[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61142344A - Method of controlling air-fuel ratio of internal combustion engine - Google Patents

Method of controlling air-fuel ratio of internal combustion engine

Info

Publication number
JPS61142344A
JPS61142344A JP26428584A JP26428584A JPS61142344A JP S61142344 A JPS61142344 A JP S61142344A JP 26428584 A JP26428584 A JP 26428584A JP 26428584 A JP26428584 A JP 26428584A JP S61142344 A JPS61142344 A JP S61142344A
Authority
JP
Japan
Prior art keywords
engine
rotational speed
fuel ratio
air
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26428584A
Other languages
Japanese (ja)
Inventor
Tadashi Sugino
忠 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26428584A priority Critical patent/JPS61142344A/en
Publication of JPS61142344A publication Critical patent/JPS61142344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To maintain a satisfactory operating performance of an engine, by determining a reference rotational speed which decreases as the selected gear ratio of a speed change unit decreases, in accordance with the selected shift position, and by controlling the air-fuel ratio to be lean when an actual rotational speed exceeds the reference rotational speed and upon low load operation of the engine. CONSTITUTION:Upon operation of an engine, in a control circuit 22 which receives signals from sensors 20, 34, 36, 40, 42, 48 for detecting various operating conditions, a reference rotational speed NR is searched in accordance with the present gear shift position. This reference rotational speed NR is determined such that the smaller the gear ratio, the smaller the speed NR becomes. The determined reference rotational speed NR is compared with the present actual engine rotational speed Ne. Further, if Ne>NR, when a lean mixture condition is establied, that is, the engine is in a low load but high rotational speed range in which the temperature of cooling water is below a predetermined value (about 75 deg.C), and the opening degree of a throttle valve is less than, for example, 30 deg.. A lean mixture compensating coefficient is set in accordance with the pressure of an intake pipe. Further, a reference injection time which is obtained by calculating the rotational speed of the engine and the pressure of the intake-air pipe, is compensated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、内燃機関の空燃比制御方法−小俳暑(→→h
ttu←瞥に関し、特に、エンジンが理論空燃比で運転
されるように空燃比を制御するフィードバック制御と、
理論空燃比より希薄側で運転されるように空燃比をフィ
ードフォーワード制御するり一)制御とを運転状態に応
じて切替えるようにした内燃機関の空燃比制御方法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air-fuel ratio control method for an internal combustion engine - a method for controlling the air-fuel ratio of an internal combustion engine -
Regarding ttu<->, in particular, feedback control for controlling the air-fuel ratio so that the engine is operated at the stoichiometric air-fuel ratio;
The present invention relates to an air-fuel ratio control method for an internal combustion engine, which performs feedforward control of the air-fuel ratio so that the engine is operated at a leaner side than the stoichiometric air-fuel ratio;

〔発明の背景〕[Background of the invention]

一般に、三元触媒を用いた排気ガス浄化対策が施された
自動車用エンジンにおいては、排気エミッションを向上
させるため、エンジンの燃焼状態を示す空燃比を理論空
燃比近傍に制御する必要がある0 例えば、排気ガス中の残留酸素濃度により空燃比を検出
するOtセンサの出力に応じて、空燃比を理論空燃比と
すべくフィードバック制御が従来から行なわれている。
In general, in automobile engines equipped with exhaust gas purification measures using three-way catalysts, in order to improve exhaust emissions, it is necessary to control the air-fuel ratio, which indicates the combustion state of the engine, to near the stoichiometric air-fuel ratio. Feedback control has conventionally been performed to bring the air-fuel ratio to the stoichiometric air-fuel ratio in accordance with the output of an Ot sensor that detects the air-fuel ratio based on the residual oxygen concentration in exhaust gas.

エンジン軽負荷運転状態においては、排気ガス中の窒素
酸化物の排出tが少ないので、理論空燃比より希薄側に
空燃比を移行しても排気エミッションはそれほど悪化せ
ず、燃費を向上させることができる。
When the engine is operating under light load, the amount of nitrogen oxides emitted from the exhaust gas is small, so even if the air-fuel ratio is shifted to a leaner side than the stoichiometric air-fuel ratio, the exhaust emissions will not deteriorate much and fuel efficiency will improve. can.

このような点に立脚して、エンジンが理論空燃比で運転
されるように空燃比を制御するフィードバック制御と理
論空燃比よシ希薄側で運転されるように空燃比をフィー
ドフォーワード制御するリーン制御とを運転状態に応じ
て切替え、これにより、燃費を向上させるようにした自
動車用内燃機関が提案されている。
Based on these points, there is a feedback control that controls the air-fuel ratio so that the engine is operated at the stoichiometric air-fuel ratio, and a lean control that controls the air-fuel ratio so that the engine is operated on the lean side of the stoichiometric air-fuel ratio. An internal combustion engine for an automobile has been proposed in which control is switched according to driving conditions, thereby improving fuel efficiency.

従来提案されている空燃比制御においては、リーン制御
の条件のひとつとして、機関回転数Neが予め定めた基
準回転数NR以上か否かを判定している。そして、機関
回転数N、が基準回転数NR以上であυ、他のリーン条
件が成立していればリーン制御を実行している。
In conventionally proposed air-fuel ratio control, one of the conditions for lean control is to determine whether the engine speed Ne is equal to or higher than a predetermined reference speed NR. Then, if the engine rotational speed N is equal to or higher than the reference rotational speed NR, and other lean conditions are satisfied, lean control is executed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、シフト位置にかかわらず、換言すると選
択された変速機のギア比にかかわらずその基準回転数N
Rは一定であυ、ある運転条件、例えば、低ギア比、低
負荷、低回転の運転条件ではサージが発生して運転性能
が損なわれる慣れがちる。
However, regardless of the shift position, in other words, regardless of the gear ratio of the selected transmission, the reference rotation speed N
R is constant υ, and under certain operating conditions, such as low gear ratio, low load, and low rotation, surges tend to occur and drive performance is impaired.

〔問題点を解決する手段および作用〕[Means and actions for solving problems]

本発明では、上述した問題点を解決するため、機関負荷
、機関回転数、およびシフト位置を検出し、検出された
シフト位置に応じて、選択された変速機のギア比が小さ
い#1ど小さくなるように予め設定された基準回転数を
決定し、少なくとも検出された機関回転数が基準回転数
より大きくかつ機関負荷が低負荷であるときにリーン制
御すべく空燃比を制御する。
In order to solve the above-mentioned problems, the present invention detects the engine load, engine speed, and shift position, and depending on the detected shift position, selects a gear ratio of the selected transmission such as #1, which is small. A preset reference rotation speed is determined so that the engine rotation speed is higher than the reference rotation speed, and the air-fuel ratio is controlled for lean control at least when the detected engine rotation speed is greater than the reference rotation speed and the engine load is low.

〔実施例〕〔Example〕

以下、図面に基づいて本発明の実施例について説明する
Embodiments of the present invention will be described below based on the drawings.

第2図は本発明方法を適用したガソリン機関の一例を示
している。
FIG. 2 shows an example of a gasoline engine to which the method of the present invention is applied.

吸気通路12内にはスロットル弁18が設けられていて
、そのスロットル弁1日の下流のサージタンク24に設
けられている吸気圧力センナ20は、信号線11を介し
て制御回路22に接続され、吸気圧力に応じた電圧を発
生する。吸気温センサ21はスロットル弁18の上流の
吸気通路12に設けられ、信号線12を介して制御回路
22に接続されていて吸気温度に応じた電圧を発生する
A throttle valve 18 is provided in the intake passage 12, and an intake pressure sensor 20 provided in a surge tank 24 downstream of the throttle valve 18 is connected to a control circuit 22 via a signal line 11. Generates voltage according to intake pressure. The intake air temperature sensor 21 is provided in the intake passage 12 upstream of the throttle valve 18, is connected to the control circuit 22 via the signal line 12, and generates a voltage according to the intake air temperature.

図示しないアクセルイダルに連動するスロットル弁18
によって流量制御された吸入空気は、サージタンク24
及び吸気弁25を介して各気筒の燃焼室14に導かれる
Throttle valve 18 linked to an accelerator pedal (not shown)
The intake air whose flow rate is controlled by the surge tank 24 is
The air is then introduced into the combustion chamber 14 of each cylinder via the intake valve 25.

燃料噴射弁26は各気筒毎に設けられており、信号線1
5を介して制御回路22から供給される電気的な駆動ノ
母ルス信号8Bに応じて開閉制御され、図示しない燃料
供給系から送られる加圧燃料を吸気弁25近傍の吸気通
路12内、即ち吸気ポート部に間欠的に噴射する。燃焼
室14において燃焼した後の排気ガスは排気弁28、排
気通路16及び三元触媒コンバータ50を介して大気中
に排出される。
The fuel injection valve 26 is provided for each cylinder, and the signal line 1
The opening/closing is controlled in response to an electric drive pulse signal 8B supplied from the control circuit 22 via 5, and pressurized fuel sent from a fuel supply system (not shown) is fed into the intake passage 12 near the intake valve 25, i.e. Injects intermittently into the intake port. The exhaust gas after being combusted in the combustion chamber 14 is discharged into the atmosphere via the exhaust valve 28, the exhaust passage 16, and the three-way catalytic converter 50.

機関のディストリビュータ32には、クランク角センサ
54及び56が取り付けられており、これらのセ/す5
4.56は信号線14、!5を介して制御回路22に接
続されている。これらのセンサ54.56は、クランク
軸が50度、720度回転する毎に/4ルス信号をそれ
ぞれ出力し、これらの・母ルス信号s5、s6は信号線
14.15をそれぞれ介して制御回路22に供給される
Crank angle sensors 54 and 56 are attached to the distributor 32 of the engine.
4.56 is signal line 14,! 5 to the control circuit 22. These sensors 54 and 56 output /4 pulse signals each time the crankshaft rotates 50 degrees and 720 degrees, and these base pulse signals s5 and s6 are sent to the control circuit via signal lines 14 and 15, respectively. 22.

ディストリビュータ52はイグナイタ3日に接続され、
イグナイタ58は信号線16を介して制御回路22に接
続されている。
Distributor 52 is connected to igniter 3,
The igniter 58 is connected to the control circuit 22 via the signal line 16.

符号40は、スロットル弁1日と連動し、スロットル弁
18の開度に応じた信号S7を出力するスロットルセン
サであり、信号線17を介して制御回路22と接続され
ている0 排気通路16には、排気ガス中の酸素濃度に応答した信
号を出力する、即ち、空燃比が理論空燃比に対してリー
ン側にあるかリッチ側にあるかに応じて変化する出力電
圧を発生する0、センサ42が設けられ、その出力信号
は信号線18を介して制御回路22に接続されている〇
三元触媒コン/(−夕50は、この02センサ42の下
流に設けられており、排気ガス中の三つの有害成分であ
るHC,Co 、NOx成分を同時に浄化する。
Reference numeral 40 is a throttle sensor that is linked to the throttle valve 1 and outputs a signal S7 according to the opening degree of the throttle valve 18, and is connected to the control circuit 22 via the signal line 17. is a sensor that outputs a signal responsive to the oxygen concentration in the exhaust gas, that is, generates an output voltage that changes depending on whether the air-fuel ratio is lean or rich with respect to the stoichiometric air-fuel ratio. A three-way catalyst converter 42 is provided, and its output signal is connected to the control circuit 22 via the signal line 18. It simultaneously purifies the three harmful components of HC, Co, and NOx.

また、符号44は機関の冷却水温度を検出し、その温度
に応じた電圧を発生する水温センナであシ、シリンダブ
ロック46に取シ付けられていて、信号線19を介して
制御回路22に接続されている。符号4日はシフトレバ
−位置を検出するシフト位置センサであり信号線110
を介して制御回路22に接続されている。
Further, reference numeral 44 is a water temperature sensor that detects the engine cooling water temperature and generates a voltage according to the temperature, and is attached to the cylinder block 46 and connected to the control circuit 22 via the signal line 19. It is connected. The code 4 is a shift position sensor that detects the shift lever position, and a signal line 110
It is connected to the control circuit 22 via.

制御回路22は、第3図に示すように、各種機器を制御
する中央演算処理装置(cpσ) 22 a1予め各第
1の数値や!ログラムが書き込まれたり−ドオンリメモ
リ(ROM)22b1演算過程の数値やフラグが所定の
領域に書き込まれるランダムアクセスメモリ(RAM)
22(!、アナログ入力信号をディジタル信号に変換す
るA / Dコンバータ(ADC)22(1,各種ディ
ジタル信号が入力され、各種ディジタル信号が出力され
る入出力インタフェース(Ilo)22e%エンジン停
止時に補助電源から給電されて記憶を保持するバックア
ップメモリ(Bσ−RAM)22f、及びこれら各機器
がそれぞれ接続されるパスライン22gから構成されて
いる。後述する!ログラムはROM22bに予め書き込
まれている。
As shown in FIG. 3, the control circuit 22 includes a central processing unit (cpσ) 22 a1 that controls various devices. Random access memory (RAM) in which the program is written - only memory (ROM) 22b1 Numerical values and flags in the calculation process are written in a predetermined area
22 (!, A/D converter (ADC) that converts analog input signals into digital signals) 22 (1, Input/output interface (Ilo) where various digital signals are input and various digital signals are output) 22e% Assist when the engine is stopped It is composed of a backup memory (Bσ-RAM) 22f that is supplied with power from a power source and holds memory, and a path line 22g to which each of these devices is connected.A !program, which will be described later, is written in advance in the ROM 22b.

そして、吸気圧力センサ20、吸気温センサ21.0.
センサ42、スロットルセンサ40及び水温センサ44
はA / Dコンバータ22(lと接続され、各センサ
からの電圧信号s1、s2、s5、s4、s7がCP[
722aからの指示に応じて、順次、二進信号に変換さ
れる。
Then, an intake pressure sensor 20, an intake temperature sensor 21.0 .
Sensor 42, throttle sensor 40 and water temperature sensor 44
is connected to the A/D converter 22 (l), and the voltage signals s1, s2, s5, s4, s7 from each sensor are connected to CP[
In response to instructions from 722a, the signals are sequentially converted into binary signals.

クランク角センナ54からのクランク角50度毎のa4
ルス信号S5、クランク角センナ564−らのクランク
角720度毎の/々ルス信号86がそれぞれ、l102
2eを介して制御回路22に取込まれる。・々ルス信号
S5に基づいてエンジン回転数を表わす二進信号が形成
され、・臂ルス信号S5およびS6が協働して燃料噴射
・9ルス幅演算のだめの要求信号、燃料噴射開始の割込
信号および気筒判別信号などが形成される。また、スロ
ットル信号S7によりスロットル弁18の開度状況が判
断される。工1022fからは、各種演算により形成さ
れた燃料噴射信号S8および点火信号S9が、それぞれ
燃料噴射弁26&〜26d1およびイグナイタ58に出
力される。工1022eにはシフト位置センサ48から
の信号E+10も入力される。
a4 every 50 degrees of crank angle from crank angle sensor 54
The pulse signal S5 and the pulse signal 86 for every 720 degrees of crank angle from the crank angle sensor 564- are respectively l102.
The signal is taken into the control circuit 22 via 2e. - A binary signal representing the engine speed is formed based on the pulse signal S5, and the pulse signals S5 and S6 work together to generate a request signal for fuel injection and pulse width calculation, and an interrupt for starting fuel injection. A signal, a cylinder discrimination signal, etc. are formed. Furthermore, the opening status of the throttle valve 18 is determined based on the throttle signal S7. From the engine 1022f, a fuel injection signal S8 and an ignition signal S9 formed by various calculations are output to the fuel injection valves 26&~26d1 and the igniter 58, respectively. A signal E+10 from the shift position sensor 48 is also input to the switch 1022e.

上述したエンジンにおいては、第4図に示すフローチャ
ートに従って燃料が噴射される。第4図を参照するに、
手順P1において、クランク角信号S5に基づいて演算
されたエンジン回転数Neを読込むとともに吸気圧力信
号S1に基づいて演算された吸気管圧力PMを読込む。
In the engine described above, fuel is injected according to the flowchart shown in FIG. Referring to Figure 4,
In step P1, the engine speed Ne calculated based on the crank angle signal S5 is read, and the intake pipe pressure PM calculated based on the intake pressure signal S1 is read.

手順P2において、回転数Neと吸気管圧力PMとに基
づいて、予め定められたマツプから基本噴射時間TPを
求め、手順P5においてエンジンの運転条件に応じて補
正係数の演算処理を実行し、手順P4で補正後の噴射時
間τを求める。本例では、フィードバック制御に供せら
れるフィードバック補正係数FAF、IJ−ン制御に供
せられるリーン補正係数PLIfiAN及びその他の補
正係数Fαを求め、τ=TPXFAF’XFLFiAN
XFαの式から噴射時間τを求める。
In step P2, the basic injection time TP is determined from a predetermined map based on the rotational speed Ne and the intake pipe pressure PM, and in step P5, a correction coefficient calculation process is executed according to the engine operating conditions. In P4, the corrected injection time τ is determined. In this example, the feedback correction coefficient FAF used for feedback control, the lean correction coefficient PLIfiAN used for IJ-on control, and other correction coefficients Fα are calculated, and τ=TPXFAF'XFLFiAN
The injection time τ is determined from the formula of XFα.

手順P5では、バッテリ電圧に応じて補正噴射時間iを
補正して最終噴射時間FTを求め、手順P6で噴射タイ
ミングと判断されれば手順P7のタイミングで燃料噴射
弁2Sa〜26dに噴射信号S8を供給して噴射弁から
最終噴射時間1丁に相当する時間だけ燃料を噴射する。
In step P5, the corrected injection time i is corrected according to the battery voltage to obtain the final injection time FT, and if the injection timing is determined in step P6, an injection signal S8 is sent to the fuel injection valves 2Sa to 26d at the timing of step P7. Then, fuel is injected from the injection valve for a time corresponding to the final injection time.

なお、補正係数Fαは、水温、吸気温等に依存して決定
される。
Note that the correction coefficient Fα is determined depending on the water temperature, intake air temperature, and the like.

−F A F演算− 次に、フィードバック補正係数FAFの演算処理の一例
について説明する。
-FAF calculation- Next, an example of the calculation process of the feedback correction coefficient FAF will be described.

フィードバック補正係数FAFの演算処理の一例を第5
図に示す0手順P11において、フィードバック条件が
成立しているか否かを判断する。
An example of the calculation process of the feedback correction coefficient FAF is shown in the fifth example.
In step P11 shown in the figure, it is determined whether a feedback condition is satisfied.

例えば、始動状態でなく、始動後増量中でなく、エンジ
ン水温THWが40℃以上であり、・臂ワー増量中でな
い場合にフィードバック制御の条件が成立する。フィー
ドバック条件が成立していないときには手順P15で補
正係数F’AIFを1.0とする。成立している場合、
手順P12において、0゜センサ42からの空燃比信号
S5に基づいて空燃比がリッチと判定されていれば燃料
噴射量を少なくするように補正係数FAFを小さくシ、
逆にリーンと判定されていれば補正係数FAFを大きく
して空燃比が理論空燃比近傍に制御されるようにする。
For example, the conditions for feedback control are satisfied when the engine is not in a starting state, is not in the process of increasing the amount after starting, the engine water temperature THW is 40° C. or higher, and is not in the process of increasing the amount of arm water. If the feedback condition is not satisfied, the correction coefficient F'AIF is set to 1.0 in step P15. If established,
In step P12, if the air-fuel ratio is determined to be rich based on the air-fuel ratio signal S5 from the 0° sensor 42, the correction coefficient FAF is decreased to reduce the fuel injection amount;
Conversely, if it is determined that the engine is lean, the correction coefficient FAF is increased so that the air-fuel ratio is controlled close to the stoichiometric air-fuel ratio.

−F L K A N演算− 次に、リーン補正係数F L E A Mの演算処理の
一例について説明する。第1図を参照するに、手Itf
iP21ではシフト信号810から現在のシフト位Hp
を読込み、手順P22に進む。ROM22”には、各シ
フト位置Pに対する基準回転数NRが予め定められてい
て、読込まれたシフト位置Pから基準回転数NRを検索
する。ここで、第6図に示すように、各シフト位置、換
言すると選択された変速機のギア比に応じてN。−N、
まで基準回転aN Rカ定メラレテイテ、No >N1
>”!>N8 >N、)N、のように、ギア比が小さい
ほど小さく設定されている。これら各位は、例えばシフ
トポイントが1速→2速15km/h、2速→5速25
−/h13速→4速40kn+/h、4速→5速45K
Il/hであれば、それらの車速に対応して予め設定す
るのが好適である2、なお、中立位置で最つとも大きい
値を設定しているのは、中立時には無条件にリーン制御
を禁止するためである。すなわち、本来、アイドル時に
は燃焼が不安定であシ希薄混合気での燃焼を避ける要求
があり、そのために、スロットル弁全閉かつ中立位置の
ときにリーン制御を禁止するように条件を設定してもよ
いが、判定ロジックが複雑になるので、本実施例では中
立位置では無条件にリーン制御を禁止するようなロジッ
クとしている。
-FLKAN Calculation- Next, an example of the calculation process of the lean correction coefficient FLEAM will be described. Referring to Figure 1, the hand Itf
In the iP21, the current shift position Hp is determined from the shift signal 810.
, and proceed to step P22. The reference rotation speed NR for each shift position P is predetermined in the ROM 22'', and the reference rotation speed NR is searched from the read shift position P.Here, as shown in FIG. , in other words, N.-N, depending on the gear ratio of the selected transmission.
Reference rotation up to aN R camera retate, No > N1
>”!>N8 >N, )N, the smaller the gear ratio is, the smaller the setting is.For example, the shift points for each of these are 1st gear → 2nd gear 15 km/h, 2nd gear → 5th gear 25 km/h.
-/h 13th speed → 4th speed 40kn+/h, 4th speed → 5th speed 45K
If it is Il/h, it is preferable to set it in advance according to those vehicle speeds2. Furthermore, setting the largest value at the neutral position means that lean control is performed unconditionally at the neutral position. This is to prohibit it. In other words, combustion is inherently unstable when idling, and there is a need to avoid combustion with a lean mixture, so conditions are set to prohibit lean control when the throttle valve is fully closed and in the neutral position. However, since the determination logic becomes complicated, in this embodiment, the logic is such that lean control is unconditionally prohibited at the neutral position.

次いで手順P25において、現在の機関回転数Neと基
準回転数NRとの大小判別を行い、NeくNRならば手
順P26に進んで、リーン制御を禁止すべく、リーン補
正係数FLB!AN f # 1.□ zとする。一方
、Ne)NRならば、手順P24において他のり−ン条
件が成立しているか否かを判別する。リーン制御条件は
、例えば、次のような条件である。
Next, in step P25, it is determined whether the current engine speed Ne and the reference speed NR are large or small, and if Ne is NR, the process proceeds to step P26, in order to prohibit the lean control, the lean correction coefficient FLB! AN f #1. □ Let it be z. On the other hand, if Ne)NR, it is determined in step P24 whether or not other link conditions are satisfied. The lean control conditions are, for example, the following conditions.

(1)  ニンジン始動中でない (2)始動後増量および出力増量中でないこと(31水
温が75℃以上 (4)  吸気管圧力PM 650謂Hg以下(機関負
荷が低負荷であること) (5)速度変化ΔB PD72sec<5 r/ h(
6)  スロットル開度50度以下かつ全閉でないこと 手順P24で肯定判定されると手順P25に進んで、例
えば吸気管圧力FMの関数として予め定められたグラフ
からリーン補正係数FLEiANを演算する。このリー
ン補正係数FLI!:ANは1.0より小さい値である
(1) The engine is not being started (2) The engine is not being increased after starting or the output is being increased (31 Water temperature is 75°C or higher (4) Intake pipe pressure PM is 650 Hg or less (the engine load is low) (5) Speed change ΔB PD72sec<5 r/h(
6) Throttle opening is 50 degrees or less and not fully closed. If an affirmative determination is made in step P24, the process proceeds to step P25, where a lean correction coefficient FLEiAN is calculated from a predetermined graph as a function of intake pipe pressure FM, for example. This lean correction coefficient FLI! :AN is a value smaller than 1.0.

なお、フィードバック制御およびリーン制御の演算手順
は上記実施例に限られないことは勿論であり、また、燃
料噴射時間の種々の演算手順も上記実施例に限定されな
い。更に、機関負荷として、吸入空気量/機関回転数を
用いることもできる。
It goes without saying that the calculation procedures for the feedback control and the lean control are not limited to the above embodiments, and the various calculation procedures for the fuel injection time are not limited to the above embodiments. Furthermore, the intake air amount/engine speed can also be used as the engine load.

更にまた、本発明方法は燃料噴射弁を有する内燃機関に
限られず、電子式気化器を有する内燃機関にも適用でき
、また、本発明fiは、燃料噴射弁を有するあらゆる形
態の内燃機関に適用できる、〔発明の効果〕 以上説明したように本発明によれば、シフト位置に応じ
て基準回転数を種々設定しておき、機関回転数と基準回
転数とを比較して、機関回転数が大きいときにその他の
リーン制御条件が同時に成立しているときにのみリーン
制御を実行するようにしたので、基準回転数を一律に設
定してリーン条件を判定する場合に比べて運転性能が向
上する。
Furthermore, the method of the present invention is not limited to internal combustion engines having fuel injection valves, but can also be applied to internal combustion engines having electronic carburetors, and the present invention fi is applicable to all types of internal combustion engines having fuel injection valves. [Effects of the Invention] As explained above, according to the present invention, various reference rotation speeds are set depending on the shift position, and the engine rotation speed is determined by comparing the engine rotation speed and the reference rotation speed. Since lean control is executed only when the engine speed is large and other lean control conditions are satisfied at the same time, driving performance is improved compared to when determining lean conditions by setting a uniform reference rotation speed. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はり−ン補正係数FLIANの演算手順の一例を
示すフローチャート、第2図は本発明方法が適用される
内燃機関の一例を示す構成図、第5図はその制御回路の
詳細を示すブロック図、第4図は燃料噴射の一手順例を
示すフローチャート、第5図はフィードバック補正係数
FAFの演算手順の一例を示すフローチャート、第6図
はシフト位置Pと基準回転数NRとの関係を示す線図で
ある。 1日・・・スロットル弁、20・・・吸気圧力センサ、
22・・・制御回路、   26・・・燃料噴射弁、5
4.56・・・クランク角センナ、 40・・・スロットルセンサ、 42・・・0.センサ、  48・・・シフトセンサ。 第1図 第3図 第4図 第5図
Fig. 1 is a flowchart showing an example of the calculation procedure for the curve correction coefficient FLIAN, Fig. 2 is a block diagram showing an example of the internal combustion engine to which the method of the present invention is applied, and Fig. 5 is a block diagram showing details of the control circuit thereof. 4 is a flowchart showing an example of a procedure for fuel injection, FIG. 5 is a flowchart showing an example of a procedure for calculating the feedback correction coefficient FAF, and FIG. 6 is a flowchart showing an example of a procedure for calculating the feedback correction coefficient FAF. FIG. 6 shows the relationship between shift position P and reference rotation speed NR. It is a line diagram. 1st... Throttle valve, 20... Intake pressure sensor,
22... Control circuit, 26... Fuel injection valve, 5
4.56...Crank angle sensor, 40...Throttle sensor, 42...0. Sensor, 48...Shift sensor. Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)排気ガス中の成分に応じて空燃比を検出し、その
空燃比に基づいて空燃比を理論空燃比近傍に保持するフ
ィードバック制御と、少なくとも低負荷高回転数領域が
検出されたときに空燃比を理論空燃比より希薄側で制御
するリーン制御とを択一的に実行するにあたり、機関負
荷、機関回転数およびシフト位置を検出し、検出された
シフト位置に応じて、選択された変速機のギヤ比が小さ
いほど小さくなるように予め設定された基準回転数を決
定し、検出された機関回転数と決定された基準回転数と
を比較し、少なくとも検出された機関回転数が前記基準
回転数より大きくかつ機関負荷が低負荷であるときにリ
ーン制御すべく空燃比を制御することを特徴とする内燃
機関の空燃比制御方法。
(1) Feedback control that detects the air-fuel ratio according to the components in the exhaust gas and maintains the air-fuel ratio near the stoichiometric air-fuel ratio based on the detected air-fuel ratio, and at least when a low load high rotation speed region is detected. In performing alternative lean control, which controls the air-fuel ratio to be leaner than the stoichiometric air-fuel ratio, the engine load, engine speed, and shift position are detected, and the selected shift is performed according to the detected shift position. A preset reference rotation speed is determined so that the smaller the gear ratio of the engine is, the smaller the engine rotation speed is, and the detected engine rotation speed is compared with the determined reference rotation speed, and at least the detected engine rotation speed is determined to be smaller than the reference rotation speed. 1. An air-fuel ratio control method for an internal combustion engine, characterized in that the air-fuel ratio is controlled for lean control when the engine load is lower than the rotational speed and the engine load is low.
JP26428584A 1984-12-14 1984-12-14 Method of controlling air-fuel ratio of internal combustion engine Pending JPS61142344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26428584A JPS61142344A (en) 1984-12-14 1984-12-14 Method of controlling air-fuel ratio of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26428584A JPS61142344A (en) 1984-12-14 1984-12-14 Method of controlling air-fuel ratio of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS61142344A true JPS61142344A (en) 1986-06-30

Family

ID=17401038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26428584A Pending JPS61142344A (en) 1984-12-14 1984-12-14 Method of controlling air-fuel ratio of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS61142344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103738A (en) * 1986-10-20 1988-05-09 Mazda Motor Corp Speed change controller for automatic transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103738A (en) * 1986-10-20 1988-05-09 Mazda Motor Corp Speed change controller for automatic transmission

Similar Documents

Publication Publication Date Title
US5784880A (en) Engine fuel supply control device
US5315823A (en) Control apparatus for speedily warming up catalyst in internal combustion engine
JPH11173184A (en) Control device of internal combustion engine
JPS59539A (en) Air-fuel ratio control of air-fuel mixture for internal- combustion engine of vehicle
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPS61142344A (en) Method of controlling air-fuel ratio of internal combustion engine
KR100187783B1 (en) Engine control apparatus
JP2540988B2 (en) Engine controller
JPS6065245A (en) Air-fuel ratio controller for internal-combustion engine
JPS6111433A (en) Air-fuel learning control method in internal-combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JP2778392B2 (en) Engine control device
JPS6060229A (en) Air-fuel ratio learning control method for internal-combustion engine
JP2011117341A (en) Internal combustion engine device, vehicle including the same and method for controlling the same
JPH02102335A (en) Air-fuel ratio feedback control method for internal combustion engine
JPH0536617B2 (en)
JPH10176565A (en) Air-fuel ratio switching control method
JPS61149541A (en) Air-fuel ratio controlling method for internal combustion engine
JPS61145337A (en) Method of controlling air-fuel ratio learning of internal-combustion engine
JPH062593A (en) Air-fuel ratio study method for internal combustion engine
JP2001107760A (en) Air-fuel ratio control method of internal combustion engine
JPH062590A (en) Air-fuel ratio control method for internal combustion engine
JPH11173197A (en) Air-fuel patio control method
JPS63230937A (en) Air-fuel ratio control method for internal combustion engine
JPS61129443A (en) Air-fuel ratio learning control for internal-combustion engine