JPS63308366A - Semiconductor integrated circuit - Google Patents
Semiconductor integrated circuitInfo
- Publication number
- JPS63308366A JPS63308366A JP62145630A JP14563087A JPS63308366A JP S63308366 A JPS63308366 A JP S63308366A JP 62145630 A JP62145630 A JP 62145630A JP 14563087 A JP14563087 A JP 14563087A JP S63308366 A JPS63308366 A JP S63308366A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- insulating film
- gate insulating
- semiconductor substrate
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 239000004020 conductor Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
i発明に半導体し積回路に関し、特にMO8容量を俯え
た半導体集積回路に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor integrated circuit, and particularly relates to a semiconductor integrated circuit with a high MO8 capacity.
従来からMO8容kd2極間の電位差によりとの容量値
が変化する事が知られている。従ってこの容量が変わっ
てσ困るスイッチドキャパシタフィルタ等のスイッチド
キャパシタ回路(以下SC回路と記する。)にrsMO
8容量は使わず第3図のような2#の多結晶シリコン電
極3.4間容量。It has been known that the capacitance value of MO8 and kd changes depending on the potential difference between the two electrodes. Therefore, rsMO is applied to switched capacitor circuits (hereinafter referred to as SC circuits) such as switched capacitor filters where this capacitance changes and σ becomes a problem.
8 capacitance is not used, but the capacitance between 2# polycrystalline silicon electrodes 3 and 4 as shown in Figure 3.
あるいは第4図のような多結晶シリコン11億6−アル
ミニウム電極7間の容量を使っていた。Alternatively, the capacitance between the polycrystalline silicon 116 and the aluminum electrode 7 as shown in FIG. 4 was used.
上述した従来の半導体集積回路は、容量素子として2層
の多結晶シリコン醒極間容量又は多結晶シリコン電極と
アルミニウム寛極間の容量を使用しているため、工程が
複雑になる欠点がある。又。The above-mentioned conventional semiconductor integrated circuit uses a capacitance between two layers of polycrystalline silicon electrodes or a capacitance between a polycrystalline silicon electrode and an aluminum electrode as a capacitor element, and therefore has the disadvantage that the process is complicated. or.
後者の場合誘電体として使う多結晶シリコン電極とアル
ミニウム′電極間の層間絶縁膜が厚くなるため、容量値
が小さくなる(又t′i′積度が低くなる)という欠点
もある。In the latter case, since the interlayer insulating film between the polycrystalline silicon electrode used as a dielectric and the aluminum electrode becomes thick, there is also a drawback that the capacitance value becomes small (and the t'i' product becomes low).
本発明の半導体集積回路は、第1導電型半導体基板表面
に設けられたゲート絶縁膜と、前記ゲート絶縁映上に設
けられた導電膜と、前記第14を型半導体基板表面の明
記4亀膜山下部に隣接して選択的に設けられた第2導電
型領域とを含んでなり、実質的にPII−形状の舶1の
MO8O8容量第2のMO,9容量が互いに異なる向き
に並列接続されてなる容量素子を有するというものであ
る。The semiconductor integrated circuit of the present invention includes a gate insulating film provided on the surface of the first conductive type semiconductor substrate, a conductive film provided on the gate insulating film, and a fourth insulating film provided on the surface of the fourteenth conductive type semiconductor substrate. a second conductivity type region selectively provided adjacent to the lower part of the mountain, and the MO8O8 capacitors of the substantially PII-shaped vessel 1, the second MO8 capacitors, and the 9 capacitors are connected in parallel in mutually different directions. It has a capacitive element consisting of:
次に1本発明の実施例について図面を参照して説、明す
る。Next, an embodiment of the present invention will be described and explained with reference to the drawings.
&1図σ本発明の第1の実施例の主要部を示す牛纏体チ
雫ブの断面図、第2図は回路図である。&1 Figure σ is a sectional view of a cow wrap tip showing the main parts of the first embodiment of the present invention, and Figure 2 is a circuit diagram.
この実施例σ、シリコンからなるp型半導体基板1衣I
11[Tに設けられたゲート絶鍬暎1O−1と。In this embodiment, σ is a p-type semiconductor substrate made of silicon.
11[The gate provided at T is 10-1.
ゲートP縁144110−1上に設けられた多結晶シリ
コンからなる導電膜11−1と、p型半導体基板表面の
導電膜11−1直下部に隣接して選択的に設けられたn
+型領領域81.8−2とを含んでなる第1のMO8容
量13及びこれと実質的に同一形状の第2のMO8容量
14(ゲートP縁膜10−2.導電膜11−2#fl+
型領域8−3゜8−4カ・らなる)が互いに異なる向き
に並列接続されてなる容量素子を有するというものであ
る。A conductive film 11-1 made of polycrystalline silicon provided on the gate P edge 144110-1 and an
A first MO8 capacitor 13 including a + type region 81.8-2 and a second MO8 capacitor 14 having substantially the same shape as the first MO8 capacitor 13 (gate P edge film 10-2, conductive film 11-2#) fl+
The mold regions 8-3 and 8-4 have capacitive elements connected in parallel in different directions.
そうして第1.第2のMO8容量ぽいずれも印加電圧が
00状態で表面にチャネルの存在する。いわばデプレヴ
ジッン型とする。なお8−1と8−2.8−3と8−4
riそれぞれ連部されて閉じた領域を形成していてもよ
いし、アルばニウム電極で接続されていてもよい。又1
図示しないが、4亀[11−1に&続しているアルミニ
ウム電極12−2は、n+型領領域83に接続している
アルミニウム1極12−3と接続され、同様Kn+型領
域8−1に接続しているアルばニウム電極12−1に4
Yi膜11−2に接続しているアルばニウム電極12−
4と接続されている。Then the first one. A channel exists on the surface of each of the second MO8 capacitors when the applied voltage is 00. In other words, it is a deprevuzine type. Furthermore, 8-1 and 8-2.8-3 and 8-4
ri may be connected to each other to form a closed region, or may be connected by an aluminum electrode. Again 1
Although not shown, the aluminum electrode 12-2 connected to the fourth electrode 11-1 is connected to the aluminum 1 pole 12-3 connected to the n+ type region 83, and similarly the aluminum electrode 12-2 connected to the Kn+ type region 8-1. 4 to the aluminum electrode 12-1 connected to
Albanium electrode 12- connected to Yi film 11-2
4 is connected.
この実施例の第1のMO8答量l3を例としてMO8O
8容量−圧依存性を説明する。Taking the first MO8 answer amount l3 of this embodiment as an example, MO8O
8. Explain volume-pressure dependence.
MOS容」は#*雰字#、導電膜11−1に正当りの容
量Cox ri
’ox’。The MOS capacity is #*character #, and the conductive film 11-1 has a proper capacitance Coxri 'ox'.
Cox=−
Ox
但し、 t6zriゲート絶縁[10−1の誘電率、6
0は真空の誘電率、tOxtrJゲート絶縁膜厚、で表
わされる。Cox = - Ox where t6zri gate insulation [permittivity of 10-1, 6
0 is expressed by the dielectric constant of vacuum, tOxtrJ, which is the thickness of the gate insulating film.
しかし負極性の電圧が加わると表面にはホールが集まり
空乏状態になる。このようになるとゲート絶縁撲容量C
oxと直列に空乏層容量C+>が入る事になり、導電膜
11−1に印加される電圧Vが0から弁になるにつれて
容量が減っていく。さらに負極正の電圧を加えるとつい
には表面がp十型に反転してしまう。このようになると
空乏r@ハそれはど顕著な変化をしなくなりほぼ一定値
になる。However, when a negative voltage is applied, holes gather on the surface and become depleted. In this case, the gate insulation capacitance C
A depletion layer capacitance C+> is inserted in series with ox, and the capacitance decreases as the voltage V applied to the conductive film 11-1 changes from 0 to a valve. When a negative and positive voltage is further applied, the surface is finally inverted to a p-type. When this happens, the depletion r@does not change significantly and remains at a nearly constant value.
第5図は以上に説明したMO8容量の電圧依存性を示す
C−■特性図である。FIG. 5 is a C-■ characteristic diagram showing the voltage dependence of the MO8 capacitance explained above.
第6図は第1の実施例の容量素子の電圧依存性を示すC
−■特性図である。FIG. 6 shows the voltage dependence of the capacitive element of the first embodiment.
−■Characteristic diagram.
第1のMO8容量のC−■特性は第5図に示すものと同
じであるから一点鎖線で表わした凹線となる。次にこれ
と逆極性の第2のM 08容量のC−V%性riO点を
中心に第1のMO8容量のC−7曲線を逆にした形つま
り二点鎖線で表わした曲線となる。従って合計された容
量は実線で表わされるように0点を中心に左右対称とな
る。これにより0点附近のバイアス電圧による影響は大
きく減る事になる。Since the C-■ characteristic of the first MO8 capacitor is the same as that shown in FIG. 5, it is a concave line represented by a dashed line. Next, the C-7 curve of the first MO8 capacity is inverted, centering on the CV% riO point of the second M08 capacity of opposite polarity, that is, the curve is represented by a two-dot chain line. Therefore, the total capacity is symmetrical about the zero point, as shown by the solid line. This greatly reduces the influence of bias voltage near the 0 point.
第7図ri第2の実施例の主要部の回路図である。FIG. 7 is a circuit diagram of the main part of the second embodiment.
拡散時のパターンのオーバーエツチングによって容量の
相対比が影響を受けない様に、単位容量を複数個使った
場合である。単位容−Jl(15−1〜15−5)を5
個並列に接続したWlのMO8O8容量さらに5個の単
位容量を第一のMO8O8容量して逆極性にして並列に
接続した第2のMO8容量を有している。その第1.第
2のMO8容量を並列接続して1つの容量素子とする。This is a case where a plurality of unit capacitances are used so that the relative ratio of capacitances is not affected by pattern overetching during diffusion. Unit volume - Jl (15-1 to 15-5) to 5
The MO8O8 capacitor of Wl is connected in parallel, and further has a second MO8 capacitor in which five unit capacitors are connected in parallel with the first MO8O8 capacitor with opposite polarity. The first one. The second MO8 capacitors are connected in parallel to form one capacitive element.
単位容1it15−1〜15−10は実質的に−J−の
形状、材質を有している。The unit volumes 1it15-1 to 15-10 have substantially the shape and material of -J-.
この容量の構成により、第6図と同様に0点附近のバイ
アス電圧による影響が大きく減ることは第1の実施例と
同様である。Similar to the first embodiment, this capacitance configuration greatly reduces the influence of the bias voltage near the 0 point, as shown in FIG.
なお、単位容量の数は、10個に限らず、製造プロセス
や容i!2子の精度を考慮して適宜選べはよい。Note that the number of unit capacities is not limited to 10, and may vary depending on the manufacturing process and capacity. You can choose as appropriate considering the accuracy of the two children.
以上訣明したように本発明は第1.第2のMO8容量を
逆並列に接続して容量素子を構成する事により、従来に
較べ大幅に容量値の電圧依存性を軽減できるので、尚精
度の回路に使用でき、容量素子を有する牛導体#!積回
路のコスト低減又は集積度の改善ができる効果がある。As explained above, the present invention has the first aspect. By connecting the second MO8 capacitor in antiparallel to form a capacitive element, the voltage dependence of the capacitance value can be significantly reduced compared to the conventional method. #! This has the effect of reducing the cost of integrated circuits or improving the degree of integration.
第1図及び第2図はそれぞれ本発明の第1の実施例の主
要部を示す牛導体チップの断面図及び回路図、第3図及
び第4図はそれぞれ第1.第2の従来例の主要部を示す
牛導体チップの断面図、第5図riMO8h量0C−V
特性図、第6図は第1の実施例の容量素子のC−■特性
図、第7図は本発明の第2の実施例の主要部の回路図で
ある。
1・・・・・・p型半導体基板、2・・・・・・層間絶
縁膜、3゜4・・・・・・多結晶シリコン電極%5−1
.5−2・・・・・・アルミニウム電極、6・・・・・
・多結晶シリコン電極。
7・・・・・・アルミニウム電極、8−1〜8−4・・
・・・・n+型領領域9・・・・・・フィールド絶縁膜
、10−1.10−2・・・・・・ゲート絶縁膜、11
−i 、 11’−2・・・・・・導電膜%12−1〜
12−4・・・・・・アルミニウム電極、13・・・・
・・第1のMO8O8容量4・・・・・・第2のMOS
容量、15−1〜15−10・・・・・・単位容量。
代理人 弁理士 内 原 音
第7[!1
月ZIID
第3図
應祁
り カD 電 瓦 V
第5 図
工P La 電 圧
1四 6 図
第7図1 and 2 are a sectional view and a circuit diagram of a conductor chip showing the main parts of the first embodiment of the present invention, respectively, and FIGS. A cross-sectional view of the cow conductor chip showing the main part of the second conventional example, Fig. 5 riMO8h amount 0C-V
FIG. 6 is a C-■ characteristic diagram of the capacitive element of the first embodiment, and FIG. 7 is a circuit diagram of the main part of the second embodiment of the present invention. 1...P-type semiconductor substrate, 2...Interlayer insulating film, 3゜4...Polycrystalline silicon electrode%5-1
.. 5-2... Aluminum electrode, 6...
・Polycrystalline silicon electrode. 7... Aluminum electrode, 8-1 to 8-4...
...N+ type region 9...Field insulating film, 10-1.10-2...Gate insulating film, 11
-i, 11'-2... Conductive film %12-1~
12-4... Aluminum electrode, 13...
...First MO8O8 Capacity 4...Second MOS
Capacity, 15-1 to 15-10...Unit capacity. Agent Patent Attorney Uchihara Oto No. 7 [! 1 Month ZIID Figure 3 燉熁り KaD Electric Tile V 5th Drawing P La Voltage 14 6 Figure 7
Claims (1)
、前記ゲート絶縁膜上に設けられた導電膜と、前記第1
導電型半導体基板表面の前記導電膜直下部に隣接して選
択的に設けられた第2導電型領域とを含んでなり、実質
的に同一形状の第1のMOS容量及び第2のMOS容量
が互いに異なる向きに並列接続されてなる容量素子を有
することを特徴とする半導体集積回路。a gate insulating film provided on the surface of the first conductivity type semiconductor substrate; a conductive film provided on the gate insulating film;
a second conductivity type region selectively provided immediately below the conductive film on the surface of the conductive type semiconductor substrate, the first MOS capacitor and the second MOS capacitor having substantially the same shape; A semiconductor integrated circuit characterized by having capacitive elements connected in parallel in different directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62145630A JPS63308366A (en) | 1987-06-10 | 1987-06-10 | Semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62145630A JPS63308366A (en) | 1987-06-10 | 1987-06-10 | Semiconductor integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63308366A true JPS63308366A (en) | 1988-12-15 |
JPH0577340B2 JPH0577340B2 (en) | 1993-10-26 |
Family
ID=15389448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62145630A Granted JPS63308366A (en) | 1987-06-10 | 1987-06-10 | Semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63308366A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04370965A (en) * | 1991-06-20 | 1992-12-24 | Fujitsu Ltd | Semiconductor device |
US5631492A (en) * | 1994-01-21 | 1997-05-20 | Motorola | Standard cell having a capacitor and a power supply capacitor for reducing noise and method of formation |
WO2007004258A1 (en) * | 2005-06-30 | 2007-01-11 | Spansion Llc | Semiconductor device and fabrication method thereof |
JP2008028397A (en) * | 2006-07-21 | 2008-02-07 | Integrant Technologies Inc | Capacitor using parallel varactors |
JP2009194891A (en) * | 2008-01-15 | 2009-08-27 | Toshiba Corp | High frequency switching circuit |
WO2014193503A1 (en) * | 2013-05-28 | 2014-12-04 | Newlans, Inc. | High linearity variable capacitor array |
US9086709B2 (en) | 2013-05-28 | 2015-07-21 | Newlans, Inc. | Apparatus and methods for variable capacitor arrays |
US9362882B1 (en) | 2015-01-23 | 2016-06-07 | Tdk Corporation | Apparatus and methods for segmented variable capacitor arrays |
US9461609B2 (en) | 2014-12-03 | 2016-10-04 | Tdk Corporation | Apparatus and methods for high voltage variable capacitor arrays with feed-forward capacitors |
US9595942B2 (en) | 2015-03-30 | 2017-03-14 | Tdk Corporation | MOS capacitors with interleaved fingers and methods of forming the same |
US9671812B2 (en) | 2014-12-17 | 2017-06-06 | Tdk Corporation | Apparatus and methods for temperature compensation of variable capacitors |
US9680426B2 (en) | 2015-03-27 | 2017-06-13 | Tdk Corporation | Power amplifiers with tunable notches |
US9735752B2 (en) | 2014-12-03 | 2017-08-15 | Tdk Corporation | Apparatus and methods for tunable filters |
US9973155B2 (en) | 2015-07-09 | 2018-05-15 | Tdk Corporation | Apparatus and methods for tunable power amplifiers |
US10042376B2 (en) | 2015-03-30 | 2018-08-07 | Tdk Corporation | MOS capacitors for variable capacitor arrays and methods of forming the same |
US10073482B2 (en) | 2015-03-30 | 2018-09-11 | Tdk Corporation | Apparatus and methods for MOS capacitor structures for variable capacitor arrays |
US10382002B2 (en) | 2015-03-27 | 2019-08-13 | Tdk Corporation | Apparatus and methods for tunable phase networks |
-
1987
- 1987-06-10 JP JP62145630A patent/JPS63308366A/en active Granted
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04370965A (en) * | 1991-06-20 | 1992-12-24 | Fujitsu Ltd | Semiconductor device |
US5631492A (en) * | 1994-01-21 | 1997-05-20 | Motorola | Standard cell having a capacitor and a power supply capacitor for reducing noise and method of formation |
WO2007004258A1 (en) * | 2005-06-30 | 2007-01-11 | Spansion Llc | Semiconductor device and fabrication method thereof |
JPWO2007004258A1 (en) * | 2005-06-30 | 2009-01-22 | スパンション エルエルシー | Semiconductor device and manufacturing method thereof |
US8076753B2 (en) | 2005-06-30 | 2011-12-13 | Spansion Llc | Semiconductor device and method of manufacturing the same |
US8642422B2 (en) | 2005-06-30 | 2014-02-04 | Spansion Llc | Method of manufacturing a semiconductor device |
US8698280B2 (en) | 2005-06-30 | 2014-04-15 | Spansion Llc | Capacitive element using MOS transistors |
JP2008028397A (en) * | 2006-07-21 | 2008-02-07 | Integrant Technologies Inc | Capacitor using parallel varactors |
JP2009194891A (en) * | 2008-01-15 | 2009-08-27 | Toshiba Corp | High frequency switching circuit |
US9449749B2 (en) | 2013-05-28 | 2016-09-20 | Tdk Corporation | Signal handling apparatus for radio frequency circuits |
WO2014193503A1 (en) * | 2013-05-28 | 2014-12-04 | Newlans, Inc. | High linearity variable capacitor array |
US9086709B2 (en) | 2013-05-28 | 2015-07-21 | Newlans, Inc. | Apparatus and methods for variable capacitor arrays |
US9110483B2 (en) | 2013-05-28 | 2015-08-18 | Newlans, Inc. | Apparatus and methods for variable capacitor arrays |
US9201442B2 (en) | 2013-05-28 | 2015-12-01 | Newlans, Inc. | Apparatus and methods for variable capacitor arrays |
CN105359409A (en) * | 2013-05-28 | 2016-02-24 | 纽伦斯股份有限公司 | High linearity variable capacitor array |
US9658636B2 (en) | 2013-05-28 | 2017-05-23 | Tdk Corporation | Apparatus and methods for variable capacitor arrays |
US9019007B2 (en) | 2013-05-28 | 2015-04-28 | Newlans, Inc. | High linearity variable capacitor array |
US9570222B2 (en) | 2013-05-28 | 2017-02-14 | Tdk Corporation | Vector inductor having multiple mutually coupled metalization layers providing high quality factor |
US9461610B2 (en) | 2014-12-03 | 2016-10-04 | Tdk Corporation | Apparatus and methods for high voltage variable capacitors |
US9515631B2 (en) | 2014-12-03 | 2016-12-06 | Tdk Corporation | Apparatus and methods for high voltage variable capacitor arrays with body-to-gate diodes |
US9461609B2 (en) | 2014-12-03 | 2016-10-04 | Tdk Corporation | Apparatus and methods for high voltage variable capacitor arrays with feed-forward capacitors |
US9673774B2 (en) | 2014-12-03 | 2017-06-06 | Tdk Corporation | Apparatus and methods for high voltage variable capacitor arrays with body biasing resistors |
US9634634B2 (en) | 2014-12-03 | 2017-04-25 | Tdk Corporation | Apparatus and methods for high voltage variable capacitor arrays with drift protection resistors |
US9735752B2 (en) | 2014-12-03 | 2017-08-15 | Tdk Corporation | Apparatus and methods for tunable filters |
US9671812B2 (en) | 2014-12-17 | 2017-06-06 | Tdk Corporation | Apparatus and methods for temperature compensation of variable capacitors |
US9362882B1 (en) | 2015-01-23 | 2016-06-07 | Tdk Corporation | Apparatus and methods for segmented variable capacitor arrays |
US9680426B2 (en) | 2015-03-27 | 2017-06-13 | Tdk Corporation | Power amplifiers with tunable notches |
US10382002B2 (en) | 2015-03-27 | 2019-08-13 | Tdk Corporation | Apparatus and methods for tunable phase networks |
US9595942B2 (en) | 2015-03-30 | 2017-03-14 | Tdk Corporation | MOS capacitors with interleaved fingers and methods of forming the same |
US10042376B2 (en) | 2015-03-30 | 2018-08-07 | Tdk Corporation | MOS capacitors for variable capacitor arrays and methods of forming the same |
US10073482B2 (en) | 2015-03-30 | 2018-09-11 | Tdk Corporation | Apparatus and methods for MOS capacitor structures for variable capacitor arrays |
US9973155B2 (en) | 2015-07-09 | 2018-05-15 | Tdk Corporation | Apparatus and methods for tunable power amplifiers |
Also Published As
Publication number | Publication date |
---|---|
JPH0577340B2 (en) | 1993-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63308366A (en) | Semiconductor integrated circuit | |
JP3057661B2 (en) | Semiconductor device | |
JPH0260163A (en) | Semiconductor memory and manufacture thereof | |
US4197554A (en) | Monolithically integrated circuit arrangement comprising one-transistor storage elements | |
EP0102178B1 (en) | Semiconductor memory device | |
JPH02228063A (en) | Radio frequency integrated circuit channel capacitor | |
JPS58213460A (en) | Semiconductor integrated circuit device | |
JPH06103735B2 (en) | Semiconductor integrated circuit | |
JPH0744256B2 (en) | Semiconductor integrated circuit | |
JPS63108763A (en) | Semiconductor integrated circuit | |
JPS6244427B2 (en) | ||
JP2563456B2 (en) | MIS type capacitive element | |
JPH0473960A (en) | Integrated circuit | |
JPS61170057A (en) | Vertical type capacitor | |
JPH1197626A (en) | Semiconductor device | |
JPH0319267A (en) | Semiconductor integrated circuit device | |
JPH02240958A (en) | Semiconductor integrated circuit device | |
JP2002009183A (en) | Semiconductor storage device and its manufacturing method | |
JPH02126665A (en) | Semiconductor device | |
JPH0745789A (en) | Mos capacitance of semiconductor device | |
JPS61224348A (en) | Semiconductor integrated circuit device | |
JPS6142949A (en) | Semiconductor memory device | |
JPS59105351A (en) | Manufacture of semiconductor integrated circuit device | |
JPH0525743U (en) | Semiconductor device | |
JPH0669522A (en) | Semiconductor capacitor device and its formation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071026 Year of fee payment: 14 |