[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63170254A - Manufacture of ceramics - Google Patents

Manufacture of ceramics

Info

Publication number
JPS63170254A
JPS63170254A JP62001132A JP113287A JPS63170254A JP S63170254 A JPS63170254 A JP S63170254A JP 62001132 A JP62001132 A JP 62001132A JP 113287 A JP113287 A JP 113287A JP S63170254 A JPS63170254 A JP S63170254A
Authority
JP
Japan
Prior art keywords
manufacturing
sieve
raw material
granulated powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001132A
Other languages
Japanese (ja)
Inventor
満 宮本
一精 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62001132A priority Critical patent/JPS63170254A/en
Priority to US07/129,135 priority patent/US4820665A/en
Priority to EP87310958A priority patent/EP0272066B1/en
Priority to DE87310958T priority patent/DE3786765T2/en
Publication of JPS63170254A publication Critical patent/JPS63170254A/en
Priority to US07/469,727 priority patent/US5017531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジン部品、ガスタービン部品、機械部品、
耐摩耗摺動部材等に有用な高密度ファインセラミックス
の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to engine parts, gas turbine parts, mechanical parts,
The present invention relates to a method for manufacturing high-density fine ceramics useful for wear-resistant sliding members and the like.

(従来の技術) 従来、セラミックスを製造するには、第2図のフローチ
ャートにその一例を示すように、まずセラミックス原料
と焼結助剤を混合し、粉砕した後、粉砕時に用いる玉石
の破片などの異物除去のため44μ−の篩を通している
0次に、造粒した後必要に応じて水分添加した後、金型
プレス又は冷間静水圧プレスで成形して所定温度で焼結
することにより焼結体を得ている。
(Prior art) Conventionally, in order to manufacture ceramics, as shown in the flowchart in Fig. 2, first, ceramic raw materials and sintering aids are mixed, crushed, and then crushed by pieces of cobblestone used in the crushing process. After passing through a 44μ sieve to remove foreign substances, the powder is granulated, water is added as required, and the mixture is molded using a mold press or cold isostatic press and sintered at a predetermined temperature. Obtaining a body.

(発明が解決しようとする問題点) しかしながら、上述した従来のセラミックスの製造方法
においては、造粒粉体中の水分の均一化を積極的には実
施していないため、造粒粉体中の水分量のバラツキが生
じる欠点があった。その結果、造粒粉体中の水分量のバ
ラツキによる不均一な粒子崩壊によ′り成形体中に気孔
が生じて、それが焼結後に残留し、高強度のセラミック
焼結体を得ることができない欠点があった。
(Problems to be Solved by the Invention) However, in the conventional ceramic manufacturing method described above, since the water content in the granulated powder is not actively made uniform, the water content in the granulated powder is There was a drawback that the amount of moisture varied. As a result, pores are generated in the compact due to uneven particle collapse due to variations in the amount of water in the granulated powder, which remain after sintering, making it difficult to obtain a high-strength ceramic sintered compact. There was a drawback that it could not be done.

また、従来高緻密・高強度が要求される機械部品を製造
するため、ホットプレスあるいは熱間静水圧プレス(I
IIP)が利用されているが、コストが高くなり量産向
きでない欠点があった。
In addition, in order to manufacture mechanical parts that conventionally require high density and high strength, hot press or hot isostatic press (I
IIP) has been used, but it has the drawback of being expensive and not suitable for mass production.

本発明の目的は上述した不具合を解消して、高強度・高
密度のセラミック焼結体をホットプレス、HIP等の方
法を用いず常圧で焼成が可能なセラミックスの製造方法
を提供しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned problems and provide a method for producing ceramics that allows high-strength, high-density ceramic sintered bodies to be fired at normal pressure without using methods such as hot pressing or HIP. It is something.

(問題点を解決するための手段) 本発明のセラミックスの製造方法は、セラミック原料粉
末と所定の焼結助剤を混合、粉砕、造粒後、成形、焼成
するセラミックスの製造方法において、造粒後の粉体を
一旦強制的に乾燥した後、必要に応じて水分添加および
/または篩通しをすることにより、所定の水分量を有す
る均一な造粒粉体とすることを特徴とするものである。
(Means for Solving the Problems) The method for producing ceramics of the present invention is a method for producing ceramics in which a ceramic raw material powder and a predetermined sintering aid are mixed, pulverized, granulated, shaped, and fired. The powder is once forcibly dried, and then water is added and/or passed through a sieve as necessary to form a uniform granulated powder having a predetermined moisture content. be.

(作 用) 上述した構成において、造粒後の粉体を一旦強制的に乾
燥した後必要に応じて水分添加および/または篩通しす
ることにより、造粒粒子間に水分量の差がない均一な造
粒粉体を得ることができる。
(Function) In the above-mentioned configuration, by once forcibly drying the granulated powder and then adding moisture and/or passing it through a sieve as necessary, the granulated particles can be uniformly dried without any difference in moisture content between the granulated particles. A fine granulated powder can be obtained.

すなわち、造粒粉体の強制乾燥、水分添加により成形時
に均質な圧壊状態にして粒間の気孔を減少させることが
できる。その結果、このようにして得られた造粒粉体を
使用して成形、焼成することにより、例えば窒化珪素焼
結体では常圧焼結でも最大気孔径が10μ−以下、気孔
率0.5%以下でかつ室温での4点曲げ強度が1001
g/m”以上の高強度・高密度のセラミック焼結体を得
ることができる。
That is, by force drying the granulated powder and adding moisture, it is possible to make it into a homogeneous crushed state during molding and reduce the pores between the particles. As a result, by molding and firing the granulated powder thus obtained, for example, in a silicon nitride sintered body, even when sintered under pressure, the maximum pore diameter is 10μ or less, and the porosity is 0.5. % or less and the 4-point bending strength at room temperature is 1001
It is possible to obtain a ceramic sintered body with high strength and high density of 1.5 g/m" or more.

ここで、強制乾燥温度が60〜100℃であると好まし
いのは、60℃未満では所定の乾燥状態を達成し難<、
100℃を超えると噴霧乾燥に用いた助剤の硬化により
造粒粉体の均質な圧壊状態が得難いためである。
Here, it is preferable that the forced drying temperature is 60 to 100°C because it is difficult to achieve the desired drying state below 60°C.
This is because if the temperature exceeds 100°C, the auxiliary agent used for spray drying will harden, making it difficult to obtain a homogeneous crushed state of the granulated powder.

さらに、粉砕後の原料を造粒前に32μ−以下の篩を通
し、または強制乾燥および水分添加した造粒粉体を25
0μ−以下の篩に通すと好ましいのは、これ以上の大き
さの目開きの篩を使用すると粉砕後の粗大粒子及び原材
料中に含まれる異物を有効に排除できず、造粒粉体の均
一性を保持することが難しいためである。
Furthermore, the raw material after pulverization is passed through a sieve of 32μ or less before granulation, or the granulated powder obtained by forced drying and adding moisture is
It is preferable to pass through a sieve with a size of 0μ or less because if a sieve with a mesh size larger than this is used, coarse particles after pulverization and foreign matter contained in the raw materials cannot be effectively removed, and the granulated powder will not be uniform. This is because it is difficult to maintain one's sexuality.

また、造粒粉体の水分添加量が0.5〜5重量%である
と好ましいのは、0.5重量%未満では造粒粒子間に均
一な水分がいきわたらず水分量の差が起き易くなり一、
5重量%を超えると成形時に成形体表面より水かにじみ
出し、成形体中の圧力分布が起き易くなるためである。
In addition, it is preferable that the amount of water added to the granulated powder is 0.5 to 5% by weight, because if it is less than 0.5% by weight, water will not be uniformly distributed between the granulated particles and a difference in water content will occur. It gets easier,
This is because if the amount exceeds 5% by weight, water oozes out from the surface of the molded product during molding, which tends to cause pressure distribution in the molded product.

また、造粒を噴霧乾燥によって行うと好ましいのは、成
形時に充填密度を高めることができる顆粒粉体を得るた
めである。
Furthermore, the reason why granulation is preferably carried out by spray drying is to obtain a granular powder that can increase the packing density during molding.

さらに、噴霧乾燥に用いる助剤としてPVA、PEG。Furthermore, PVA and PEG are used as auxiliary agents for spray drying.

MC,ステアリン酸が好ましいのは、強制乾燥、水分添
加により造粒粉体が硬化または崩壊を起しにくいためで
ある。
MC and stearic acid are preferred because the granulated powder is less likely to harden or disintegrate due to forced drying or water addition.

また、平均粒径が2μmを超える原料粉末は混合粉砕に
長時間を要じ、その間に粉砕後の摩耗等により不純物の
混入があり特性を著しく低下するとともに、焼結体の高
密度化に効果があるため、2μ麟以下好ましくは1μm
以下の細かい原料を用いることが好ましい。
In addition, raw material powders with an average particle size exceeding 2 μm require a long time to mix and grind, and during this time, impurities may be mixed in due to post-pulverization wear etc., which significantly deteriorates the properties and is not effective in increasing the density of the sintered body. 2 μm or less, preferably 1 μm
It is preferable to use the following fine raw materials.

(実施例) 第1図は本発明の製造方法の一実施例を示すフローチャ
ートである。まず、好ましくは平均粒子径が2μm以下
であるセラミック原料と焼結助剤を混合し、粉砕した後
、粉砕時に用いる玉石の破片などの異物および粗大粒子
除去のため好ましくは32μm以下の篩を通す。ここで
、焼結助剤として所望のセラミックスを微密化または高
強度化させるものであればいずれをも用いることができ
る。
(Example) FIG. 1 is a flowchart showing an example of the manufacturing method of the present invention. First, a ceramic raw material with an average particle diameter of preferably 2 μm or less and a sintering aid are mixed, crushed, and then passed through a sieve preferably with a diameter of 32 μm or less to remove coarse particles and foreign substances such as cobblestone fragments used during crushing. . Here, any sintering aid that can make the desired ceramic finely densified or highly strong can be used.

次に、造粒して水分量が1重量%前後の造粒粉体を得た
後、従来同様篩通しを行う。その後、得られた造粒粉体
を好ましくは60〜100℃の温度で強制乾燥して造粒
粉体の水分量を0.2〜0.5重量%程度バラツキの少
ない均質な造粒粉体にする。次に、必要に応じて0.5
〜5.0重量%の水分を造粒粉体に加え水分量が均一な
造粒粉体を得た後、好ましくは250μI以下の篩を通
して水分添加により凝集した粗大粒子を除去して造粒粉
体を得る。
Next, after granulating to obtain a granulated powder having a water content of about 1% by weight, it is passed through a sieve as in the conventional method. Thereafter, the obtained granulated powder is preferably force-dried at a temperature of 60 to 100°C to obtain a homogeneous granulated powder with a moisture content of 0.2 to 0.5% by weight with little variation. Make it. Then 0.5 if necessary
~5.0% by weight of moisture is added to the granulated powder to obtain a granulated powder with a uniform moisture content, and then passed through a sieve preferably of 250μI or less to remove coarse particles that have aggregated due to the addition of moisture to form the granulated powder. Get a body.

得られた造粒粉体を通常の方法で成形後、例えば常圧で
焼成することにより本発明の緒特性を有する高強度・高
密度のセラミック焼結体が得られる。
The resulting granulated powder is molded by a conventional method and then fired, for example, under normal pressure, to obtain a high-strength, high-density ceramic sintered body having the characteristics of the present invention.

以下、実施例について説明する。Examples will be described below.

去籐炭よ 平均粒径0.5μmの5isNa粉末100重量部に焼
結助剤としてMg03重量部、Zrozl重量部、 C
ent4重量部、 Sr01重量部を添加混合し、それ
に水分60%および直径5〜10nの玉石を入れ、バッ
チ式粉砕機により4時間混合粉砕した。
As a sintering aid, 3 parts by weight of Mg0, parts by weight of Zrozl, and 100 parts by weight of 5isNa powder with an average particle size of 0.5 μm were added to the castor charcoal.
4 parts by weight of ENT and 1 part by weight of Sr were added and mixed, 60% moisture and cobblestones with a diameter of 5 to 10 nm were added thereto, and the mixture was mixed and pulverized for 4 hours using a batch type pulverizer.

次に、混合粉砕したスラリーを目開き32μmのJIS
標準篩を通過させた後、これに噴霧乾燥に用いる助剤と
してPVA 2重量%、ステアリン酸0.2重量%を添
加混合し、噴霧乾燥法により平均粒径80μm、含水率
1.0〜0.5重量%の造粒粉体とした。
Next, the mixed and pulverized slurry was prepared using a JIS standard with an opening of 32 μm.
After passing through a standard sieve, 2% by weight of PVA and 0.2% by weight of stearic acid were added and mixed as auxiliary agents for spray drying, and the average particle size was 80 μm and the water content was 1.0 to 0 by spray drying. It was made into a granulated powder of .5% by weight.

さらに、恒温乾燥器を用い第1表の強制乾燥温度に示す
温度で24時間造粒粉体を乾燥および必要に応じた水分
添加を実施した後、第1表の水分添加後の篩目開きに示
すごと<JIS標準篩を用いて篩通しをし試料番号1〜
8の造粒粉体を得た。この造粒粉体を3ton/cm”
の圧力で冷間静水圧プレス成形し5Qmx60龍×6m
mの成形体を得た。
Furthermore, after drying the granulated powder for 24 hours at the temperature shown in the forced drying temperature in Table 1 using a constant temperature dryer and adding moisture as necessary, As shown <Sieve using JIS standard sieve and sample number 1~
Granulated powder No. 8 was obtained. 3ton/cm” of this granulated powder
Cold isostatic press molding at the pressure of 5Qm x 60dragon x 6m
A molded body of m was obtained.

その後、温度500℃で3時間脱脂した後、この成形体
を窒素ガス雰囲気中において温度1700℃で1時間常
圧焼結を行い、本発明の高強度窒化珪素焼結体(試料番
号1〜8)を得た。また、これとは別に本発明の比較例
として第1表に示す強制乾燥を実施しない製造条件で試
料番号9〜11の造粒粉体を作製し、同様の条件で成形
および焼成して焼結体を得た。
Thereafter, after degreasing at a temperature of 500°C for 3 hours, this compact was subjected to normal pressure sintering at a temperature of 1700°C for 1 hour in a nitrogen gas atmosphere. ) was obtained. Separately, as a comparative example of the present invention, granulated powders of sample numbers 9 to 11 were prepared under the manufacturing conditions shown in Table 1 without performing forced drying, and were molded and fired under the same conditions. I got a body.

そして、これらの焼結体の曲げ強度、最大気孔径および
気孔率を測定して第1表の測定結果に示した。なお、曲
げ強度はJIS R−1601rファインセラミックス
の曲げ強さ試験方法」の4点曲げ強度法で測定した。最
大気孔径および気孔率は焼結体の表面を鏡面研摩し光学
顕微鏡を用い400倍の倍率で測定した。気孔径はその
気孔の最大長さを測定し気孔径とし、さらに最大気孔径
は気孔数を1000個測定しその中の最大径を最大気孔
径とした。また、気孔率は測定した1000個の気孔の
面積を実測することにより、全気孔面積番求めその全気
孔面積を測定に要した全視野面積で除した値である。
The bending strength, maximum pore diameter, and porosity of these sintered bodies were measured and shown in Table 1. In addition, the bending strength was measured by the four-point bending strength method of JIS R-1601r Fine Ceramics Bending Strength Test Method. The maximum pore diameter and porosity were measured by mirror-polishing the surface of the sintered body and using an optical microscope at a magnification of 400 times. The pore diameter was determined by measuring the maximum length of the pores, and the maximum pore diameter was determined by measuring the number of 1000 pores, and the maximum diameter among them was determined as the maximum pore diameter. Moreover, the porosity is a value obtained by actually measuring the area of 1000 measured pores, calculating the total pore area number, and dividing the total pore area by the total visual field area required for measurement.

第1表から明らかなとおり、本発明の強制乾燥後必要に
応じて水分添加しさらに篩通しを実施した調製原料を用
いた焼結体は、比較例に比べ極めて高強度であり気孔の
少ない優れた焼結体であることが明らかである。
As is clear from Table 1, the sintered body using the prepared raw material of the present invention, in which water was added as necessary after forced drying and passed through a sieve, had extremely high strength and fewer pores compared to the comparative example. It is clear that it is a sintered body.

実施■1 平均粒径1.8μ輌のZrO□粉末100重量部と安定
化剤YgOs 5重量部、焼結助剤Al!032重量部
の各原料と水100重量部をジルコニア製ポットミルに
入れ混合粉砕した。粉砕は第2表に示すように1時間、
10時間、30時間揃々行ない、次に混合粉砕したスラ
リーを噴霧乾燥に用いる助剤PIE01重量%を加え、
噴霧乾燥して造粒粉体を各々調製した。
Implementation ■1 100 parts by weight of ZrO□ powder with an average particle size of 1.8μ, 5 parts by weight of stabilizer YgOs, and sintering aid Al! 032 parts by weight of each raw material and 100 parts by weight of water were mixed and ground in a zirconia pot mill. Grinding was carried out for 1 hour as shown in Table 2.
The process was carried out for 10 hours and 30 hours, and then 1% by weight of PIE0, an auxiliary agent used in spray drying, was added to the mixed and pulverized slurry.
Granulated powders were each prepared by spray drying.

このようにして得られた造粒粉体を揃々サンプリングし
、乾風乾燥器を用い第2表に示す強制乾燥温度で30時
間造粒粉体を乾燥および必要に応じた水分添加を実施し
た後、冷間静水圧プレス機で1.5ton /arm”
で60X60X6鶴の成形体を得た。その後乾燥、脱脂
を行ない、大気中にて1400℃で焼成して本発明品で
ある試料番号9〜15の焼結体を得た。また、強制乾燥
を行なわない以外同様の方法で焼結体を作製して比較例
試料番号16〜18を得るとともに、平均粒径3μmの
ZrO,を用い強制乾燥を行なわず48時間粉砕した以
外同様の方法で焼結体を作製して比較例試料番号19を
得た。
All of the granulated powder thus obtained was sampled, and the granulated powder was dried for 30 hours at the forced drying temperature shown in Table 2 using a dry air dryer, and water was added as necessary. After that, 1.5ton/arm” with a cold isostatic press machine.
A molded body of 60×60×6 cranes was obtained. Thereafter, the sintered bodies were dried, degreased, and fired at 1400° C. in the atmosphere to obtain sintered bodies of sample numbers 9 to 15, which are products of the present invention. Comparative example sample numbers 16 to 18 were prepared by producing sintered bodies in the same manner except that forced drying was not performed, and sintered bodies were pulverized for 48 hours without performing forced drying using ZrO with an average particle size of 3 μm. A sintered body was produced by the method described above to obtain Comparative Example Sample No. 19.

そして、得られた焼結体の曲げ強度および成形体相対密
度を測定して第2表に示した。なお、曲げ強度は実施例
1と同様な方法で測定するとともにより測定した。
The bending strength and relative density of the obtained sintered body were measured and shown in Table 2. Incidentally, the bending strength was measured in the same manner as in Example 1 and was also measured further.

その結果第2表に示すように本発明品では成形体相対密
度が高くなるとともに強度が著しく向上し、本発明方法
により高強度のジルコニア焼結体を得ることができた。
As a result, as shown in Table 2, in the products of the present invention, the relative density of the compact was increased and the strength was significantly improved, and a high-strength zirconia sintered body could be obtained by the method of the present invention.

また、平均粒径が2μm以上である比較例19では曲げ
強度の点でその性質が悪化することがわかった。
Furthermore, it was found that in Comparative Example 19, in which the average particle size was 2 μm or more, the properties were deteriorated in terms of bending strength.

ス11引1 平均粒径0.8μmの5iC100重量部に焼結助剤B
、C1,7重量部、カーボンブラック0.8重量部と水
150重量部加え、バッチ式混合・粉砕機にて8時間混
合、粉砕した。このスラリーを3等分し第3表に示す篩
目開きの篩を通し揃々のスラリーに噴霧乾燥用助剤とし
てMCを0.5重量%加え、噴霧乾燥法により平均粒径
50〜80μmの造粒粉体を得た。
100 parts by weight of 5iC with an average particle size of 0.8 μm and sintering aid B
, 1.7 parts by weight of C, 0.8 parts by weight of carbon black and 150 parts by weight of water were added, and the mixture was mixed and pulverized for 8 hours in a batch type mixer/pulverizer. This slurry was divided into three equal parts, passed through a sieve with the mesh openings shown in Table 3, and 0.5% by weight of MC was added as a spray drying aid to each slurry. A granulated powder was obtained.

得られた粉体を揃々2分割し、一方を90℃で24時間
乾燥をするとともに他方をそのままの状態(強制乾燥な
し)で60 X 60 X 10mの大きさに金型ブレ
ス成形を行い、さらに5 ton / 01m ”の圧
力で静水圧プレスを行なった。次いで、アルゴン雰囲気
中で2050℃の温度で焼成し焼結体を作製し、本発明
品である試料番号20〜22の焼結体を得た。また、強
制乾燥を行なわない以外同様の方法で焼結体を作製して
比較例試料番号23〜25の焼結体を得た。
The obtained powder was divided into two parts, one part was dried at 90°C for 24 hours, the other part was left as is (no forced drying), and was press molded into a size of 60 x 60 x 10 m. Further, hydrostatic pressing was performed at a pressure of 5 ton/01 m''.Then, sintered bodies were produced by firing at a temperature of 2050°C in an argon atmosphere, and the sintered bodies of sample numbers 20 to 22, which are products of the present invention, were In addition, sintered bodies were prepared in the same manner except that forced drying was not performed to obtain sintered bodies of comparative sample numbers 23 to 25.

得られた焼結体に対して実施例2と同様に曲げ強度およ
び焼結体相対密度を求めた。結果を第3表に示す。
The bending strength and relative density of the obtained sintered body were determined in the same manner as in Example 2. The results are shown in Table 3.

第3表 この結果から明らかなように、強制乾燥することにより
曲げ強度、焼結体相対密度が優れており、さらに混合粉
砕後の篩目を細かくする効果が曲げ強度向上に現われて
いることから、本発明において粉砕後の原料を造粒前に
32μm以下の篩を通過させると好ましいことがわかっ
た。
Table 3 As is clear from the results, forced drying has excellent bending strength and relative density of the sintered compact, and the effect of making the sieve mesh finer after mixing and pulverization appears to improve the bending strength. In the present invention, it has been found that it is preferable to pass the pulverized raw material through a sieve of 32 μm or less before granulation.

(発明の効果) 以上詳細に説明したところから明らがなように、本発明
によれば、造粒粉末の強制乾燥、必要に応じた水分添加
および/または篩通しによる相乗効果により常圧焼結に
おいても最大気孔径、気孔率が小さく機械的強度の優れ
た高強度・高密度のファインセラミック焼結体を工業的
に安価に得ることができる。そのため、例えば高温軸受
用ベアリング、エンジン部品、ガスタービン部品等の用
途に利用できるものであって、工業的価値の極めて大き
いものである。
(Effects of the Invention) As is clear from the above detailed explanation, according to the present invention, pressureless sintering is achieved by the synergistic effect of forced drying of granulated powder, addition of water as necessary, and/or sieving. Even in sintering, a high-strength, high-density fine ceramic sintered body with small maximum pore diameter and small porosity and excellent mechanical strength can be obtained industrially and at low cost. Therefore, it can be used for applications such as high-temperature bearings, engine parts, gas turbine parts, etc., and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の一実施例を示すフローチャ
ート、 第2図は従来の窒化珪素焼結体を製造する例を示すフロ
ーチャートである。 第1図
FIG. 1 is a flowchart showing an embodiment of the manufacturing method of the present invention, and FIG. 2 is a flowchart showing an example of manufacturing a conventional silicon nitride sintered body. Figure 1

Claims (1)

【特許請求の範囲】 1、セラミック原料粉末と所定の焼結助剤を混合、粉砕
、造粒後、成形、焼成するセラミックスの製造方法にお
いて、 造粒後の粉体を一旦強制的に乾燥した後、 必要に応じて水分添加および/または篩通しをすること
により、所定の水分量を有する均一な造粒粉体とするこ
とを特徴とするセラミックスの製造方法。 2、前記強制乾燥温度が60〜100℃である特許請求
の範囲第1項記載の製造方法。 3、前記粉砕後の原料を造粒前に32μm以下の篩を通
過させる特許請求の範囲第1項記載の製造方法。 4、前記水分添加量が0.5〜5重量%である特許請求
の範囲第1項記載の製造方法。 5、前記強制乾燥後の篩通しが250μm以下の篩を用
いて行われる特許請求の範囲第1項記載の製造方法。 6、前記セラミックスの混合、粉砕後の原料の平均粒子
径が1μm以下である特許請求の範囲第1項記載の製造
方法。 7、前記セラミックスがSi_3N_4、ZrO_2、
SiCである特許請求の範囲第1項記載の製造方法。 8、前記造粒が噴霧乾燥によって行われる特許請求の範
囲第1項記載の製造方法。 9、前記噴霧乾燥に用いる助剤として、ポリビニルアル
コール(PVA)、ポリエチレングリコール(PEG)
、メチルセルロース(MC)、ステアリン酸のうちの少
なくとも一種を用いる特許請求の範囲第8項記載の製造
方法。 10、前記セラミック原料粉末の平均粒子径が2μm以
下である特許請求の範囲第1項記載の製造法。
[Claims] 1. A method for manufacturing ceramics in which a ceramic raw material powder and a predetermined sintering aid are mixed, crushed, granulated, formed, and fired, wherein the granulated powder is once forcibly dried. A method for manufacturing ceramics, which comprises: adding water and/or passing through a sieve as necessary to obtain a uniform granulated powder having a predetermined water content. 2. The manufacturing method according to claim 1, wherein the forced drying temperature is 60 to 100°C. 3. The manufacturing method according to claim 1, wherein the pulverized raw material is passed through a sieve of 32 μm or less before granulation. 4. The manufacturing method according to claim 1, wherein the amount of water added is 0.5 to 5% by weight. 5. The manufacturing method according to claim 1, wherein the sieving after the forced drying is performed using a sieve of 250 μm or less. 6. The manufacturing method according to claim 1, wherein the raw material after mixing and pulverizing the ceramic has an average particle size of 1 μm or less. 7. The ceramics are Si_3N_4, ZrO_2,
The manufacturing method according to claim 1, which is SiC. 8. The manufacturing method according to claim 1, wherein the granulation is performed by spray drying. 9. Polyvinyl alcohol (PVA), polyethylene glycol (PEG) as auxiliary agents used in the spray drying.
9. The manufacturing method according to claim 8, which uses at least one of , methyl cellulose (MC), and stearic acid. 10. The manufacturing method according to claim 1, wherein the ceramic raw material powder has an average particle size of 2 μm or less.
JP62001132A 1986-12-16 1987-01-08 Manufacture of ceramics Pending JPS63170254A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62001132A JPS63170254A (en) 1987-01-08 1987-01-08 Manufacture of ceramics
US07/129,135 US4820665A (en) 1986-12-16 1987-12-07 Ceramic sintered bodies and a process for manufacturing the same
EP87310958A EP0272066B1 (en) 1986-12-16 1987-12-14 Ceramic sintered bodies and a process for manufacturing the same
DE87310958T DE3786765T2 (en) 1986-12-16 1987-12-14 Sintered ceramic moldings and process for their production.
US07/469,727 US5017531A (en) 1986-12-16 1990-01-24 Silicon nitride ceramic sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001132A JPS63170254A (en) 1987-01-08 1987-01-08 Manufacture of ceramics

Publications (1)

Publication Number Publication Date
JPS63170254A true JPS63170254A (en) 1988-07-14

Family

ID=11492918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001132A Pending JPS63170254A (en) 1986-12-16 1987-01-08 Manufacture of ceramics

Country Status (1)

Country Link
JP (1) JPS63170254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120274A (en) * 1988-10-31 1990-05-08 Ngk Insulators Ltd Production of solid electrolyte tube for sodium-sulfur battery
JPH02196109A (en) * 1989-01-25 1990-08-02 Ishikawajima Harima Heavy Ind Co Ltd Shroud structure for gas turbine
JPH07187763A (en) * 1993-12-24 1995-07-25 Ngk Insulators Ltd Production of beta-alumina sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120274A (en) * 1988-10-31 1990-05-08 Ngk Insulators Ltd Production of solid electrolyte tube for sodium-sulfur battery
JPH02196109A (en) * 1989-01-25 1990-08-02 Ishikawajima Harima Heavy Ind Co Ltd Shroud structure for gas turbine
JPH07187763A (en) * 1993-12-24 1995-07-25 Ngk Insulators Ltd Production of beta-alumina sintered compact

Similar Documents

Publication Publication Date Title
JP2512061B2 (en) Homogeneous silicon nitride sintered body and method for producing the same
WO1995003370A1 (en) Silicon carbide grain
JPS6125677B2 (en)
JP3540343B2 (en) Method of manufacturing whisker reinforced ceramic body
JPH0380749B2 (en)
JPH0798684B2 (en) Method for manufacturing high density SiC sintered body
US5879078A (en) Device for producing ceramic sintered body
KR20080091254A (en) Method for producing carbon-containing silicon carbide ceramic
JP2505179B2 (en) High-strength atmospheric pressure sintered silicon nitride sintered body and method for producing the same
JPS63170254A (en) Manufacture of ceramics
US5656219A (en) Process for producing densely sintered silicon nitride components
JP3317421B2 (en) Silicon carbide / silicon nitride composite material and method for producing the same
JPH0515667B2 (en)
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
JPS63206359A (en) Highly minute thermally hydrostatic sintering silicon nitride sintered body and manufacture
JPS63242970A (en) Manufacture of silicon nitride sintered body
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPH03159907A (en) Silicon nitride powder
KR100435006B1 (en) Method for Manufacturing Homogeneous Preform of Reaction-Bonded Silicon Carbide Using the Powders of Multimodal Particle Size Distribution
JPH08319168A (en) Production of sialon ceramic
JPH0867567A (en) Ceramic sintered compact and production thereof
JPH06102576B2 (en) Highly dense silicon nitride sintered body and method for producing the same
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPS61287433A (en) Production of ceramics pellet