JPS63305922A - Method for treating waste ozone - Google Patents
Method for treating waste ozoneInfo
- Publication number
- JPS63305922A JPS63305922A JP62139860A JP13986087A JPS63305922A JP S63305922 A JPS63305922 A JP S63305922A JP 62139860 A JP62139860 A JP 62139860A JP 13986087 A JP13986087 A JP 13986087A JP S63305922 A JPS63305922 A JP S63305922A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- waste ozone
- photocatalyst
- electric field
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 239000002699 waste material Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims description 67
- 239000011941 photocatalyst Substances 0.000 claims abstract description 33
- 230000005684 electric field Effects 0.000 claims abstract description 25
- 239000003054 catalyst Substances 0.000 claims abstract description 18
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000002516 radical scavenger Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910052787 antimony Inorganic materials 0.000 claims 1
- 229910052793 cadmium Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- 229910052712 strontium Inorganic materials 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 15
- 239000007789 gas Substances 0.000 abstract description 6
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 23
- 238000000354 decomposition reaction Methods 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MXCPYJZDGPQDRA-UHFFFAOYSA-N dialuminum;2-acetyloxybenzoic acid;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].CC(=O)OC1=CC=CC=C1C(O)=O MXCPYJZDGPQDRA-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- -1 suanreth Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、廃オゾンの無害化処理方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detoxifying waste ozone.
オゾンはその殺菌力や酸化力が強いことi−ら広い分野
で利用されている。Ozone is used in a wide range of fields because of its strong bactericidal and oxidizing power.
即ち、排水の高次処理などの水処理への利用、居住域や
生産工程での脱臭への利用、食品の貯蔵や医療分野への
利用など11表−1に示す如く広い分野で各種の用途に
用いられている。In other words, it has various uses in a wide range of fields as shown in Table 11, such as water treatment such as high-level treatment of wastewater, deodorization in living areas and production processes, food storage and medical fields. It is used in
表−1オゾンの利用分野及び用途
しかし、一方ではオゾン利用後の未反応オゾン(廃オゾ
ン)の放出の問題がある。オゾンは低濃度でも毒性が強
く、公害間Mをひきおこす原因となる恐れがあるので廃
オゾンの完全な無害化処理が望まれている。Table 1 Fields and Applications of Ozone However, on the other hand, there is the problem of releasing unreacted ozone (waste ozone) after using ozone. Ozone is highly toxic even at low concentrations and may cause pollution, so it is desired to completely detoxify waste ozone.
例えば、廃オゾン濃度は利用分野或いは用途によっても
異なるが、一般に数ppm〜数百ppm程度である。そ
してこれを排出する場合、排出濃度としてl 1 pp
m以下になるように処理する必要がある。例えば100
ppmのオゾンをαlppm以下の濃度にするには9
99憾以上の処理効率が必要である。For example, the concentration of waste ozone varies depending on the field of use or application, but is generally on the order of several ppm to several hundred ppm. When this is discharged, the discharge concentration is l 1 pp
It is necessary to process it so that it becomes less than m. For example 100
To reduce the concentration of ppm ozone to less than αlppm 9
A processing efficiency of 99 degrees or higher is required.
廃オゾンは、前述のようなオゾンの利用に際して放出さ
れる未反応のオゾンの他に、IHJ 、itば複写機か
ら発生するオゾン或いは電子線加速器の利用等に際して
発生するオゾン等があり、これらも廃オゾンとして同様
な問題がある。Waste ozone includes the unreacted ozone released when using ozone as mentioned above, as well as ozone generated from IHJ, IT, copying machines, ozone generated when using electron beam accelerators, etc. A similar problem exists with waste ozone.
従来のオゾンの処理法として、活性炭法、触媒法、薬液
による洗浄法、熱分解法などが知られているが夫々次の
様な欠点がある。Conventional methods for treating ozone include an activated carbon method, a catalyst method, a chemical cleaning method, and a thermal decomposition method, but each method has the following drawbacks.
■ 活性炭法ニオシンと活性炭が反応し、COやCo、
f生成し活性炭が消耗する他、これらの反応は発熱反応
であるため、使用を誤ると火災や爆発の恐れがある。こ
のため、運転、操作の管理を十分に行なう必要がある。■ Activated carbon method Niosin and activated carbon react to produce CO, Co,
In addition to producing F and consuming the activated carbon, these reactions are exothermic, so there is a risk of fire or explosion if used incorrectly. For this reason, it is necessary to sufficiently manage driving and operation.
また、圧損が高く、ランニングコストが比較的高い。In addition, pressure loss is high and running costs are relatively high.
■ 触媒法:間欠的な使用では効果で低い場合がある。■Catalytic method: The effectiveness may be low if used intermittently.
■ 薬液による洗浄法:薬剤費が高価である。■Cleaning method using chemical solutions: Chemical costs are high.
また、湿式法であるため、スクラバーを必要とし、装置
が比較的大型化し、又廃液の処理が必要である。Furthermore, since it is a wet method, a scrubber is required, the equipment is relatively large, and waste liquid must be treated.
■ 熱分解法:350℃以上の温度を必要とするため経
済性及びコンパクト化の点で好ましくない。また、間欠
的な使用には不向きである。■ Thermal decomposition method: requires a temperature of 350°C or higher, which is unfavorable in terms of economy and compactness. Also, it is not suitable for intermittent use.
また、これらの従来法においては、比較的高濃度のオゾ
ンの処理は比較的高効率で行ない得るが、低濃度(例え
ば数ppm )の場合には処理効率が低かった。Furthermore, in these conventional methods, relatively high concentrations of ozone can be treated with relatively high efficiency, but in the case of low concentrations (for example, several ppm), the treatment efficiency is low.
本発明は、上記問題点を解決したもので、種々の濃度V
ペルの廃オゾンを低濃度まで分解し、かつ長期間にわた
って安定に連続運転できる廃オゾンの処理方法を提供す
ることを目的とするものである。The present invention solves the above problems and allows various concentrations of V
The purpose of the present invention is to provide a waste ozone treatment method that decomposes Pel waste ozone to a low concentration and that can be operated stably and continuously for a long period of time.
本発明は、電場において光照射されている光触媒上に廃
オゾン含有ガスを通ずることによりオゾンを分解処理す
る方法、並びに該方法と該方法以外の廃オゾンの処理方
法、例えば活性炭法、触媒法及び/又はオゾン捕集剤を
用いる方法とを組み合わせてオゾンを処理する方法であ
る。The present invention relates to a method for decomposing ozone by passing a waste ozone-containing gas over a photocatalyst that is irradiated with light in an electric field, as well as methods for treating waste ozone other than this method, such as an activated carbon method, a catalyst method, and a method for treating waste ozone. This is a method of treating ozone in combination with/or a method of using an ozone scavenger.
つぎに図面に基い℃本発明を説明する。Next, the present invention will be explained based on the drawings.
第1図は、電場において光照射されている光触媒を用い
て廃オゾンの処理設備を例えば食品工場の廃オゾン処理
に適用する例を示すものである。FIG. 1 shows an example in which waste ozone treatment equipment is applied to waste ozone treatment in a food factory, for example, using a photocatalyst that is irradiated with light in an electric field.
符号1Vi、食品殺菌に際して排出される廃オゾンの入
口部である。中程度の濃度の廃オゾンは、電場を形成し
かつ光照射された光触媒反応器2中で分解処理され、極
低濃度((L 1 ppm以下)となり、出口6から排
出される。1Vi is the inlet of waste ozone discharged during food sterilization. Waste ozone with a medium concentration is decomposed in the photocatalytic reactor 2 which forms an electric field and is irradiated with light, becomes an extremely low concentration ((L 1 ppm or less)), and is discharged from the outlet 6.
光触媒反応器2は、光触媒材4(4−1〜4−6)、紫
外線ランプ5及び光触媒材表面に電場を形成するための
電極(第2図、後述)から成る。The photocatalytic reactor 2 includes a photocatalytic material 4 (4-1 to 4-6), an ultraviolet lamp 5, and an electrode (FIG. 2, described later) for forming an electric field on the surface of the photocatalytic material.
光触媒材4は、紫外線ランプ5により紫外線の照射を受
けており、又電極により光触媒材の周囲には電場が形成
されている。The photocatalytic material 4 is irradiated with ultraviolet light by an ultraviolet lamp 5, and an electric field is formed around the photocatalytic material by the electrodes.
第2図は、電場形成の一実施例を示す。FIG. 2 shows an example of electric field formation.
光触媒材4は、Ti 板電極6上に固定されており、T
i板電極6と他の電極(タングステン)7との間に電圧
を印加することにより電場が形成される。The photocatalytic material 4 is fixed on the Ti plate electrode 6, and the T
An electric field is created by applying a voltage between the i-plate electrode 6 and another electrode (tungsten) 7.
光触媒材面を光線により照射することによりその近傍に
電子が放出され、廃オゾンは先ず電子の作用で分解、除
去される。次いで、電子の作用で分解、除去されなかっ
た廃オゾンは、光触媒表面で分解、除去される。By irradiating the surface of the photocatalyst material with light, electrons are released in the vicinity, and the waste ozone is first decomposed and removed by the action of the electrons. Next, waste ozone that has not been decomposed and removed by the action of electrons is decomposed and removed on the photocatalyst surface.
ここで、光触媒における廃オゾンの分解、除去機能は、
上述のごとく光触媒に電場を形成することにより向上し
、廃オゾンは、極低濃度まで分解、除去される。これは
、光触媒材を電場におくことにより光触媒表面がオゾン
に対して還元作用を持つようになるため光触媒によるオ
ゾンの分解性が顕著に向上するものと考えられる。Here, the decomposition and removal function of waste ozone in the photocatalyst is as follows.
As described above, this is improved by forming an electric field on the photocatalyst, and waste ozone is decomposed and removed to an extremely low concentration. This is thought to be because by placing the photocatalytic material in an electric field, the surface of the photocatalyst has a reducing effect on ozone, so that the ability of the photocatalyst to decompose ozone is significantly improved.
本発明によれば通常、1〜数10 ppm程度のオゾン
がcL1ppm以下、好ましくはI:L 05 ppm
以下まで処理される。According to the present invention, usually about 1 to several tens of ppm of ozone is reduced to cL 1 ppm or less, preferably I:L 05 ppm.
The following will be processed.
つぎに光触媒材4−1〜4−6について説明する。Next, the photocatalyst materials 4-1 to 4-6 will be explained.
光触媒材は、光照射により励起され、電子を放出すると
共に電場におくことにより、オゾン分解作用が促進され
るものであれば何れでも良い。通常半導体材料が効果的
であり容易に入手出来、加工性も良いことから好ましい
。The photocatalyst material may be any material as long as it is excited by light irradiation, emits electrons, and promotes ozone decomposition by being placed in an electric field. Generally, semiconductor materials are preferred because they are effective, readily available, and have good processability.
効果や経済性の面から、Se、 Ge、 Si、 Ti
。From the viewpoint of effectiveness and economy, Se, Ge, Si, Ti
.
Zn、 Ou、 At、 Sn、 Ga、In、 P、
As、 S’t)+C,O(1,S、Te、Ni、F
e、C!o、Ag9MopSr、W、Or、Ba、Pb
のいずれか、又はこれらの化合物、又は合金、又は酸化
物が好ましく、これらは単独で、又二種類以上を複合し
て用いる。Zn, Ou, At, Sn, Ga, In, P,
As, S't)+C,O(1,S,Te,Ni,F
e, C! o, Ag9MopSr, W, Or, Ba, Pb
or their compounds, alloys, or oxides are preferred, and these are used alone or in combination of two or more.
例えば、元素としてはSi 、 Ge 、 Se、
化合物としてはAtP 、 AtAs 、 GaP 、
AIBb、 GaA日。For example, the elements include Si, Ge, Se,
Compounds include AtP, AtAs, GaP,
AIBb, GaA day.
工nP 、 Garb 、工nAs 、工nsb 、
OdS 、 Ca5e 。Engineering nP, Garb, Engineering nAs, Engineering nsb,
OdS, Ca5e.
ZnS t Mo5g、 WTel、 Cr1Tli1
3. MoTe t C!uzs 。ZnS t Mo5g, WTel, Cr1Tli1
3. MoTetC! uzs.
W8.、酸化物としてはTiO2、Eiz03 、
Ouo 。W8. , as oxides TiO2, Eiz03,
Ouo.
01120 HZnO、MoO3,工no、、 Ag
l0 、 PbO。01120 HZnO, MoO3, engineering no., Ag
l0, PbO.
5rTiO1,BaTiO3,C!o304. F(
320g2 NiOがある。5rTiO1, BaTiO3, C! o304. F(
There is 320g2 NiO.
電場の形成方法は、第2図に示すごとく周知の方法を適
宜用いることが出来る。光触媒材としてTie、 を
T1板上に固定し、Tie! の上方t5−位の位置に
タングステン電極を設置すればよい。As a method for forming the electric field, a well-known method as shown in FIG. 2 can be used as appropriate. Tie as a photocatalyst material was fixed on the T1 plate, and Tie! A tungsten electrode may be installed at a position t5- above.
光触媒材の固定方法は、焼結、蒸着、スパッタリング等
の周知の方法を適宜用いることが出来る。As a method for fixing the photocatalytic material, known methods such as sintering, vapor deposition, and sputtering can be used as appropriate.
電極の材料及び構造は、通常の電場形成の機器類に使用
されているもので良い。例えば電極材としては、スアン
レス、銅、タングステンが線状、網状、板状等の形状で
適宜用いられる。The material and structure of the electrode may be those used in conventional electric field generation equipment. For example, as the electrode material, suanreth, copper, and tungsten are appropriately used in a linear, net, plate, or other shape.
これらの材料は、光照射やオゾンによる劣化を考慮し、
空気中での加熱処理、薬品処理、金属薄膜の蒸着、T1
0! などの安定な半導体で表面コーティングなどを行
い長期間にわたっての安定な材料とすることが出来る。These materials are designed in consideration of deterioration caused by light irradiation and ozone.
Heat treatment in air, chemical treatment, metal thin film deposition, T1
0! It is possible to make the material stable for a long period of time by coating the surface with a stable semiconductor such as.
第2図において8は入口ガス流、9は出口ガス流を示す
。In FIG. 2, 8 indicates an inlet gas flow, and 9 indicates an outlet gas flow.
光触媒材4の形状は、廃オゾン含有空気が通過出来る構
造となっており、装置の形式などにより格子状、板状、
粒状、プリーツ状、網目状等例れでも良い。又、担体に
担持して用いることが出来る。これにより任意の構造の
ものとすることが出来る。The shape of the photocatalyst material 4 is such that waste ozone-containing air can pass through it, and depending on the type of device, it can be shaped like a grid, plate, or
It may be in the form of grains, pleats, mesh, etc. Further, it can be used by being supported on a carrier. This allows it to have an arbitrary structure.
電場として印加する電圧は50V〜30KV。The voltage applied as an electric field is 50V to 30KV.
好ましくはQ、1〜20KVであり、該電圧は装置の形
式、使用する電極の材質、構造成いは効率、経済性等に
基き適宜予備試験等で決めることが出来る。Preferably, Q is 1 to 20 KV, and the voltage can be appropriately determined by preliminary tests etc. based on the type of device, the material of the electrodes used, the structure, efficiency, economical efficiency, etc.
紫外線は、光触媒材の種類により定まる光吸収領域の波
長を放出するランプを選べば良い。For ultraviolet rays, a lamp that emits wavelengths in the light absorption region determined by the type of photocatalyst material may be selected.
例えばTie、の場合は、光吸収が近紫外部にあるため
近紫外部の波長の光を放出するランプを使用する。For example, in the case of Tie, the light absorption is in the near ultraviolet range, so a lamp that emits light with a wavelength in the near ultraviolet range is used.
光源は、水銀灯、水素放電管、キセノン放電管、ライマ
ン放電管などを適宜利用することが出来る。As the light source, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, etc. can be used as appropriate.
ランプは、オゾンレスランプのように、紫外線の照射に
よるオゾンの生成がないタイプのものが好ましいことは
言うまでもない。It goes without saying that the lamp is preferably of a type that does not generate ozone due to ultraviolet irradiation, such as an ozone-less lamp.
光源の位置は、第1図に示すように光触媒反応器内部に
設置してもよいが、別の例として該反応器外側に設置し
紫外線を反射面の利用により、あるいは照射窓を通して
光触媒材に照射するようにしても良い。The light source may be installed inside the photocatalytic reactor as shown in Figure 1, but as another example, it may be installed outside the reactor and the ultraviolet rays can be applied to the photocatalytic material by using a reflective surface or through an irradiation window. It may also be irradiated.
次に、本発明方法による廃オゾン処理と、本発明以外の
方法による廃オゾン処理とを組合せて行なう場合を説明
する。Next, a case will be described in which waste ozone treatment by the method of the present invention and waste ozone treatment by a method other than the present invention are performed in combination.
第3図は、電場を形成した光触媒による廃オゾン処理設
備と、該方法以外の廃オゾン処理設備として触媒法によ
る設備を併用した下水処理における廃オゾン処理法を説
明するためのフロー図である。FIG. 3 is a flow diagram illustrating a waste ozone treatment method in sewage treatment that uses waste ozone treatment equipment using a photocatalyst that forms an electric field, and equipment using a catalyst method as waste ozone treatment equipment other than this method.
第3図において符号10ば、下水処理におけるオゾン反
応装置(図示されていない)から排出される廃オゾンの
入口部であり、高濃度の廃オゾンは、触媒充填部11で
比較的低濃度まで分解され、次いで電場を形成した光触
媒部12で分解処理され、極低濃度(α1 ppm以下
)となり、出口13から排出される。In FIG. 3, reference numeral 10 is the inlet of waste ozone discharged from an ozone reaction device (not shown) in sewage treatment, and high concentration waste ozone is decomposed into a relatively low concentration in the catalyst filling section 11. Then, it is decomposed in the photocatalyst section 12 in which an electric field is applied, resulting in an extremely low concentration (α1 ppm or less), and is discharged from the outlet 13.
触媒充填部11は触媒が充填された反応器である。触媒
としては、通常Mn01. Co酸化物添加MnO2
,FeO、NiOなどの金属酸化物触媒、Ag、Pt、
Pa などの貴金属触媒を8102やγ−アルミナな
どに担持させた触媒が用いられる。The catalyst filling section 11 is a reactor filled with a catalyst. The catalyst is usually Mn01. Co oxide added MnO2
, FeO, NiO and other metal oxide catalysts, Ag, Pt,
A catalyst in which a noble metal catalyst such as Pa is supported on 8102 or γ-alumina is used.
触媒充填部11におけるオゾン分解率は、通常90〜9
9%程度である。The ozone decomposition rate in the catalyst filling section 11 is usually 90 to 9.
It is about 9%.
すなわち、触媒充填部11では、数ppm〜数1、00
0 ppm、通常数1o ppm〜数100 pl)m
の廃オゾンが1〜数jOppmi度まで処理される。That is, in the catalyst filling part 11, the amount of
0 ppm, usually several 10 ppm to several 100 pl)m
of waste ozone is treated to 1 to several JOppmi degrees.
12は、電場を形成した光触媒反応器であり該反応器は
、前述実施例の第1図及び第2図で説明したのと同様で
ある。Reference numeral 12 denotes a photocatalytic reactor in which an electric field is formed, and this reactor is the same as that described in FIGS. 1 and 2 of the previous embodiment.
光触媒反応器12では、触媒充填部11で処理出来ない
で排出される廃オゾン(1〜数10ppm ) k電場
において光照射されている光触媒上に通ずることより極
低濃度にまで分解、除去される。In the photocatalytic reactor 12, waste ozone (1 to several tens of ppm) that cannot be treated in the catalyst filling unit 11 and is emitted is decomposed and removed to an extremely low concentration by passing over the photocatalyst that is irradiated with light in the k electric field. .
本発明方法と組み合わせる本発明以外の廃オゾン処理法
は、高濃度のオゾンが比較的低濃度まで処理される方法
であれば何れでも良く、処理効果、コスト、操作性、装
置規模等から触媒法、又は活性炭法が好ましい。The waste ozone treatment method other than the present invention in combination with the method of the present invention may be any method as long as high concentration ozone is treated to a relatively low concentration. , or activated carbon method is preferred.
又、廃オゾン濃度が比較的低い場合は処理効果、操作性
、装置の規模等から本発明者がすでに提案したオゾン捕
集剤を用いる方法(特願昭62−17324)’i好適
に用いることが出来る。In addition, when the waste ozone concentration is relatively low, it is preferable to use the method of using an ozone scavenger already proposed by the present inventor (Japanese Patent Application No. 17324/1982) from the viewpoint of treatment effect, operability, scale of the device, etc. I can do it.
廃オゾン処理法の好ましい形態の例を下に示す。An example of a preferred form of the waste ozone treatment method is shown below.
廃オゾン処理方法として、本発明方法を単独で行なうか
、あるいは本発明方法以外との併用を行なうかは、廃オ
ゾンの発生源の種類、規模、共存成分、経済性、操作性
、効果等に基いて適宜法めることが出来る。Whether to use the method of the present invention alone or in combination with methods other than the present invention as a waste ozone treatment method depends on the type of waste ozone source, scale, coexisting components, economic efficiency, operability, effectiveness, etc. Based on this, laws can be made as appropriate.
廃オゾン処理方式の例 つぎに実施例を記載する。Example of waste ozone treatment method Next, examples will be described.
実施例−1
第1図に示すごとき、廃オゾン処理装置に、オゾン発生
器から5 ppmのオゾンを含む空気を[11t /
minで流し、出口オゾン濃度を測定した。Example-1 As shown in Fig. 1, air containing 5 ppm of ozone was supplied from an ozone generator to a waste ozone treatment device at a rate of [11 t /
The ozone concentration at the outlet was measured.
結果を表2に示す。The results are shown in Table 2.
電場の形成:第2図に示すごとく光触媒をTi板(負極
)上に固定し、光触媒表
面とタングステン電極(正極)を
1.5箇離して2.oxv を印加。Formation of electric field: As shown in Fig. 2, a photocatalyst was fixed on a Ti plate (negative electrode), and the photocatalyst surface was separated from the tungsten electrode (positive electrode) by 1.5 points. Apply oxv.
オゾン発生器:放電方式
紫外線ランプ:水銀灯20W
装置大きさ: 50 X ’t OOX 200■表
2
又、T10! とC03o4光触媒材について、約1
ケ月の連続運転した結果(出口オゾン濃度)を表3に示
す。Ozone generator: Discharge method Ultraviolet lamp: Mercury lamp 20W Equipment size: 50 x 't OOX 200 ■Table
2 Again, T10! and for C03o4 photocatalyst material, about 1
Table 3 shows the results (outlet ozone concentration) of continuous operation for several months.
表 6
尚、比較例として、光触媒に電場をかけないで行なった
結果は、いずれの光触媒も出口オゾン濃度は1.1〜2
.5 ppmであった。Table 6 As a comparative example, the results were conducted without applying an electric field to the photocatalyst.
.. It was 5 ppm.
実施例−2
実施例−1と同様にオゾン発生器より650M’mのオ
ゾンを発生させ、第6図に示す如き廃オゾン処理装置に
l 3 L / minで通過させ、同様に出口オゾン
濃度を測定し念。Example 2 Similar to Example 1, 650 M'm of ozone was generated from an ozone generator, passed through a waste ozone treatment device as shown in Figure 6 at a rate of l3L/min, and the outlet ozone concentration was similarly adjusted. Remember to measure.
結果を表4に示す。The results are shown in Table 4.
触 媒 :CO酸酸化物1軍
(150℃)
光触媒 : Ti01, Ag2O
紫外線ランプ:水銀灯20W
装置大きさ:so*x100横X!I O 01111
表 4
又、Tie,とAg2O 光触媒材について、約1ケ
月の連続運転し念結果(出口オゾン濃度)を表5に示す
。Catalyst: CO acid oxide 1 group (150℃) Photocatalyst: Ti01, Ag2O Ultraviolet lamp: Mercury lamp 20W Equipment size: so*x100 horizontal x! IO 01111
Table 4 Table 5 shows preliminary results (outlet ozone concentration) of Tie and Ag2O photocatalyst materials after approximately one month of continuous operation.
表 5
〔発明の効果〕
1、 廃オゾン処理方法として、光触媒を用い光触媒又
はその周囲に電場を形成することにより、
■ 光触媒によるオゾン分解作用が顕著に向上した。Table 5 [Effects of the invention] 1. By using a photocatalyst and forming an electric field around the photocatalyst as a waste ozone treatment method, (1) the ozone decomposition effect of the photocatalyst was significantly improved.
■ 廃オゾンを高効率で長期間安定して処理することが
出来た。■ We were able to process waste ozone with high efficiency and in a stable manner over a long period of time.
■ 排出オゾン濃度を実質上無視出来る濃度(極低濃度
)まで減少することが出来た。■ We were able to reduce the emitted ozone concentration to a virtually negligible level (extremely low concentration).
■ 連続使用、間欠使用のいずれの場合でも同様の効果
がある。■ It has the same effect whether it is used continuously or intermittently.
Z 本発明方法と本発明以外の廃オゾン処理法を併用す
ることにより、
■ 多種多様な発生源に対応出来る廃オゾン処理装置を
提供出来た。Z By using the method of the present invention together with a waste ozone treatment method other than the present invention, it was possible to provide a waste ozone treatment device that can handle a wide variety of sources.
両方法の特長(長所)を生かした実用上効果的な装置が
出来た。We have created a practically effective device that takes advantage of the features (advantages) of both methods.
即ち、触媒法及び活性炭法は、主に分解反応によるので
一般に高濃度オゾン程効果的である。That is, since the catalyst method and the activated carbon method mainly rely on decomposition reactions, the higher the concentration of ozone, the more effective they are.
又、オゾン捕集剤による方法は、捕集
(吸着)作用を用いているので中程度の濃度ないし低濃
程度効果的である。Furthermore, the method using an ozone scavenger uses a scavenging (adsorption) action and is therefore effective at moderate to low concentrations.
これに対し、本発明方法は中程度の濃度ないし低濃度で
効果的である。In contrast, the method of the present invention is effective at moderate to low concentrations.
■ 連続運転、間欠運転、又は入口濃度の変動する排ガ
スにおいても、実用性に富んだ廃オゾン処理装置が出来
た。■ A waste ozone treatment device has been created that is highly practical even in continuous operation, intermittent operation, or in the case of exhaust gas with fluctuating inlet concentration.
■ 高濃度廃オゾンを極低濃度まで減少することが出来
た。■ We were able to reduce high concentration waste ozone to an extremely low concentration.
第1図は本発明方法を説明するため光触媒反応器の概略
を示す図、第2図は電場を形成するための電極の一例を
示す図、第3図は本発明方法と本発明以外の方法とを組
み合わせて行なう場合を説明するための概略図である。
4.4−1〜4−6・・・光触媒材、5−・・紫外線ラ
ンプ、6・・・Ti 板電極、7・−・タングステン
電極、11・−・触媒充填部、12・・・光触媒反応器Figure 1 is a diagram showing an outline of a photocatalytic reactor for explaining the method of the present invention, Figure 2 is a diagram showing an example of an electrode for forming an electric field, and Figure 3 is a diagram showing a method of the present invention and a method other than the present invention. FIG. 4.4-1 to 4-6... Photocatalyst material, 5-... Ultraviolet lamp, 6... Ti plate electrode, 7... Tungsten electrode, 11... Catalyst filling part, 12... Photocatalyst reactor
Claims (1)
含有ガスを通ずることを特徴とする廃オゾンの処理方法
。 2、光触媒が半導体である特許請求の範囲第1項記載の
廃オゾンの処理方法。 3、光触媒がSe、Ge、Si、Ti、Zn、Cu、S
n、Al、Ga、In、P、As、Sb、C、Cd、S
、Te、Ni、Fe、Co、Ag、Mo、Sr、W、C
r、Ba、Pbのいずれか、又はその化合物、又は合金
、又は酸化物より選ばれた一種又は二種以上の複合体よ
りなる特許請求の範囲第2項記載の廃オゾンの処理方法
。 4、電場の電圧が50V〜30KVの範囲内にある特許
請求の範囲第1項乃至第3項の何れか1つに記載の廃オ
ゾンの処理方法。 5、特許請求の範囲1記載の方法とは別の廃オゾンの処
理方法と、特許請求の範囲1記載の廃オゾン処理方法と
を組合せてなる特許請求の範囲第1項記載の廃オゾンの
処理方法。 6、特許請求の範囲1記載の方法とは別の廃オゾンの処
理方法として活性炭法、触媒法及びオゾン捕集剤を用い
る方法の内少なくとも1種の方法を用いる特許請求の範
囲第5項記載の廃オゾンの処理方法。[Claims] 1. A method for treating waste ozone, which comprises passing waste ozone-containing gas over a photocatalyst that is irradiated with light in an electric field. 2. The method for treating waste ozone according to claim 1, wherein the photocatalyst is a semiconductor. 3. Photocatalyst is Se, Ge, Si, Ti, Zn, Cu, S
n, Al, Ga, In, P, As, Sb, C, Cd, S
, Te, Ni, Fe, Co, Ag, Mo, Sr, W, C
3. The method for treating waste ozone according to claim 2, which comprises a composite of one or more selected from r, Ba, Pb, or their compounds, alloys, or oxides. 4. The waste ozone treatment method according to any one of claims 1 to 3, wherein the voltage of the electric field is within the range of 50V to 30KV. 5. Waste ozone treatment according to claim 1, which is a combination of a waste ozone treatment method different from the method according to claim 1 and the waste ozone treatment method according to claim 1. Method. 6. As a waste ozone treatment method different from the method described in claim 1, at least one of the activated carbon method, the catalyst method, and the method using an ozone scavenger is used as described in claim 5. How to treat waste ozone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62139860A JPS63305922A (en) | 1987-06-05 | 1987-06-05 | Method for treating waste ozone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62139860A JPS63305922A (en) | 1987-06-05 | 1987-06-05 | Method for treating waste ozone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63305922A true JPS63305922A (en) | 1988-12-13 |
JPH045485B2 JPH045485B2 (en) | 1992-01-31 |
Family
ID=15255224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62139860A Granted JPS63305922A (en) | 1987-06-05 | 1987-06-05 | Method for treating waste ozone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63305922A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04313330A (en) * | 1991-04-10 | 1992-11-05 | Okaya Electric Ind Co Ltd | Ozone eliminator |
JPH0975747A (en) * | 1995-09-11 | 1997-03-25 | Okaya Electric Ind Co Ltd | Method for caking photocatalyst |
JP2000202302A (en) * | 1998-12-31 | 2000-07-25 | Lg Electronics Inc | Film type photocatalyst and its manufacture |
WO2006003382A1 (en) * | 2004-06-30 | 2006-01-12 | Tri-Air Developments Limited | Air decontamination device and method |
CN103537179A (en) * | 2013-10-25 | 2014-01-29 | 临安清云环保设备有限公司 | Method for removing exhaust gas through photocatalytic ozonation |
CN106390984A (en) * | 2016-09-13 | 2017-02-15 | 福州大学 | Strontium antimonate photocatalyst and preparation and application thereof |
-
1987
- 1987-06-05 JP JP62139860A patent/JPS63305922A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04313330A (en) * | 1991-04-10 | 1992-11-05 | Okaya Electric Ind Co Ltd | Ozone eliminator |
JPH0975747A (en) * | 1995-09-11 | 1997-03-25 | Okaya Electric Ind Co Ltd | Method for caking photocatalyst |
JP2000202302A (en) * | 1998-12-31 | 2000-07-25 | Lg Electronics Inc | Film type photocatalyst and its manufacture |
WO2006003382A1 (en) * | 2004-06-30 | 2006-01-12 | Tri-Air Developments Limited | Air decontamination device and method |
EA010640B1 (en) * | 2004-06-30 | 2008-10-30 | Три-Эр Дивелопментс Лимитед | Air decontamination device and method |
US7763206B2 (en) | 2004-06-30 | 2010-07-27 | Tri-Air Developments Limited | Air decontamination method |
US8398923B2 (en) | 2004-06-30 | 2013-03-19 | Tri-Air Developments Limited | Air decontamination device |
CN103537179A (en) * | 2013-10-25 | 2014-01-29 | 临安清云环保设备有限公司 | Method for removing exhaust gas through photocatalytic ozonation |
CN106390984A (en) * | 2016-09-13 | 2017-02-15 | 福州大学 | Strontium antimonate photocatalyst and preparation and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH045485B2 (en) | 1992-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4371607B2 (en) | Photocatalytic reactor | |
US5449443A (en) | Photocatalytic reactor with flexible supports | |
JPH09262482A (en) | Photocatalyst, its production and photocatalytic reaction method | |
JPS60187322A (en) | Purifying method of waste | |
EP0997439B1 (en) | Method for decomposing bromic acid by photocatalyst | |
Zeltner et al. | Shedding light on photocatalysis | |
JP5436399B2 (en) | Decomposition and removal method using photocatalytic material | |
WO1990009227A1 (en) | Exhaust gas cleaning method | |
JP3504165B2 (en) | Photocatalytic reaction device and photocatalytic reaction method | |
JPS63305922A (en) | Method for treating waste ozone | |
JPH0653212B2 (en) | Method for decomposing and removing nitrous oxide in gas mixture | |
US6395144B1 (en) | Method for treating toxic compounds-containing gas by non-thermal plasma | |
JPH01143630A (en) | Method for treating fluorocarbon | |
JPH09206558A (en) | Device for removing harmful material in gas | |
JPS6340705A (en) | Method and device for producing ozone by photocatalyst | |
JPH0532321B2 (en) | ||
JPS61133125A (en) | Denitration process using ultraviolet ray | |
JP2003112010A (en) | Deodorization apparatus | |
JP2005161216A (en) | Method for purifying gas containing harmful organic matter by irradiation with electron beam | |
JPH0714462B2 (en) | Decomposition method of nitrous oxide in gas mixture | |
JP2002018240A (en) | Method and apparatus for treatment for rendering hazardous organic substance harmless | |
JPH0210035A (en) | Disposing method for waste ozone | |
JP2004267919A (en) | Combustion exhaust gas treatment apparatus and treatment method | |
JP2001002403A (en) | Oxygen producing device | |
JPS63190619A (en) | Treatment of waste ozone |