[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63285241A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPS63285241A
JPS63285241A JP12314887A JP12314887A JPS63285241A JP S63285241 A JPS63285241 A JP S63285241A JP 12314887 A JP12314887 A JP 12314887A JP 12314887 A JP12314887 A JP 12314887A JP S63285241 A JPS63285241 A JP S63285241A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
warm
engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12314887A
Other languages
Japanese (ja)
Inventor
Giichi Shioyama
塩山 議市
Yuji Kita
北 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12314887A priority Critical patent/JPS63285241A/en
Publication of JPS63285241A publication Critical patent/JPS63285241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To avoid a stoichiometric air-fuel ratio so as to reduce the amount of emission of NOx until warm-up of an engine by maintaining a relatively rich air-fuel ratio during warm-up operation, and by changing over the air fuel ratio from the rich fuel ratio into a lean fuel ratio step by step during stable load operation when the warm-up operation is nearly completed. CONSTITUTION:A control unit 12 receives values detected by an air flowmeter 6, an idle switch 8, a crank angle sensor 9, a water temperature sensor 10, an oxygen sensor 11 and the like, and computes a basic fuel injection amount in accordance with an intake-air amount and a rotational speed while sets a ratio of increment of compensation in accordance with the temperature of cooling water during warm-up operation so as to enrich the air-fuel ratio. When the temperature of cooling water reaches at first, for example, 70 deg. C, it is judged that the time is just after completion of warm-up operation so that the air-fuel ratio is changed over step by step to the lean side with a ratio of increment of compensation of less than 1 during idle operation or stable running operation where the variation in basic fuel injection amount is below a predetermined value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関の空燃比制御装置に係り、
詳しくは、機関の暖機過程に過濃空燃比に制御し、暖機
終了近傍で希薄空燃比にステップ的に切り換える装置に
関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an air-fuel ratio control device for an internal combustion engine such as an automobile.
Specifically, the present invention relates to a device that controls the air-fuel ratio to a rich air-fuel ratio during the warm-up process of the engine, and switches stepwise to a lean air-fuel ratio near the end of engine warm-up.

(従来の技術) 近時、自動車エンジンに対する要求が高度化し、有害排
気ガス低減、高出力、低燃費等の互いに相反する課題に
ついて何れも高いレベルでその達成が求められる傾向に
あり、これは機関冷機時から暖機終了迄の過程における
空燃比制御にも要求される。
(Prior art) In recent years, the demands placed on automobile engines have become more sophisticated, and there is a tendency for contradictory issues such as reduction of harmful exhaust gases, high output, and low fuel consumption to be achieved at a high level. Air-fuel ratio control is also required during the process from when the engine is cold until the end of warm-up.

従来のこの種の内燃機関の空燃比制御装置としては、例
えば[トヨタ力ムリ新型車解説書:昭和59年5月号、
N1161288に記載のものがある。
As a conventional air-fuel ratio control device for this type of internal combustion engine, for example, [Toyota Rikimuri New Car Manual: May 1980 Issue,
There is one described in N1161288.

この装置では、エンジンの冷却水温から暖機状態を検出
し、第6図に示すように冷却水温が低いとき、すなわち
エンジンの始動直後は燃料の増量比を大きくして空燃比
をリッチ側に制御し、冷却水温の上昇に応じて徐々に理
論空燃比に近づけ、暖機が終了すると増量比を1.0、
すなわち理論空燃比に制御している。
This device detects the warm-up state from the engine cooling water temperature, and as shown in Figure 6, when the cooling water temperature is low, that is, immediately after the engine starts, the fuel increase ratio is increased to control the air-fuel ratio to the rich side. As the cooling water temperature rises, the air-fuel ratio gradually approaches the stoichiometric air-fuel ratio, and when warm-up is completed, the increase ratio is increased to 1.0.
In other words, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio.

(発明が解決しようとする問題点) しかしながら、このような従来の内燃機関の空燃比制御
装置にあっては、エンジンの暖機過程での空燃比をリッ
チ側から徐々に理論空燃比に一敗させる構成となってい
たため、排気エミッション、特にN0x(窒素酸化物)
の排気量に関して次のような問題点があった。
(Problem to be solved by the invention) However, in such a conventional air-fuel ratio control device for an internal combustion engine, the air-fuel ratio is gradually lowered from the rich side to the stoichiometric air-fuel ratio during the warm-up process of the engine. Because the configuration was such that exhaust emissions, especially N0x (nitrogen oxides)
There were the following problems regarding the engine displacement.

すなわち、空燃比の変化に対するNOxの発生量は第5
図に示すように空燃比がリンチ域にあるときは少ないが
、理論空燃比に近づくに従って増加し、理論空燃比より
もややリーン側の点で最大となり、その後理論空燃比か
らリーン側に移行するにつれて減少する。したがって、
空燃比を徐々にリッチ側からリッチ空燃比に移行させた
場合、NOxの発生量は機関始動時(図中点A)は少な
いものの、暖機が終了して理論空燃比付近く図中点B)
で運転するときは多量のNOxが発生することになる。
In other words, the amount of NOx generated with respect to the change in air-fuel ratio is
As shown in the figure, it is rare when the air-fuel ratio is in the Lynch region, but increases as it approaches the stoichiometric air-fuel ratio, reaches a maximum at a point slightly leaner than the stoichiometric air-fuel ratio, and then shifts from the stoichiometric air-fuel ratio to the lean side. decreases over time. therefore,
When the air-fuel ratio is gradually shifted from the rich side to the rich air-fuel ratio, the amount of NOx generated is small when the engine starts (point A in the diagram), but when warm-up is completed and the stoichiometric air-fuel ratio is reached, the amount of NOx generated is at point B in the diagram. )
When operating the vehicle, a large amount of NOx will be generated.

これは、触媒コンバータを装着していない車両や装着さ
れていても酸化触媒付き等のNOx対策が考慮されてい
ない仕様であった場合には発生した多量のNOxが大気
中に放出されることを意味する。特に、暖機状態に至る
過程では一般に停車中であることが多いため、周辺の環
境に与える影響も大きく、政庁されることが望ましい。
This means that if a vehicle is not equipped with a catalytic converter, or even if a catalytic converter is installed, the specifications do not take into account NOx countermeasures such as an oxidation catalyst, a large amount of generated NOx will be released into the atmosphere. means. In particular, as trains are often stopped during the warm-up period, they have a large impact on the surrounding environment, so it is desirable that they be used as government offices.

なお、上記不具合は暖機終了後に目標空燃比を理論空燃
比よりも希薄側に制御するものであっても同様である。
Note that the above-mentioned problem is the same even if the target air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio after warm-up.

(発明の目的) そこで本発明は、暖機過程では比較的濃い空燃比に維持
し、暖機終了近傍でリッチからリーンにステップ的゛に
切り換えることにより、NOxの発生量が最も増加する
理論空燃比に近い領域での運転を避けて、暖機終了まで
の間に発生するNOxの発生量を減少させ、排気性能を
向上させることを目的としている。
(Purpose of the Invention) Therefore, the present invention maintains the air-fuel ratio at a relatively rich air-fuel ratio during the warm-up process, and switches stepwise from rich to lean near the end of warm-up. The purpose is to avoid operation in a region close to the fuel ratio, reduce the amount of NOx generated until the end of warm-up, and improve exhaust performance.

(問題点を解決するための手段) 本発明による内燃機関の空燃比制御装置は上記目的達成
のため、その基本概念図を第1図に示すように、エンジ
ンの運転状態を検出する運転状態検出手段aと、エンジ
ンの暖機状態を検出する暖気検出手段すと、エンジンの
運転状態に応じて目標空燃比を設定するとともに、エン
ジンの冷機時は目標空燃比を理論空燃比よりもリッチ側
に設定し、暖機終了近傍で目標空燃比を理論空燃比より
もリーン側に設定するとともに、暖機終了近傍における
目標空燃比の切り換えをエンジンが所定の安定負荷状態
にあるときステップ的に変化させて切り換える目標設定
手段Cと、目標設定手段Cにより設定された目標空燃比
となるように燃料の供給量あるいは吸入空気量を制御す
る制御値を演算する制御手段dと、制御手段dの出力に
基づいて燃料の供給量あるいは吸入空気量を操作する操
作手段eと、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the air-fuel ratio control device for an internal combustion engine according to the present invention detects the operating state of the engine, as shown in FIG. The means a and the warm-up detection means for detecting the warm-up state of the engine set a target air-fuel ratio according to the operating state of the engine, and set the target air-fuel ratio to a richer side than the stoichiometric air-fuel ratio when the engine is cold. The target air-fuel ratio is set to be leaner than the stoichiometric air-fuel ratio near the end of warm-up, and the target air-fuel ratio is changed in steps when the engine is in a predetermined stable load state near the end of warm-up. a target setting means C for switching, a control means d for calculating a control value for controlling the fuel supply amount or intake air amount so as to achieve the target air-fuel ratio set by the target setting means C; and operating means e for controlling the amount of fuel supplied or the amount of intake air based on the fuel supply amount or intake air amount.

(作用) 本発明では、暖機中は比較的濃い(リッチ)側の空燃比
が積極的に優先して使用され、暖機終了近傍で瞬間的(
ステップ的)に空燃比がリッチ側からリーン側に切り換
わる。したがって、暖機過程での理論空燃比に近いNO
x発生量の最も大きくなる領域の運転が回避されて、冷
機時から暖機終了までのNOx発生量が減少する。
(Function) In the present invention, during warm-up, a relatively rich air-fuel ratio is actively used with priority, and near the end of warm-up, an instantaneous (
The air-fuel ratio switches from the rich side to the lean side in a stepwise manner. Therefore, NO close to the stoichiometric air-fuel ratio during the warm-up process
Operation in the region where the amount of x generation is the largest is avoided, and the amount of NOx generated from the time of cold engine operation to the end of warm-up is reduced.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜5図は本発明に係る内燃機関の空燃比制御装置の
一実施例を示す図である。
2 to 5 are diagrams showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention.

まず、構成を説明する。第2図において、1はエンジン
であり、吸入空気はエアクリーナ2より吸気管3を通し
て各気筒に供給され、燃料は噴射新Siに基づきインジ
ェクタ(操作手段)4により噴射される。気筒内で燃焼
した排気は排気管5を通して排出される。
First, the configuration will be explained. In FIG. 2, reference numeral 1 denotes an engine. Intake air is supplied from an air cleaner 2 to each cylinder through an intake pipe 3, and fuel is injected by an injector (operating means) 4 based on the new Si. Exhaust gas burned within the cylinder is exhausted through the exhaust pipe 5.

吸入空気の流量Qaはエアフローメータ6により検出さ
れ、吸気管3内の絞弁7によって制御される。エンジン
Iのアイドル状態はアイ1′ルスイツチ8により検出さ
れ、エンジン1の回転ViNはクランク角センサ9によ
り検出される。ウォータジャケットを流れる冷却水の温
度Twは水温センサ(暖機検出手段)10により検出さ
れ、排気中の酸素濃度は酸素センサllにより検出され
る。酸素センサ11は理論空燃比でその出力Vsが急変
する特性を有するもの等が用いられる。
The intake air flow rate Qa is detected by an air flow meter 6 and controlled by a throttle valve 7 in the intake pipe 3. The idle state of the engine I is detected by the eye 1' switch 8, and the rotation ViN of the engine 1 is detected by the crank angle sensor 9. The temperature Tw of the cooling water flowing through the water jacket is detected by a water temperature sensor (warm-up detection means) 10, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 11. The oxygen sensor 11 used has a characteristic that its output Vs changes suddenly at the stoichiometric air-fuel ratio.

上記各センサ6.8.9.10.11の信号はコントロ
ールユニット12に入力され、各センサ6.8.9.1
1は運転状態検出手段13を構成する。コントロールユ
ニット12は目標設定手段および制御手段としての機能
を有し、CPU21、ROM22、RAM23およびI
10インターフェース24により構成される。I10イ
ンターフェース24は信号の入出力を制御しており、I
10インターフェース24には前記各センサ6.8.9
.10.11の信号が入力される。CPU21はROM
22に格納された後述のプログラムに従ってI10イン
ターフェース24から必要とする外部データを取り込み
、必要に応してRAM23との間でデータの授受を行う
などして空燃比制御に必要な処理値を演算し、結果をI
10インターフェース24に出力する。I10インター
フェース24はCP U21の演算結果に基づき前記噴
射信号Siを出力する。
The signals of each sensor 6.8.9.10.11 are input to the control unit 12, and each sensor 6.8.9.1
1 constitutes an operating state detection means 13. The control unit 12 has functions as a target setting means and a control means, and includes a CPU 21, a ROM 22, a RAM 23, and an I
10 interface 24. The I10 interface 24 controls the input and output of signals, and
10 interface 24 has each of the sensors 6.8.9
.. 10.11 signal is input. CPU21 is ROM
It takes in necessary external data from the I10 interface 24 according to a program described later stored in the RAM 22, and calculates processing values necessary for air-fuel ratio control by exchanging data with the RAM 23 as necessary. , the result is I
10 interface 24. The I10 interface 24 outputs the injection signal Si based on the calculation result of the CPU 21.

次に、作用を説明する。Next, the effect will be explained.

第3図は空燃比制御のプログラムを示すフローチャート
であり、本プログラムはエンジンの始動を受けて起動し
、所定のインターバルで繰り返し実行される。
FIG. 3 is a flowchart showing an air-fuel ratio control program. This program is started when the engine is started, and is repeatedly executed at predetermined intervals.

まず、Plで第4図に示すテーブルマツプから冷却水温
Twに応じた補正増量比(水温増量比)l〈をルックア
ップし、P2でルックアップした補正増量比Kが1以上
であるか否かを判別する。ここに、補正増量比にはTw
=70℃を境にその大きさが1の前後に別れるものであ
り、本実施例では’T’w=70℃を暖機終了直前の温
度としている。K≧1のときは暖気過程にあると判断し
、P3で1より大きい値の補正増量比Kに基づいて燃料
噴射時間Tiを次式■に従って演算する。
First, Pl looks up the corrected increase ratio (water temperature increase ratio) l< corresponding to the cooling water temperature Tw from the table map shown in FIG. 4, and P2 checks whether the corrected increase ratio K looked up is 1 or more. Determine. Here, the corrected increase ratio is Tw
= 70° C., the magnitude of which is around 1, and in this embodiment, 'T'w = 70° C. is the temperature immediately before the end of warm-up. When K≧1, it is determined that the engine is in the warm-up process, and in P3, the fuel injection time Ti is calculated based on the corrected increase ratio K that is greater than 1 according to the following equation (2).

Ti−<K+α)・Tp+Ts   ・・・・・・■但
し、α:他の補正係数 Tp:基本噴射パルス幅 TS:無効パルス幅 なお、基本噴射パルス幅’rpは吸入空気量Qaとエン
ジン回転数Nに基づいて次式■により演算する。
Ti-<K+α)・Tp+Ts ・・・・・・■ However, α: Other correction coefficient Tp: Basic injection pulse width TS: Invalid pulse width Note that the basic injection pulse width 'rp is the intake air amount Qa and engine speed Calculate based on N using the following equation (2).

a Tp=k・ □  ・・・・・・■ 但し、k:定数 これにより、噴射信号Siのパルス幅が設定され、イン
ジェクタ4から燃料噴射時間Tiだけ燃料が噴射される
。したがって、このときの空燃比(目標空燃比)は冷却
水温Twに応じた所定の濃い(リッチな)空燃比となり
、NOx発生量の多い理論空燃比付近での運転を意図的
に避けたものとなる。一方、冷却水温TWが70℃に達
してK(ルックアップ値)<1になると暖機終了の直前
にあると判断して、P4およびP、で実際に演算に使用
する補正増量比Kを1より小さい値でそのまま採用する
条件、すなわち目標値をリッチな空燃比から理論空燃比
よりもリーンな空燃比にステップ的に切り換える条件が
整っているか否かを判別する。例えば、P4でアイドル
スイッチ8がONであるときはアイドル状態にあると判
断し、またP、でΔTp/Δ【が小さい(加速状態にな
い程の値)ときは定常走行状態にあると判断し、何れの
場合も補正増量比Kについてはルックアップ値をそのま
ま採用し、(YESの分校に従って)P3に進む。した
がって、補正増量比Kが1以上の値から瞬間に切り換え
られることとなって、空燃比がリッチ空燃比からリーン
空燃比に瞬時に切り換えられる。そのため、理論空燃比
近傍の空燃比を避けて運転することとなり、後述のよう
にNOx発生量の増大が避けられる。なお、このように
空燃比のステップ的切り換え条件をアイドル状態若しく
は略一定走行状態の条件下に限定したのは、例えば緩加
速以上の比較的車両駆動力の大きい領域での機関出力の
急変を防ぎ、運転者のアクセル操作フィーリング上の異
和感を軽減するためである。
a Tp=k. Therefore, the air-fuel ratio (target air-fuel ratio) at this time is a predetermined rich air-fuel ratio according to the cooling water temperature Tw, and it is assumed that operation near the stoichiometric air-fuel ratio where a large amount of NOx is generated is intentionally avoided. Become. On the other hand, when the cooling water temperature TW reaches 70°C and K (lookup value) < 1, it is determined that the warm-up is about to end, and the correction increase ratio K actually used for calculation is set to 1 in P4 and P. It is determined whether the conditions are met to adopt the smaller value as is, that is, to switch the target value stepwise from a rich air-fuel ratio to an air-fuel ratio leaner than the stoichiometric air-fuel ratio. For example, when the idle switch 8 is ON at P4, it is determined that the vehicle is in an idling state, and when ΔTp/Δ[ is small (a value that is not in an acceleration state) at P, it is determined that the vehicle is in a steady running state. In either case, the lookup value is used as is for the corrected increase ratio K, and the process proceeds to P3 (according to the branch of YES). Therefore, the corrected increase ratio K is instantly switched from a value of 1 or more, and the air-fuel ratio is instantly switched from a rich air-fuel ratio to a lean air-fuel ratio. Therefore, the engine is operated while avoiding an air-fuel ratio near the stoichiometric air-fuel ratio, and an increase in the amount of NOx generated can be avoided as will be described later. The reason why the air-fuel ratio stepwise switching conditions are limited to idling or substantially constant driving conditions is to prevent sudden changes in engine output in areas where the vehicle driving force is relatively large, such as during gentle acceleration or more. This is to reduce the discomfort felt by the driver when operating the accelerator.

一方、P4、PaでNo分技命令に従うときは空燃比の
ステップ的切り換え条件下にないと判断し、補正増量比
にのルックアップ値が1未満であってもP6でに=1に
固定してP、に進む。したがって、このときは目標空燃
比が理論空燃比となりアクセル操作フィーリングについ
て支障がないように考慮される。
On the other hand, when following the No command at P4 and Pa, it is determined that there is no step-switching condition for the air-fuel ratio, and even if the lookup value for the corrected increase ratio is less than 1, it is fixed at 1 at P6. Then proceed to P. Therefore, at this time, the target air-fuel ratio becomes the stoichiometric air-fuel ratio, which is taken into account so that there is no problem with the accelerator operation feeling.

以上のような空燃比制御につき第5図を参照して従来例
との効果を比較する。なお、第5図は機関暖機過程にお
ける空燃比の変化およびそれに伴うNOx排出量の変化
具合を示したものである。
The effects of the air-fuel ratio control as described above will be compared with the conventional example with reference to FIG. Note that FIG. 5 shows changes in the air-fuel ratio during the engine warm-up process and the accompanying changes in the amount of NOx emissions.

本実施例の場合、図中A−C−Dという移動形態であり
、機関始動時は点Aで空燃比をリッチとし、その後点C
に至るまでの間はリッチ域での運転を行い、この間につ
いては空燃比が多少リーン化するもののこれは微かであ
る。したがって、低水温時はNOxが極めて微量しか排
出されず、水温上昇に伴い多少空燃比がリーン化しても
NOx排出星は微増に留まる。そして、暖機が終了する
直前の安定走行状態のとき、空燃比がリッチからり一ン
にステップ的に切り換わるので、図中点りに移行する。
In the case of this example, the movement mode is A-C-D in the figure, and when starting the engine, the air-fuel ratio is made rich at point A, and then at point C.
The engine operates in a rich range until the engine reaches this point, and although the air-fuel ratio becomes slightly leaner during this period, this is very slight. Therefore, when the water temperature is low, only a very small amount of NOx is emitted, and even if the air-fuel ratio becomes leaner as the water temperature rises, the number of NOx emissions will only increase slightly. Then, when the vehicle is in a stable running state just before the end of warm-up, the air-fuel ratio is switched from rich to rich in a stepwise manner, so that the state changes to solid in the figure.

リーンな空燃比になった場合、NOx発生量は切り換え
る前のリッチ空燃比領域の値と略同程度のレベルである
。したがって、従来のようにA−C−Bという移行形態
でNOx発生量が増大するのと異なり、本実施例ではN
Ox発生量を従来例のホンBiJT域(B点)に比べて
略半分のレベルに抑える。ことができる。特に、触媒装
置を保有しないもの、またはNOx還元装置を持たない
酸化触媒装置での排気システムにあっては、本実施例の
効果が極めて顕著である。さらに、従来例に比べ暖機終
了直前のみならず、暖a柊了後も引き続いてリーン空燃
比にて運転することから、燃費向上効果も大きい。
When the air-fuel ratio becomes lean, the amount of NOx generated is approximately at the same level as the value in the rich air-fuel ratio region before switching. Therefore, unlike the conventional case in which the amount of NOx generated increases due to the A-C-B transition mode, in this embodiment, the amount of NOx generated increases.
The amount of Ox generated is suppressed to approximately half the level of the conventional Hon BiJT region (point B). be able to. In particular, the effects of this embodiment are extremely significant in exhaust systems that do not have a catalyst device or have an oxidation catalyst device that does not have a NOx reduction device. Furthermore, compared to the conventional example, since the engine is operated at a lean air-fuel ratio not only immediately before the end of warm-up, but also continuously after the end of warm-up, the fuel efficiency is greatly improved.

なお、本実施例では空燃比の制御を燃料の噴射量を変え
て行っているが、本発明の適用はこれに限られるもので
はない。例えば、空燃比は燃料と空気の重量比であるか
ら空気重量を変えるようにしても良い。
In this embodiment, the air-fuel ratio is controlled by changing the fuel injection amount, but the application of the present invention is not limited to this. For example, since the air-fuel ratio is the weight ratio of fuel and air, the air weight may be changed.

(効果) 本発明によれば、暖機過程では比較的濃い空燃比に維持
し、暖機終了近傍でリッチからリーンな空燃比にステッ
プ的に切り換えているので、NOXの発生量が最も増加
する理論空燃比に近い領域での運転を避けることができ
、暖機終了までの間に発生するNOxの発生量を減少さ
せることができる。その結果、排気性能を向上させるこ
とができる。
(Effects) According to the present invention, the air-fuel ratio is maintained at a relatively rich air-fuel ratio during the warm-up process, and the air-fuel ratio is switched from a rich to a lean air-fuel ratio stepwise near the end of the warm-up, so the amount of NOx generated increases the most. Operation in a region close to the stoichiometric air-fuel ratio can be avoided, and the amount of NOx generated until the end of warm-up can be reduced. As a result, exhaust performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜5図は本発明に係
る内燃機関の空燃比制御装置の一実施例を示す図であり
、第2図はその全体構成図、第3図はその空燃比制御の
プログラムを示すフローチャート、第4図はその冷却水
温に対する増量比の設定態様を示す図、第5図はその空
燃比の変化に対する窒素酸化物の発生量を示す図、第6
図は従来の内燃機関の空燃比制御装置を示すその冷却水
温に対する増量比の設定態様を示す図である。 4・・・・・・インジェクタ(操作手段)、10・・・
・・・水温センサ(暖機検出手段)、12・・・・・・
コントロールユニット(目標設定手段、制御手段)、 13・・・・・・運転状態検出手段。
FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 5 are diagrams showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. 4 is a flowchart showing the air-fuel ratio control program, FIG. 4 is a diagram showing how the increase ratio is set with respect to the cooling water temperature, FIG. 5 is a diagram showing the amount of nitrogen oxide generated with respect to changes in the air-fuel ratio, and FIG.
This figure shows a conventional air-fuel ratio control device for an internal combustion engine, and shows how the increase ratio is set with respect to the cooling water temperature. 4... Injector (operating means), 10...
...Water temperature sensor (warm-up detection means), 12...
Control unit (target setting means, control means), 13... Operating state detection means.

Claims (1)

【特許請求の範囲】 a)エンジンの運転状態を検出する運転状態検出手段と
、 b)エンジンの暖機状態を検出する暖気検出手段と、 c)エンジンの運転状態に応じて目標空燃比を設定する
とともに、エンジンの冷機時は目標空燃比を理論空燃比
よりもリッチ側に設定し、暖機終了近傍で目標空燃比を
理論空燃比よりもリーン側に設定するとともに、暖機終
了近傍における目標空燃比の切り換えをエンジンが所定
の安定負荷状態にあるときステップ的に変化させて切り
換える目標設定手段と、 d)目標設定手段により設定された目標空燃比となるよ
うに燃料の供給量あるいは吸入空気量を制御する制御値
を演算する制御手段と、 e)制御手段の出力に基づいて燃料の供給量あるいは吸
入空気量を操作する操作手段と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
[Claims] a) Operating state detection means for detecting the operating state of the engine; b) Warm-up detection means for detecting the warm-up state of the engine; c) Setting a target air-fuel ratio according to the operating state of the engine. At the same time, the target air-fuel ratio is set richer than the stoichiometric air-fuel ratio when the engine is cold, and the target air-fuel ratio is set leaner than the stoichiometric air-fuel ratio near the end of warm-up. d) target setting means for changing the air-fuel ratio in steps when the engine is in a predetermined stable load state; and d) adjusting the amount of fuel supply or intake air to achieve the target air-fuel ratio set by the target setting means. An air-fuel ratio of an internal combustion engine, comprising: a control means for calculating a control value for controlling the amount; and e) an operation means for manipulating the amount of fuel supplied or the amount of intake air based on the output of the control means. Control device.
JP12314887A 1987-05-19 1987-05-19 Air-fuel ratio control device for internal combustion engine Pending JPS63285241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12314887A JPS63285241A (en) 1987-05-19 1987-05-19 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12314887A JPS63285241A (en) 1987-05-19 1987-05-19 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63285241A true JPS63285241A (en) 1988-11-22

Family

ID=14853379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12314887A Pending JPS63285241A (en) 1987-05-19 1987-05-19 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63285241A (en)

Similar Documents

Publication Publication Date Title
EP0822323B1 (en) An exhaust emission purification apparatus and method for an internal combustion engine
JPS62223427A (en) Air-fuel ratio controller
JPS62162746A (en) Air-fuel ratio control device
US6381954B1 (en) Air/fuel ratio control system of internal combustion engine
JP2985578B2 (en) Air-fuel ratio control device for lean burn engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP3622273B2 (en) Control device for internal combustion engine
JPS63285241A (en) Air-fuel ratio control device for internal combustion engine
JP3622290B2 (en) Control device for internal combustion engine
JP4888368B2 (en) Control device for internal combustion engine
JP2521039B2 (en) Engine air-fuel ratio control device
JP2004346917A (en) Internal combustion engine control device
JP3808151B2 (en) Lean air-fuel ratio correction method
JP3528315B2 (en) Engine air-fuel ratio control device
JP3550803B2 (en) Internal combustion engine stability control device
JP2807554B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0571381A (en) Fuel feed control device for internal combustion engine
JPH0612233Y2 (en) Air-fuel ratio controller for internal combustion engine
JP2696766B2 (en) Air-fuel ratio control method for a vehicle internal combustion engine
JPH03253744A (en) Exhaust purifying device for internal combustion engine
JPS63230937A (en) Air-fuel ratio control method for internal combustion engine
JPH0472975B2 (en)
JPS61142344A (en) Method of controlling air-fuel ratio of internal combustion engine
JPH01177433A (en) Air-fuel ratio control device for internal combustion engine
JPH0491338A (en) Method for controlling air-fuel ratio of internal combustion engine