JPS63297736A - Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuation - Google Patents
Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuationInfo
- Publication number
- JPS63297736A JPS63297736A JP13120887A JP13120887A JPS63297736A JP S63297736 A JPS63297736 A JP S63297736A JP 13120887 A JP13120887 A JP 13120887A JP 13120887 A JP13120887 A JP 13120887A JP S63297736 A JPS63297736 A JP S63297736A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- amount
- gas
- gasifying agent
- gasifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims description 17
- 238000010438 heat treatment Methods 0.000 title abstract description 4
- 239000007789 gas Substances 0.000 claims abstract description 65
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 60
- 238000002309 gasification Methods 0.000 claims description 25
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000010248 power generation Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 239000002893 slag Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000004868 gas analysis Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Feeding And Controlling Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は噴流層石炭ガス化炉に係り、特に微粉炭噴流層
ガス化炉で酸素含有ガス(空気及び酸素)等によりガス
化する際に石炭供給量が変動しても生成ガス発熱量を一
定に制御する方法に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a spouted bed coal gasifier, and particularly to a pulverized coal spouted bed gasifier for gasification using oxygen-containing gas (air and oxygen), etc. The present invention relates to a method of controlling the generated gas calorific value to a constant value even if the coal supply amount fluctuates.
石炭は埋蔵量が最大であり石油代替エネルギーとして注
目されている0石炭は固体で取扱いが不便な上、灰分、
硫黄、窒素等を含有し、ており、有効利用するためには
、クリーンなエネルギー源に変換し利用することが望ま
れる。クリーン燃料比の有効な方法として1石炭ガス化
が注目され、その中でも石炭からのクリーンガスを発電
に用いる石炭ガス化複合発電方式が注目されている。Coal has the largest reserves and is attracting attention as an energy alternative to petroleum.Coal is solid and inconvenient to handle, and it has a high ash content.
It contains sulfur, nitrogen, etc., and in order to use it effectively, it is desirable to convert it into a clean energy source. Coal gasification is attracting attention as an effective method for achieving a clean fuel ratio, and among these, the coal gasification combined cycle system, which uses clean gas from coal for power generation, is attracting attention.
この複合発電方式は第2図に示すように、粉砕機1で作
られた微粉炭をガス化炉2に供給してガス化剤と反応さ
せて発生したガスを集塵及び脱硫装置等の精製装置It
3により精製したのち、ガスを燃焼器4に供給して燃焼
させたガスをガスタービン5に、さらに排熱エネルギを
排熱ボイラ6により熱変換を行って蒸気にして、その蒸
気でスチ−ムタービン7を駆動して発電する方式である
。As shown in Figure 2, in this combined power generation system, pulverized coal produced by a crusher 1 is supplied to a gasification furnace 2 and reacted with a gasification agent, and the generated gas is purified by dust collection and desulfurization equipment, etc. Equipment It
3, the gas is supplied to the combustor 4, the combusted gas is sent to the gas turbine 5, the waste heat energy is converted into steam by the waste heat boiler 6, and the steam is used to power the steam turbine. 7 to generate electricity.
この方式において、夜間及び休日等で負荷量を低減させ
たい時の発熱制御が重要である。負荷変動の際発熱量が
変動するとガスタービン自体の燃焼に悪影響を及ぼすこ
とが考えられる。In this method, it is important to control heat generation when it is desired to reduce the load amount, such as at night and on holidays. If the calorific value fluctuates when the load fluctuates, it is conceivable that the combustion of the gas turbine itself will be adversely affected.
従来の負荷変動時での制御方法として、(1)精製装置
の後に石炭ガス化ガスを一旦貯蔵するタンクを用ける方
式、(特開昭57−61086号)(2)石炭ガス化炉
の圧力をガスタービンが必要とする燃料ガスを供給でき
る圧力まで下げ変圧運転を行う方法が代表的である。Conventional control methods during load fluctuations include: (1) using a tank to temporarily store coal gasification gas after the refining equipment (Japanese Patent Application Laid-Open No. 57-61086); (2) pressure of the coal gasification furnace; A typical method is to perform variable pressure operation by lowering the pressure to a level that can supply the fuel gas required by the gas turbine.
例えば(1)の方式では、特開昭57−61086号に
記載のように、ガス化炉で発生した石炭ガス化ガスを精
製したのち、一旦タンクに貯蔵しておき、これを必要に
応じて、負荷変動時及び変動量に対応して複合発電系に
送給する。これにより、負荷変動対応能力の向上、ガス
化炉の保守点検時及び故障時等において、この貯蔵タン
ク内ガスを用いて発電が可能となる利点がある。For example, in method (1), as described in Japanese Patent Application Laid-open No. 57-61086, coal gasification gas generated in a gasification furnace is purified and then temporarily stored in a tank, and then used as needed. , and is supplied to the combined power generation system in response to load fluctuations and the amount of fluctuation. This has the advantage of improving the ability to respond to load fluctuations, and making it possible to generate electricity using the gas in the storage tank during maintenance and inspection of the gasifier or in the event of a failure.
また、(2)の方式には、特開昭59−134331号
に記載のように変圧モードを設定したガス化炉制御装置
を設け、このガス化炉制御装置に負荷要求信号を入力せ
しめ、同ガス化炉制御装置により石炭供給設備及びガス
他剤圧縮機に対して負荷に応じた指令信号を与え、部分
負荷運転時におけるガスタービンの燃料供給圧力を自動
的に制御して変圧運転を行なわせるものである。In addition, the method (2) is equipped with a gasifier control device set to a variable pressure mode as described in JP-A-59-134331, and a load request signal is input to this gasifier control device. The gasifier control device gives a command signal according to the load to the coal supply equipment and gas compressor, and automatically controls the fuel supply pressure of the gas turbine during partial load operation to perform variable pressure operation. It is something.
噴流層ガス化装置で石炭をガス化し、その生成ガスを発
電システムの燃料として利用するガス化複合発電におい
ては、負荷変動時でもガスタービン側の運転に支障がな
いように燃料ガスの発熱量をほぼ一定に維持しなければ
ならない。In gasification combined cycle power generation, in which coal is gasified in an entrained bed gasifier and the resulting gas is used as fuel for the power generation system, the calorific value of the fuel gas is reduced so that the operation of the gas turbine will not be affected even during load fluctuations. must be maintained approximately constant.
一般に負荷変動に対応するための制御方法として、前記
の(1)、 (2)が代表的である。しかし、(1)の
方法では、ガス化装置自体が高圧であるため。In general, the above (1) and (2) are typical control methods for responding to load fluctuations. However, in method (1), the gasification equipment itself is under high pressure.
貯蔵タンクの製作技術1発電能力に応じたタンクの大き
さ及びその設置場所等に制約を受ける欠点がある。また
、貯蔵タンク入口、出口に設置している、流量調節弁及
び生成ガス取込み弁等が長時間の運転になると熱摩耗等
によりバルブの作動性が悪くなり、ガスタービンに供給
する燃焼ガス流量の調節がきかなくなることが考えられ
る。また、プラントに、新たにタンク、バルブ等の機器
類を必要とするため、ガス化プロセスを複雑化し易く。Storage tank manufacturing technology 1 There is a drawback that there are restrictions on the size of the tank and its installation location depending on the power generation capacity. In addition, when the flow rate control valves and produced gas intake valves installed at the inlet and outlet of the storage tank are operated for a long time, their operability deteriorates due to thermal wear and other factors, resulting in a reduction in the flow rate of combustion gas supplied to the gas turbine. It is possible that the adjustment becomes difficult. Additionally, the plant requires new equipment such as tanks and valves, which tends to complicate the gasification process.
ガス化装置の運転性を悪化させる欠点がある。There is a drawback that the operability of the gasifier is deteriorated.
(2)方式では、変圧運転制御することにより、ガス他
炉側9召炭供給系での負荷対応が著じるしく遅れる可能
性があり、負荷対応能力が低下する等の欠点がある。In method (2), by controlling the variable pressure operation, there is a possibility that the response to the load on the gas and other furnace side 9 coal supply systems will be significantly delayed, and there are drawbacks such as a decrease in the load response capacity.
本発明の目的は、噴流層石炭ガス化炉を複合発電プラン
トと組み合わせた場合、負荷変動時及び変動量に対して
、容易に制御でき発熱量を一定に維持できる方法を提供
するにある。An object of the present invention is to provide a method that can easily control and maintain a constant calorific value in response to load fluctuations and load fluctuations when a spouted bed coal gasifier is combined with a combined cycle power plant.
上記目的は、ガス化炉出口に生成ガス中のCH4及び発
熱量を検出できる生成ガス分析解析装置を設置し、負荷
変動に対応して生成ガス分析解析装置から負荷に応じた
指令信号をガス化剤量/石炭量比制御装はを介してガス
他剤制御装置に与え、発熱量の変動に対応して、特に上
段ガス化剤量7右炭量比を調節することにより達成しよ
う゛とするものである。The above purpose is to install a produced gas analyzer that can detect CH4 and calorific value in the produced gas at the gasifier outlet, and in response to load fluctuations, the produced gas analyzer will send a command signal according to the load to the gasifier. The agent amount/coal amount ratio control device is applied to the gas and other agent control devices via the gasifier, and this is achieved by specifically adjusting the upper stage gasifying agent amount 7 right coal amount ratio in response to fluctuations in calorific value. It is something to do.
前記述の欠点を克服し、負荷対応を向上させるためには
1本ガス化炉の圧力を一定に保ち石炭供給量の上、下段
の比を1:1にして、ガス化剤量の変化だけで、制御で
きれば良いと考えた。In order to overcome the above-mentioned drawbacks and improve load handling, the pressure of one gasifier should be kept constant, the ratio of the upper and lower coal supply rates should be 1:1, and only the amount of gasifying agent should be changed. So I thought it would be good if I could control it.
そこで、まず本ガス化炉の操作の基本を述べると、下段
では石炭中の灰分を溶接せしめる温度以上にすることに
よりスラグ化を促進し、上段では活性なチャーの生成を
促進し、できるだけ下段の高温ゾーンに供給することで
ある。下段を満足させるためには、石炭供給量に対して
過剰にガス化剤を供給することにより炉内温度が上昇し
、灰分が溶融する温度が得られる。上段は、下段に供給
するガス化剤の数分の1程度のガス化剤を供給すること
により活性に富んだチャーが生成する。定常運転時で石
灰量を一定として全体のガス化剤量(空気)7石灰量比
を高くしていくと生成ガス中のHz t COp CH
4が減少し、COzが増大するため発熱量は低下する1
発電用燃料の生成ガスの発熱量は最低でも800 kc
al/ N rd以上必要であり、熱量を高めるために
は、全体のガス化剤量/石炭量比を低いところで制御す
る必要がある。しかし、ガス化剤量/石炭量比が低すぎ
ると、下段付近での温度が低下するためスラグ流下が困
難になりスラブタップ孔が閉塞することが考えられる。Therefore, first of all, to explain the basics of operation of this gasifier, the lower stage promotes slagging by raising the temperature above the temperature at which the ash content in the coal is welded, the upper stage promotes the generation of active char, and the lower stage as much as possible. It is to supply the high temperature zone. In order to satisfy the lower requirement, the temperature in the furnace increases by supplying the gasifying agent in excess of the amount of coal supplied, and a temperature at which the ash melts is obtained. A highly active char is produced in the upper stage by supplying a fraction of the amount of gasifying agent to the lower stage. During steady operation, when the amount of lime is constant and the total amount of gasifying agent (air) 7 is increased, the ratio of amount of lime is increased, Hz t COp CH in the generated gas
4 decreases and COz increases, so the calorific value decreases1
The calorific value of the generated gas for power generation fuel is at least 800 kc
al/Nrd or more is required, and in order to increase the amount of heat, it is necessary to control the overall gasifying agent amount/coal amount ratio to a low level. However, if the gasifying agent amount/coal amount ratio is too low, the temperature near the lower stage will decrease, making it difficult for the slag to flow down, and it is conceivable that the slab tap hole will be clogged.
そこで、石炭供給量変動運転時において、800kca
l/Nrn’以上を満足する全体のガス化剤量/石炭量
比(上、下段ガス化剤量/石炭量比ニ一定)一定で高負
荷から低負荷に変化してガス化すると。Therefore, during coal supply fluctuation operation, 800kca
If gasification is performed by changing from a high load to a low load while keeping the overall gasifying agent amount/coal amount ratio (upper and lower stage gasifying agent amount/coal amount ratio constant) satisfying l/Nrn' or more.
ガス化炉に供給される石炭流量が少なくなり全体の炉内
温度が低下するため、反応速度が遅くなり発熱量が低下
した。よって、上記条件以外での条件設定を考える必要
が生じた。As the flow rate of coal supplied to the gasifier decreased and the overall temperature inside the furnace decreased, the reaction rate slowed and the calorific value decreased. Therefore, it became necessary to consider setting conditions other than the above conditions.
そこで、下段ガス化条件は前述したとおり、灰分の溶融
温度以上にすることが目的であることから、下段条件は
負荷が変化してもガス化剤量/石灰量比は一定にし上段
ガス化条件を検討することにより発熱量を制御しようと
するものである。Therefore, as mentioned above, the purpose of the lower gasification conditions is to raise the temperature above the melting temperature of the ash, so the lower gasification conditions are such that the ratio of gasifying agent amount/lime amount is constant even if the load changes, and the upper gasification conditions are The aim is to control the amount of heat generated by considering the following.
そこで、生成ガス中で一番カロリーが高いメタンに着目
して、そのメタン生成条件を把握することにした。Therefore, we decided to focus on methane, which has the highest calorie among the produced gases, and to understand the conditions for methane production.
まず、外熱式の小型反応炉を用いてメタン生成量に及ぼ
す温度の影響を調べた。その結果が第3図である。この
図からメタン生成量は温度が支配的であり、上段付近の
温度は1400℃以下が良いことがわかった。また、温
度1200℃の時のガス生成量に及ぼす空気比の影響を
調べたのが第4図である。この図のように空気を若干供
給するとHz、Goが急激に上昇するが、逆にCH4は
急激に低下した。この原因は、CH4が酸素と反応して
Hz、Co が発生する揮発分のガス化が進んでいると
考えられる。First, we investigated the effect of temperature on methane production using a small external heating reactor. The result is shown in Figure 3. This figure shows that the amount of methane produced is dominated by temperature, and that the temperature near the upper stage is preferably 1400°C or lower. Further, FIG. 4 shows the result of investigating the influence of the air ratio on the amount of gas produced at a temperature of 1200°C. As shown in this figure, when a small amount of air was supplied, Hz and Go rose sharply, but on the contrary, CH4 suddenly fell. The reason for this is thought to be that CH4 reacts with oxygen to generate Hz and Co2, and the gasification of volatile components is proceeding.
CHa+1/20z→CO+ 2 HzCH4+ 20
x−e COz+ 2 HzOさらに空気を増加してい
くとチャーのガス化が起こり、このような反応をしC+
COz→2CO2C+HxO→CO+ HzCO、H
zが増えると考える。CHa+1/20z→CO+ 2 HzCH4+ 20
x-e COz+ 2 HzO As the air is further increased, gasification of char occurs, and this reaction causes C+
COz→2CO2C+HxO→CO+ HzCO, H
Consider that z increases.
以上、これらの結果を参考にし、上段ガス化剤量/石炭
量比を変化させることにより発熱量制御が可能になる。As described above, by referring to these results and changing the upper stage gasifying agent amount/coal amount ratio, it becomes possible to control the calorific value.
すなわち、ガス化炉の出口ラインに生成ガス中のCHa
生成量及び発熱量を検出する演算機能を有する生成ガス
分析解析装置を設置して、負荷変動時でのCH4ガス生
成量及び発熱量を把握した後、これらの信号をある設定
量になるようガス化剤量/石炭量比制御装置を介してガ
ス他剤制御装置に与え、ガス他剤制御装置からの信号を
上、下段のガス他剤流量調節弁に与え、下段のガス化剤
量/石炭量比を一定に変化上段のガス化剤量/石炭量比
を変化しながらCH4生成量を調節することにより、負
荷低減時においても発熱量が維持できるような制御を達
成しようとするものである。That is, CHa in the produced gas is present in the outlet line of the gasifier.
After installing a produced gas analyzer with arithmetic functions to detect the amount of CH4 gas produced and calorific value, and understanding the amount of CH4 gas produced and calorific value during load fluctuations, these signals are adjusted to a certain set amount of gas. A signal from the gas and other agent control device is sent to the upper and lower gas and other agent flow control valves through the gasifying agent amount/coal amount ratio control device, and the gasifying agent amount/coal amount is By changing the amount ratio at a constant value and adjusting the amount of CH4 generated while changing the gasifying agent amount/coal amount ratio in the upper stage, the aim is to achieve control that maintains the calorific value even when the load is reduced. .
第1図は本発明の一実施例の構成したものである。 FIG. 1 shows the configuration of an embodiment of the present invention.
全体の構成は、石灰供給系、ガス化剤供給系、ガス化炉
、精製装置及び制御系である。The overall configuration includes a lime supply system, a gasifying agent supply system, a gasifier, a purification device, and a control system.
石炭供給系は、粉砕機1.微粉炭輸送ライン24、石炭
供給ホッパ22石炭供給装置3、気流輸送ライン19及
び分岐管4から成る。粉砕機1で粉砕された微粉炭は微
粉炭輸送ライン24を経て1石炭供給水ツバ2に充填し
た後1石炭供給装置3で供給量を設定した後、不活性ガ
ス(N2゜COz等)で気流輸送し、気流輸送ライン1
9を経て分岐管4で上、下段に分岐した後ガス化炉7に
供給する。この時の上、下段の石炭供給量は同量とする
。The coal supply system consists of a crusher 1. It consists of a pulverized coal transport line 24, a coal supply hopper 22, a coal supply device 3, an air flow transport line 19, and a branch pipe 4. The pulverized coal pulverized by the pulverizer 1 passes through the pulverized coal transport line 24 and is filled into the 1 coal supply water tank 2. After setting the supply amount with the 1 coal supply device 3, it is heated with an inert gas (N2° COz, etc.). Airflow transport, airflow transport line 1
After passing through the pipe 9 and branching into upper and lower stages at the branch pipe 4, the gas is supplied to the gasifier 7. At this time, the amount of coal supplied to the upper and lower stages is the same.
ガス化剤供給系は、ガス他剤圧縮機11.下段ガス化剤
流量制御弁13上段ガス化剤流量制御弁14から成る。The gasification agent supply system includes a gas and other agent compressor 11. It consists of a lower stage gasifying agent flow rate control valve 13 and an upper stage gasifying agent flow rate controlling valve 14.
ガス他剤圧縮機11からのガスはガス他剤ライン20を
経て、上、下段ガス他剤流量制御弁14゜13を通り、
ガス化炉7上、下段に設置した石炭バーナ5,6に供給
し、その出口で微粉炭と接触してガス化する。The gas from the gas and other agent compressor 11 passes through the gas and other agent line 20, and passes through the upper and lower gas and other agent flow rate control valves 14 and 13.
The coal is supplied to coal burners 5 and 6 installed at the upper and lower stages of the gasifier 7, and is gasified by contacting pulverized coal at the outlet thereof.
ガス化炉7は、上、下段反応ゾーン8,9を有する、上
段反応ゾーン8では活性チャーを生成し 。The gasifier 7 has upper and lower reaction zones 8 and 9, and the upper reaction zone 8 produces activated char.
下段反応ゾーン9では1石炭中の灰分を溶融する温度以
上に保つ、ガス化炉上、下段反応ゾーン8゜9に石炭バ
ーナ5,6を設置し、上段反応ゾーン8で生成したチャ
ーを下段の高温ゾーンに供給し、Co、HzOと反応し
た後、灰分が溶融したスライド状態になり、スラグの自
由落下により水を充填したスラグ回収装置10内に入り
急冷した後回収する。In the lower reaction zone 9, coal burners 5 and 6 are installed in the lower reaction zone 8゜9 above the gasifier to keep the ash content in one coal at a temperature higher than that of melting, and the char produced in the upper reaction zone 8 is transferred to the lower reaction zone. After being supplied to a high temperature zone and reacting with Co and HzO, the ash becomes a molten sliding state, and the slag freely falls into the slag recovery device 10 filled with water, where it is rapidly cooled and then recovered.
ガス化炉7から生成したガスは、生成ガスライン22を
経て集塵及び脱硫装置の精製袋W115で精製した後、
燃焼器及びガスタービン12へ供給する。The gas generated from the gasification furnace 7 passes through the generated gas line 22 and is purified in the purification bag W115 of the dust collection and desulfurization equipment.
Supplies the combustor and gas turbine 12.
分析及び制御系は、CH4生成量及び発熱量の演算機構
を有した生成ガス分析解析装置!16ガス化剤制御装置
17、石炭供給制御袋[18,ガス化剤量/石炭量比制
御装!23から成る。The analysis and control system is a generated gas analysis analyzer with a calculation mechanism for CH4 generation amount and calorific value! 16 Gasifying agent control device 17, coal supply control bag [18, gasifying agent amount/coal amount ratio control device! Consists of 23.
夜間及び休日で電力量を下げたい時には、ガスタービン
12側からの発電力を下げたい指令を。When you want to reduce the amount of electricity at night or on holidays, issue a command to reduce the power generated from the gas turbine 12 side.
石炭供給制御装置18に与え石炭供給量を下げ始めたと
同時にガス他炉7出口に設置した生成ガス分析解析装置
!16を作動し、CHa生成量及び発熱量を検出した後
、その信号を全体及び上、下段ガス化剤量/石炭量比制
御装置23を介してガス化剤制御装!117に与え、負
荷量の変化に対応して、ガス他剤制御装置!17からの
信号を上、下段ガス化剤流量制御井13.14に与えガ
ス化剤量/石炭量比制御装!!23が指定したガス化剤
量/石炭量比になるようガス化剤を供給する。At the same time as the coal supply control device 18 began to reduce the coal supply amount, the generated gas analysis device was installed at the outlet of the gas furnace 7! 16 and detects the CHa production amount and calorific value, the signals are sent to the entire gasifying agent control device through the upper and lower gasifying agent amount/coal amount ratio control devices 23! 117, and in response to changes in load amount, gas and other agent control devices! The signal from 17 is given to the upper and lower gasifier flow rate control wells 13 and 14 to control the gasifier amount/coal amount ratio! ! 23 supplies the gasifying agent so that the specified gasifying agent amount/coal amount ratio is achieved.
その際、下段ガス化剤量/石炭量比は、負荷量が100
%から50%に低減したとしても、ガス化剤量/石炭量
比は一定になるよう制御する。At that time, the lower stage gasifier amount/coal amount ratio is such that the load amount is 100.
% to 50%, the gasifying agent amount/coal amount ratio is controlled to remain constant.
一方、上段ガス化剤量/石炭量比は、負荷量の変化とと
もに、上段付近の温度を1400℃以下に抑えるように
変化しCHa生成量を確認しながら制御する。On the other hand, the upper stage gasifying agent amount/coal amount ratio is changed as the load amount changes so as to suppress the temperature near the upper stage to 1400° C. or less, and is controlled while checking the amount of CHa produced.
ガス化炉は、内径300am、反応部高さ800■で断
熱、耐火物で内張すした構造で、ガス化炉内下部にスラ
グ流下孔を有するスラグタップを設置したものである。The gasification furnace had an inner diameter of 300 am, a reaction section height of 800 cm, and was insulated and lined with refractory material, and a slag tap with a slag flow hole was installed in the lower part of the gasification furnace.
そのガス化炉の反応部にスラグタップ上部から100閣
のところに下段石炭バーナを4本、また、スラブタップ
上部から6501のところに上段石炭バーナを4本設置
した。In the reaction section of the gasifier, four lower stage coal burners were installed at 100 points from the top of the slag tap, and four upper stage coal burners were installed at 6501 points from the top of the slab tap.
ガス化炉以降のラインに集塵及び脱硫装置を設け、ガス
中のダスト及びHas を除去した後、フレアスタッ
クで焼却した。また、ガス化炉出口にガス分析装置を設
置するとともにガス他剤制御装置、石炭供給制御装置を
設置して負荷量の変化に対するガス化剤量、石炭供給量
の応答性を向上させた。A dust collector and desulfurizer was installed in the line after the gasifier to remove dust and Has from the gas, which was then incinerated in a flare stack. In addition, a gas analyzer was installed at the outlet of the gasifier, as well as a gas and other agent control device and a coal supply control device to improve the responsiveness of the gasification agent amount and coal supply amount to changes in load.
微粉炭(粒径0.1sm以下)の搬送条件は、石炭供給
ホッパから分岐管までの搬送窒素量は4kg/h分岐管
から供給する搬送窒素量は8kg/hとした。この時の
石炭供給量は、石炭供給制御装置で30kg/hから1
0kg/hと負荷を変化した。ガス化剤量には空気を用
いた。ガス化剤量は、石炭量が100%(石炭量30k
g/h)の時の全ガス化剤量/石炭量比(以下空気比と
称す)が3.5となるように105kg/h、この時の
上段空気比が2.0となるように30kg/h、下段空
気比が5.0 となるように75kg/hで供給した
。負荷量低減時には、ガス分析装置でのCHA量及び発
熱量を検知しながら、その負荷量に応じて下段空気比を
5と一定にし、上段空気比は下記の条件で得られた結果
を参考に制御することにした。The transport conditions for pulverized coal (particle size of 0.1 sm or less) were such that the amount of nitrogen transported from the coal supply hopper to the branch pipe was 4 kg/h, and the amount of nitrogen supplied from the branch pipe was 8 kg/h. The amount of coal supplied at this time is changed from 30 kg/h to 1
The load was changed to 0 kg/h. Air was used as the amount of gasifying agent. The amount of gasifying agent is 100% coal (30k coal)
g/h) so that the total gasifying agent amount/coal amount ratio (hereinafter referred to as air ratio) is 3.5, 105 kg/h, and 30 kg so that the upper stage air ratio at this time is 2.0. /h, and the air was supplied at a rate of 75 kg/h so that the lower stage air ratio was 5.0. When reducing the load, while detecting the CHA amount and calorific value with the gas analyzer, the lower stage air ratio is kept constant at 5 according to the load, and the upper stage air ratio is determined based on the results obtained under the following conditions. I decided to control it.
上記の条件で実験する前に1本ガス化炉での上段空気比
を設定する条件を把握するため、メタン生成量に及ぼす
上段空気比の影響を調べた。この条件は、石炭供給量を
10kg/hと28kg/h、全空気比3.5一定で、
上段空気比を変化して調べた。その結果を第5図に示す
、この図のように、上段空気比が低くなる程、石炭量に
関係なくC1+4生成量が増大している。また1発熱量
も増大している1石炭量が28kg/hで上段空気比が
2.0の時、発熱量は880 kcal/ N rrr
である。この発熱量を目安に制御しようとすると石炭量
10kg/hでは上段空気比を1.0 に設定する必
要がある。Before conducting experiments under the above conditions, in order to understand the conditions for setting the upper stage air ratio in a single gasifier, the influence of the upper stage air ratio on the amount of methane produced was investigated. These conditions are: the coal supply rate is 10 kg/h and 28 kg/h, the total air ratio is constant 3.5,
The results were investigated by varying the upper stage air ratio. The results are shown in FIG. 5. As shown in this figure, as the upper stage air ratio becomes lower, the amount of C1+4 produced increases regardless of the amount of coal. The calorific value has also increased.When the amount of coal per unit is 28 kg/h and the upper stage air ratio is 2.0, the calorific value is 880 kcal/N rrr.
It is. If control is attempted using this calorific value as a guideline, it is necessary to set the upper stage air ratio to 1.0 when the amount of coal is 10 kg/h.
以上の結果を元に、上段の空気比を設定することにし、
前記述の条件で実験することにした。Based on the above results, we decided to set the upper stage air ratio,
I decided to conduct an experiment under the conditions described above.
その結果を第6図に示す、横軸は石炭供給量。The results are shown in Figure 6, where the horizontal axis is the coal supply amount.
縦軸は発熱量、効率を示す。図中の点線は、全ガス化剤
量/石炭量比を3.5 とし、上、下段の空気比を負荷
量が変化しても一定で行った時の結果である。この図の
ように、従来に比べて負荷量が変化しても発熱量を一定
に制御することができた。The vertical axis shows the amount of heat generated and efficiency. The dotted line in the figure is the result when the total gasifying agent amount/coal amount ratio was set to 3.5 and the air ratio in the upper and lower stages was kept constant even if the load amount changed. As shown in this figure, compared to the conventional method, the amount of heat generated could be controlled to be constant even if the amount of load changed.
以上、本実施例によれば負荷変動時においても発熱量を
一定に維持することができた。As described above, according to this embodiment, the amount of heat generated could be maintained constant even when the load fluctuated.
本発明によれば、負荷変動量にみあって上段ガス化剤量
7召炭量比を変化制御、下段ガス化剤量7召炭量比を一
定制御することにより、負荷低減時でも発熱量を一定に
維持できる効果を有する。According to the present invention, by controlling the upper stage gasifying agent amount 7 coal amount ratio to change and controlling the lower stage gasifying agent amount 7 coal amount ratio to a constant value in accordance with the amount of load fluctuation, the calorific value is increased even when the load is reduced. It has the effect of maintaining a constant value.
第1図は本発明の噴流層石炭ガス化炉の発熱量制御方法
を示す概略図、第2図は石炭ガス化複合発電プロセスの
システム図、第3図はメタン生成量に及ぼす反応温度の
影響を示す線図、第4図は生成ガス量に及ぼす空気比の
影響を示す線図、第5図はメタン生成量に及ぼす上段空
気比の影響を示す線図、第6図は負荷変動特性に及ぼす
石炭供給量との関係を示す線図である。
1・・・粉砕機、2・・・石炭供給ホッパ、3・・・石
炭供給装置、4・・・石炭分岐管、5・・・上段石炭バ
ーナ、6・・・下段石段バーナ、7・・・ガス化炉、8
・・・上段反応ゾーン、9・・・下段反応ゾーン、10
・・・スラグ回収装置、11・・・ガス他剤圧縮機、1
2・・・ガスタービン及び燃焼器、13・・・下段ガス
他剤制御弁、14・・・上段ガス他剤制御弁、15・・
・精製装置、16・・・生成ガス分析解析装置、17・
・・ガス他剤制御装置。
18・・・石炭供給制御装置、19・・・石炭供給ライ
ン、20・・・ガス他剤供給ライン、21・・・信号、
22・・・生成ガスライン、23・・・ガス化剤量/石
炭量比制第2 口
不3図
1σσ0 /2σσ /44)σ 16σσ
/8σσ46凌 (r)
94 旧
Y5図
1σ 2.σ
上fiAtr/cnttl
某L 図Figure 1 is a schematic diagram showing the calorific value control method of the spouted bed coal gasifier of the present invention, Figure 2 is a system diagram of the coal gasification combined cycle process, and Figure 3 is the effect of reaction temperature on the amount of methane produced. Figure 4 is a diagram showing the influence of the air ratio on the amount of produced gas, Figure 5 is a diagram showing the influence of the upper stage air ratio on the amount of methane produced, and Figure 6 is a diagram showing the influence of the air ratio on the amount of methane produced. FIG. DESCRIPTION OF SYMBOLS 1...Crusher, 2...Coal supply hopper, 3...Coal supply device, 4...Coal branch pipe, 5...Upper stage coal burner, 6...Lower stage stone step burner, 7...・Gasifier, 8
...Upper reaction zone, 9...Lower reaction zone, 10
... Slag recovery device, 11 ... Gas and other agent compressor, 1
2... Gas turbine and combustor, 13... Lower stage gas other agent control valve, 14... Upper stage gas other agent control valve, 15...
・Purification device, 16...Produced gas analysis device, 17・
...Gas and other agent control equipment. 18... Coal supply control device, 19... Coal supply line, 20... Gas and other agent supply line, 21... Signal,
22...Produced gas line, 23...Gasifying agent amount/coal amount ratio control 2nd Kuchifu3 Figure 1σσ0 /2σσ /44)σ 16σσ
/8σσ46 Ryo (r) 94 Old Y5 Figure 1σ 2. σ upper fiAtr/cnttl certain L figure
Claims (1)
に石炭とガス化剤を分配して供給し、ガス化する噴流層
石炭ガス化炉において、石炭供給量に対応して、下段の
ガス化剤量/石炭量比は炭種の溶触点以上の温度を維持
できるある値で一定、上段のガス化剤量/石炭量比は上
段付近の温度が1400℃以下となるようにガス化剤量
を調節することを特徴とする噴流層石炭ガス化炉の負荷
変動時での発熱量制御方法。 2、特許請求の範囲第1項において、前記述の上段のガ
ス化剤量/石炭量比は生成ガス中のメタン生成量に応じ
て設定する噴流層石炭ガス化炉の負荷変動時での発熱量
制御方法。[Claims] 1. Coal supply in a spouted bed coal gasifier that uses oxygen-containing gas as a gasifier and distributes and supplies coal and gasifier to the upper and lower stages of the gasifier for gasification. Corresponding to the amount, the gasifying agent amount/coal amount ratio in the lower stage is constant at a certain value that can maintain the temperature above the melting point of the coal type, and the gasifying agent amount/coal amount ratio in the upper stage is such that the temperature near the upper stage is 1400. A method for controlling the amount of heat generated during load fluctuations in a spouted bed coal gasifier, characterized by adjusting the amount of gasifying agent so that the temperature is below ℃. 2. In claim 1, the above-mentioned upper stage gasifying agent amount/coal amount ratio is set according to the amount of methane produced in the generated gas. Volume control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13120887A JPS63297736A (en) | 1987-05-29 | 1987-05-29 | Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13120887A JPS63297736A (en) | 1987-05-29 | 1987-05-29 | Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63297736A true JPS63297736A (en) | 1988-12-05 |
Family
ID=15052567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13120887A Pending JPS63297736A (en) | 1987-05-29 | 1987-05-29 | Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63297736A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725615A (en) * | 1994-10-05 | 1998-03-10 | Hitachi, Ltd. | Entrained bed coal gasification reactor and method of gasifying coal |
-
1987
- 1987-05-29 JP JP13120887A patent/JPS63297736A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725615A (en) * | 1994-10-05 | 1998-03-10 | Hitachi, Ltd. | Entrained bed coal gasification reactor and method of gasifying coal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019163664A1 (en) | Powder supply hopper pressurization device, gasification furnace facility, gasification combined power generation facility, and control method for powder supply hopper pressurization device | |
US20020033123A1 (en) | Gasification melting furnace for wastes and gasification melting method | |
AU2009272210B2 (en) | Method and device for controlling bed height of fluidized bed gasification furnace in gasification facility | |
JP5130459B2 (en) | Operation method of coal pyrolysis gasifier | |
KR20000015802A (en) | Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system | |
JPS62257985A (en) | Air blow gasification system with pulverized coal slurry feed | |
CN108541273B (en) | Molten iron manufacturing apparatus and molten iron manufacturing method using the same | |
CN103525465B (en) | Coal gas production method and device using high-temperature rich oxygen and high temperature steam as gasification agent | |
US10233835B2 (en) | Gasification power plant control device, gasification power plant, and gasification power plant control method | |
CN103509605A (en) | Method and device using high temperature air and high temperature steam as gasification agents for coal gas production | |
JPS63297736A (en) | Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuation | |
CN203530252U (en) | Coal gas production device using high-temperature rich oxygen and high-temperature steam as gasifying agents | |
KR101735989B1 (en) | Gasification power plant control device, gasification power plant, and gasification power plant control method | |
JP4392100B2 (en) | Method of injecting reducing gas into the blast furnace | |
JP2005201621A (en) | Refuse gasifying and melting method and apparatus | |
JP2010163499A (en) | Method for operating entrained-bed gasification furnace | |
WO1997049954A1 (en) | Burning/melting method of waste melting furnace | |
JPS63254192A (en) | Operation of coal gasifying furnace of jet flow layer | |
JPH11241108A (en) | Method for injecting pulverized fine coal into blast furnace | |
JPS6023485A (en) | Coal gasification apparatus | |
JPH0881687A (en) | Entrained bed type coal gasifier | |
JP4000489B2 (en) | Control method of gasifier with water addition | |
JPH01172494A (en) | Coal gasification equipment | |
Gu et al. | Commissioning Analysis and Improvement measures for Biomass Circulating Fluidized Bed Gasifier | |
JPS63264696A (en) | Operation control method of coal gasifier oven |