化
硼素を特定物質の存在のもとで加熱して結晶を成長させ
ることである。例えば市販の窒化硼素粉体にアルカリ土
類金属醸化物或い)は弗化物を添加してブリケットとな
し、窒素雰囲気中で1700C以上に加熱すれば結晶サ
イズは大きいものは数1Dμとなる。One method for obtaining highly packed boron nitride powder is to first heat boron nitride in the presence of a specific substance to grow crystals. For example, if commercially available boron nitride powder is made into briquettes by adding fluoride to it and heated to 1700C or higher in a nitrogen atmosphere, the crystal size will be several 1 Dμ.
次いで、これ?ロールミル、ボールミル等の粉砕機で粉
砕し、例えば100〜数μの粒度範囲で平均径を10〜
20μに調整することにより、伽動法のかさ密度が少な
くとも0.5 P/d 、200〜数μの粒度範囲で平
均粒度を60〜40μ、とすればかさ密度を0.85’
/7以上とすることができる。粉体の充填性は前述のよ
うに結晶サイズと粒度およびその分布等によりきまるも
のであり、前記の処理法は充填性の高い粉末をうる一例
である。例えば窒化硼素ホットプレス成形体の加工屑を
粒度調整して目的とする充填性の丁ぐれた粉体ごうろこ
とができる。Next, this? Pulverize with a pulverizer such as a roll mill or a ball mill to obtain particles with a particle size ranging from 100 to several microns and an average diameter of 10 to several microns.
By adjusting the particle size to 20μ, the bulk density of the oscillation method is at least 0.5 P/d, and if the average particle size is 60 to 40μ in the particle size range of 200 to several μ, the bulk density is 0.85'.
/7 or more. As mentioned above, the filling property of powder is determined by the crystal size, particle size, distribution thereof, etc., and the above-mentioned processing method is an example of obtaining a powder with high filling property. For example, by adjusting the particle size of processing waste from a boron nitride hot press molded body, it is possible to obtain a powder with a desired filling property.
次に窒化硼素の常圧高密度複合焼結体の製造方法につい
てのべる。Next, we will discuss a method for manufacturing a normal-pressure high-density composite sintered body of boron nitride.
金属窒化物と窒化硼素との複合焼結体を製造する場合に
は先に述べた高充填性窒化硼素粉体に例えばシリコン、
アルミニウム、チタン等の窒化物ご生成しうる金属粉体
を混合し成形した後、窒素又は窒素?含有する非酸化性
雰囲気中で焼成し、金属粉体を窒素と反応させて生成す
る窒化物で結合させる。ここで用いる金属粉は100μ
以下の細かいものであり、好ましくは40μ程度以下で
ある。When manufacturing a composite sintered body of metal nitride and boron nitride, for example, silicon,
After mixing and forming metal powder that can produce nitrides such as aluminum and titanium, nitrogen or nitrogen? The metal powder is fired in a non-oxidizing atmosphere containing nitrogen, and the metal powder is bonded with nitride produced by reacting with nitrogen. The metal powder used here is 100μ
It is as fine as the following, preferably about 40 μm or less.
窒化硼素に対する金属粉体配合比率は製造する焼結体の
用途により決まり、窒化硼素の特性、特に潤滑性、耐蝕
性、熱伝導性をできる限り生かした用途には金属粉体の
比率を下げるべきであり、強度が必要とされる用途には
金属粉体の比率を上げて結合を強固にすることができる
〇実用的には窒化硼素が混合粉体の60〜85重量%と
することが好ましい。The mixing ratio of metal powder to boron nitride is determined by the use of the sintered body to be manufactured, and the ratio of metal powder should be lowered for applications that make the best use of the properties of boron nitride, especially lubricity, corrosion resistance, and thermal conductivity. Therefore, for applications where strength is required, the proportion of metal powder can be increased to strengthen the bond.Practically speaking, it is preferable that boron nitride be 60 to 85% by weight of the mixed powder. .
窒化硼素と金属粉体の予備混合は乾式又は湿式のどちら
でもよい。混合粉体に有機バインダーと分散媒?加え混
練した後一旦乾燥して顆粒状となし、次いで金型成形又
はラバープレスあるいはこれらの組み合せによって所定
形状に成形する。The premixing of boron nitride and metal powder may be done either dry or wet. Organic binder and dispersion medium in mixed powder? After addition and kneading, the mixture is once dried to form granules, and then molded into a predetermined shape by molding, rubber pressing, or a combination thereof.
成形密度を上げる為には 1000kp/7以上で加圧することが好ましい。In order to increase the molding density It is preferable to pressurize at 1000 kp/7 or more.
勿論、生密度が充分に上げられるならば、加圧成形方法
に限定されることはなくスリップキャスト法、押出法等
いずれの方法を採ることも可能である。Of course, as long as the green density can be sufficiently increased, the method is not limited to the pressure molding method, and any method such as slip casting or extrusion can be used.
得られた生成形体は有機バインダーを除去した後、窒素
又は窒素含有雰囲気中で焼成して金属粉体と窒素を反応
させ焼結体とな丁。この場合常圧焼成でよい。After removing the organic binder, the resulting green body is fired in nitrogen or a nitrogen-containing atmosphere to react with the metal powder and form a sintered body. In this case, normal pressure firing may be used.
焼成温度及び雰朋気は配合する金属によって選定するこ
とが必要であり、例えば、シリコンの場合は窒素又はア
ンモニアあるいはこれらの組み合せに雰囲気中で60〜
100 C/hrの速度で1400〜1500 Cまで
昇温し2〜10hr焼成する。It is necessary to select the firing temperature and atmosphere depending on the metal to be mixed. For example, in the case of silicon, nitrogen or ammonia or a combination thereof must be selected in the atmosphere.
The temperature is raised to 1400 to 1500 C at a rate of 100 C/hr and fired for 2 to 10 hours.
昇温速度は31の配合比率及び成形体のサイズによって
決まり、Siの配合比率が高く、成形体のサイズが大き
いけど昇温速度をゆるやかにする必要がある。The rate of temperature increase is determined by the blending ratio of 31 and the size of the molded body, and although the blending ratio of Si is high and the size of the molded body is large, the rate of temperature rise needs to be slow.
この製造法において、金属を混合し、成形し、ついで窒
化させることが重要であり、予め窒化したものを混合し
焼結しても密度は上らないし高い強度も得られない。In this manufacturing method, it is important to mix the metals, shape them, and then nitride them. Even if the metals are mixed and sintered after being nitrided in advance, the density will not increase and high strength will not be obtained.
次に金属酸化物と窒化硼素との複合焼結体を製造する方
法について説明する。この場合は前述の高充填性窒化硼
素粉体に酸化物例えば、シリカ、アルミナ、ジルコニア
等の単−酸化物又は、ムライと、スピネル等の複合m化
物粉体あるいは、これらの組み合わせたものご混合し成
形したのち、窒素又は窒素を含有する非酸化性雰囲気又
は不活性雰囲気あるいはこれらの組み合わせた雰囲気中
で焼成し、窒化硼素を酸化物で結合させて焼結体となす
。この場合も常圧焼成でよい。Next, a method for manufacturing a composite sintered body of metal oxide and boron nitride will be described. In this case, the above-mentioned highly filled boron nitride powder is mixed with an oxide such as a mono-oxide such as silica, alumina, or zirconia, or a composite m-oxide powder such as murai and spinel, or a combination thereof. After molding, it is fired in nitrogen, a non-oxidizing atmosphere containing nitrogen, an inert atmosphere, or a combination thereof to bond boron nitride with an oxide to form a sintered body. In this case as well, normal pressure firing may be used.
ここで用いる酸化物は特に純度は問わなイカ粒□度はで
きる限り細いほうが好ましく、1600C程度の焼成温
度でも充分に結合されるような性状分備えた酸化物粉体
ご選ぶ。具体的には平均粒子径で数ミクロンからサブミ
クロンの粉体P用いることが必要である。酸化物の場合
は金属で混合、成形し、その後に酸化する方法はとれな
い。その理由は窒化硼素自体が酸化するからである。The purity of the oxide used here does not matter, but it is preferable that the squid grain size be as fine as possible, and an oxide powder is selected that has properties that allow sufficient bonding even at a firing temperature of about 1600C. Specifically, it is necessary to use powder P with an average particle diameter of several microns to submicrons. In the case of oxides, it is not possible to mix and form metals and then oxidize them. The reason for this is that boron nitride itself is oxidized.
16ooC程度の焼成湿度で焼結可能な酸化物粉体3選
ぶ理由は、焼成温度が間くなると焼結に特殊な炉が必要
になるのと、エネルギーコストも高くなるのに加えて焼
成温度を高くすると窒化硼素複合焼結体が孝張して逆に
密度を下げることも起きうるからである。The reason for choosing oxide powder 3, which can be sintered at a firing humidity of about 16ooC, is that if the firing temperature is low, a special furnace is required for sintering, and the energy cost is also high. This is because if the temperature is increased, the boron nitride composite sintered body becomes bulky and the density may be lowered.
窒化硼素に対する酸化物粉体配合比率は製造する焼結体
の用途によって決まる。窒化硼素の特性である潤滑性、
耐蝕性、熱伝導性をできる限り生かした用途には酸化物
粉体の比率を下げるべきであり強度が要求される用途に
は酸化物粉体の比率を上げて結合ご強固にすることがで
きる。実用的には窒化硼素が混合粉体の70〜95重量
%とすることが好ましい。The blending ratio of oxide powder to boron nitride is determined by the use of the sintered body to be manufactured. Lubricity, which is a characteristic of boron nitride,
For applications that take advantage of corrosion resistance and thermal conductivity as much as possible, the ratio of oxide powder should be lowered, and for applications that require strength, the ratio of oxide powder can be increased to strengthen the bond. . Practically speaking, it is preferable that boron nitride accounts for 70 to 95% by weight of the mixed powder.
窒化硼素と酸化物粉体を混線、成形する方法条件は前述
の金属窒化物結合窒化硼素焼結体の場合とほぼ同じであ
る。The conditions of the method for mixing and molding boron nitride and oxide powder are almost the same as in the case of the metal nitride bonded boron nitride sintered body described above.
本発明の方法により得られた六方晶窒化硼素の常圧高密
度複合焼結体は前述のようにかさ密度が理論密度の70
以上で、焼結体が実用的に通常必要とする条件を具えて
いる。As mentioned above, the normal pressure high density composite sintered body of hexagonal boron nitride obtained by the method of the present invention has a bulk density of 70% of the theoretical density.
As described above, the sintered body satisfies the conditions normally required for practical use.
なお前記の複合体の理論密度とは次のようにして求める
。即ち複合体がAとBとにより構成されている場合Aの
真比重をα、Bの真比重をbとし、rL3焼結体中のA
の重量割合を示すものとすると、
複合体の理論密度は
ルα+(1−n)hとなる。The theoretical density of the above-mentioned composite is determined as follows. That is, when the composite is composed of A and B, the true specific gravity of A is α, the true specific gravity of B is b, and A in the rL3 sintered body
The theoretical density of the composite is α+(1-n)h.
この理論密度と相対密度とは次のような関係にある。This theoretical density and relative density have the following relationship.
効果
本発明においては振動法かさ密度が少なくともo、sy
、、’Crdである高充填外六方晶系窒化ホウ素を用い
ることにより従来の如く高圧焼成を必要とせず、常圧焼
成により高密度で高強度の窒化ホウ素複合焼結体の!I
IS!遣が可能となった。このための複雑な形状の成形
体ご後加工をすることなくへ造が可能となり、後加工の
ためのロスもなくなった。更に焼結炉や黒鉛ダイスもと
くに大型化を必要とせず実用上の効果は非常に大きいO
〔実施例〕
実施例1
市販の高純度窒化硼素粉体に酸化物及び弗化物ベースで
5%となるように炭酸カルシウム、炭酸マグネシウム、
炭酸バリウム及び弗化カルシウムを添加混合した。これ
K 1000に、p/d テ加圧成形し黒鉛るつぼに入
れ、高周波加熱炉に挿入し窒素ガスを流しながら2CI
I:lot::で2時間焼成した。冷却後炉内より取り
出した成形物をアルミナ製ボールミルで粉砕し、40メ
ツシユの篩で篩分けた。得られた窒化硼素粉体の粒度は
200μ以下で、平均粒径38μであり振動法かさ密度
は0.89P/cr/Lであった。Effect In the present invention, the vibration method bulk density is at least o, sy
By using highly filled outer hexagonal boron nitride, which is 'Crd, high-pressure firing is not required as in the past, and high-density and high-strength boron nitride composite sintered bodies can be produced by normal pressure firing! I
IS! It became possible to send For this purpose, it is possible to form a complex shaped molded body without post-processing, and there is no loss due to post-processing. Furthermore, the sintering furnace and graphite die do not need to be particularly large, and the practical effect is very large. Calcium carbonate, magnesium carbonate,
Barium carbonate and calcium fluoride were added and mixed. This was pressure-molded with p/d Te in K1000, placed in a graphite crucible, inserted into a high frequency heating furnace, and heated with 2CI while flowing nitrogen gas.
It was baked for 2 hours at I:lot::. After cooling, the molded product taken out from the furnace was ground in an alumina ball mill and sieved through a 40-mesh sieve. The particle size of the obtained boron nitride powder was 200 μm or less, the average particle size was 38 μm, and the vibration method bulk density was 0.89 P/cr/L.
このようにして得られた高充填性窒化硼素粉体の60重
量%にS1含有量98重量%以上で平均粒子径が2μの
シリコン粉体を40重量%配合し、アルミナ製ボールミ
ルにて1時間混合した。この混合粉体に有機バインダー
と有機溶媒を添加し更にボールミルにて1時間混練した
。40% by weight of silicon powder with an S1 content of 98% by weight or more and an average particle size of 2μ was mixed with 60% by weight of the highly filled boron nitride powder obtained in this way, and the mixture was processed in an alumina ball mill for 1 hour. Mixed. An organic binder and an organic solvent were added to this mixed powder, and the mixture was further kneaded in a ball mill for 1 hour.
得られたスラリーは乾燥により顆粒とした。次いで、こ
れを一旦金型により300kp/cr/lで予備成形し
たのち、ラバープレスを用いて2000kp/cIft
で成形した。成形体を電気加熱式密閉炉に挿入し、窒素
ガス?流しながら常圧で1時間に50Cの速度で150
0Cまで昇温させ、5時間保持したのち炉内で冷却し取
り出した。The obtained slurry was dried to form granules. Next, this was once preformed with a mold at 300kp/cr/l, and then 2000kp/cIf using a rubber press.
Molded with. Insert the molded body into an electrically heated closed furnace and heat it with nitrogen gas. 150 at a rate of 50C per hour at normal pressure while flowing.
The temperature was raised to 0C and held for 5 hours, then cooled in the furnace and taken out.
得られた焼結体の密度は2.15547d (相対密度
は78%)であった。焼結体より切り出した試験片(3
X4X35+n)の6点曲げ強度は450〜490 k
g/Crdであった。The density of the obtained sintered body was 2.15547 d (relative density 78%). Test piece cut out from the sintered body (3
The 6-point bending strength of X4X35+n) is 450 to 490 k
g/Crd.
比軟例1
振動法かざ密度が0゜27 fi’/cI/lである市
販の窒化硼素粉体を用いた外は実施例1と同様にして窒
化硼素複合焼結体を作製した。得られた焼結体の密度は
1.81/m(相対密度は65%)であった。実施例1
と同様にして得た試験片の3点曲げ強度は235にノ/
Cr11であった。Ratio Soft Example 1 A boron nitride composite sintered body was produced in the same manner as in Example 1, except that commercially available boron nitride powder having a vibration method density of 0°27 fi'/cI/l was used. The density of the obtained sintered body was 1.81/m (relative density: 65%). Example 1
The three-point bending strength of the test piece obtained in the same manner as 235/
It was Cr11.
実施例2〜6
実施例1と同じ高充填性窒化硼素粉体とシリコン粉体を
用いて配合比率を変えた焼結体を実施例1と同様にして
作製した。得られた焼結体の密度を強度を表−1に示す
。Examples 2 to 6 Sintered bodies were produced in the same manner as in Example 1 using the same highly filled boron nitride powder and silicon powder as in Example 1 but with different blending ratios. Table 1 shows the density and strength of the obtained sintered body.
表1
実施例7
実施例1と同じ高充填性窒化硼素粉体の60重量%に平
均粒子径が5μのアルミニウム粉体を40重量%配合し
実施例1と同様にして混合成形し焼成した。Table 1 Example 7 60% by weight of the same highly filled boron nitride powder as in Example 1 was mixed with 40% by weight of aluminum powder having an average particle size of 5 μm, and the mixture was molded and fired in the same manner as in Example 1.
得られた焼結体の密度は2.07 P/m (相対密度
75%)であった。焼結体より切り出した試験片(3X
4X35闘〕の3点曲げ強度は562に、f!/crI
であった。The density of the obtained sintered body was 2.07 P/m (relative density 75%). A test piece cut out from the sintered body (3X
The three-point bending strength of the 4X35 fight is 562, f! /crI
Met.
実施例8
実施例1と同様にして得た高充填性窒化硼素粉体の95
重量%に平均粒子径が0゜2μの高純度ムライト粉体を
5重量%配合しボールミルにて1時間予備混合した後、
有機バインダー水溶液を添加して更にボールミルにて1
時間混練した。Example 8 Highly filled boron nitride powder obtained in the same manner as in Example 1.
5% by weight of high-purity mullite powder with an average particle diameter of 0°2μ was mixed in a ball mill for 1 hour, and then
Add an organic binder aqueous solution and further mill in a ball mill.
Kneaded for hours.
得られたスラリーを乾燥し顆粒とした。次いでこれを一
旦金型により300kp/7で予備成形したのちラバー
プレスを用いて2000kf/Cdで成形した。成形体
を電気加熱式密閉炉に挿入し窒素ガスを流しながら常圧
で1時間に15DCの速度で1500trまで昇温させ
5時間保持したのち炉内で冷却し、取り出した。The resulting slurry was dried and made into granules. Next, this was once preformed using a mold at 300kf/7, and then molded using a rubber press at 2000kf/Cd. The molded body was inserted into an electrically heated closed furnace, and the temperature was raised to 1500 tr at a rate of 15 DC per hour under normal pressure while flowing nitrogen gas, held for 5 hours, cooled in the furnace, and taken out.
得られた焼結体の密度は1.875’/d(相対密度8
1%〕であった。焼結体より切り出した試験片(3X
4 X 35 yrm )の3点曲げ強度は178ks
+/mであった。The density of the obtained sintered body was 1.875'/d (relative density 8
1%]. A test piece cut out from the sintered body (3X
4 x 35 yr) 3-point bending strength is 178ks
+/m.
Claims (4)
くとも一種を含み、かさ密度が理論密度の70%以上で
ある六方晶窒化硼素の常圧高密度複合焼結体。(1) An atmospheric pressure high-density composite sintered body of hexagonal boron nitride containing at least one of a metal nitride and a metal oxide, and having a bulk density of 70% or more of the theoretical density.
重量%以下である特許請求の範囲第1項の六方晶窒化硼
素の常圧高密度複合焼結体。(2) At least one of metal oxides and metal nitrides contains 60%
% or less by weight of hexagonal boron nitride as claimed in claim 1.
である高充填性六方晶窒化硼素粉体に、窒化物生成可能
金属粉体の少なくとも1種を混合し、非酸化性窒素ふん
囲気において常圧焼成することを特徴とする六方晶窒化
硼素の常圧高密度複合焼結体の製造方法。(3) Bulk density by vibration method is at least 0.5 g/cm^3
A conventional method for producing hexagonal boron nitride, which is characterized in that a highly packed hexagonal boron nitride powder is mixed with at least one metal powder capable of forming nitrides, and the mixture is sintered at normal pressure in a non-oxidizing nitrogen atmosphere. A method for producing a compressed high-density composite sintered body.
である高充填性六方晶窒化硼素粉体に金属酸化物粉体の
少なくとも1種を混合し、不活性ふん囲気において常圧
焼成することを特徴とする六方晶窒化硼素の常圧高密度
複合焼結体の製造方法。(4) Bulk density by vibration method is at least 0.5 g/cm^3
Atmospheric pressure high-density composite sintering of hexagonal boron nitride characterized by mixing at least one kind of metal oxide powder with highly packed hexagonal boron nitride powder and sintering the mixture at normal pressure in an inert atmosphere. Method for producing solids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61182710A JPS6340771A (en) | 1986-08-05 | 1986-08-05 | Normal pressure high density composite sintered body of cubic boron nitride and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61182710A JPS6340771A (en) | 1986-08-05 | 1986-08-05 | Normal pressure high density composite sintered body of cubic boron nitride and manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6340771A true JPS6340771A (en) | 1988-02-22 |
Family
ID=16123079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61182710A Pending JPS6340771A (en) | 1986-08-05 | 1986-08-05 | Normal pressure high density composite sintered body of cubic boron nitride and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6340771A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01261279A (en) * | 1988-04-08 | 1989-10-18 | Nippon Steel Corp | Production of bn-aln-based composite sintered form |
JP2010099779A (en) * | 2008-10-23 | 2010-05-06 | Saint-Gobain Kk | Super-abrasive |
-
1986
- 1986-08-05 JP JP61182710A patent/JPS6340771A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01261279A (en) * | 1988-04-08 | 1989-10-18 | Nippon Steel Corp | Production of bn-aln-based composite sintered form |
JP2010099779A (en) * | 2008-10-23 | 2010-05-06 | Saint-Gobain Kk | Super-abrasive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1226303A (en) | Silicon carbide refractories having modified silicon nitride bond | |
US5773733A (en) | Alumina-aluminum nitride-nickel composites | |
JPS6350311B2 (en) | ||
JPS60501852A (en) | Method for producing densified silicon nitride/oxynitride composites | |
US4500644A (en) | Preparation and composition of sialon grain and powder | |
JPS6340771A (en) | Normal pressure high density composite sintered body of cubic boron nitride and manufacture | |
JPH0569765B2 (en) | ||
JPS5891065A (en) | Manufacture of silicon carbide ceramic sintered body | |
JPH0253388B2 (en) | ||
JPH01179763A (en) | Production of combined sintered body of boron nitride and silicon nitride | |
JPH01131066A (en) | Boron nitride based compact calcined under ordinary pressure | |
JPS605550B2 (en) | Manufacturing method of silicon carbide sintered body | |
JPS6144770A (en) | Manufacture of silicon nitride sintered body | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JPS60186479A (en) | Manufacture of high heat conductivity aluminum nitride sintered body | |
JPS6034515B2 (en) | Manufacturing method of silicon carbide ceramic sintered body | |
JPS6374978A (en) | Ceramic composite body | |
JPS60161368A (en) | Manufacture of high strength calcium phosphate sintered body | |
JPH01103960A (en) | Production of boron nitride sintered compact | |
JPH02233560A (en) | High-strength calcined sialon-based compact | |
JPH06279124A (en) | Production of silicon nitride sintered compact | |
JPH03115109A (en) | Boron nitride powder | |
JPS6340769A (en) | Manufacture of high density boron nitride normal pressure sintered body | |
JPH01157467A (en) | Silicon nitride powder | |
JPS63147867A (en) | Manufacture of silicon nitride sintered body |