[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61133125A - Denitration process using ultraviolet ray - Google Patents

Denitration process using ultraviolet ray

Info

Publication number
JPS61133125A
JPS61133125A JP59253641A JP25364184A JPS61133125A JP S61133125 A JPS61133125 A JP S61133125A JP 59253641 A JP59253641 A JP 59253641A JP 25364184 A JP25364184 A JP 25364184A JP S61133125 A JPS61133125 A JP S61133125A
Authority
JP
Japan
Prior art keywords
oxide
nox
mixture
ultraviolet rays
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59253641A
Other languages
Japanese (ja)
Inventor
Tsutomu Kagitani
勤 鍵谷
Takashi Ogita
荻田 尭
Michitsugu Watanabe
亨次 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59253641A priority Critical patent/JPS61133125A/en
Publication of JPS61133125A publication Critical patent/JPS61133125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To perform denitration at low cost by irradiating a gas contg. NOx with ultraviolet rays in the absence or presence of NH3 after passing the gas through a mixture of TiO2 or ZnO and/or compds. of alkali or alkaline earth metal compd. CONSTITUTION:An NOx-contg. gas is passed through TiO2 or ZnO or their mixture, or through a mixture consisting of the above-described compd. or a mixture thereof with an oxide or hydroxide of alkali metal or alkaline earth metal. During passing of the gas, the gas is irradiated with near ultra violet rays of 200-400nm wavelength or far ultra violet rays having <=200nm wavelength. In this case, NH3 may be present or absent. When NH3 is absent, NOx is transformed to HNO3 and fixed to the metal oxide. When NH3 is present, it is decomposed to N2 and H2O.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒素酸化物含有含酸素気体の紫外線脱硝処理法
に関する。ざらに詳しくは、酸化チタンもしくは酸化亜
鉛の単独またはこれらの混合物、あるいはこれらにアル
カリ金属もしくはアルカリ土類金属の酸化物または水酸
化物を添加してなる混合金属酸化物の存在下で、必要に
応じてアンモニアを共存させ、窒素酸化物含有含酸素気
体に紫外線を照射することによって窒素酸化物を効果的
に除去あるいは分解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultraviolet ray denitration treatment method for oxygen-containing gas containing nitrogen oxides. More specifically, in the presence of titanium oxide or zinc oxide alone or a mixture thereof, or a mixed metal oxide obtained by adding an alkali metal or alkaline earth metal oxide or hydroxide to these, as necessary. The present invention relates to a method for effectively removing or decomposing nitrogen oxides by irradiating an oxygen-containing gas containing nitrogen oxides with ultraviolet rays in the presence of ammonia.

〔従来の技術] 自動車の排気ガスや工場などの排気ガスなどに含まれる
一酸化窒素(NO)や二酸化窒素(Not)などの窒素
酸化物(NOx)は環境汚染物質として注目され、厳し
く規制されている。従来、工場などの固定発生源の排気
ガス中に含まれるNOxを浄化処理する方法としては、
800℃以上の高温度でアンモニアと作用させる無触媒
還元分解法および触媒の存在下で200’C以上の温度
に加熱してこの反応を行なう接触分解法が一般に採用さ
れている。また、自動車の排ガスに対しては、300℃
以上で触媒を用いて排ガス中に含まれる一酸化炭素や水
素によりNOxを還元する方法が用いられている。
[Conventional technology] Nitrogen oxides (NOx), such as nitric oxide (NO) and nitrogen dioxide (Not), contained in automobile exhaust gas and factory exhaust gas, are attracting attention as environmental pollutants and are strictly regulated. ing. Conventionally, methods for purifying NOx contained in exhaust gas from fixed sources such as factories include:
Generally employed are a non-catalytic reductive cracking method in which the reaction is carried out with ammonia at a high temperature of 800° C. or higher, and a catalytic cracking method in which the reaction is carried out by heating to a temperature of 200° C. or higher in the presence of a catalyst. In addition, for automobile exhaust gas, 300℃
The method described above uses a catalyst to reduce NOx with carbon monoxide and hydrogen contained in exhaust gas.

しかしながら、これらはいずれも高温反応を、利用する
ものであり、微量のNOXを含有する多量の気体を高温
度に加熱することが必要である。
However, all of these utilize high-temperature reactions, and it is necessary to heat a large amount of gas containing a trace amount of NOX to a high temperature.

したがって室温のNOx含有気体を処理する目的でこの
方法を適用するためには、高温度に加熱して脱硝後再び
冷却しなければならず、室温脱硝法としては不適当であ
る。
Therefore, in order to apply this method for the purpose of treating NOx-containing gas at room temperature, it is necessary to heat it to a high temperature, denitrate it, and then cool it again, making it unsuitable as a room temperature denitrification method.

最近、オゾンを作用させるか、CI Otで酸化してN
Oxをすべて802に酸化し、アルカリ溶液に吸収させ
る酸化吸収法や、F e (It−エチレンジアミン四
酢酸水溶液にNOを吸収させてFe(1) (EDTA
)(NO)錯体をつくり、これと亜硫酸ナトリウムを反
応させる湿式脱硝法が室温処理法として提案されている
が、高価なオゾン発生器の設備が必要であることや、非
常に複雑な廃水処理設備が必要であることなどの理由に
より、処理費用が高いことが問題である。
Recently, N has been oxidized by the action of ozone or by CI Ot.
The oxidation absorption method involves oxidizing all Ox to 802 and absorbing it in an alkaline solution, or the oxidation absorption method in which all Ox is oxidized to 802 and NO is absorbed in an aqueous solution of Fe (It-ethylenediaminetetraacetic acid) to form Fe(1) (EDTA
) (NO) complex and reacting it with sodium sulfite has been proposed as a room temperature treatment method, but it requires expensive ozone generator equipment and requires very complicated wastewater treatment equipment. The problem is that processing costs are high due to the necessity of

[発明が解決しようとする問題点] 本発明の目的は、前記の従来技術の問題点を解決し、特
別に加熱することな(140x含有気体を効果的かつ経
済的に処理する方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the prior art described above and to provide a method for effectively and economically treating 140x-containing gas without special heating. There is a particular thing.

[問題を解決するための手段] 本発明のNOX含有気体処理法は、NOxを含有する含
酸素気体に酸化チタンもしくは酸化亜鉛の単独または混
合物、あるいはこれらとアルカリ金属もしくはアルカリ
土類金属の酸化物または水酸化物からなる混合金属酸化
物の存在下で。
[Means for Solving the Problem] The NOX-containing gas treatment method of the present invention includes adding titanium oxide or zinc oxide alone or in combination, or an alkali metal or alkaline earth metal oxide to an oxygen-containing gas containing NOx. or in the presence of mixed metal oxides consisting of hydroxides.

必要に応じてアンモニアを共存させて紫外線を照射する
ことを特徴とする。
It is characterized by irradiating ultraviolet rays in the presence of ammonia if necessary.

[作用および実施例] 本発明者らは、かねてから紫外線を用いる励起化学の研
究を行なっており、そのひとつとして、NOxとアンモ
ニアを含有する気体に空温において波長が200ni以
下の真空紫外線を照射すると、両者が反応して水と窒素
に分解無害化できることを見出した。しかしながら、人
工光源の真空紫外線発生効率は小さいので、この反応を
応用する脱硝無害化法の経済性は必ずしも優れていると
はいい難い。
[Operations and Examples] The present inventors have been conducting research on excitation chemistry using ultraviolet rays for some time, and as one of the studies, when a gas containing NOx and ammonia is irradiated with vacuum ultraviolet rays with a wavelength of 200 ni or less at air temperature. They discovered that the two can react and decompose into water and nitrogen, rendering them harmless. However, since the vacuum ultraviolet ray generation efficiency of artificial light sources is low, the economic efficiency of denitrification and detoxification methods that apply this reaction cannot necessarily be said to be excellent.

本発明者らは、これらの基礎研究の発展として、酸化チ
タンもしくは酸化亜鉛の単独または混合物、あるいはこ
れらとアルカリ金属もしくはアルカリ土類金属の酸化物
または水酸化物からなる混合金属酸化物が共存するばあ
いには、200nll1以上の波長の近紫外線の照射に
よっても前記分解反応が効率よく起こることを見出して
本発明を完成するに至った。本発明の方法によれば、通
常殺菌灯として用いられている安価な低圧水銀灯が使用
できるほか、太陽光線に含まれる近紫外線を利用できる
ことになり、前述の光化学反応を利用する脱硝無害化法
の経済性は飛躍的に向上する。
As a development of these basic studies, the present inventors have discovered that titanium oxide or zinc oxide alone or in combination, or a mixed metal oxide consisting of an oxide or hydroxide of an alkali metal or alkaline earth metal, coexists with titanium oxide or zinc oxide. In some cases, the present inventors have discovered that the decomposition reaction can occur efficiently even by irradiation with near ultraviolet rays having a wavelength of 200 nll1 or more, and have completed the present invention. According to the method of the present invention, in addition to being able to use inexpensive low-pressure mercury lamps that are normally used as germicidal lamps, near-ultraviolet rays contained in sunlight can also be used. Economic efficiency will improve dramatically.

本発明におけるNOxとはNOまたはNO□の単独また
は混合物であって、これらNOxを含有する含酸素気体
としては、燃焼ガスまたは空気などである。また本発明
はNOxの濃度が1〜10000pp−の範囲のNOX
含有含酸素気体の処理に好適に適用されるが、本質的に
には濃度の制限はない。
NOx in the present invention refers to NO or NO□ alone or as a mixture, and examples of the oxygen-containing gas containing these NOx include combustion gas or air. Further, the present invention provides NOx with a NOx concentration in the range of 1 to 10,000 pp-.
Although it is suitably applied to the treatment of oxygen-containing gases, there is essentially no concentration limit.

本発明で用いる金属酸化物は前記のごとく、酸化チタン
もしくは酸化亜鉛の単独または混合物、あるいはこれら
とアルカリ金属もしくはアルカリ土類金属の酸化物また
は水酸化物からなるものである。本発明における酸化チ
タンまたは酸化亜鉛の結晶構造はいかなるものでもよい
が、酸化チタンとしてはアナターゼ型が特に高い活性を
示す。また、本発明におけるアルカリ金属の酸化物また
は水酸化物としては、リチウム、ナトリウム、カリウム
、ルビジウム、セシウムなどのアルカリ金属の酸化物ま
たは水酸化物があげられ、価格などを考慮すれば、ナト
リウム、カリウムの酸化物または水酸化物が望ましい。
As mentioned above, the metal oxide used in the present invention is composed of titanium oxide or zinc oxide alone or in a mixture, or an oxide or hydroxide of these and an alkali metal or alkaline earth metal. Although the titanium oxide or zinc oxide in the present invention may have any crystal structure, the anatase type of titanium oxide exhibits particularly high activity. In addition, examples of the alkali metal oxides or hydroxides in the present invention include oxides or hydroxides of alkali metals such as lithium, sodium, potassium, rubidium, and cesium. Potassium oxides or hydroxides are preferred.

また、アルカリ土類金属の酸化物または水酸化物として
は、バリウム、マグネシウム、カルシウム、バリウムな
どの酸化物または水酸化物があげられる。これらのアル
カリ金属もしくはアルカリ土類金属の酸化物または水酸
化物の含有形態は特に限定されるものではなく、6チタ
ン酸カリウム、4チタン酸カリウムなどのアルカリ金属
酸化物と酸化チタンまたは酸化亜鉛の複合酸化物でもよ
く、酸化チタンもしくは酸化亜鉛の単独または混合物に
水酸化ナトリウム、水酸化カリウムもしくは水酸化バリ
ウムなどのアルカリ金属あるいはアルカリ土類金属水酸
化物または酸化バリウムなどの酸化物などが含浸あるい
は混合されたものでもよい。
Further, examples of the oxides or hydroxides of alkaline earth metals include oxides or hydroxides of barium, magnesium, calcium, barium, and the like. The content form of these alkali metal or alkaline earth metal oxides or hydroxides is not particularly limited. A composite oxide may also be used, in which titanium oxide or zinc oxide alone or in a mixture is impregnated with an alkali metal or alkaline earth metal hydroxide such as sodium hydroxide, potassium hydroxide or barium hydroxide, or an oxide such as barium oxide. A mixture may also be used.

アンモニアを共存させるばあいには、NOxに対して1
〜2倍量のアンモニアを使用する。
When ammonia coexists, 1 for NOx
Use ~2 times the amount of ammonia.

また酸化チタンもしくは酸化亜鉛の単独または混合物と
アルカリ金属もしくはアルカリ土類金属の酸化物または
水酸化物の組成は、アンモニアを共存させるばあいには
酸化チタンもしくは酸化亜鉛の単独または混合物100
重量部に対して0.1〜30重量部、またアンモニアを
共存させずにNOxを固定しようとするばあいにはNO
xの除去量と等量以上のアルカリ金属もしくはアルカリ
土類金属の酸化物または水酸化物が使用される。
In addition, the composition of titanium oxide or zinc oxide alone or as a mixture and an alkali metal or alkaline earth metal oxide or hydroxide may be 100% of titanium oxide or zinc oxide alone or as a mixture when ammonia is present.
0.1 to 30 parts by weight, or NO when fixing NOx without coexisting ammonia.
An amount of the alkali metal or alkaline earth metal oxide or hydroxide is used in an amount equal to or more than the amount of x removed.

本発明において、これらの混合金属酸化物とNOxを含
む含酸素気体との接触方法としては、NOxを含む含酸
素気体中にこれらの混合金属酸化物を粉体のまま飛散さ
せる方法、気体の流路中に粉体を静置させる方法、ある
いはしっくい状に練り固めて反応装置の内壁に塗りつけ
る方法など、これらの金属酸化物がNOxを含む含酸素
気体と直接接触でき、紫外線が効率よく金属酸化物に直
接吸収される方法であればいかなる方法であってもよい
。また、塗料や顔料中にこれらの金属酸化物を分散させ
て反応装置の内壁を塗装する方法も採用することができ
る。
In the present invention, the method of contacting these mixed metal oxides with the oxygen-containing gas containing NOx includes a method of scattering these mixed metal oxides in powder form in an oxygen-containing gas containing NOx, a method of scattering the mixed metal oxides as powder in an oxygen-containing gas containing NOx, and a method of scattering the mixed metal oxides in powder form in an oxygen-containing gas containing NOx. These metal oxides can be brought into direct contact with oxygen-containing gases including NOx, such as by leaving the powder still in the road, or by kneading it into a plaster-like shape and applying it to the inner wall of the reactor, allowing ultraviolet rays to efficiently oxidize the metal. Any method may be used as long as it is directly absorbed into objects. It is also possible to adopt a method of dispersing these metal oxides in a paint or pigment and painting the inner wall of the reaction device.

本発明における紫外線とは波長が400〜200nlの
近紫外線であるが、波長が200rv以下の真空紫外線
が含まれていてもよい。これらの紫外線は超高圧水銀灯
、高圧水銀灯、キセノン灯、低圧水銀灯を単独あるいは
併用して発生させるが、放電管内に水銀と第三成分を共
存させて目的に合致した波長分布特性をもつように改良
した光源を使用することもできる。また太陽光線中の近
紫外線を利用することもできる。
The ultraviolet rays in the present invention are near ultraviolet rays having a wavelength of 400 to 200 nl, but may also include vacuum ultraviolet rays having a wavelength of 200 rv or less. These ultraviolet rays are generated using ultra-high-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, and low-pressure mercury lamps, either alone or in combination, but improvements have been made so that mercury and a third component coexist in the discharge tube to have wavelength distribution characteristics that match the purpose. A light source can also be used. It is also possible to use near ultraviolet rays in sunlight.

本発明における金属酸化物の作用原理については詳細に
研究中であるが、酸化チタンや酸化亜鉛などのn型半導
体が紫外線を吸収し、n型半導体の導電帯にある電子が
導電帯に励起され、導電帯中に生じた正孔は金属酸化物
の表面上に存在する水酸基を一電子酸化してOHラジカ
ルを生ぜしめ、この0■ラジカルがNOxを酸化して硝
酸に変化せしめ、これらがアルカリ金属もしくはアルカ
リ土類金属の酸化物または水酸物に捕獲されるものと考
ええられる。また、アンモニアが共存するばあいは、N
H,の−電子酸化反応によってNH3カチオンラジカル
を生じ、これがNH2ラジカルとH9に解離し、NH2
ラジカルがNOと反応して水と窒素に変化するものと考
えられる。他方、導電帯に励起された電子は802を一
電子還元して亜硝酸イオンを生ぜしめ、これが水と反応
して亜硝酸を生じ、これがざらに酸化されて硝酸になり
、これが金属激化物に固定されるものと考えられる。ざ
らに、アンモニアが共存するばあいは、生じた亜硝酸が
アンモニアと反応して亜硝酸アンモニウムを生じ、これ
が金属酸化物上で窒素と水に分解するものと考えられる
。また、アルカリ金属もしくはアルカリ土類金属の酸化
物または水酸化物は、NOxの金属酸化物表面への吸着
量を増大せしめるか、あるいは金属酸化物表面の水酸基
量を増大せしめることにより、NOxの分解速度を増大
せしめているものと推察される。
The principle of action of metal oxides in the present invention is currently under detailed research, but n-type semiconductors such as titanium oxide and zinc oxide absorb ultraviolet rays, and electrons in the conductive band of the n-type semiconductor are excited to the conductive band. , the holes generated in the conductive band oxidize the hydroxyl group present on the surface of the metal oxide with one electron to generate OH radicals, and these 0■ radicals oxidize NOx and change it to nitric acid, which becomes alkali. It is thought that it is captured by oxides or hydroxides of metals or alkaline earth metals. In addition, if ammonia coexists, N
The -electron oxidation reaction of H generates NH3 cation radical, which dissociates into NH2 radical and H9, and NH2
It is thought that the radicals react with NO and change into water and nitrogen. On the other hand, the electrons excited in the conductive band reduce 802 by one electron to produce nitrite ions, which react with water to produce nitrous acid, which is roughly oxidized to nitric acid, which becomes a metal intensifier. It is thought that it will be fixed. In general, it is thought that when ammonia coexists, the generated nitrous acid reacts with ammonia to produce ammonium nitrite, which decomposes into nitrogen and water on the metal oxide. In addition, oxides or hydroxides of alkali metals or alkaline earth metals decompose NOx by increasing the amount of NOx adsorbed on the surface of the metal oxide or by increasing the amount of hydroxyl groups on the surface of the metal oxide. It is presumed that the speed is increased.

したがって、特にアンモニアを共存せしめないばあいに
は、NOXは硝酸のアルカリ金属塩あるいはアルカリ土
類金属塩として金属酸化物に固定される。またアンモニ
アを共存させるばあいには、NOXは金属酸化物上に固
定されずにアンモニアによって窒素と水に分解される。
Therefore, especially when ammonia is not allowed to coexist, NOX is fixed to the metal oxide as an alkali metal salt or an alkaline earth metal salt of nitric acid. Furthermore, when ammonia is present, NOX is not fixed on the metal oxide but is decomposed by the ammonia into nitrogen and water.

これらの反応は炭化水素や硫化水素などの被酸化性有機
化合物あるいは無機化合物が共存しても起こり、かつ、
特に加熱を要しない空温あるいはそれ以下の低温度、ま
た高温度でも起こるので穫めて有利な脱硝法といえる。
These reactions occur even in the coexistence of oxidizable organic or inorganic compounds such as hydrocarbons and hydrogen sulfide, and
This is a very advantageous denitrification method because it can occur at air temperature or lower temperatures without the need for heating, or even at high temperatures.

以下、実施例をあげて本発明を説明するが、本発明はか
かる実施例のみに限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜8および比較例1〜5 第1表に示す組成の金属酸化物25011;lを混線法
により調製し、内容積220mの高純度石英製円筒型反
応器(径4.23、長ざ15α)の内側底部にできるだ
け設置面積が大きくなるように設置した(設置面積的1
0aり。金属酸化物の設置底部の下方2.51に20o
n−以上の波長の近紫外線を放射する4ワツトの殺菌水
銀灯を設備した。
Examples 1 to 8 and Comparative Examples 1 to 5 Metal oxides 25011;l having the compositions shown in Table 1 were prepared by the crosstalk method and placed in a high-purity quartz cylindrical reactor (diameter 4.23, length 15α) so that the installation area is as large as possible (installation area 1
0a ri. 20o at 2.51 below the bottom of the metal oxide installation
A 4 watt sterilizing mercury lamp was installed, emitting near ultraviolet light of wavelengths above n-.

この反応器に空気を満たして1100ppとなるように
NOを導入し、殺菌水銀灯を点灯して外部から紫外線を
照射し、NOx濃度の経時変化を測定して半減期を求め
た。結果を第1表に示す。
This reactor was filled with air and NO was introduced to a concentration of 1100 pp, a sterilizing mercury lamp was turned on, ultraviolet rays were irradiated from the outside, and the change in NOx concentration over time was measured to determine the half-life. The results are shown in Table 1.

[以下余白] 実施例1および比較例1〜3の結果かられかるように、
酸化チタン共存下では紫外線を照射すると、NOxの半
減期は著しく短かくなり、酸化チタンに紫外線を照射す
ることによりNOx減少速度が著しく増大することが示
された。また、実施例1.3.4.5の結果から、酸化
チタンにアルカリ金属もしくはアルカリ土類金属の水酸
化物を共存させて紫外線を照射すると、NO減少速度は
更に増大することがわかる。酸化カリウムと酸化チタン
の複合酸化物である6チタン酸カリウムも紫外線照射下
において大きな活性を有している。
[Left below] As can be seen from the results of Example 1 and Comparative Examples 1 to 3,
It was shown that when titanium oxide coexists with ultraviolet rays, the half-life of NOx is significantly shortened, and that irradiating titanium oxide with ultraviolet rays significantly increases the NOx reduction rate. Moreover, from the results of Examples 1.3.4.5, it can be seen that when titanium oxide is made to coexist with an alkali metal or alkaline earth metal hydroxide and irradiated with ultraviolet rays, the NO reduction rate further increases. Potassium hexatitanate, which is a composite oxide of potassium oxide and titanium oxide, also has great activity under ultraviolet irradiation.

一方、比較例4および実施例7.8の結果から酸化亜鉛
も紫外線照射下において活性を示すことがわかる。なお
、これらの金属酸化物を用いて反応を行なったのち、金
Jilt化物上に生成した硝酸イオンの定量を行なうと
、減少した 。
On the other hand, the results of Comparative Example 4 and Examples 7 and 8 show that zinc oxide also exhibits activity under ultraviolet irradiation. It should be noted that when the nitrate ions produced on the gold silt were quantified after the reaction using these metal oxides, the amount decreased.

NOxに相当する量の硝酸イオンが検出された。Nitrate ions were detected in an amount equivalent to NOx.

この事実より、NOXは硝酸に酸化され、金属酸化物に
固定されたことがわかる。
This fact indicates that NOX was oxidized to nitric acid and fixed to the metal oxide.

実施例9〜15および比較例6〜8 第2表に示す組成の金属酸化物をallし、アンモニア
20Opp園を共存させたほかは実施例1と同様の操作
を行なってNOxの半減期を調べた結果を第2表に示す
Examples 9 to 15 and Comparative Examples 6 to 8 The half-life of NOx was investigated by carrying out the same operation as in Example 1 except that all the metal oxides having the compositions shown in Table 2 were added and 20 Opp of ammonia was coexisting. The results are shown in Table 2.

[以下余白] 比較例6.7.8および実施例9.12かられかるよう
に、アンモニアを共存せしめて酸化チタ、ンおよび酸化
亜鉛の共存下に紫外線を照射すると、NOxの半減時間
は著しく短縮されることがわかる。また、実施例1G、
 11.13.14より、アルカリを添加したり、酸化
アルカリとの複合酸化物を用いることにより、反応速度
がざらに増大することがわかる。
[Left below] As can be seen from Comparative Example 6.7.8 and Example 9.12, when ultraviolet rays are irradiated in the presence of ammonia and titanium oxide and zinc oxide, the half-life time of NOx is significantly reduced. It can be seen that it is shortened. In addition, Example 1G,
11.13.14, it can be seen that the reaction rate increases roughly by adding an alkali or using a composite oxide with an alkali oxide.

比較例9 反応容器を空気で満たすかわりに、窒素で満すことによ
り酸素を共存せしめなかったほかは実施例10と同様の
操作を行ない、NOx半減期を調べたところ、半減期は
120分以上で、NOxはほとんど減少しなかった。
Comparative Example 9 The same operation as in Example 10 was performed except that the reaction vessel was filled with nitrogen instead of air so that oxygen did not coexist, and when the half-life of NOx was investigated, the half-life was 120 minutes or more. However, NOx levels hardly decreased.

Claims (1)

【特許請求の範囲】 1 酸化チタンもしくは酸化亜鉛の単独またはこれらの
混合物の存在下で、窒素酸化物を含む含酸素気体に紫外
線を照射することを特徴とする窒素酸化物含有含酸素気
体の紫外線脱硝処理法。 2 酸化チタンもしくは酸化亜鉛の単独またはこれらの
混合物とアルカリ金属もしくはアルカリ土類金属の酸化
物または水酸化物からなる混合金属酸化物の存在下で行
なう特許請求の範囲第1項記載の処理法。 3 酸化チタンもしくは酸化亜鉛の単独またはこれらの
混合物の存在下で、アンモニアを共存させ、窒素酸化物
を含む含酸素気体に紫外線を照射することを特徴とする
窒素酸化物含有含酸素気体の紫外線脱硝処理法。 4 酸化チタンもしくは酸化亜鉛の単独またはこれらの
混合物とアルカリ金属もしくはアルカリ土類金属の酸化
物または水酸化物からなる混合金属酸化物の存在下で行
なう特許請求の範囲第3項記載の処理法。
[Claims] 1. Ultraviolet rays of an oxygen-containing gas containing nitrogen oxides, characterized in that the oxygen-containing gas containing nitrogen oxides is irradiated with ultraviolet rays in the presence of titanium oxide or zinc oxide alone or a mixture thereof. Denitration treatment method. 2. The treatment method according to claim 1, which is carried out in the presence of a mixed metal oxide consisting of titanium oxide or zinc oxide alone or a mixture thereof and an alkali metal or alkaline earth metal oxide or hydroxide. 3 Ultraviolet denitrification of an oxygen-containing gas containing nitrogen oxides, which is characterized by irradiating the oxygen-containing gas containing nitrogen oxides with ultraviolet rays in the presence of titanium oxide or zinc oxide alone or in a mixture thereof in the presence of ammonia. Processing method. 4. The treatment method according to claim 3, which is carried out in the presence of a mixed metal oxide consisting of titanium oxide or zinc oxide alone or a mixture thereof and an oxide or hydroxide of an alkali metal or alkaline earth metal.
JP59253641A 1984-11-29 1984-11-29 Denitration process using ultraviolet ray Pending JPS61133125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253641A JPS61133125A (en) 1984-11-29 1984-11-29 Denitration process using ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253641A JPS61133125A (en) 1984-11-29 1984-11-29 Denitration process using ultraviolet ray

Publications (1)

Publication Number Publication Date
JPS61133125A true JPS61133125A (en) 1986-06-20

Family

ID=17254154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253641A Pending JPS61133125A (en) 1984-11-29 1984-11-29 Denitration process using ultraviolet ray

Country Status (1)

Country Link
JP (1) JPS61133125A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502426A (en) * 1989-06-26 1991-06-06 トラステイーズ・オブ・ボストン・ユニバーシテイ Photo-enhanced method for decomposing nitrogen oxides into environmentally compatible products
EP0591920A3 (en) * 1992-10-06 1994-04-20 Fuji Electric Co Ltd
EP0738539A1 (en) * 1993-01-18 1996-10-23 PCP-PHOTOCATALYTIC PURIFICATION GmbH Process for cleaning gases, waste gases, vapours and water containing unwanted chemical compounds
JPH09225396A (en) * 1995-12-22 1997-09-02 Toto Ltd Coated matter and coating method
US6277346B1 (en) * 1993-06-28 2001-08-21 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
WO2007061401A3 (en) * 2004-08-16 2007-11-15 Dana Uv Inc Controlled spectrum ultraviolet radiation pollution control process
CN102160959A (en) * 2011-02-25 2011-08-24 东南大学 Fume purification system based on advanced oxygenation combining wet scrubbing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502426A (en) * 1989-06-26 1991-06-06 トラステイーズ・オブ・ボストン・ユニバーシテイ Photo-enhanced method for decomposing nitrogen oxides into environmentally compatible products
EP0591920A3 (en) * 1992-10-06 1994-04-20 Fuji Electric Co Ltd
US5909613A (en) * 1992-10-06 1999-06-01 Fuji Electric Co., Ltd. Apparatus for removing harmful gas
EP0738539A1 (en) * 1993-01-18 1996-10-23 PCP-PHOTOCATALYTIC PURIFICATION GmbH Process for cleaning gases, waste gases, vapours and water containing unwanted chemical compounds
US6277346B1 (en) * 1993-06-28 2001-08-21 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
JPH09225396A (en) * 1995-12-22 1997-09-02 Toto Ltd Coated matter and coating method
WO2007061401A3 (en) * 2004-08-16 2007-11-15 Dana Uv Inc Controlled spectrum ultraviolet radiation pollution control process
CN102160959A (en) * 2011-02-25 2011-08-24 东南大学 Fume purification system based on advanced oxygenation combining wet scrubbing

Similar Documents

Publication Publication Date Title
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
Mok et al. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique
US4146450A (en) Method for removing nitrogen oxides from nitrogen oxide-containing gases
EP0408772B1 (en) Exhaust gas cleaning method
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
Wu et al. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides
JPS61133125A (en) Denitration process using ultraviolet ray
CN1257004C (en) A flue gas denitrification (nitrogen) desulfurization agent
JPH01218622A (en) Method for removing nitrogen oxides in low concentration from air
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
JP2004290748A (en) Method for removing nitrogen oxides by photoreaction
WO2017056518A1 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP6440958B2 (en) Method for treating harmful substance-containing liquid, method for producing ultrafine particles of transition metal-containing oxide used in the method, and treatment apparatus
JP5356841B2 (en) Method for treating aqueous solution containing ammonia
JPS5933410B2 (en) How to remove ozone
JPH09276881A (en) Treatment method for water containing nitrogen compounds
JPS60216827A (en) Process for oxidizing decomposition of oxidizable sulphur compound
JPH0199633A (en) Treatment of exhaust gas
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
JPS61178402A (en) Method of decomposition treatment of ozone
TWI754270B (en) Treatment method for wastewater
KR102501315B1 (en) Method for manufacturing highly porous silica photo catalyst including iron oxide and manganese oxide, and method for removing synthetic organic chemicals in aqua using the same
KR20200082091A (en) Absorption composition for removing NOx and SOx simultaneously
KR100478206B1 (en) The removing method of the hard-to-remove chemical ooxygen demand components from flew gas desulfurization waste water by palladium-based bimetal
JPS61111126A (en) Treatment of waste gas