JPS63242970A - Manufacture of silicon nitride sintered body - Google Patents
Manufacture of silicon nitride sintered bodyInfo
- Publication number
- JPS63242970A JPS63242970A JP62078228A JP7822887A JPS63242970A JP S63242970 A JPS63242970 A JP S63242970A JP 62078228 A JP62078228 A JP 62078228A JP 7822887 A JP7822887 A JP 7822887A JP S63242970 A JPS63242970 A JP S63242970A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- manufacturing
- sintered body
- raw material
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 53
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000000843 powder Substances 0.000 claims description 38
- 239000002994 raw material Substances 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 19
- 238000001513 hot isostatic pressing Methods 0.000 claims description 17
- 238000005245 sintering Methods 0.000 claims description 17
- 238000010298 pulverizing process Methods 0.000 claims description 16
- 238000011282 treatment Methods 0.000 claims description 12
- 239000002775 capsule Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 7
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 7
- 238000005469 granulation Methods 0.000 claims description 6
- 230000003179 granulation Effects 0.000 claims description 6
- 229920000609 methyl cellulose Polymers 0.000 claims description 6
- 239000001923 methylcellulose Substances 0.000 claims description 6
- 235000010981 methylcellulose Nutrition 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 235000021355 Stearic acid Nutrition 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 4
- 238000013001 point bending Methods 0.000 claims description 4
- 238000001694 spray drying Methods 0.000 claims description 4
- 239000008117 stearic acid Substances 0.000 claims description 4
- 239000012752 auxiliary agent Substances 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 18
- 238000001035 drying Methods 0.000 description 11
- 239000002002 slurry Substances 0.000 description 7
- 239000011362 coarse particle Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は機械部品、耐摩耗部材あるいは摺動部材等に有
用な高強度な窒化珪素焼結体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a high-strength silicon nitride sintered body useful for mechanical parts, wear-resistant members, sliding members, etc.
[従来の技術] 従来、窒化珪素焼結体は次のように製造している。[Conventional technology] Conventionally, silicon nitride sintered bodies have been manufactured as follows.
まず窒化珪素原料と焼結助剤を混合し、粉砕した後、粉
砕時に用いる玉石の破片等の異物除去のため、通常44
ルmの篩を通している。次に、篩通し後の原料混合物を
造粒した後、ねかし或いは水分添加により原料混合物中
の水分量をコントロールして更に篩を通した後、金型プ
レス又は冷間静水圧プレスにて成形し所定温度で焼成す
ることにより焼結体を得ている。First, the silicon nitride raw material and the sintering aid are mixed, and after pulverizing, the process is usually carried out at
Passed through the sieve of Lum. Next, after granulating the raw material mixture after passing through a sieve, the amount of water in the raw material mixture is controlled by aging or adding water, and after further passing through a sieve, it is molded using a die press or cold isostatic press. A sintered body is obtained by firing at a predetermined temperature.
[発明が解決しようとする問題点]
しかしながら、上記した従来の窒化珪素焼結体の製造方
法にあっては、粉砕後の粗大粒子及び原料中に含まれる
異物の排除や造粒粉体中の水分の均一化を積極的には実
施していないため、粗大粒子及び原料中に含まれる異物
の混入や造粒粉体中の水分量のバラツキか生じるという
場合があった。その結果、粗大粒子及び原料中に含まれ
る異物の混入や水分量のバラツキによる不均一な粒子崩
壊により成形体中に気孔か生じて、それが焼結後に残留
し、高強度な窒化珪素焼結体を得ることができないとい
う欠点があった。[Problems to be Solved by the Invention] However, in the above-described conventional method for producing a silicon nitride sintered body, it is difficult to remove coarse particles and foreign substances contained in the raw material after pulverization, and to remove foreign substances contained in the granulated powder. Since the water content was not actively homogenized, there were cases where coarse particles and foreign matter contained in the raw materials were mixed in, or the amount of water in the granulated powder varied. As a result, pores are generated in the compact due to uneven particle collapse due to the contamination of coarse particles and foreign substances contained in the raw materials and variations in moisture content, and these pores remain after sintering, resulting in high-strength silicon nitride sintering. The drawback was that it was impossible to obtain a body.
[問題点を解決するための手段]
従って本発明の目的は、上記従来の欠点を解消した、高
強度な窒化珪素焼結体の製造方法を提供することである
。そしてその目的は、本発明によれば、窒化珪素原料と
焼結助剤を混合、粉砕、造粒後成形し、次いで該成形体
を焼成することにより窒化珪素焼結体を製造する方法に
おいて、窒化珪素原料としてα型窒化珪素含有率が少な
くとも90%以上のものを用い、造粒後の粉体を一旦強
制的に乾燥した後成形し、次いで、得られた成形体に予
備処理を施し、窒素雰囲気下で熱間静水圧プレス処理を
行うことを特徴とする窒化珪素焼結体の製造方法、によ
り達成される。[Means for Solving the Problems] Therefore, an object of the present invention is to provide a method for manufacturing a high-strength silicon nitride sintered body that eliminates the above-mentioned conventional drawbacks. According to the present invention, the purpose is to provide a method for manufacturing a silicon nitride sintered body by mixing a silicon nitride raw material and a sintering aid, pulverizing it, granulating it, shaping it, and then firing the molded body. Using a silicon nitride raw material with an α-type silicon nitride content of at least 90%, the granulated powder is once forcibly dried and then molded, and the obtained molded body is then pretreated, This is achieved by a method for producing a silicon nitride sintered body, which is characterized by performing hot isostatic pressing in a nitrogen atmosphere.
本発明に係る窒化珪素焼結体の製造方法においては、窒
化珪素原料の選択が重要である。In the method for producing a silicon nitride sintered body according to the present invention, selection of the silicon nitride raw material is important.
即ち、α型窒化珪素の含有率が少なくとも90%以上、
好ましくは95%以上であるように調製された窒化珪素
原料であることが必要である。α型窒化珪素の含有率が
90%より低い場合には、焼結時に高強度化をもたらす
α→β転移に基づく針状のβ型窒化珪素結晶の析出量が
少なくなり、高強度化が達成できなくなるという欠点が
ある。That is, the content of α-type silicon nitride is at least 90% or more,
It is necessary that the silicon nitride raw material is prepared so that it preferably has a content of 95% or more. When the content of α-type silicon nitride is lower than 90%, the amount of acicular β-type silicon nitride crystals precipitated due to the α→β transition that increases strength during sintering decreases, and high strength is achieved. The disadvantage is that it cannot be done.
本発明においては、好ましくは原料粉砕後、造粒前に3
2μm以下の篩通しをし、次に造粒後の粉体な一旦強制
的に乾燥した後必要に応じて水分を添加し篩通しをした
後成形し、次いで、得られた成形体に予備処理を施し、
窒素雰囲気下に熱間静水圧プレス処理を行うことにより
高強度な窒化珪素焼結体を製造することができる。すな
わち、本発明の窒化珪素焼結体の製造方法において特に
重要なポイントは、前記した窒化珪素原料の選択および
造粒粉体の強制乾燥である。この強制乾燥を行なわない
場合、後続の成形工程において、成形圧力による造粒粉
体の均質な崩壊が起こらないため、均質で気孔の少ない
成形体が得られず、そのため熱間静水圧プレス処理(H
IP)後も粗大な気孔が残留し、気孔率の小さな焼成体
が得られない。In the present invention, preferably after pulverizing the raw material and before granulating,
Pass through a sieve of 2 μm or less, then force dry the granulated powder, add moisture as necessary, pass through a sieve, and then mold, and then pre-process the obtained molded product. give,
A high-strength silicon nitride sintered body can be manufactured by performing hot isostatic pressing in a nitrogen atmosphere. That is, particularly important points in the method for producing a silicon nitride sintered body of the present invention are the selection of the silicon nitride raw material and the forced drying of the granulated powder. If this forced drying is not performed, the granulated powder will not collapse homogeneously due to the molding pressure in the subsequent molding process, and a homogeneous molded product with few pores will not be obtained. H
Coarse pores remain even after IP), making it impossible to obtain a fired product with low porosity.
なお、窒化珪素原料と焼結助剤からなるものの造粒は、
従来公知の方法が使用できるが、噴霧乾燥による方法は
造粒粉体が球状であり、粉体の流動性、充填性が良いた
め、成形時の密充填が可能となる。さらに目的とする形
状に合った造粒粉体の大きさを任意にコントロールてき
ることの点から好ましい。In addition, the granulation of the silicon nitride raw material and sintering aid is
Conventionally known methods can be used, but in the spray drying method, the granulated powder is spherical, and the powder has good fluidity and filling properties, so close packing during molding is possible. Furthermore, it is preferable from the point of view that the size of the granulated powder can be arbitrarily controlled to suit the desired shape.
噴霧乾燥に用いる助剤としては、例えば、ボリビニルア
ルコール(PVA)、ポリエチレングリコール(PEG
)、メチルセルロース(MC)、ステアリン酸、ポリア
クリル酸ソーダ、ポリアクリル酸アミド、タンニン酸、
尿素、グリセリンなどが挙げられるが、ポリビニルアル
コール(PVA)、ポリエチレングリコール(PEG)
、メチルセルロース(MC)、ステアリン酸からなる群
から選ばれる少なくとも一種を用いることが好ましい。Examples of auxiliary agents used in spray drying include polyvinyl alcohol (PVA) and polyethylene glycol (PEG).
), methylcellulose (MC), stearic acid, sodium polyacrylate, polyacrylic acid amide, tannic acid,
Examples include urea, glycerin, etc., but polyvinyl alcohol (PVA), polyethylene glycol (PEG)
It is preferable to use at least one selected from the group consisting of , methyl cellulose (MC), and stearic acid.
強制乾燥は恒温乾燥器、熱風循環乾燥器、赤外線ヒータ
を用いた乾燥器等を用いて乾燥を行なうものである。Forced drying is performed using a constant temperature dryer, a hot air circulation dryer, a dryer using an infrared heater, or the like.
また、造粒粉体を強制乾燥した後、必要に応じて水分を
添加しさらに篩通しすることは、造粒粉体間に水分量の
差がなくなりより均一な造粒粉体を得ることができるこ
とから好ましい。In addition, after force drying the granulated powder, adding moisture as necessary and passing it through a sieve eliminates the difference in moisture content between the granulated powders, resulting in a more uniform granulated powder. This is preferable because it can be done.
さらに、粉砕後の原料を造粒前に321Lm以下の篩に
通すと好ましいのは、これ以上の大きさの目開きの篩を
使用すると粉砕後の粗大粒子及び原材料中に含まれる異
物を有効に排除できず、造粒粉体の均一性を保持するこ
とか難しいためである。Furthermore, it is preferable to pass the pulverized raw material through a sieve of 321 Lm or less before granulation, since using a sieve with a larger opening will effectively remove coarse particles and foreign substances contained in the raw material after pulverization. This is because it cannot be eliminated and it is difficult to maintain the uniformity of the granulated powder.
また、本発明では前記の強制乾燥後に成形を行ない、次
いで予備処理さらに熱間静水圧プレス処理を行なうが、
このうち予備処理工程は、成形体を一次的に焼成する工
程(−次焼結工程)あるいは、成形体をカプセルに封入
する工程(カプセル処理工程)の2通りに分けることが
できる。予備処理工程のうち、−次焼結工程においては
、成形体を、好ましくは常圧の窒素雰囲気下、1400
〜1600℃で一次的に焼成する。焼成温度が1400
°Cより低いと焼成後も開気孔が消失せず、熱間静水圧
プレス処理後にも緻密な焼結体が得られない。また、焼
成温度が1aoo”cより高いと、窒化珪素のβ化反応
が進行し、熱間静水圧プレス処理後に高強度な焼結体が
得られなくなる。Further, in the present invention, molding is performed after the above-mentioned forced drying, and then preliminary treatment and hot isostatic pressing treatment are performed.
Among these, the pretreatment process can be divided into two types: a process of primarily firing the molded body (secondary sintering process), and a process of encapsulating the molded body in a capsule (capsule treatment process). In the second sintering step of the pre-treatment step, the compact is heated at 1400° C., preferably under a nitrogen atmosphere at normal pressure.
Primarily fired at ~1600°C. Firing temperature is 1400
If the temperature is lower than °C, open pores will not disappear even after firing, and a dense sintered body will not be obtained even after hot isostatic pressing. Furthermore, if the firing temperature is higher than 1aoo''c, the beta conversion reaction of silicon nitride will proceed, making it impossible to obtain a high-strength sintered body after hot isostatic pressing.
一方、カプセル処理工程においては、成形体を、好まし
くはS i O2を主成分とするガラス中に、真空脱気
した後封入する。カプセルとしてガラスが好ましいのは
、熱間静水圧プレス時のカプセルとしての変形能力およ
び密封性に慣れているためである。On the other hand, in the capsule treatment step, the molded body is preferably vacuum degassed and then encapsulated in glass containing SiO2 as a main component. Glass is preferred as a capsule because of its ability to deform and seal as a capsule during hot isostatic pressing.
これらの予備処理を施した後、熱間静水圧プレス処理を
、好ましくは200〜1500気圧の窒素雰囲気下、1
500〜1900℃で行なう。After performing these preliminary treatments, hot isostatic pressing treatment is preferably performed for 1 hour under a nitrogen atmosphere of 200 to 1500 atm.
It is carried out at 500-1900°C.
本発明では以上のような所定の原料窒化珪素の選択と造
粒粉体の強制乾燥工程、さらにそれにより得られる成形
体の千IA%理工程および熱間静水圧プレス処理工程を
組合わせ、さらに好ましくは、原料粉砕後の篩通し工程
を施すことによって、最大気孔径10μm以下で室温で
の4点曲げ強度が120kg/mm2以上という特性を
有する窒化珪素焼結体を製造することができたのである
。The present invention combines the above-mentioned selection of the predetermined raw material silicon nitride, the forced drying process of the granulated powder, the 1,000 IA% processing process and the hot isostatic pressing process of the molded body obtained thereby, and furthermore, Preferably, by performing a sieving step after pulverizing the raw material, it was possible to produce a silicon nitride sintered body having a maximum pore diameter of 10 μm or less and a four-point bending strength at room temperature of 120 kg/mm or more. be.
上記のごとく製造される窒化珪素焼結体は、組成的にみ
た場合、好ましくはその90%以上がβ型窒化珪素結晶
から成っており、このβ型窒化珪素結晶の占める割合の
大きさが室温での4点曲げ強度120 k g / m
m 2以上という高強度特性に直結しているものと考
えられる。In terms of composition, the silicon nitride sintered body produced as described above preferably consists of 90% or more of β-type silicon nitride crystals, and the proportion of the β-type silicon nitride crystals is at room temperature. 4-point bending strength at 120 kg/m
This is thought to be directly connected to the high strength properties of m 2 or more.
なお、本発明に用いる焼結助剤としては特にその種類を
限定されるものではなく、一般に知られている焼結助剤
を用いることができる。The type of sintering aid used in the present invention is not particularly limited, and generally known sintering aids can be used.
[実施例]
以下、本発明を実施例に基き詳細に説明するが、本発明
はこれら実施例に限定されるものではない。[Examples] Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited to these Examples.
図面は本発明の窒化珪素焼結体の製造方法の一実施例を
示すフローチャートである。なお、図面に示すように各
工程をステップ1からステップ9で表わした。The drawing is a flowchart showing one embodiment of the method for manufacturing a silicon nitride sintered body of the present invention. In addition, as shown in the drawings, each process is represented by steps 1 to 9.
まず、α型窒化珪素の含有率が90%以上である窒化珪
素原料と焼結助剤を混合し、粉砕した(ステップl)後
、好ましくは粉砕時に用いる玉石の破片等の異物および
粗大粒子除去のため、好ましくは32Bm以下の篩通し
をして粒子の平均粒径がIJl、m以下の原料を得る(
ステップ2)。First, a silicon nitride raw material with an α-type silicon nitride content of 90% or more and a sintering aid are mixed and pulverized (Step 1), and then foreign substances such as fragments of cobblestone used during pulverization and coarse particles are preferably removed. Therefore, it is preferable to pass through a sieve of 32 Bm or less to obtain a raw material with an average particle size of IJl,m or less (
Step 2).
次いで造粒(ステップ3)後、その造粒粉体を好ましく
は60〜100℃の温度で強制乾燥して造粒粉体の水分
量の差を少なくし均質な造粒粉体とする(ステップ4)
。次に、必要に応じてO−S〜5.0重量%の水分を造
粒粉体に加え(ステップ5)水分量の均一な造粒粉体を
得た後、さらに篩通しをして水分添加により凝集した粗
大粒子を除去する(ステップ6)。得られた造粒粉体を
通常の方法で成形(ステップ7)後、該成形体に予備処
理を施しくステップ8)、次いで熱間静水圧プレス処理
により焼成する(ステップ9)ことにより本発明の窒化
珪素焼結体を製造することができる。Next, after granulation (step 3), the granulated powder is forcedly dried preferably at a temperature of 60 to 100°C to reduce the difference in moisture content of the granulated powder and make it a homogeneous granulated powder (step 4)
. Next, if necessary, add moisture from O-S to 5.0% by weight to the granulated powder (Step 5) to obtain a granulated powder with a uniform moisture content, and then pass through a sieve to remove moisture. Coarse particles aggregated by the addition are removed (step 6). The obtained granulated powder is molded in a conventional manner (step 7), the molded body is subjected to pretreatment (step 8), and then fired by hot isostatic pressing (step 9), thereby producing the present invention. It is possible to produce a silicon nitride sintered body.
以下、さらに具体的な実施例を説明する。More specific examples will be described below.
(実施例1)
平均粒径0.フルmのα型窒化珪素含宥率が97%の窒
化珪素原料粉末に焼結助剤としてMgO,5rO1Ce
O2の各粉末をそれぞれ3.5重量%、1.5重量%、
5重量%の割合で混合し、それに水分60%を加え、バ
ッチ式粉砕機により混合粉砕した後、目開き20ILm
の篩通しをして、平均粒子径0.5g、mのスラリーを
得た。このスラリーにポリビニルアルコール(PVA)
2重量%を添加し、噴霧乾燥器を用いて造粒粉体とした
。(Example 1) Average particle size: 0. MgO and 5rO1Ce are added as sintering aids to the full m silicon nitride raw material powder with an α-type silicon nitride content of 97%.
Each powder of O2 was 3.5% by weight, 1.5% by weight,
After mixing at a ratio of 5% by weight, adding 60% water to it, and mixing and pulverizing it using a batch type pulverizer, the mesh size was 20ILm.
The slurry was passed through a sieve to obtain a slurry with an average particle size of 0.5 g, m. Polyvinyl alcohol (PVA) is added to this slurry.
2% by weight was added to form a granulated powder using a spray dryer.
さらに、恒温乾燥器を用い、第1表の強制乾燥温度に示
す温度で24時間造粒粉体を乾燥および必要に応じて水
分添加を実施した後、第1表の水分添加後の篩目開きに
示すごとく、JIS 標準篩を用いて篩分けをし、試
料番号1〜8の造粒粉体を得た。この造粒粉体を3トン
/ c m ”の圧力で冷間静水圧プレス成形すること
により、65mm(φ)x50mm(長さ)の成形体を
作製した。Furthermore, after drying the granulated powder for 24 hours at the temperature shown in the forced drying temperature in Table 1 using a constant temperature dryer and adding moisture as necessary, the sieve opening after water addition as shown in Table 1 As shown in the figure, sieving was carried out using a JIS standard sieve to obtain granulated powders of sample numbers 1 to 8. This granulated powder was subjected to cold isostatic press molding at a pressure of 3 tons/cm'' to produce a molded body of 65 mm (φ) x 50 mm (length).
その後、温度500°Cで3時間脱脂した後、窒素(N
2)雰囲気下、温度1460’Cで6時間常圧焼結を行
なった(−次焼結工程)。次いで、この−次焼結体を、
N2雰囲気下、圧力400atm、温度1680℃で熱
間静水圧プレス(HIP)処理することにより、本発明
の焼結体を得た(試料番号1〜8)。また、これとは別
に、本発明の比較例として第1表に示す強制乾燥を実施
しない製造条件により作製した焼結体(試料番号9〜1
1)を作製した。After that, after degreasing at a temperature of 500°C for 3 hours, nitrogen (N
2) Normal pressure sintering was performed in an atmosphere at a temperature of 1460'C for 6 hours (-next sintering step). Next, this second sintered body is
The sintered bodies of the present invention were obtained by hot isostatic pressing (HIP) treatment at a pressure of 400 atm and a temperature of 1680° C. in an N2 atmosphere (sample numbers 1 to 8). Separately, as a comparative example of the present invention, sintered bodies (sample numbers 9 to 1
1) was produced.
・得られた焼結体試料の特性を第1表に示す。・Characteristics of the obtained sintered body sample are shown in Table 1.
そして、これらの焼結体の曲げ強度、最大気孔径および
気孔率を測定して第1表の測定結果に示した。なお、曲
げ強度はJIS R−1601rフアインセラミツク
スの曲げ強さ試験方法」の4点曲げ強度法で測定した。The bending strength, maximum pore diameter, and porosity of these sintered bodies were measured and shown in Table 1. The bending strength was measured by the four-point bending strength method of JIS R-1601r Fine Ceramics Bending Strength Test Method.
最大気孔径および気孔率は焼結体の表面を鏡面研磨し光
学顕微鏡を用い400倍の倍率で測定した。気孔径はそ
の気孔の最大長さを測定し気孔径とし、さらに最大気孔
径は気孔数を1000個測定しその中の最大径を最大気
孔径とした。また気孔率は測定した1000個の気孔の
面積を実測することにより、全気孔面積を求め、その気
孔面積を測定に要した全視野面積で除した値である。The maximum pore diameter and porosity were measured by mirror polishing the surface of the sintered body and using an optical microscope at a magnification of 400 times. The pore diameter was determined by measuring the maximum length of the pores, and the maximum pore diameter was determined by measuring the number of 1000 pores, and the maximum diameter among them was determined as the maximum pore diameter. Moreover, the porosity is a value obtained by calculating the total pore area by actually measuring the area of 1000 measured pores, and dividing the pore area by the total visual field area required for measurement.
第1表から明らかなように、本発明の強制乾燥後、必要
に応じて水分を添加し、さらに篩通しを実施した調整原
料を用いたHIP焼結体は、比較例に比べて極めて気孔
が少なく、機械的特性の優れた焼結体であることが判明
した。As is clear from Table 1, the HIP sintered body using the prepared raw material of the present invention, which was subjected to forced drying, water was added as necessary, and passed through a sieve, had significantly fewer pores than the comparative example. It was found that the sintered body has excellent mechanical properties.
(実施例2)
粉砕後の篩通しおよび粉砕後の平均粒子径の影響を調べ
るため、α型窒化珪素原料(α型窒化珪素含有率99.
5%)と第2表に示す種類、割合て焼結助剤を調合し、
それに水分60%を加え混合粉砕した後、第2表に示す
粉砕後、篩目開きを用い、スラリーを得た。その平均粒
子径は第2表の通りであった。このスラリーにポリビニ
ールアルコール1重量%、ステアリン酸0.5重量%添
加し、噴霧乾燥器を用い造粒粉体を得た。その造粒粉体
を乾燥器を用い、70°Cで20時間乾燥した後、4重
量%の水分添加を行ない、さらに目開き149μmの篩
を通過させた。この粉体を6トン/ c m 2の圧力
で冷間静水圧プレス成形をし、30mm(φ)x60m
m(長さ)の成形体を得た。その後、500°Cで3時
間脱脂した後、シリカガラス製カプセルに真空封入した
。次いでこのカプセルをHIP装置内に挿入し、圧力1
500atm、温度1700°CでHIP処理を行ない
、試料番号12〜17の窒化珪素焼結体を得た。(Example 2) In order to investigate the influence of passing through a sieve after pulverization and the average particle size after pulverization, α-type silicon nitride raw material (α-type silicon nitride content: 99.
5%) and the types and proportions of sintering aids shown in Table 2,
After adding 60% water and mixing and pulverizing, the mixture was pulverized as shown in Table 2, and a slurry was obtained using a sieve opening. The average particle diameter was as shown in Table 2. To this slurry were added 1% by weight of polyvinyl alcohol and 0.5% by weight of stearic acid, and a granulated powder was obtained using a spray dryer. The granulated powder was dried at 70° C. for 20 hours using a drier, then 4% by weight of water was added, and the powder was passed through a sieve with an opening of 149 μm. This powder was cold isostatically pressed at a pressure of 6 tons/cm2 to form a 30 mm (φ) x 60 m
A molded body having a length of m (length) was obtained. After that, it was degreased at 500°C for 3 hours, and then vacuum-sealed into a silica glass capsule. This capsule is then inserted into the HIP device and a pressure of 1
HIP treatment was performed at 500 atm and a temperature of 1700°C to obtain silicon nitride sintered bodies of sample numbers 12 to 17.
第2表から本発明品の中でも、粉砕後32pm以下の篩
を通したもの、粉砕後の平均粒子径が1gm以下のもの
がより好ましいことか判明した。From Table 2, it was found that among the products of the present invention, those that passed through a sieve with a particle size of 32 pm or less after pulverization and those with an average particle size of 1 gm or less after pulverization were more preferable.
(以下、余白)
(実施例3)
α型窒化珪素原料のα型窒化珪素含有率85%、92%
、95%の各原料を用い、焼結助剤としてY2O,6重
量%、Alt 034重量%加え、混合粉砕した後、目
開き32μmの篩通しをしてスラリーを得た。このスラ
リーにメチルセルロース1重量%を添加し、乾燥器にて
乾燥後、造粒粉体を調製した。さらに恒温乾燥器を用い
、100°Cで30時間乾燥した。この造粒粉体を3ト
ン/cm”の圧力で冷間静水圧プレス成形をし、30m
m(φ)x50mm(長さ)の成形体を作製した。その
後、450℃で5時間脱脂した後、シリカガラス製カプ
セルに真空封入し、次いでこのカプセルをHIP装置内
に装入し、圧力11000at、温度1600.165
0.1700°Cでそれぞれ30分HIP処理を行ない
、第3表に示すように試料番号18〜24の窒化珪素焼
結体を得た。(Hereinafter, blank space) (Example 3) α-type silicon nitride content of α-type silicon nitride raw material 85%, 92%
, 95% of each raw material, 6% by weight of Y2O and 34% by weight of Alt 0 as sintering aids were added, mixed and pulverized, and then passed through a sieve with an opening of 32 μm to obtain a slurry. 1% by weight of methylcellulose was added to this slurry, and after drying in a drier, a granulated powder was prepared. Further, it was dried at 100°C for 30 hours using a constant temperature dryer. This granulated powder was cold isostatically pressed at a pressure of 3 tons/cm" and
A molded body of m (φ) x 50 mm (length) was produced. Thereafter, after degreasing at 450°C for 5 hours, the capsule was vacuum sealed in a silica glass capsule, and then this capsule was placed in a HIP device at a pressure of 11000at and a temperature of 1600.165°C.
HIP treatment was performed at 0.1700°C for 30 minutes each to obtain silicon nitride sintered bodies of sample numbers 18 to 24 as shown in Table 3.
第3表から明らかなように、α型窒化珪素含有率で90
%以上の窒化珪素原料を用いた方か高強度を有すること
が判明した。As is clear from Table 3, the α-type silicon nitride content is 90
% or more of silicon nitride raw material had higher strength.
[発明の効果]
以上説明したように、本発明によれば、所定の原料窒化
珪素の選択および造粒粉体の強制乾燥、それに引続く予
備処理、HIP処理を組合わせ、さらに好ましくは原料
粉砕後の篩通しを施すこと、必要に応じて水分添加する
ことによって、最大気孔径が小さく高強度な窒化珪素焼
結体を得ることかできる。従って、本発明の窒化珪素焼
結体は機械部品のほか耐摩耗部材、摺動部材等として極
めて有効に用いることができる。[Effects of the Invention] As explained above, according to the present invention, selection of a predetermined raw material silicon nitride, forced drying of the granulated powder, subsequent preliminary treatment, and HIP treatment are combined, and more preferably raw material pulverization By performing subsequent sieving and adding water if necessary, a silicon nitride sintered body with a small maximum pore diameter and high strength can be obtained. Therefore, the silicon nitride sintered body of the present invention can be extremely effectively used as wear-resistant members, sliding members, etc. in addition to mechanical parts.
図面は本発明の製造方法の一実施例を示すフローチャー
トである。The drawing is a flowchart showing an embodiment of the manufacturing method of the present invention.
Claims (10)
形し、次いで該成形体を焼成することにより窒化珪素焼
結体を製造する方法において、窒化珪素原料としてα型
窒化珪素含有率が少なくとも90%以上のものを用い、
造粒後の粉体を一旦強制的に乾燥した後成形し、次いで
、得られた成形体に予備処理を施し、窒素雰囲気下で熱
間静水圧プレス処理を行うことを特徴とする窒化珪素焼
結体の製造方法。(1) In a method of manufacturing a silicon nitride sintered body by mixing, pulverizing, granulating and shaping a silicon nitride raw material and a sintering aid, and then firing the molded body, α-type silicon nitride is used as the silicon nitride raw material. Using a material with a content rate of at least 90% or more,
A silicon nitride sintered product characterized in that the powder after granulation is once forcibly dried and then molded, and then the obtained molded body is pretreated and subjected to hot isostatic pressing treatment in a nitrogen atmosphere. Method for producing solids.
室温での4点曲げ強度120kg/mm^2以上を有す
るものである特許請求の範囲第1項記載の製造方法。(2) The silicon nitride sintered body has a maximum pore diameter of 10 μm or less,
The manufacturing method according to claim 1, which has a four-point bending strength of 120 kg/mm^2 or more at room temperature.
からなる特許請求の範囲第1項又は第2項記載の製造方
法。(3) The manufacturing method according to claim 1 or 2, in which 90% or more of the silicon nitride sintered body is composed of β-type silicon nitride crystals.
応じて水分を添加し、該粉体を篩通しすることにより、
所定の水分量を有する均一な造粒粉体とする特許請求の
範囲第1項記載の製造方法。(4) Once the granulated powder is forcibly dried, water is added as needed and the powder is passed through a sieve,
The manufacturing method according to claim 1, wherein a uniform granulated powder having a predetermined moisture content is obtained.
させる特許請求の範囲第1〜4項のいずれかに記載の製
造方法。(5) The manufacturing method according to any one of claims 1 to 4, wherein the pulverized raw material is passed through a sieve of 32 μm or less before granulation.
許請求の範囲第1〜5項のいずれかに記載の製造方法。(6) The manufacturing method according to any one of claims 1 to 5, wherein the average particle diameter of the powder after pulverization is 1 μm or less.
℃で一次的に焼成するものである特許請求の範囲第1〜
6項のいずれかに記載の製造方法。(7) Pre-treatment under nitrogen atmosphere, 1400-1600
Claims 1 to 2 are those that are primarily fired at °C.
The manufacturing method according to any one of Item 6.
る特許請求の範囲第1〜6項のいずれかに記載の製造方
法。(8) The manufacturing method according to any one of claims 1 to 6, wherein the pretreatment includes encapsulating the molded body in a capsule.
囲第1〜8項のいずれかに記載の製造方法。(9) The manufacturing method according to any one of claims 1 to 8, wherein the granulation is performed by spray drying.
コール、ポリエチレングリコール、メチルセルロース、
ステアリン酸からなる群から選ばれる少なくとも一種を
用いる特許請求の範囲第9項記載の製造方法。(10) As auxiliary agents used for spray drying, polyvinyl alcohol, polyethylene glycol, methyl cellulose,
The manufacturing method according to claim 9, wherein at least one selected from the group consisting of stearic acid is used.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62078228A JPS63242970A (en) | 1987-03-31 | 1987-03-31 | Manufacture of silicon nitride sintered body |
US07/129,135 US4820665A (en) | 1986-12-16 | 1987-12-07 | Ceramic sintered bodies and a process for manufacturing the same |
EP87310958A EP0272066B1 (en) | 1986-12-16 | 1987-12-14 | Ceramic sintered bodies and a process for manufacturing the same |
DE87310958T DE3786765T2 (en) | 1986-12-16 | 1987-12-14 | Sintered ceramic moldings and process for their production. |
US07/469,727 US5017531A (en) | 1986-12-16 | 1990-01-24 | Silicon nitride ceramic sintered bodies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62078228A JPS63242970A (en) | 1987-03-31 | 1987-03-31 | Manufacture of silicon nitride sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63242970A true JPS63242970A (en) | 1988-10-07 |
Family
ID=13656189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62078228A Pending JPS63242970A (en) | 1986-12-16 | 1987-03-31 | Manufacture of silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63242970A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05106635A (en) * | 1991-04-10 | 1993-04-27 | Sumitomo Electric Ind Ltd | Compound bearing construction |
JP2002326875A (en) * | 2001-01-12 | 2002-11-12 | Toshiba Corp | Abrasion resistant member of silicon nitride and its manufacturing method |
JP2014518192A (en) * | 2011-06-30 | 2014-07-28 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Manufacturing method of colored ceramic parts by PIM |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0649612A (en) * | 1991-12-04 | 1994-02-22 | Armco Steel Co Lp | Method of performing meniscus coating of steel strip |
-
1987
- 1987-03-31 JP JP62078228A patent/JPS63242970A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0649612A (en) * | 1991-12-04 | 1994-02-22 | Armco Steel Co Lp | Method of performing meniscus coating of steel strip |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05106635A (en) * | 1991-04-10 | 1993-04-27 | Sumitomo Electric Ind Ltd | Compound bearing construction |
JP2002326875A (en) * | 2001-01-12 | 2002-11-12 | Toshiba Corp | Abrasion resistant member of silicon nitride and its manufacturing method |
JP2014518192A (en) * | 2011-06-30 | 2014-07-28 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Manufacturing method of colored ceramic parts by PIM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3875277A (en) | Method for making polycrystalline alumina arc tubes | |
EP0272066B1 (en) | Ceramic sintered bodies and a process for manufacturing the same | |
JP2512061B2 (en) | Homogeneous silicon nitride sintered body and method for producing the same | |
JPS63242970A (en) | Manufacture of silicon nitride sintered body | |
JP2505179B2 (en) | High-strength atmospheric pressure sintered silicon nitride sintered body and method for producing the same | |
JPS63206359A (en) | Highly minute thermally hydrostatic sintering silicon nitride sintered body and manufacture | |
JP3320645B2 (en) | Manufacturing method of ceramic sintered body | |
US5366941A (en) | Composite ceramics and their production process | |
JPH0867568A (en) | Silicon carbide/silicon nitride composite material and production thereof | |
CA1092325A (en) | Method of forming high density beta silicon nitride | |
JPS63170254A (en) | Manufacture of ceramics | |
JPH02137765A (en) | Production of transparent sintered composite product of aluminum oxynitride | |
JPS6011261A (en) | Manufacture of ceramics sintered body | |
JPH01219063A (en) | Highly dense silicon nitride sintered body and its production | |
JP3112286B2 (en) | Manufacturing method of dense machinable ceramics | |
JPH03290370A (en) | Production of sintered silicon nitride having high toughness | |
JPH07115932B2 (en) | Homogeneous silicon nitride sintered body and method for producing the same | |
JPH06166569A (en) | Production of sintered silicon nitride | |
US20240351952A1 (en) | Process for the preparation of a zirconia granulate | |
JP2510705B2 (en) | Method for producing transparent aluminum oxynitride composite sintered body | |
JPH0283263A (en) | Production of sintered material of silicon nitride | |
RU2005099C1 (en) | Method for preparing articles of glass powder materials | |
US3763295A (en) | Use of alumina as a sintering aid in manufacture of hot pressed beryllia | |
JP2863569B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH0369546A (en) | Sintered ceramic body and production therefor |