JPS63254192A - Operation of coal gasifying furnace of jet flow layer - Google Patents
Operation of coal gasifying furnace of jet flow layerInfo
- Publication number
- JPS63254192A JPS63254192A JP8834287A JP8834287A JPS63254192A JP S63254192 A JPS63254192 A JP S63254192A JP 8834287 A JP8834287 A JP 8834287A JP 8834287 A JP8834287 A JP 8834287A JP S63254192 A JPS63254192 A JP S63254192A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- coal
- air
- reaction layer
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003245 coal Substances 0.000 title claims abstract description 64
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 77
- 239000001301 oxygen Substances 0.000 claims abstract description 77
- 238000006243 chemical reaction Methods 0.000 claims abstract description 57
- 239000002893 slag Substances 0.000 claims abstract description 34
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 17
- 230000002596 correlated effect Effects 0.000 claims description 2
- 239000003034 coal gas Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000002309 gasification Methods 0.000 abstract description 30
- 239000007789 gas Substances 0.000 description 37
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002956 ash Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 239000010883 coal ash Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Gasification And Melting Of Waste (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、噴流層型石炭ガス化炉の運転方法に係り、特
にスラグの流下安定性を保持しつつガス化効率を向上す
るに好適な噴流層型石炭ガス化炉の運転方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of operating a spouted bed type coal gasifier, and particularly to a method suitable for improving gasification efficiency while maintaining slag flow stability. This invention relates to a method of operating a spouted bed coal gasifier.
第2図に一般的な噴流層型の石炭ガス化炉の断面図を示
す。図示のように、石炭ガス化炉の下部に位置された反
応層部は下部反応層部2と上部反応層3とで構成されて
おり、バーナ4を介してそれぞれの反応層に石炭5と、
ガス化剤としての酸素富化空気6が供給されている。バ
ーナ4は炉に対して接続方向に傾けて設けられている。Figure 2 shows a cross-sectional view of a typical spouted bed type coal gasifier. As shown in the figure, the reaction layer located at the bottom of the coal gasifier is composed of a lower reaction layer 2 and an upper reaction layer 3, and coal 5 is supplied to each reaction layer via a burner 4.
Oxygen-enriched air 6 is supplied as a gasifying agent. The burner 4 is provided so as to be inclined in the connection direction with respect to the furnace.
したがってバーナ4から炉内に噴射された石炭5と酸素
富化空気6は旋回して噴流層を形成し、熱分解反応など
の反応により石炭5がガス化される。ガス化により生じ
た粗ガス7は炉頂から抜き出されてチャー捕集器8を通
してガス消費設備等へ供給される。Therefore, the coal 5 and oxygen-enriched air 6 injected into the furnace from the burner 4 swirl to form a spouted bed, and the coal 5 is gasified by a reaction such as a pyrolysis reaction. Crude gas 7 generated by gasification is extracted from the top of the furnace and supplied to gas consuming equipment etc. through a char collector 8.
下゛部反応M2の下方にはスラグタップ9が設けられて
おり反応層で溶融したスラグ10が連続して排出される
。A slag tap 9 is provided below the lower reaction layer M2, and the slag 10 melted in the reaction layer is continuously discharged.
ガス化炉1の上部は熱回収部11とされており、水冷壁
構造となっている。The upper part of the gasifier 1 is used as a heat recovery section 11, and has a water-cooled wall structure.
粗ガス7の中には未反応のチャーが含まれるので、チャ
ー捕集器8で捕集し、ガス化炉1の下部反応層2に循環
して効率を上げるようにしている。Since the crude gas 7 contains unreacted char, it is collected by a char collector 8 and circulated to the lower reaction layer 2 of the gasifier 1 to improve efficiency.
このように構成される噴流層型の石炭ガス化炉1は、燃
料である微粉炭が気流中で数秒以内に反応するので、応
答が早く負荷追従運転が容易であるが、一方でどのよう
な運転状態でもガス化効率を高く維持し、かつ発生する
石炭灰を溶融し、溶融スラグとして安定に排出する条件
を確保する必要がある。In the spouted bed type coal gasifier 1 configured in this way, the pulverized coal that is the fuel reacts within a few seconds in the airflow, so the response is quick and load following operation is easy. It is necessary to maintain high gasification efficiency even during operation, and to ensure conditions for melting the generated coal ash and stably discharging it as molten slag.
一般に、石炭ガス化炉におけるガス化効率には、Co、
CO2などのガスに転化した石炭中のカーボンの割合を
表わすカーボンガス化率と、生成ガスと石炭の発熱量と
の比率を表わす冷ガス効率とがあり、カーボンガス化率
と冷ガス効率との差は生成ガスの顕熱の割合とみなすこ
とができる。石炭ガス化炉1では両者の効率を同時に高
めるとともに、生成ガスの顕熱をいかに回収し有効に利
用するかが、発電プラント等のプラント全体の熱効率を
向上する上で重要である。Generally, the gasification efficiency in a coal gasifier requires Co,
There are two types: carbon gasification rate, which represents the proportion of carbon in coal that has been converted to gas such as CO2, and cold gas efficiency, which represents the ratio of the generated gas to the calorific value of coal. The difference can be considered as the proportion of sensible heat of the produced gas. In the coal gasifier 1, it is important to improve the efficiency of both at the same time and how to recover and effectively utilize the sensible heat of the generated gas in order to improve the thermal efficiency of the entire plant such as a power generation plant.
一方、噴流層型の石炭ガス化炉1では、石炭は部分燃焼
反応によってH2,Co等に転化すると同時に、発生す
る熱によって高温となり、石炭中の灰分が溶融してスラ
グ10となる。このスラグ10は炉壁を流下してスラグ
タップ9から排出されるのであるが、少なくとも下部反
応層2の温度をスラグ10の融点以上に保持しておかな
いと、スラグ10が炉壁やスラグタップ9に固着し、こ
れによって炉の運転ができなくなる。スラグ10の融点
は主として石炭5の性状に依存するが、灰の融点が高い
石炭であってもスラグの溶融状態を保持して安定に流下
させ、安定なガス化処理をすることが要求される。On the other hand, in the spouted bed type coal gasifier 1, coal is converted into H2, Co, etc. through a partial combustion reaction, and at the same time, the generated heat raises the temperature, and the ash content in the coal melts and becomes slag 10. This slag 10 flows down the furnace wall and is discharged from the slag tap 9. However, unless the temperature of at least the lower reaction layer 2 is maintained above the melting point of the slag 10, the slag 10 flows down the furnace wall and is discharged from the slag tap 9. 9, which makes it impossible to operate the furnace. The melting point of the slag 10 mainly depends on the properties of the coal 5, but even if the ash has a high melting point, it is necessary to maintain the molten state of the slag and allow it to flow down stably to perform a stable gasification process. .
上述したガス化効率とスラグの流下安定性は、ガス化剤
の酸素供給量によって支配される。第3図に酸素比(酸
素供給量/石炭供給量)に対する理論ガス化温度、ガス
化効率、ガス発熱量との関係を示す。同図から判るよう
に、酸素比を大きくするとガス化温度は上昇しカーボン
ガス化率ηCも増大するが、冷ガス効率ηGは酸素比=
0.81付近から低下する。これはある酸素比から、生
成ガス中のCO2濃度が増大し、ガス発熱量が低下する
ことによる。一方、ガス化炉内の温度は高いほど石炭灰
を溶融しやすくスラグを流下しやすい。The above-mentioned gasification efficiency and slag flow stability are controlled by the amount of oxygen supplied to the gasifying agent. FIG. 3 shows the relationship between the theoretical gasification temperature, gasification efficiency, and gas calorific value with respect to the oxygen ratio (oxygen supply amount/coal supply amount). As can be seen from the figure, increasing the oxygen ratio increases the gasification temperature and the carbon gasification rate ηC, but the cold gas efficiency ηG is
It decreases from around 0.81. This is because the CO2 concentration in the generated gas increases and the gas calorific value decreases from a certain oxygen ratio. On the other hand, the higher the temperature inside the gasifier, the easier it is to melt the coal ash and the easier it is for the slag to flow down.
したがって、スラグの安定流下とカーボンガス化率ηC
の向上の面からは、酸素比は大きいほどよいが、その反
面ガス化効率が低下するという問題がある。Therefore, the stable flow of slag and the carbon gasification rate ηC
In terms of improving the oxygen ratio, the higher the oxygen ratio, the better, but on the other hand, there is a problem that the gasification efficiency decreases.
以上のように噴流層型の石炭ガス化炉ではできるだけ酸
素比を小さくして冷ガス効率ηGを高くし、しかもスラ
グを安定に流すようにすることが必要である。As described above, in the spouted bed type coal gasifier, it is necessary to reduce the oxygen ratio as much as possible to increase the cold gas efficiency ηG and to allow the slag to flow stably.
ところで、石炭ガス化炉1の熱損失はバーナのピーク温
度で決まり、負荷の大小には無関係に略一定である。し
たがって、負荷が低下した状態で酸素比を一定のままに
しておくと、下部反応層2の温度が灰の溶融点以下とな
り、スラグ10の排出が困難となり、石炭ガス化炉1の
運転が不可能となる。By the way, the heat loss of the coal gasifier 1 is determined by the peak temperature of the burner, and is substantially constant regardless of the magnitude of the load. Therefore, if the oxygen ratio is kept constant while the load is reduced, the temperature of the lower reaction layer 2 will drop below the melting point of the ash, making it difficult to discharge the slag 10 and causing the coal gasifier 1 to malfunction. It becomes possible.
これらのことから、従来の石炭ガス化炉では、あらかじ
め若干高めの酸素比で運転するか、酸素比を負荷によっ
て調節するかいずれかの方法がとられる。For these reasons, conventional coal gasifiers either operate at a slightly higher oxygen ratio in advance or adjust the oxygen ratio depending on the load.
前者の酸素比を高く供給しておく方法によると、高負荷
でのガス化効率が悪くなるという問題がある。According to the former method of supplying a high oxygen ratio, there is a problem that gasification efficiency deteriorates under high loads.
一方、後者の酸素比を負荷によって調節する方法による
と、上部反応層3にも下部反応層2と同じ酸素比のガス
化剤が供給されるため、スラグの溶融温度は保持できる
が、ガス化効率としては低下するという問題がある。On the other hand, according to the latter method of adjusting the oxygen ratio by load, the gasifying agent with the same oxygen ratio as the lower reaction layer 2 is supplied to the upper reaction layer 3, so the melting temperature of the slag can be maintained, but the gasification There is a problem that efficiency decreases.
また、上記従来例あるいは特開昭58−80381号公
報のようにガス化剤として酸素富化空気を用い、これを
上部・下部反応層に区別して供給するようにしたものに
あっては、酸素比が大きくなると酸素製造装置も大形と
なり、トータルのヱネルギ効率が低下して経済性が劣化
するという問題がある。In addition, in the case of using oxygen-enriched air as the gasifying agent and supplying it separately to the upper and lower reaction layers, as in the above-mentioned conventional example or Japanese Patent Application Laid-open No. 58-80381, the oxygen As the ratio becomes larger, the oxygen production equipment becomes larger, which causes a problem in that the total energy efficiency decreases and economic efficiency deteriorates.
本発明の目的は、負荷変動などの炉状態変動に対応させ
てガス化効率を高く維持でき、かつスラグの流下安定性
を保持でき、しかも純酸素消費量を低減できる噴流層型
石炭ガス化炉の運転方法を提供することにある。The object of the present invention is to provide a spouted bed coal gasifier that can maintain high gasification efficiency in response to changes in furnace conditions such as load fluctuations, maintain stability of slag flow, and reduce pure oxygen consumption. The goal is to provide a driving method.
本発明は上記目的を達成するために、石炭とガス化剤と
により噴流層を形成して石炭をガス化するとともに、発
生したスラグを炉底部に流下させて排出するように形成
された噴流層型石炭ガス化炉の運転方法において、前記
ガス化剤として空気を用い、この空気量を負荷に対応さ
せて定められた全酸素比に基づいて調整する一方、反応
層下部に酸素富化空気を供給し、こり酸素富化空気量を
調整して反応層下部温度を所定値上に保持することを特
徴とする。In order to achieve the above object, the present invention has a spouted bed formed to gasify the coal by forming a spouted bed with coal and a gasifying agent, and to cause the generated slag to flow down to the bottom of the furnace and be discharged. In a method for operating a type coal gasifier, air is used as the gasifying agent, and the amount of air is adjusted based on a total oxygen ratio determined in accordance with the load, while oxygen-enriched air is supplied to the lower part of the reaction bed. The temperature of the lower part of the reaction layer is maintained at a predetermined value by adjusting the amount of oxygen-enriched air supplied.
すなわち、本発明は基本的に空気をガス化剤とすること
によってガス化温度を下げ、これによってガス化効率、
特に冷ガス効率を高く維持し、一方の下部反応層は供給
される酸素富化空気によってスラグ溶融点以上に保持さ
れることになる。このように、ガス化効率の調整と下部
反応層の温度調整とを別々に行なうようにした結果、ガ
ス化炉の負荷等が変動しても空気を調整することにより
ガス化率を高く維持しながら、一方で酸素富化空気を徴
整することによってスラグの流下安定性を保持すること
が容易になし得ることになる。しかも、酸素富化空気の
消費量は下部反応層の温度維持分のみに低減することが
できるので、酸素発生装置は小形のものでよいことにな
る。That is, the present invention basically lowers the gasification temperature by using air as the gasification agent, thereby increasing the gasification efficiency and
In particular, the cold gas efficiency is maintained high, and one lower reaction layer is maintained above the slag melting point by the supplied oxygen-enriched air. As a result of adjusting the gasification efficiency and adjusting the temperature of the lower reaction layer separately, it is possible to maintain a high gasification rate by adjusting the air even if the load on the gasifier fluctuates. On the other hand, by regulating the oxygen-enriched air, the stability of the slag can be easily maintained. Moreover, since the amount of oxygen-enriched air consumed can be reduced to just the amount needed to maintain the temperature of the lower reaction layer, the oxygen generator can be small.
以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.
第1図に本発明を適用してなる一実施例装置の全体構成
を示す。同図において、石炭ガス化炉1は第2図従来例
と同一の構成を有するものであることから、模式的に簡
略化して示されている。FIG. 1 shows the overall configuration of an embodiment of an apparatus to which the present invention is applied. In this figure, since the coal gasifier 1 has the same configuration as the conventional example shown in FIG. 2, it is schematically shown in a simplified manner.
石炭ガス化炉1の、下部反応層2および上部反応層3に
対して、ガスタービン装置20のコンプレッサ22から
、ガス化剤としての油気空気31が送気されている。そ
れぞれの空気供給量は空気量調整弁12.13により調
整可能になっている。Oily air 31 as a gasifying agent is supplied from a compressor 22 of a gas turbine device 20 to a lower reaction layer 2 and an upper reaction layer 3 of the coal gasifier 1 . The respective air supply amounts can be adjusted by air amount adjustment valves 12,13.
また、油気空気31を原料として酸素製造装置30で酸
素富化空気32が製造され、酸素富化空気量調節弁14
を介して下部反応層2へ供給されるようになっている。Further, oxygen-enriched air 32 is produced in the oxygen production device 30 using the oily air 31 as a raw material, and the oxygen-enriched air amount control valve 14
It is supplied to the lower reaction layer 2 via.
石炭5は石炭量調節器15.16を介して負荷(または
空気供給量)に応じた量に調整され、それぞれ下部反応
層2と上部反応層3とに供給されている。石炭ガス化炉
1において発生した粗ガス7は、チャー捕集器8にチャ
ーが分離除去された後熱回収装置17に送られ、被熱交
換媒体と熱交換させて蒸気を発生することにより粗ガス
7の顕熱が回収される。その後粗ガス7はガス精製装置
4に導かれてガス中に含まれるダスト及び硫黄等の反応
化合物が除去、精製されて石炭の生成ガス71となる。Coal 5 is adjusted to an amount according to the load (or air supply amount) via coal amount regulators 15 and 16, and is supplied to lower reaction layer 2 and upper reaction layer 3, respectively. The crude gas 7 generated in the coal gasification furnace 1 is sent to the heat recovery device 17 after the char is separated and removed by the char collector 8, and is converted into crude gas by exchanging heat with a heat exchange medium and generating steam. Sensible heat of gas 7 is recovered. Thereafter, the crude gas 7 is guided to the gas purification device 4, where dust and reactive compounds such as sulfur contained in the gas are removed and purified, resulting in a coal production gas 71.
生成ガス71はガスタービン装置20の燃焼器21に供
給され、コンプレッサ22により加圧された酸化剤とし
ての高圧空気23と反応して燃焼ガス24が生成される
。この燃焼ガス14はガスタービン25に導かれてガス
タービン25を駆動する。このガスタービン25で発生
した動力の一部は電動機26の駆動に使用され電力を発
生する。The generated gas 71 is supplied to the combustor 21 of the gas turbine device 20, and reacts with high pressure air 23 as an oxidizing agent pressurized by the compressor 22 to generate combustion gas 24. This combustion gas 14 is guided to a gas turbine 25 and drives the gas turbine 25. A part of the power generated by the gas turbine 25 is used to drive the electric motor 26 to generate electric power.
ガスタービン動力の過半はコンプレッサ22の駆動に使
用される。このコンプレッサ22の吐出高圧空気23の
一部は前記石炭ガス化炉1のガス化剤としての空気31
として抽気され、昇圧コンプレッサ33により所定の圧
力に昇圧され、石炭ガス化炉1へ送気される。The majority of the gas turbine power is used to drive the compressor 22. A part of the high pressure air 23 discharged from the compressor 22 is used as air 31 as a gasifying agent in the coal gasifier 1.
The gas is extracted as gas, and the pressure is increased to a predetermined pressure by the boost compressor 33, and the air is sent to the coal gasifier 1.
一方、ガスタービン25の排ガス28は排熱回収ボイラ
29に送られ、高温高圧の蒸気を発生させ、その蒸気に
より図示していない蒸気タービンを駆動しこれに連結さ
れている発電機を回転させ電力を発生するように構成さ
れている。On the other hand, the exhaust gas 28 of the gas turbine 25 is sent to the exhaust heat recovery boiler 29 to generate high-temperature, high-pressure steam, which drives a steam turbine (not shown), rotates a generator connected to it, and generates electricity. is configured to occur.
このように構成される実施例の運転方法、特に空気31
と酸素富化空気32の調整について次に説明する。The operating method of the embodiment configured as described above, especially the air 31
Next, the adjustment of the oxygen-enriched air 32 will be explained.
第3図にカ(したように、酸素富化空気32を使うと生
成ガスの発熱量を高くすることはできるが、一方で酸素
富化空気32を製造する費用が発生するため、発電プラ
ント全体としての経済性は低下する。したがって、プラ
ントが頻繁に運転される負荷帯では、極力酸素富化空気
32を使わずに、抽気空気21のみによる空気吹込み運
転を行なうようにするのが得策である。As shown in Figure 3, using oxygen-enriched air 32 makes it possible to increase the calorific value of the generated gas, but on the other hand, the cost of producing oxygen-enriched air 32 is incurred, so the entire power generation plant Therefore, in a load zone where the plant is frequently operated, it is a good idea to perform air blowing operation using only the bleed air 21 without using the oxygen-enriched air 32 as much as possible. be.
したがって、石炭ガス化炉1の酸素比は、空気吹込みベ
ースの酸素比で調整し、酸素富化空気32・の調整は酸
素比制御から除外する。つまり、石炭ガス化炉1は基本
的には空気吹込み運転とするのである。この場合酸素比
は石炭ガス化炉1の効率をよくするために負荷運用範囲
を考えて極力小さい値を選択しておく。そして、酸素富
化空気32の使い方としては、石炭ガス化炉1の下部反
応層2の温度が所定値よりも低下したときだけ酸素富化
空気32を下部反応層2へ供給し、下部反応層2の酸素
比を増加して反応温度を上げ、スラグの溶融流下を保持
するようにする。Therefore, the oxygen ratio of the coal gasifier 1 is adjusted by the oxygen ratio on an air injection basis, and the adjustment of the oxygen-enriched air 32 is excluded from the oxygen ratio control. In other words, the coal gasifier 1 is basically operated with air blowing. In this case, in order to improve the efficiency of the coal gasifier 1, the oxygen ratio is selected to be as small as possible considering the load operation range. The oxygen-enriched air 32 is used by supplying the oxygen-enriched air 32 to the lower reaction layer 2 only when the temperature of the lower reaction layer 2 of the coal gasifier 1 falls below a predetermined value. The reaction temperature is increased by increasing the oxygen ratio of 2 to 2 to maintain the molten flow of the slag.
ここで酸素比の設定方法を第4図を用いて説明する。同
図は石炭ガス化炉1の空気酸化による理論ガス化温度と
酸素比との関係を示しており、100%負荷の場合を線
a、50%負荷の場合を線すとし、また、石炭5の石炭
ガス化炉1におけるスラグ溶融排出のための操作下限温
度を1700℃とする。例えは酸素比をA点に設定して
おくと、定格負荷以下ではスラグの溶融排出が不可能と
なるので、酸素比を若干高いB点に設定しておくように
する。B点に設定しておいても、石炭ガス化炉1の負荷
が50%まで下がると0点となり、スラグの溶融排出操
作下限温度となる。したがってこの点Cになったときの
下部反応層2へ酸素富化空気32を供給開始するように
する。Here, a method for setting the oxygen ratio will be explained using FIG. 4. The figure shows the relationship between the theoretical gasification temperature by air oxidation in the coal gasifier 1 and the oxygen ratio. Line a is for 100% load, line a is for 50% load, and The minimum operating temperature for melting and discharging slag in the coal gasifier 1 is set to 1700°C. For example, if the oxygen ratio is set at point A, the slag cannot be melted and discharged below the rated load, so the oxygen ratio is set at a slightly higher point B. Even if it is set at point B, when the load of the coal gasifier 1 decreases to 50%, the point becomes 0, which is the lower limit temperature for slag melting and discharge operation. Therefore, when this point C is reached, the supply of oxygen-enriched air 32 to the lower reaction layer 2 is started.
上述したように本実施例によれば、負荷変動してもガス
化効率を高く維持することができ、かつスラグの流下安
定性を保持することができるという効果がある。As described above, according to this embodiment, the gasification efficiency can be maintained high even when the load fluctuates, and the stability of slag flow can be maintained.
また、ガス化剤として基本的には空気を用いていること
から、酸素富化空気の消費量を低減することができ、こ
れによって酸素発生装置を小形化して経済性を向上させ
ることができる。Furthermore, since air is basically used as the gasifying agent, the amount of oxygen-enriched air consumed can be reduced, thereby making it possible to downsize the oxygen generator and improve economic efficiency.
なお、上記実施例の空気31及び酸素富化空気32の供
給量調整法を実施する具体的な自動制御装置の一実施例
の構成を示す。In addition, the structure of one example of the concrete automatic control device which implements the supply amount adjustment method of the air 31 and the oxygen-enriched air 32 of the said Example is shown.
前述した方法で決定した酸素比を酸素比設定器51へ予
め設定しておき、流量検出器で検出された油気空気31
の流量信号に基づいて石炭量調節器15.16が石炭ガ
ス化炉1への石炭供給量を制御する。The oxygen ratio determined by the method described above is set in advance in the oxygen ratio setting device 51, and the oil/air air 31 detected by the flow rate detector is
Coal amount regulators 15 and 16 control the amount of coal supplied to the coal gasifier 1 based on the flow rate signal.
一方プラントの負荷信号60は空気量制御装置61へ与
えられ、空気量調節弁12.13によつて油気空気量3
1を制御する。On the other hand, the load signal 60 of the plant is given to the air quantity control device 61, and the oil/air quantity 3
Control 1.
一方、下部反応層2の反応温度を温度検出器65により
検出し、その反応温度がスラグの溶融温度以上になるよ
うに酸素富化空気量調節弁14を制御して酸素富化空気
22を下部反応層2へ供給し、下部反応層2だけの酸素
比を高め、反応温度を高く維持する。On the other hand, the reaction temperature of the lower reaction layer 2 is detected by the temperature detector 65, and the oxygen-enriched air amount control valve 14 is controlled so that the reaction temperature becomes equal to or higher than the melting temperature of the slag, so that the oxygen-enriched air 22 is supplied to the lower reaction layer 22. It is supplied to the reaction layer 2, increasing the oxygen ratio only in the lower reaction layer 2, and maintaining the reaction temperature high.
なお実際には、下部反応層2の温度は2000℃近くに
もなり、直接的に温度を測定することは極めて困難であ
るから、下部反応2の反応温度に相関する他の状態値、
例えば、石炭ガス化炉1出口の粗ガス7の温度等で代用
することも可能である。In reality, the temperature of the lower reaction layer 2 is close to 2000°C, and it is extremely difficult to directly measure the temperature. Therefore, other state values correlated to the reaction temperature of the lower reaction layer 2,
For example, it is also possible to substitute the temperature of the crude gas 7 at the outlet of the coal gasifier 1.
また、実験等によって負荷と酸素比と反応温度の関係が
予め得られている場合は、負荷に基づいて酸素富化空気
量32を制御することも可能であり、あるいは反応層温
度に相関する複数の状態値を組み合せてもよい。In addition, if the relationship between the load, oxygen ratio, and reaction temperature has been obtained in advance through experiments, it is possible to control the oxygen-enriched air amount 32 based on the load, or to control the oxygen-enriched air amount 32 based on the You may also combine the status values.
なお、第1図、第5図の実施例においては、いずれも酸
素富化空気32を下部反応層2へ直接的に供給するよう
にしたが、下部反応層2へ供給される空気31に混入す
るようにしてもよい。この場合は調節弁12の下流側配
管に注入するようにする。In the embodiments shown in FIGS. 1 and 5, the oxygen-enriched air 32 is directly supplied to the lower reaction layer 2; You may also do so. In this case, it is injected into the downstream piping of the control valve 12.
また、第1図、第5図実施例によれば、主ガス化剤とし
ての空気31とは独立に、下部反応層2に酸素富化空気
32を供給して、下部反応層2の温度をスラグ溶融点以
上に保持するようにしていることから、酸素比以外の他
の反応温度低下原因(外乱)に対しても有効に対応でき
、石炭ガス化炉の保護を達成することができる。なお、
そのような外乱としては、急激な負荷変動や、負荷変動
に対するガス他剤用空気の追従遅れ、石炭の性状の変化
、あるいは、チャーのリサイクル量の変動などがある。Further, according to the embodiments shown in FIGS. 1 and 5, oxygen-enriched air 32 is supplied to the lower reaction layer 2 independently of the air 31 as the main gasifying agent to control the temperature of the lower reaction layer 2. Since the temperature is maintained above the slag melting point, it is possible to effectively cope with other causes of reaction temperature reduction (disturbances) other than the oxygen ratio, and to achieve protection of the coal gasifier. In addition,
Such disturbances include sudden load changes, delays in the air for gas and other agents following load changes, changes in the properties of coal, and changes in the amount of char recycled.
特に、チャーの還流量は石炭の供給量の20〜30%に
なれるので、チャー遠流量の変動は下部反応層2に大き
く影響を及ぼすのであるが、従来はこの変動に対して何
ら配慮していなかったが、本発明によれば、下部反応層
2の温度を直接調節するようにしているので、そのよう
な外乱に対しても有効に作用する。In particular, since the char reflux amount can be 20 to 30% of the coal supply amount, fluctuations in the char distal flow amount have a large effect on the lower reaction layer 2, but conventionally no consideration has been given to this fluctuation. However, according to the present invention, since the temperature of the lower reaction layer 2 is directly controlled, it is effective against such disturbances.
本発明によれば、下部反応層の反応温度に対応して、酸
素富化空気を全体の酸素比に関係なくバックアップする
方法としているので、噴流層型石炭ガス化炉の機能上、
最も重要なスラグの溶融温度の維持が容易となり、負荷
変動や外乱に対応させてスラグの流下安定性を保持でき
るという効果がある。According to the present invention, since the method is used to back up oxygen-enriched air regardless of the overall oxygen ratio in accordance with the reaction temperature of the lower reaction layer, the function of the spouted bed coal gasifier is
This has the effect of making it easier to maintain the most important melting temperature of the slag, and maintaining the stability of the slag flow in response to load fluctuations and disturbances.
この結果、石炭ガス化炉のガス化剤として空気を利用し
、さらに酸素比を低くして運転することが可能なので、
石炭ガス化炉のガス化効率を高めることができる。また
、酸素消費量を低減できるので、経済性が向上される。As a result, it is possible to use air as the gasifying agent in the coal gasifier and operate it with a lower oxygen ratio.
The gasification efficiency of a coal gasifier can be increased. Furthermore, since oxygen consumption can be reduced, economical efficiency is improved.
第1図は本発明を適用してなる一実施例装置の系統構成
図、第2図は一般的な噴流層型石炭ガス化炉の断面図、
第3図は酸素比とガス化効率、ガス発熱量、理論ガス化
温度の関係を示す線図、第4図は第1実施例における酸
素比の設定法を説明する図、第5図は本発明の主要部で
ある自動制御装置の一実施例の系統構成図である。
1・・・石炭ガス化炉、2・・・下部反応層、3・・・
上部反応層、12,13.14・・調節弁、15.16
・・・供給量調節弁、31・・・空気、32・・酸素富
化空気、51・・・酸素化設定値、65・・・温度検出
器。FIG. 1 is a system configuration diagram of an embodiment of an apparatus to which the present invention is applied, and FIG. 2 is a sectional view of a general spouted bed coal gasifier.
Fig. 3 is a diagram showing the relationship between oxygen ratio, gasification efficiency, gas calorific value, and theoretical gasification temperature, Fig. 4 is a diagram explaining the method of setting the oxygen ratio in the first embodiment, and Fig. 5 is a diagram showing the relationship between the oxygen ratio and gasification efficiency, gas calorific value, and theoretical gasification temperature. 1 is a system configuration diagram of an embodiment of an automatic control device that is a main part of the invention. 1... Coal gasifier, 2... Lower reaction layer, 3...
Upper reaction layer, 12, 13.14... control valve, 15.16
...Supply amount control valve, 31...Air, 32...Oxygen enriched air, 51...Oxygenation set value, 65...Temperature detector.
Claims (1)
ス化するとともに、発生したスラグを炉底部に流下させ
て排出するように形成された噴流層型石炭ガス化炉の運
転方法において、前記ガス化剤として空気を用い、この
空気量を負荷に対応させて定められた全酸素比に基づい
て調整する一方、反応層下部に酸素富化空気を供給し、
この酸素富化空気量を調整して反応層下部温度を所定値
以上に保持することを特徴とする噴流層型石炭ガス化炉
の運転方法。 2、前記全酸素比は一定の負荷変動範囲にわたつて一定
値としたことを特徴とする特許請求の範囲第1項記載の
噴流層型石炭ガス化炉の運転方法。 3、前記反応層下部に供給する酸素富化空気の量はガス
化炉負荷の状態値に応じて定められた値に調整すること
を特徴とする特許請求の範囲第1項記載の噴流層型石炭
ガス化炉の運転方法。 4、前記反応層下部に供給する酸素富化空気の量は、当
該反応層下部の検出温度又はこの検出温度に相関するガ
ス化炉の状態値に基づいて調整することを特徴とする特
許請求の範囲第1項記載の噴流層型石炭ガス化炉の運転
方法。[Claims] 1. A spouted bed type coal gas formed to gasify coal by forming a spouted bed with coal and a gasifying agent, and to cause generated slag to flow down to the bottom of the furnace and be discharged. In the method for operating a chemical reactor, air is used as the gasifying agent, and the amount of air is adjusted based on a total oxygen ratio determined in accordance with the load, while supplying oxygen-enriched air to the lower part of the reaction layer,
A method of operating a spouted bed coal gasifier, which comprises adjusting the amount of oxygen-enriched air to maintain the temperature of the lower part of the reaction bed at a predetermined value or higher. 2. The method of operating a spouted bed coal gasifier according to claim 1, wherein the total oxygen ratio is set to a constant value over a constant load fluctuation range. 3. The spouted bed type according to claim 1, wherein the amount of oxygen-enriched air supplied to the lower part of the reaction layer is adjusted to a predetermined value depending on the state value of the gasifier load. How to operate a coal gasifier. 4. The amount of oxygen-enriched air supplied to the lower part of the reaction layer is adjusted based on the detected temperature at the lower part of the reaction layer or the state value of the gasifier that is correlated to this detected temperature. A method for operating a spouted bed coal gasifier according to scope 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62088342A JPH0678535B2 (en) | 1987-04-10 | 1987-04-10 | Operation method of spouted bed type coal gasifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62088342A JPH0678535B2 (en) | 1987-04-10 | 1987-04-10 | Operation method of spouted bed type coal gasifier |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7261680A Division JP2759190B2 (en) | 1995-10-09 | 1995-10-09 | Spouted bed type coal gasifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63254192A true JPS63254192A (en) | 1988-10-20 |
JPH0678535B2 JPH0678535B2 (en) | 1994-10-05 |
Family
ID=13940177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62088342A Expired - Lifetime JPH0678535B2 (en) | 1987-04-10 | 1987-04-10 | Operation method of spouted bed type coal gasifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0678535B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003336081A (en) * | 2002-05-21 | 2003-11-28 | Mitsubishi Heavy Ind Ltd | Char circulation-type coal gasification power plant system |
JP5211369B1 (en) * | 2012-12-25 | 2013-06-12 | 新日鉄住金エンジニアリング株式会社 | Coal pyrolysis method |
CN107937036A (en) * | 2017-11-30 | 2018-04-20 | 陕西延长石油(集团)有限责任公司 | The system and method for oxygen concentration in a kind of circle fluidized-bed gasification furnace control gasifying agent |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010163499A (en) * | 2009-01-13 | 2010-07-29 | Electric Power Dev Co Ltd | Method for operating entrained-bed gasification furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57182395A (en) * | 1981-05-06 | 1982-11-10 | Hitachi Ltd | Apparatus for gasification of coal |
-
1987
- 1987-04-10 JP JP62088342A patent/JPH0678535B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57182395A (en) * | 1981-05-06 | 1982-11-10 | Hitachi Ltd | Apparatus for gasification of coal |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003336081A (en) * | 2002-05-21 | 2003-11-28 | Mitsubishi Heavy Ind Ltd | Char circulation-type coal gasification power plant system |
JP5211369B1 (en) * | 2012-12-25 | 2013-06-12 | 新日鉄住金エンジニアリング株式会社 | Coal pyrolysis method |
CN107937036A (en) * | 2017-11-30 | 2018-04-20 | 陕西延长石油(集团)有限责任公司 | The system and method for oxygen concentration in a kind of circle fluidized-bed gasification furnace control gasifying agent |
CN107937036B (en) * | 2017-11-30 | 2023-08-04 | 陕西延长石油(集团)有限责任公司 | System and method for controlling oxygen concentration in gasifying agent by circulating fluidized bed gasifier |
Also Published As
Publication number | Publication date |
---|---|
JPH0678535B2 (en) | 1994-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1092821A (en) | Method of operating a coal gasifier | |
US7690204B2 (en) | Method of maintaining a fuel Wobbe index in an IGCC installation | |
US5688296A (en) | Control system for IGCC's | |
US20080115495A1 (en) | System and method employing direct gasification for power generation | |
KR20000015802A (en) | Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system | |
JPH0967582A (en) | Process and apparatus for preparing hydrogen/carbon monoxide mixed gas | |
CN105143638B (en) | The control method of the control device of gasification power generation plant, gasification power generation plant and gasification power generation plant | |
JP3977890B2 (en) | Gasification power generation system | |
JPS63254192A (en) | Operation of coal gasifying furnace of jet flow layer | |
KR101735989B1 (en) | Gasification power plant control device, gasification power plant, and gasification power plant control method | |
JP2759190B2 (en) | Spouted bed type coal gasifier | |
JP2000120403A (en) | Integrated gas combined power generating system | |
JPH08104882A (en) | Coal gasifying furnace of entrained layer and method for gasifying coal | |
JP4029223B2 (en) | Coal gasifier and control method thereof | |
JPH07286186A (en) | Coal gasification power generation plant | |
JP3646479B2 (en) | Coal gasification power plant | |
JP3354640B2 (en) | Coal gasification method | |
Jaeger | Japan 250 MW coal based IGCC demo plant set for 2007 start-up | |
JPS63264696A (en) | Operation control method of coal gasifier oven | |
JP2016037593A (en) | Gasification furnace equipment, gasification composite power generating equipment, and method for controlling the gasification furnace unit | |
JPH0321592B2 (en) | ||
JPH01237324A (en) | Coal gasification combined generating plant | |
JP2614091B2 (en) | Spouted bed coal gasifier | |
Blaskowski | Method of operating a coal gasifier | |
JPS63297736A (en) | Heating value controlling method for entrained bed coal gasifying furnace upon load fluctuation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071005 Year of fee payment: 13 |